
This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 146, Number 7, July 2018, Pages 2985–2994
http://dx.doi.org/10.1090/proc/13990

Article electronically published on March 9, 2018

DIVISORS DEFINED BY NONCRITICAL FUNCTIONS

FRANC FORSTNERIČ
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Abstract. In this paper we show that every complex hypersurface A in a
Stein manifold X with H2(X;Z) = 0 is the divisor of a holomorphic function
on X which has no critical points in X \ Asing. A similar result is proved for
complete intersections of higher codimension.

1. Introduction

In this paper we obtain some new results on the classical subject of complete
intersections in Stein manifolds. For the definitions and background on this topic we
refer to the surveys of Forster [4] and Schneider [15] (see also [11, §8.5]). We begin
with the following result on complex hypersurfaces which correspond to principal
divisors.

Theorem 1.1. Let A be a closed complex hypersurface in a Stein manifold X.
Assume that there is a continuous function h on X which is holomorphic in a
neighborhood of A and whose divisor equals A = h−1(0). Then there exists a holo-
morphic function f on X whose divisor equals A and whose critical points are
precisely the singular points of A:

Crit(f) = Asing.

What is new is that the defining function f ∈ O(X) of A can be chosen to have
no critical points in X \ A. (In fact, if the divisor of f ∈ O(X) equals A, then a
point x ∈ A is a critical point of f if and only if x a singular point of A.) The
family {f−1(c) : c ∈ C} is then a foliation of X by closed complex hypersurfaces,
all of which, except perhaps the zero-fibre A = f−1(0), are smooth. In particular,
if the hypersurface A in Theorem 1.1 is smooth, then it is defined by a holomorphic
function without any critical points on X.

Without the condition that f be noncritical on X \ A, the result is well known
and follows from the isomorphisms (see e.g. [11, §5.2])
(1.1) H1(X;O∗

X) ∼= H1(X; C∗
X) ∼= H2(X;Z),

showing that a second Cousin problem on a Stein manifold is solvable by holomor-
phic functions if it is solvable by continuous functions. Here, O∗

X ⊂ C∗
X are the

sheaves of nonvanishing holomorphic and continuous functions on X, respectively.
Let us consider the special case of Theorem 1.1 when H2(X;Z) = 0. In view

of (1.1) it follows that every divisor on X is a principal divisor, and hence every
complex hypersurface in X is defined by a single holomorphic equation. This gives
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the following corollary, which answers a question asked by Antonio Alarcón (private
communication).

Corollary 1.2. Let X be a Stein manifold with H2(X;Z) = 0. For every closed
complex hypersurface A in X there exists a holomorphic function f ∈ O(X) whose
divisor equals A and whose critical points are precisely the singular points of A.

We compare Theorem 1.1 with another result in the literature. Assume that
A ⊂ X is a smooth complex hypersurface satisfying the assumption of Theorem 1.1.
Its normal bundle NA/X = TX|A/TA is then a trivial line bundle. By [8, Corollary
2.10] (see also [11, Corollary 9.16.2]) there exists a holomorphic function f on X
without critical points such that A is a union of connected components of the zero
fibre f−1(0). The improvement in Theorem 1.1 and Corollary 1.2 is that f can be
chosen such that its zero fibre is exactly A.

We also have the following analogous result for submanifolds of higher codimen-
sion.

Theorem 1.3. Assume that X is a Stein manifold of dimension n > 1, q ∈
{1, . . . , n − 1}, and h = (h1, . . . , hq) : X → C

q is a continuous map which is a
holomorphic submersion in a neighborhood of its zero-fibre A = h−1(0). If there
exists a q-tuple of continuous (1, 0)-forms θ = (θ1, . . . , θq) on X which are pointwise
linearly independent at every point of X and agree with dh = (dh1, . . . , dhq) in a
neighborhood of A, then there is a holomorphic submersion f : X → C

q such that
A = f−1(0) and f−h vanishes to any given finite order on A. Such θ always exists
if q ≤ n+1

2 , equivalently, if dimA ≥
[
n
2

]
.

Note that the submersion f : X → Cq in Theorem 1.3 defines a nonsingular
holomorphic foliation on X by closed embedded complete intersection submanifolds
Σc = {f = c} (c ∈ Cq) of codimension q such that Σ0 = A.

Let us analyse the conditions in Theorem 1.3 more closely. Assume that A is a
closed complex submanifold (not necessarily connected) of pure codimension q in a
Stein manifold X. Then, the normal bundle NA/X is trivial if and only if there is
a neighborhood U ⊂ X of A and a holomorphic submersion h : U → Cq such that
A = h−1(0); the nontrivial (only if) direction follows from the tubular neighborhood
theorem of Docquier and Grauert [3] (see also [11, Theorem 3.3.3, p. 74]). Assume
that this holds. If h can be extended from a possibly smaller neighborhood of A
to a continuous map h̃ : X → Cq satisfying h̃−1(0) = A, then an application of the

Oka principle shows that h̃ can be deformed to a holomorphic map f : X → C
q

that agrees with h to a given order on A and satisfies f−1(0) = A; in other words,
f defines A as a complete intersection in X. (See [11, Theorem 8.5.6], which is a
special case of [11, Theorem 8.6.1]. The Oka principle for complete intersections
was first proved by Forster and Ramspott [6, §4], [7].) By topological reasons, such

an extension h̃ always exists if dimA is sufficiently low compared to dimX. In
particular, we recall the following results in this direction.

Theorem 1.4 (Forster and Ramspott [6, Satz 11, Satz 12, Satz 13]). Let A be a
closed complex submanifold of pure dimension in a Stein manifold X.

(a) If dimA < 1
2 dimX, then A is a complete intersection if and only if the

normal bundle NA/X is trivial.

(b) If X = Cn, then the same conclusion as in (a) holds if dimA ≤ 2
3 (n− 1).
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(c) If X = Cn with n ≤ 6, then A is a complete intersection if and only if
c1(A) = 0 (i.e., the first Chern class of A vanishes).

The second assumption on h in Theorem 1.3, that the differential dh = (dh1, . . . ,
dhq) extends to a q-tuple of pointwise linearly independent (1, 0)-forms (θ1, . . . , θq)
on X (a q-coframe in the terminology of [8]), holds by topological reasons if

(1.2) q = n− dimA ≤ n+ 1

2
⇐⇒ dimA ≥

[n
2

]
.

(See [11, Theorem 8.3.1(c), p. 361].) From (1.2) and Theorem 1.4 we obtain items
(1)–(3) in the following corollary to Theorem 1.3. For the last statement in part
(1), note that every holomorphic vector bundle over an open Riemann surface is
holomorphically trivial by the Oka-Grauert principle (see [11, Theorem 5.3.1(iii),
p. 213]). The submanifold A in the corollary is assumed to be of pure dimension.

Corollary 1.5.

(1) If X is a Stein manifold of odd dimension n = 2k+1 and A ⊂ X is a closed
complex submanifold of dimension k with trivial normal bundle, then there
exists a holomorphic submersion f : X → Ck+1 such that A = f−1(0).

(2) If A is a closed complex submanifold of Cn with trivial normal bundle and[n
2

]
≤ dimA ≤ 2

3
(n− 1),

then A is the zero fibre of a holomorphic submersion f : Cn → C
n−dimA.

(3) If A is a closed complex submanifold of Cn with
[
n
2

]
≤ dimA < n ≤ 6,

then A satisfies the conclusion in (2) if and only if c1(A) = 0.
(4) If A is an algebraic submanifold of Cn of pure codimension 2 with topo-

logically trivial canonical bundle, then A is the zero fibre of a holomorphic
submersion f = (f1, f2) : C

n → C2.

Item (4) relies on a result of Forster and Ohsawa [5, Corollary 3.2], noting also
that a codimension 2 submanifold A ⊂ Cn satisfies the lower bound (1.2) when
n ≥ 4, while the case of a complex curve in C3 is covered by part (1). Forster and
Ohsawa actually proved that the ideal of A is generated by two entire functions
of finite order, thereby answering a question of Cornalba and Griffiths [2]. On the
other hand, there exist smooth algebraic curves in C3 whose ideal is not generated
by two polynomials; see the discussion and references in [5]. We do not know
whether the submersion f = (f1, f2) : C

n → C
2 in part (4) can be chosen of finite

order; our proof does not give this. In fact, the only known result in this direction
seems to be the one of Ohsawa and the author [10] to the effect that every compact
Riemann surface with a puncture admits a noncritical function of finite order.

We list a few special cases of Corollary 1.5 in low dimensions.

Example 1.6. If A ⊂ C
n is a closed complex submanifold of pure dimension k

with trivial normal bundle, then A is the zero-fibre of a holomorphic submersion
Cn → Cn−k in each of the following cases: k = 1, n ∈ {2, 3}; k = 2, n ∈ {4, 5};
k = 3, n ∈ {6, 7}.

When comparing Theorems 1.1 and 1.3, the reader may be led to ask whether
the latter result holds under the weaker assumption that the map h = (h1, . . . , h1) :
X → Cq, which is holomorphic in a neighborhood of the zero-fibre A = h−1(0),
generates the ideal of A at every point. In this case, the expected conclusion would
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be that A = f−1(0) for some holomorphic map f : X → Cq which is a submersion
on X \ A. However, we do not know the answer to this question, and we offer an
explanation why our proof does not apply in this case. When q = 1, a generic
perturbation of the function h in Theorem 1.1 which is fixed to the second order on
A yields a holomorphic function without critical points in a deleted neighborhood
of A in X (see [9, Lemma 2.9]). By adjusting the methods of the paper [8] to
functions avoiding the value 0 ∈ C, we then show that h can be deformed to a
holomorphic function f ∈ O(X) that agrees with h to a given finite order on A, has
no critical points on X \ A, and satisfies f−1(0) = A. (See the proof of Theorem
1.1 in §2.) On the other hand, when q > 1 we do not know whether there always
exists a holomorphic map h : U → C

q in a neighborhood of A = h−1(0) which is
a submersion on U \ A. Indeed, a generic choice of h may have branch locus of
dimension q − 1 > 0 in U \ A. This problem was already present in the analysis
in [9] and prevented us from extending the result on the existence of holomorphic
submersions X → Cq from a Stein manifold X of dimension n to Cq for any
q ∈ {1, . . . ,

[
n+1
2

]
}, obtained in [8], to Stein spaces with singularities when q > 1.

Clearly, a complete intersection submanifold A ⊂ X in Theorem 1.3 is contained
in a smooth hypersurface H ⊂ X. Indeed, if A = f−1(0) for a holomorphic sub-
mersion f = (f1, . . . , fq) : X → Cq, then the preimage H = f−1(H ′) of any smooth
complex hypersurface H ′ ⊂ Cq with 0 ∈ H ′ is such. The proof of Theorem 1.1 also
gives the following result which holds in a bigger range of dimensions than Theorem
1.3.

Corollary 1.7. Let A be a complex submanifold of dimension k in a Stein manifold
X. If dimX >

[
3k
2

]
(equivalently, 3k + 1 ≤ 2 dimX), then there exists a holomor-

phic foliation of X by closed complex hypersurfaces such that A is contained in
one of the leaves. In particular, A is contained in a smooth complex hypersurface
H ⊂ X.

The last statement in the corollary is [14, Theorem 1.3], due to Jelonek and
Kucharz. Their paper also contains results on this subject in the category of affine
algebraic manifolds and includes references to previous works.

The proof of Corollary 1.7 goes as follows. The dimension assumption on A is
equivalent to q := dimX − k >

[
k
2

]
. By [11, Corollary 8.3.2(2)] it follows that the

conormal bundle of A in X (a holomorphic vector bundle of rank q over A) admits a
nonvanishing holomorphic section ξ. By the Docquier-Grauert theorem [3] (see also
[11, Theorem 3.3.3]) there is a holomorphic function h in an open neighborhood of
A that vanishes on A and satisfies dhx = ξx 
= 0 for all x ∈ A. Theorem 2.5 then
furnishes a function f ∈ O(X) without critical points that agrees with h to the
second order on A. Then, {f−1(c) : c ∈ C} is a foliation of X by closed complex
hypersurfaces such that A ⊂ f−1(0).

2. Proof of Theorems 1.1 and 1.3

We shall need the following approximation result for holomorphic submersions
between Euclidean spaces whose range avoids the origin. Without the latter con-
dition on the range, this is [11, Theorem 9.12.2]. (See also [11, Theorem 9.12.1]
for the case when q = 1 and K is polynomially convex. These results originate in
[8, §3.1].)
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Theorem 2.1. Let K be a compact convex set in Cn, q ∈ {1, . . . , n − 1}, and let
f : U → C

q
∗ = Cq \ {0} be a holomorphic submersion on a neighborhood U ⊂ Cn

of K. Given ε > 0 there exists a holomorphic submersion g : Cn → C
q
∗ such that

supK |f − g| < ε.

Proof. We may assume that the set U is convex. Consider first the case q = 1. The
function f : U → C∗ = C\{0} satisfies dfz 
= 0 at every point z ∈ U . Let h : U → C

be a holomorphic logarithm of f , so f = eh. Then, df = ehdh and hence h has
no critical points on U . By [11, Theorem 9.12.1] we can approximate h as closely

as desired uniformly on K by a holomorphic function h̃ : Cn → C without critical

points on Cn. The function g = eh̃ : Cn → C∗ then clearly satisfies the conclusion
of the theorem.

Assume now that q > 1. In this case, the simple trick of taking the logarithms
does not work since the individual components of f may have zeros on U . Instead,
we proceed as follows. (For the details we refer to [11, proof of Theorem 9.12.2] or
[8, §3.1].)

Pick a slightly bigger compact convex set L ⊂ U with K ⊂ L̊. We begin by
approximating f uniformly on L by a polynomial map P : Cn → Cq. Assuming as
we may that the approximation is sufficiently close and P is chosen generic, the set

(2.1) Σ = {z ∈ C
n : P (z) = 0 or rank dPz < q}

is an algebraic subvariety of Cn of codimension ≥ min{q, n − q + 1} ≥ 2 which
does not intersect K. In particular, Σ does not contain any hypersurfaces. Hence
there is a biholomorphic map φ : Cn → φ(Cn) ⊂ Cn \ Σ which approximates the
identity as closely as desired uniformly on K (see [11, Corollary 4.12.2]). The map
g = P ◦ φ : Cn → C

q
∗ is then a holomorphic submersion approximating f on K. �

Remark 2.2. Note that for any q > 1, Theorem 2.1 holds with the same proof if
we replace the origin 0 ∈ C

q by an algebraic subvariety Y ⊂ C
q of codimension

> 1. In this case, one replaces Σ (2.1) by the subvariety Σ = {z ∈ Cn : P (z) ∈
Y or rank dPz < q}. �

With Theorem 2.1 in hand, the proofs of Theorems 1.1 and 1.3 are obtained
by following [11, proof of Theorem 9.13.7]. (The original reference for the latter
result is [8, Theorem 2.5].) We explain these proofs and indicate the necessary
modifications.

We begin by recalling some basic facts from analytic geometry. It is classical that
a complex hypersurface A in a complex manifold X is locally at each point x0 ∈ A
the zero set of a single holomorphic function h which generates the ideal JA,x of
A at every point x ∈ A in an open neighborhood of x0. Every other holomorphic
function g on X near x0 which vanishes on A is divisible by h, i.e., g = uh for some
holomorphic function u in a neighborhood of x0. The function g also generates
JA,x0

if and only if u(x0) 
= 0. In particular, if the difference g − h belongs to
the square J 2

A,x0
of the ideal JA,x0

, then g is another local generator of JA,x0
.

We say that g agrees with h to order r ∈ Z+ = {0, 1, 2, . . .} on A if their difference
g − h is a section of the sheaf J r+1

A on their common domain of definition.
A compact set K in a complex manifold X is said to be O(X)-convex if

K = K̂ = {p ∈ X : |f(p)| ≤ sup
K

|f | ∀f ∈ O(X)}.
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In the next two lemmas we make the following assumptions:

• X is a Stein manifold,
• A is a closed complex hypersurface in X,
• K ⊂ L are compact O(X)-convex subsets of X with K ⊂ L̊, and
• h is a holomorphic function in a neighborhood U ⊂ X of A which generates
the ideal sheaf JA at every point.

Lemma 2.3. Let r ∈ N. Assume that f is a continuous function on X with
f−1(0) = A that is holomorphic on a neighborhood V of K, has no critical points
on V \ A, and agrees with h to order r on A ∩ V . Then there exists a continuous
function g on X with g−1(0) = A that is holomorphic in a neighborhood W ⊂ X of
K ∪ (A ∩ L), has no critical points on W \A, approximates f as closely as desired
uniformly on K, and agrees with h to order r along A. In particular, g generates
the ideal sheaf JA on W .

Lemma 2.4. Assume that g is a continuous function on X with g−1(0) = A that
is holomorphic in a neighborhood W ⊂ X of K ∪ (A∩L), has no critical points on
W \A, and agrees with h to order r along A. Given r ∈ N there exists a continuous

function f̃ : X → C with f̃−1(0) = A that is holomorphic on an open neighborhood

Ṽ of L, agrees with g to order r along A ∩ Ṽ , approximates g as closely as desired

uniformly on K, and has no critical points in Ṽ \A.

Assume these two lemmas for the moment.

Proof of Theorem 1.1. We use an induction scheme as in [9, proof of Theorem 4.1]
or in the proof of the Oka principle [11, §5.10–§5.12]. Let the function h : X → C be
as in the theorem; in particular, h is holomorphic on a neighborhood U ⊂ X of its
zero-fibre A = h−1(0). Pick a sequence K1 ⊂ K2 ⊂ · · · ⊂

⋃∞
j=1 Kj = X of compact

O(X)-convex sets such that K1 ⊂ U and Kj ⊂ K̊j+1 for all j ∈ N. Fix an integer
r ∈ N. We inductively construct a sequence of continuous functions fj : X → C,
with f1 = h, such that the following hold for every j ∈ N:

(aj) (fj)
−1(0) = A, fj is holomorphic on a neighborhood Uj of Kj , has no

critical points in Uj \A, and agrees with h to order r along A ∩ Uj ;
(bj) fj+1 approximates fj as closely as desired uniformly on Kj .

At the j-th step of the induction we first apply Lemma 2.3 to the function f = fj
with the pair K = Kj , L = Kj+1. This gives a continuous function g = gj : X → C

with g−1(0) = A that is holomorphic on a neighborhood Wj+1 of Kj ∪ (A∩Kj+1),
agrees with h to order r along A∩Wj+1, approximates fj on Kj , and has no critical
points in Wj+1\A. Hence, g satisfies the assumptions of Lemma 2.4 with respect to
the sets K = Kj , L = Kj+1, and W = Wj+1. That lemma then furnishes the next
function fj+1 satisfying conditions (aj+1) and (bj). This completes the induction
step. If the approximations are close enough at every step, then the sequence fj
converges uniformly on compacts in X to a holomorphic function f = limj→∞ fj ∈
O(X) satisfying Theorem 1.1. �

Proof of Lemma 2.3. Since the function f vanishes on A and agrees with h to or-
der r along A ∩ V , we can apply [11, Theorem 3.4.1 and Remark 3.4.4] to find
a function g that is holomorphic on a neighborhood W of K ∪ (A ∩ L), approxi-
mates f uniformly on a neighborhood of K as closely as desired, and agrees with
h to order r on A ∩ W . (The case of the cited result for functions, which we use
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here, is an elementary consequence of Cartan’s division theorem and the Oka-Weil
approximation theorem.) Assuming as we may that g is close enough to f on a
neighborhood of K, [9, Lemma 2.7] shows that g has no critical points there, except
at the singular points of A. Note also that g has no zeros in W \ A provided that
the neighborhood W of K ∪ (A ∩ L) is chosen small enough. By [9, Lemma 2.9], a
generic g as above has no critical points on W \A. Using a smooth cutoff function
we can extend g to a continuous function on X such that g−1(0) = A. �

Proof of Lemma 2.4. We use the same geometric scheme as in the proof of [11,
Proposition 5.12.1] (see also [11, Fig. 5.4, p. 250]). The proof amounts to a finite
induction where at every step we enlarge the domain on which the function is
holomorphic and noncritical off the subvariety A. We begin with the initial function
f0 = g on an initial compact strongly pseudoconvex domain W0 with K∪ (A∩L) ⊂
W̊0 ⊂ W0 ⊂ W , and the process terminates in finitely many steps by reaching a
function f̃ which is holomorphic on a neighborhood of L and satisfies the stated
conditions. Every step amounts to one of the following two types of operations:

(a) The noncritical case: we attach a small convex bump to a given strongly
pseudoconvex domain in X.

(b) The critical case: we attach a handle of index ≤ n = dimX to a given
strongly pseudoconvex domain in X.

The details needed to accomplish these steps follow the pattern in [8]. We explain
the induction step in each of these two cases.

In case (a) we are given a pair of compact sets D0, D1 ⊂ X with the following
properties:

• D = D0 ∪D1 is a Stein compact (i.e., it admits a basis of Stein neighbor-
hoods),

• D0 \D1 ∩D1 \D0 = ∅, and
• the set D1 ⊂ X \A is contained in a holomorphic coordinate chart V ⊂ X
such that C = D0 ∩ D1 is convex in that chart. (Precisely, V is biholo-
morphic to an open subset of Cn and C corresponds to a compact convex
subset of Cn.)

Furthermore, we are given a holomorphic function f on a neighborhood of D0

without zeros or critical points on D0 \ A. (This is one of the functions in the
inductive construction.) By Theorem 2.1 we can approximate f uniformly on a
neighborhood of C by a holomorphic function ξ on a neighborhood of D1 which
has no zeros or critical points. (Note that D1 ⊂ X \ A.) If the approximation is
close enough, then by [11, Lemma 9.12.6] we find a neighborhood U of C and a
biholomorphic map U → γ(U) ⊂ X close to the identity such that f = ξ ◦ γ holds
on U . Assuming as we may that the approximations are close enough, [11, Theorem
9.7.1, p. 432] furnishes biholomorphic maps α and β on a neighborhood of D0 and
D1, respectively, close to the identity on their respective domains, such that α is
tangent to the identity to order r on A ∩D0 and

γ ◦ α = β holds on a neighborhood of C.

It follows that f ◦ α = ξ ◦ β on a neighborhood of C. This defines a holomorphic
function f̃ on a neighborhood of D = D0 ∪ D1 which is close to f on D0 and is
tangent to f to order r along A ∩D0. Furthermore, the construction ensures that
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f̃ has no zeros or critical points on D \ A. This completes the description of the
induction step in case (a).

In case (b) (which serves to change the topology of the domain), we are given
a compact strongly pseudoconvex domain D0 ⊂ X to which we attach a totally
real embedded disc M ⊂ X \ (A ∪ D̊0) (an image of the closed ball in Rk for some
k ∈ {1, . . . , dimX}) whose boundary sphere bM ⊂ bD0 \ A is complex tangential
to bD0. Furthermore, D0 ∪ M is a Stein compact admitting small strongly pseu-
doconvex neighborhoods D (handlebodies) that can be deformation retracted onto
the core D0 ∪M . (See [11, §3.9] or [1, §7.9] for a precise description of this type
of configuration.) As before, we are given a continuous function f : X → C with
f−1(0) = A which is holomorphic on a neighborhood ofD0 and has no critical points
off A. By a C 0-small deformation of f in a neighborhood of M , keeping it fixed in
a neighborhood of D0 where it is holomorphic, we may assume that f is smooth
and nonvanishing in a neighborhood of M and its differential dfx is C-linear and
nonvanishing at every point of M . Applying the Mergelyan approximation theorem
(see [11, 3.8.1, p. 88]) we obtain a holomorphic function f̃ on a neighborhood of
D0∪M with the desired properties. By using a smooth cutoff function we can glue
f̃ with the original function f outside a smaller neighborhood of D0∪M in order to
obtain a globally defined continuous function on X that vanishes precisely on A, is
holomorphic on a compact strongly pseudoconvex neighborhood D of D0 ∪M , and
has no critical points on D \A. This completes the induction step in case (b). �

The proof of Theorem 1.1 also gives the following result, which we state for
future reference. The same result holds if X is a Stein space and the subvariety
A ⊂ X contains the singular locus Xsing (see [9, Theorem 4.1]).

Theorem 2.5. Assume that A is a closed complex subvariety in a Stein manifold
X and h is a holomorphic function in a neighborhood of A. Given r ∈ N there
exists a holomorphic function f on X which has no critical points on X \ A and
agrees with h to order r on A. In particular, if dhx 
= 0 for all x ∈ A, then f has
no critical points on X.

Proof of Theorem 1.3. In this case, A is a complex submanifold ofX of codimension
q, and we are dealing with maps f = (f1, . . . , fq) : X → Cq that are submersions
near A; the latter condition is stable under small perturbations which are fixed on
A to the second order. The proof follows the same scheme as that of Theorem 1.1;
see [8, proof of Theorem 2.5] for the details. The only difference is that we must
ensure in addition that the map f has no zeros on X \A. This is taken into account
when dealing with cases (a) (the noncritical case) and (b) (the critical case) in the
proof of Theorem 1.1.

An inspection shows that step (a) goes through exactly as before. However, in
step (b) we must make an additional effort to see that the map f = (f1, . . . , fq)
can be extended smoothly across the disc M such that it has no zeros there and
its differential is C-linear and of maximal rank q at every point of M . The first
condition holds if we keep the deformation uniformly sufficiently small. The second
condition concerning the differential holds generically when q ≤ n+1

2 , so in this case
there always exists a q-coframe (θ1, . . . , θq) on X extending dh = (dh1, . . . , dhq).
On the other hand, when q > n+1

2 and we already have a q-coframe as in the
theorem, we can achieve the required condition on the differential dfx for points
x ∈ M in the attached disc by applying Gromov’s h-principle [12, 13]; as shown in
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[8, proof of Theorem 2.5], the partial differential relation controlling this problem
is ample in the coordinate directions. This requires a deformation that is big in
the C 1 norm but arbitrarily small in the C 0 norm; hence we do not introduce any
zeros on M . We complete the proof as before by applying the Mergelyan theorem.
Further details are available in [8, proof of Theorem 2.5] and also in [11, §9.13]. �

The construction in the proofs of Theorems 1.1 and 1.3 is easily augmented
to provide a homotopy of continuous maps ft : X → C

q
∗ (t ∈ [0, 1]) such that

f0 = h, for every t ∈ [0, 1] the map ft is holomorphic in a neighborhood V ⊂ X
of A (independent of t) and agrees with h to order r on A = f−1

t (0), and the
holomorphic map f = f1 : X → C

q has maximal rank q on X (resp. on X \ A if
q = 1 and we are proving Theorem 1.1). For the details in a very similar situation
we refer the reader to [11, §5.13].
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