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In this article, we find a holomorphic Darboux chart around any immersed noncompact

holomorphic Legendrian curve in a complex contact manifold (X , ξ). By using such a

chart, we show that every holomorphic Legendrian immersion R → X from an open Rie-

mann surface can be approximated on relatively compact subsets of R by holomorphic

Legendrian embeddings, and every holomorphic Legendrian immersion M → X from a

compact borderedRiemann surface is a uniform limit of topological embeddingsM ↪→ X

such that M̊ ↪→ X is a complete holomorphic Legendrian embedding. We also establish

a contact neighborhood theorem for isotropic Stein submanifolds in complex contact

manifolds.

1 Introduction and Main Results

A complex contact manifold is a pair (X , ξ), where X is a complex manifold of (nec-

essarily) odd dimension 2n + 1 ≥ 3 and ξ is a completely noninvolutive holomorphic
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894 A. Alarcón and F. Forstnerič

hyperplane subbundle (a contact subbundle) of the holomorphic tangent bundle TX .

Locally near any point of X , a contact subbundle is the kernel of a holomorphic 1-form α

satisfying α∧ (dα)n �= 0; such α is called a holomorphic contact form. (Globally we have

ξ = ker α for a holomorphic 1-form with coefficients in the line bundle ν = TX/ξ ; see

Section 5.) By a fundamental theorem of Darboux [14] from 1882, there are local coordi-

nates (x1,y1, . . . ,xn,yn, z) at any point of X in which the contact structure ξ is given by

the standard contact form

α0 = dz +
n∑
j=1

xj dyj. (1.1)

The proof of Darboux’s theorem given by Moser [30] (see also [20, p. 67]) easily adapts

to the holomorphic case; see [5, Theorem A.2]. This shows that a holomorphic contact

structure has no local invariants, andhence all interesting problems are of global nature.

Let (X , ξ) be a complex contact manifold of dimension 2n + 1 ≥ 3. A smooth

immersed submanifold f : R → X is said to be isotropic if

dfx(TxR) ⊂ ξf (x) holds for all x ∈ R.

If ξ = ker α, this is equivalent to f ∗α = 0. The contact condition implies dimR R ≤ 2n;

the immersion is said to be Legendrian if R is of maximal dimension dimR R = 2n.

(See Section 5 for more details.) It is easily seen that the image of a smooth Legen-

drian immersion is necessarily a complex submanifold of X (see Lemma 5.1). Since we

shall mainly consider the case when R is an open Riemann surface and f : R → X

is an isotropic holomorphic curve, we will use the term Legendrian curve also when

dimX ≥ 5, with the exception of Section 5 where we consider also higher dimensional

complex isotropic submanifolds.

In this article, we prove that there exists a holomorphic Darboux chart around

any immersed noncompact holomorphic Legendrian curve, and also around some higher

dimensional isotropic Stein submanifolds, in an arbitrary complex contact manifold.

The following is our first main result; it is proved in Section 2.

Theorem 1.1. Let (X , ξ) be a complex contactmanifold of dimension 2n+1 ≥ 3. Assume

that R is an open Riemann surface, θ is a nowhere vanishing holomorphic 1-form on R,

and f : R → X is a holomorphic Legendrian immersion. Then there are an open neigh-

borhood � ⊂ R × C
2n of R × {0}2n and a holomorphic immersion F : � → X (embedding

if f is an embedding) such that F |R×{0}2n = f and the contact structure F ∗ξ on � is given
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Darboux Charts Around Holomorphic Legendrian Curves 895

by the contact form

α = dz − y1θ −
n∑
i=2

yidxi, (1.2)

where (x2, . . . ,xn,y1, . . . ,yn, z) are complex coordinates on C
2n. �

Recall that any holomorphic line bundle on an open Riemann surface R is

holomorphically trivial according to the Oka-Grauert principle (see [17, Theorem 5.3.1,

p. 190]); in particular, R admits a nowhere vanishing holomorphic 1-form. Furthermore,

by the Gunning–Narasimhan theorem (see [22] or [17, Corollary 8.12.2, p. 386]) there exist

plenty of holomorphic immersions x1 : R → C, that is, holomorphic functions without

critical points. Taking θ = dx1 and replacing z by z + ∑n
j=1 xjyj, the normal form (1.2)

changes to

α0 = dz +
n∑
i=1

xidyi. (1.3)

This is formally the same as (1.1), the difference being that x1 is now a holomorphic

immersion R → C (and not just a local coordinate function), and the normal form (1.3)

is valid globally in a tube around the immersed Legendrian curve f : R → X .

The existence of global holomorphic Darboux charts, given by Theorem 1.1, has

many applications, some of which are presented in the sequel. It shows that the contact

structure has no local invariants along a noncompact holomorphic Legendrian curve,

and any such curve extends to a local complex Legendrian submanifold of maximal

dimension n; in the Darboux chart (1.1) this extension is provided by {y = 0, z = 0} =
R× C

n−1
x2,...,xn

. In the case dimX = 3, we see that all small Legendrian perturbations of the

Legendrian curve R × {0}2 in (R × C
2,α) with α = dz − yθ are of the form z = g(x) and

y = dg(x)/θ(x), where x ∈ R and g is a holomorphic function on R.

Before proceeding, we wish to briefly address the question that might be asked

by the reader at this point: Howmany complex contact manifolds are there? Examples

and constructions of such manifolds can be found in the articles [7, 9, 12, 23, 24, 26–

28, 33, 34], among others. Many of these constructions mimic those in smooth contact

geometry (for the latter, see e.g., Cieliebak and Eliashberg [13] and Geiges [20]). On the

other hand, some of the constructions in the complex world have no analogue in the real

one.

If ξ is a holomorphic contact structure on a complex manifold X2n+1, then its

normal line bundle ν = TX/ξ satisfies ν⊗(n+1) = K−1
X whereKX = det(T∗X) is the canonical
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896 A. Alarcón and F. Forstnerič

bundle of X (see [27, 28] and (5.1) below for a discussion of this topic). Assuming that X

is compact and ν → X is a holomorphic line bundle satisfying this condition, the space

of all contact structures on X with normal bundle isomorphic to ν is a (possibly empty)

connected complex manifold (see LeBrun [27, p. 422]). It follows from Gray’s theorem

[21] that all these contact structures are contactomorphic to each other. If X is simply

connected, it admits at most one isomorphism class of the root K−1/(n+1)
X , and hence at

most one complex contact structure up to contactomorphisms (see [27, Proposition 2.3]).

Only two general constructions of compact complex contact manifolds are known:

(1) The projectivized cotangent bundle P(T∗Z) of any complex manifold Z of

dimension at least 2. Recall that T∗Z carries a tautological 1-form η, given

in any local holomorphic coordinates (z1, . . . , zn) on Z and associated fiber

coordinates (ζ1, . . . , ζn) on T∗
z Z by η = ∑n

j=1 ζjdzj. Considering (ζ1, . . . , ζn) as

projective coordinates on P(T∗
z Z), we get the contact structure ξ = ker η on

X = P(T∗Z).

(2) LetG be a simple complex Lie groupwith the Lie algebra g. The adjoint action

of G on the projectivization P(g) of g has a unique closed orbit Xg which is

contained in the closure of every other orbit; this orbit Xg is a contact Fano

manifold. See the papers by Boothby [10], Wolf [33], and Beauville [7, 8].

The simplest example of this type is the contact structure on the projective

spaces CP
2n+1.

It is conjectured that any projective contact manifold is of one of these two types (see

Beauville [9, Conjecture 6]). For projective threefolds, this holds true according to Ye [34].

Demailly proved [15, Corollary 2] that if a compact Kähler manifold X admits a contact

structure, then its canonical bundle KX is not pseudo-effective (and hence not nef), and

in particular the Kodaira dimension of X equals −∞. (The latter fact was also shown

by Druel [16, Proposition 2].) If in addition b2(X) = 1 then X is projective and hence KX ,

not being pseudo-effective, is negative, that is, X is a Fano manifold [15, Corollary 3].

Together with the results by Kebekus et al. [23, Theorem 1.1] it follows that a projective

contact manifold is Fano with b2 = 1 or of type (1); see [15, Corollary 4] and Peternell [31,

Theorem 2.9]. Since a homogeneous Fano contact manifold is known to be of type (2), the

above conjecture reduces to showing that every Fano contact manifold is homogeneous.

The situation is more flexible on noncompact complex manifolds, and espe-

cially on Stein manifolds. A holomorphic 1-form α which is contact at some point of

X2n+1 is contact in the complement of a closed complex hypersurface (possibly empty)
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Darboux Charts Around Holomorphic Legendrian Curves 897

given by the vanishing of the (2n + 1)-form α ∧ (dα)n; this holds for a generic holo-

morphic 1-form on a Stein manifold. If (Z,ω) is a holomorphic symplectic manifold

and V is a holomorphic vector field on Z satisfying LVω = ω (such V is called a Liou-

ville vector field; here, LV denotes the Lie derivative), then the restriction of the 1-form

α = iVω = ω(V , · ) to any smooth complex hypersurface X ⊂ Z transverse to V is a con-

tact form on X . For example, letting ω = ∑n+1
j=1 dz2j−1∧dz2j (the standard symplectic form

on C
2n+2) and V = ∑2n+2

j=1 zj∂zj yields the standard contact structure on any hyperplane

Hk = {zk = 1} (k = 1, . . . , 2n + 2), and hence it induces a complex contact structure

on CP
2n+1.

We now present the applications of Theorem 1.1 obtained in this article.

In Section 3, we prove the following general position result whose proof

combines Theorem 1.1 and the arguments from [5, proof of Lemma 4.4].

Theorem 1.2. Let X be a complex contact manifold. Every holomorphic Legendrian

immersion f : R → X from an open Riemann surface can be approximated, uniformly

on any relatively compact subset U � R, by holomorphic Legendrian embeddings

f̃ : U ↪→ X . �

In general one cannot approximate a holomorphic Legendrian immersion

f : R → X uniformly on compacts inR by holomorphic Legendrian embeddingsR ↪→ X of

the whole Riemann surface. For example, if f : C → C
3 is a proper holomorphic immer-

sion with a single double point, then by choosing X ⊂ C
3 to be an open neighborhood

of f (C) which is very thin near infinity we can ensure that f (C) is the only nonconstant

complex line in X up to a reparametrization. Approximation of Legendrian embeddings

by global ones is possible in the model contact space (C2n+1,α0); moreover, there exist

proper holomorphic Legendrian embeddings R ↪→ C
2n+1 from any open Riemann sur-

face R (see Alarcón et al. [5, Theorem 1.1]). The latter result also holds for the special

linear group SL2(C) endowed with its standard contact structure (see Alarcón [2]). On the

other hand, there exist examples of (Kobayashi) hyperbolic complex contact structures

on C
2n+1 for any n ≥ 1 (see Forstnerič [18]); in particular, these structures do not admit

any nonconstant holomorphic Legendrian maps from C or C
∗.

The proof of Theorem 1.2 also provides local deformation theory of noncompact

holomorphic Legendrian curves. In particular, the space of Legendrian deformations

of a holomorphic Legendrian curve normalized by a bordered Riemann surface is an

infinite dimensional complex Banach manifold (see Remark 3.2).
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898 A. Alarcón and F. Forstnerič

Another application of Theorem 1.1 is that we can uniformly approximate a

holomorphic Legendrian curve with smooth boundary in an arbitrary complex contact

manifold (X , ξ) by complete holomorphic Legendrian embeddings bounded by Jordan

curves. In order to formulate this result, we need to recall the following notions. Assume

that g is a Riemannian metric on X . An immersion f : R → X is said to be complete if the

induced metric f ∗g on R is a complete metric. A compact bordered Riemann surface,M ,

is the same thing as a compact smoothly bounded domain in an open Riemann surface

R. A map f : M → X from such a domain is said to be holomorphic if it extends to a

holomorphic map on an open neighborhood of M in R.

Theorem1.3. Let (X , ξ)be a complex contactmanifold, and letM be a compact bordered

Riemann surface. Every holomorphic Legendrian immersion f0 : M → X can be approx-

imated uniformly on M by topological embeddings f : M → X such that f |M̊ : M̊ → X is

a complete holomorphic Legendrian embedding. �

Since f0(M) is a compact subset of X , the notion of completeness of complex

curves f : M → X uniformly close to f0 is independent of the choice of a metric on X .

Theorem 1.3 may be compared with the results on the Calabi–Yau problem in

the theory of conformal minimal surfaces in R
n and null holomorphic curves in C

n; see

Alarcón et al. [3, 6] and the references therein for recent developments on this subject.

Theorem 1.3 is proved in Section 4. The special case with (X , ξ) the model con-

tact space (C2n+1,α0) (see (1.1)) was obtained in [5, Theorem 1.2]. The Darboux charts,

furnished by Theorem 1.1, make it possible to extend this result to any complex contact

manifold.

In Section 5, we consider isotropic complex submanifoldsM of higher dimension

in a complex contact manifold, andwe prove a contact neighborhood theorem in the case

whenM is a Stein submanifold (see Theorem 5.3). In particular, we obtain the following

result.

Theorem 1.4. Let (Xi, ξi) (i = 0, 1) be complex contact manifolds of the same dimen-

sion. If Mi ⊂ Xi (i = 0, 1) are biholomorphic Legendrian (i.e., isotropic and of maximal

dimension) Stein submanifolds such that νi = TXi/ξi is trivial over Mi for i = 0, 1, then

M0 and M1 have holomorphically contactomorphic neighborhoods. �

Moreover, in the special casewhen the complex isotropic submanifoldM ⊂ (X , ξ)

is Stein and contractible, we find a Darboux chart around M similar to those furnished

by Theorem 1.1; see Theorem 5.6.
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Darboux Charts Around Holomorphic Legendrian Curves 899

It seems that the results in this article are the first of their kind in the holomor-

phic case. On the other hand, contact neighborhood theorems of isotropic submanifolds

are well known in the smooth case. For example, two smooth diffeomorphic isotropic

submanifoldswith isomorphic conformal symplectic normal bundles have contactomor-

phic neighborhoods (see Geiges [20, Theorem 2.5.8]). In particular, diffeomorphic closed

Legendrian submanifolds (i.e., isotropic submanifolds of maximal dimension) have con-

tactomorphic neighborhoods (see [20, Corollary 2.5.9]). For example, if S1 ⊂ (X3, ξ) is a

Legendrian knot in a smooth contact 3-manifold, then with a coordinate x along S1 and

coordinates y, z in slices transverse to S1, the contact form

cosx·dy − sin x·dz

provides a model for a contact neighborhood of S1 in X (see [20, Example 2.5.10]). By the

proof of Theorem 1.1, we can also get a contact neighborhood with the form dz − ydx.

However, a crucial difference appears between the real and the complex case: there is

no smooth immersion S1 → R, so dx only has the meaning as a nonvanishing 1-form on

S1. In particular, the 1-form dz+ xdy is not contact for any smooth function x : S1 → R,

and there are no smooth contact neighborhoods (1.3) of a smooth Legendrian knot.

It is natural to ask what could be said about contact neighborhoods of compact

holomorphic Legendrian curves and, more generally, of higher dimensional compact

isotropic complex submanifolds. According to Bryant [11, Theorem G] (see also Segre

[32]), every compact Riemann surface embeds as a complex Legendrian curve in CP
3. The

first question to answer is which closed Legendrian curves in CP
3 admit Darboux type

neighborhoods. One major obstacle is that the tubular neighborhood theorem fails in

general for compact complex submanifolds. In another direction, the deformation theory

of certain compact complex Legendrian submanifolds has been studied byMerkulov [29]

by using Kodaira’s deformation theory approach [25]. He showed that a compact complex

Legendrian submanifoldM of (X , ξ)withH1(M , ξ) = 0 is contained in a complete analytic

family of compact complex Legendrian submanifolds of X .

2 Normal Form of a Contact Structure Along an Immersed Legendrian Curve

In this section, we prove Theorem 1.1. We shall repeatedly use the following known

lemma; we include a sketch of proof for the sake of completeness.

Lemma 2.1. Let R be an open Riemann surface, and let A be a holomorphic m × p

matrix-valued function on R, with 1 ≤ m < p, which has maximal rankm at every point
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900 A. Alarcón and F. Forstnerič

of R. Then there exists a holomorphic map B : R → GLp(C) such that A(x)·B(x) = (Im, 0)

holds for all x ∈ R, where Im is the m×m identity matrix. �

Proof. Denote the rows of A by aj for j = 1, . . . ,m; these are holomorphic maps R → C
p

such that the vectors aj(x) are linearly independent at every point x ∈ R. We must find

holomorphic maps am+1, . . . ,ap : R → C
p such that the matrix function Ã : R → C

p×p with

the rows a1,a2, . . . ,ap is invertible at each point; then B = Ã−1 satisfies the lemma.

Recall that every holomorphic vector bundle on an open Riemann surface R is

trivial by the Oka-Grauert principle (see [17, Theorem 5.3.1, p. 190]), and every holomor-

phic vector subbundle E ′ of a holomorphic vector bundle E over a Stein manifold splits

E, that is, we have E = E ′ ⊕ E ′′ where E ′′ is another holomorphic vector subbundle of E

(this follows from Cartan’s Theorem B, see [17, Corollary 2.4.5, p. 54]). Let E = R × C
p,

and let E ′ ⊂ E be the holomorphic rankm subbundle spanned by the rows of the matrix

A(x) at each point x ∈ R. Then E = E ′ ⊕ E ′′ where E ′′ is a trivial bundle of rank p − m;

thus it is generated by p − m global holomorphic sections am+1, . . . ,ap : R → C
p. This

proves the lemma. �

Remark 2.2. The conclusion of Lemma 2.1 holds for any Stein manifold R on which

every complex vector bundle is topologically trivial; for instance, on a contractible Stein

manifold. Indeed, by the Oka-Grauert principle it follows that every holomorphic vec-

tor bundle on R is holomorphically trivial, and hence the proof of Lemma 2.1 applies

verbatim. �

Proof of Theorem 1.1. The normal bundle of the immersion f : R → X is a holomorphic

vector bundle of rank 2n over R, hence a trivial bundle by the Oka-Grauert principle (see

[17, Theorem 5.3.1]). By the Docquier–Grauert tubular neighborhood theorem (see [17,

Theorem 3.3.3]), there are a Stein open neighborhood � ⊂ R × C
2n of R × {0}2n and a

holomorphic immersion F : � → X with F |R×{0}2n = f . Furthermore, � can be chosen to

have convex fibers, so it is homotopy equivalent to R. Hence, every holomorphic vector

bundle on � is holomorphically trivial by the Oka-Grauert principle. In particular, the

complex line bundle ν = T�/F ∗ξ is trivial, and the quotient projection β : T� → ν ∼=
�× C with ker β = F ∗ξ is a holomorphic 1-form on � defining the contact structure F ∗ξ .

(Compare with (5.3).) The contact condition is that

β ∧ (dβ)n �= 0.
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Darboux Charts Around Holomorphic Legendrian Curves 901

We shall find a holomorphic change of coordinates in a neighborhood of R×{0}2n which

fixes R × {0}2n pointwise and reduces β to the form (1.2). To simplify the notation, the

neighborhood in question will always be called �, but the reader should keep in mind

that it is allowed to shrink around R× {0}2n during the proof.

Let x denote points in R, and let ζ = (ζ1, . . . , ζ2n) be complex coordinates on C
2n.

Along R× {0}2n = {ζ = 0} we have that

β(x) =
2n∑
j=1

aj(x)dζj, x ∈ R

for some holomorphic functions aj ∈ O(R) without common zeros (since ker β(x) is the

contact hyperplane at (x, 0) ∈ R × {0}2n). The 1-form θ does not appear in the above

expression since R × {0}2n is a β-Legendrian curve. Let a = (a1, . . . ,a2n) : R → C
2n \ {0}.

We introduce new coordinates ζ ′ = B(x)−1ζ , where the holomorphic map B : R → GL2n(C)

satisfies a(x)·B(x) = (1, 0, . . . , 0) for all x ∈ R; such B exists by Lemma 2.1. Dropping the

primes, this transforms β along R × {0}2n to the constant 1-form dζ1. Geometrically

speaking, this amounts to rotating the contact plane ξx for x ∈ R× {0}2n to the constant

position given by dζ1 = 0. Denoting the variable ζ1 by z, we have β = dz at all points of

R× {0}2n.
We now consider those terms in the Taylor expansion of β along R×{0}2n which

give a nontrivial contribution to the coefficient function of the (2n+ 1)-form β ∧ (dβ)n.
Since the coefficient of dz equals 1 on R× {0}2n, it is a nowhere vanishing holomorphic

function in a neighborhood of this set, and we simply divide β by it. We thus have

β = dz +
( 2n∑

j=2

bj(x)ζj

)
θ(x)+

2n∑
j,k=2

cj,k(x)ζk dζj + β̃, (2.1)

where the coefficients bj and cj,k are holomorphic functions on R. The 1-form β̃ (the

remainder) contains all terms ζjdζj, terms whose coefficients are of order ≥ 2 in the

variables ζ2, . . . , ζ2n, or terms that contain the z variable; such termsdisappear in β∧(dβ)n
at all points of R× {0}2n.

We claim that the functions b2, . . . ,b2n in (2.1) have no common zeros inR. Indeed,

at a common zero x0 ∈ R of these functions, the form dβ at the point (x0, 0) does not con-

tain the term θ(x0) and hence β ∧ (dβ)n vanishes, a contradiction. Write ζ ′ = (ζ2, . . . , ζ2n).

Applying Lemma 2.1 with the row matrix b = (b2, . . . ,b2n) : R → C
2n−1 \ {0} gives a

holomorphic change of coordinates of the form

(x, z, ζ ′) �→ (x, z,B(x)ζ ′), B(x) ∈ GL2n−1(C)
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902 A. Alarcón and F. Forstnerič

such that the coefficient of θ becomes −ζ2, and hence

β = dz − ζ2θ +
2n∑

j,k=2

cj,k(x)ζk dζj + β̃ (2.2)

for some new coefficients cj,k. Note that (dβ)n contains the factor d(ζ2θ) = dζ2 ∧ θ (since

a nontrivial differential in the R-direction does not appear in any other way). Hence, the

term with dζ2 and all terms containing ζ2dζj with j > 2 in (2.2) can be placed into the

remainder β̃ since they do not contribute to (dβ)n. Renaming the variable ζ2 by y1 we

thus have

β = dz − y1θ +
2n∑
j=3

(
2n∑
k=3

cj,k(x)ζk

)
dζj + β̃. (2.3)

If n = 1 (i.e., dimX = 3), we are finished with the first part of the proof and proceed to

the second part given below.

Assume now that n > 1. We begin by eliminating the variable ζ3 from the

coefficients of the differentials dζ4, . . . , dζ2n by the shear

z′ = z +
2n∑
j=4

cj,3(x)ζ3ζj.

This ensures that the functions c3,k in the coefficient of dζ3 in (2.3) have no common zeros

on R (since at such point dβ would not contain dζ3). Applying Lemma 2.1, we change the

coefficient of dζ3 to −ζ4 by a linear change of the variables ζ4, . . . , ζ2n with a holomorphic

dependence on x ∈ R. Set x2 = ζ3 and y2 = ζ4. By the same argument as in the previous

step, we can move the term with dy2 = dζ4, as well as all terms containing y2 = ζ4 in the

subsequent differentials dζ5, . . . , dζ2n, to the remainder β̃. This gives

β = dz − y1θ − y2dx2 +
2n∑

j,k=5

cj,k(x)ζk dζj + β̃. (2.4)

It is clear that this process can be continued, and in finitely many steps we obtain

β = dz − y1θ −
n∑
i=2

yidxi + β̃ = α + β̃,

where α is the normal form (1.2).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2019/3/893/3950149 by U
niversity of Ljubljana user on 09 February 2019



Darboux Charts Around Holomorphic Legendrian Curves 903

We now complete the proof by applying Moser’s method [30] in order to get rid

of the remainder β̃. Consider the following family of holomorphic 1-forms on �:

αt = α + t(β − α) = α + tβ̃, t ∈ [0, 1].

Note that α0 = α, α1 = β, and for all t ∈ [0, 1] we have

αt = α and αt ∧ (dαt)n = α ∧ (dα)n on R× {0}2n.

The second identity holds because, by the construction, β̃ contains only terms which do

not contribute to αt∧(dαt)n. Hence, αt is a contact form in a neighborhood ofR×{0}2n, still
denoted �, determining a contact structure ξt = ker αt for every t ∈ [0, 1], and α̇t = β − α

vanishes onR×{0}2n. (The dot indicates the t-derivative.) We shall find a time-dependent

holomorphic vector field Vt on a neighborhood of R×{0}2n that vanishes on R×{0}2n and
whose flow φt satisfies

φ∗
t αt = α, t ∈ [0, 1] (2.5)

and the initial condition

φt(x, 0, . . . , 0) = (x, 0, . . . , 0), x ∈ R, t ∈ [0, 1]. (2.6)

At time t = 1 we shall then get φ∗
1β = α in an open neighborhood of R × {0}2n, thereby

completing the proof of the theorem.

Let �t denote the Reeb vector field of contact form αt (see [20, p. 5]), that is, the

unique holomorphic vector field satisfying the conditions

�t �αt = αt(�t) = 1 and �t �dαt = 〈dαt,�t ∧ · 〉 = 0.

A vector field Vt whose flow satisfies conditions (2.5) and (2.6) is sought in the form

Vt = ht�t + Yt, t ∈ [0, 1] (2.7)

where ht is a smooth family of holomorphic functions and Yt is a smooth family of

holomorphic vector fields tangent to ker αt on a neighborhood of R× {0}2n. Then,

Vt �αt = ht and Vt �dαt = Yt �dαt.
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904 A. Alarcón and F. Forstnerič

Differentiating the equation (2.5) on t gives

φ∗
t

(
α̇t + LVtαt

) = 0,

where L denotes the Lie derivative. By using Cartan’s formula LVα = d(V�α)+ V�dα we

see that Vt must satisfy the equation

0 = α̇t + d(Vt�αt)+ Vt �dαt = β − α + dht + Yt �dαt, t ∈ [0, 1]. (2.8)

Contracting this 1-form with the Reeb vector field �t and noting that �t�dαt = 0 gives

�t�dht = �t(ht) = �t�(α − β), t ∈ [0, 1]. (2.9)

This is a 1-parameter family of linear holomorphic partial differential equations for the

functions ht. The contact plane field ker αt is tangent to the hypersurface � = {z = 0}
along R×{0}2n. Since�t �αt = 1,� is noncharacteristic for the Reeb vector field�t along

R× {0}2n for every t ∈ [0, 1]. It follows that the equation (2.9) has a unique local solution

ht satisfying the initial condition ht|� = 0 for all t ∈ [0, 1]. Since the right-hand side of

(2.9) vanishes on R× {0}2n, the solutions ht satisfy

ht(x, 0, . . . , 0) = 0 and dht(x, 0, . . . , 0) = 0 for all t ∈ [0, 1] and x ∈ R. (2.10)

This choice of ht ensures that the�t-component of the 1-form β−α+dht vanishes. Since

the 2-form dαt is nondegenerate on ker αt, the equation (2.8) has a unique holomorphic

solution Yt tangent to ker αt. In view of (2.10) we have

β − α + dht = 0 on R× {0}2n.

Thus, we see from (2.8) that the vector field Yt vanishes along R × {0}2n, and hence so

does Vt (2.7) in view of (2.10). It follows that the flow φt of Vt exists for all t ∈ [0, 1] in
some neighborhood of R× {0}2n and it satisfies conditions (2.5) and (2.6). This reduces β

to the normal form α (1.2) on a neighborhood of R× {0}2n. �

3 Local Analysis Near a Legendrian Curve

Let R be an open Riemann surface and θ be a nowhere vanishing holomorphic 1-form on

R. We consider holomorphic Legendrian curves in the manifold R × C
2n endowed with
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Darboux Charts Around Holomorphic Legendrian Curves 905

the contact form (1.2):

α = dz − y1θ(x1)−
n∑
i=2

yidxi. (3.1)

Here, x1 denotes the variable in R and the other variables are Euclidean coordinates on

C
2n. By Theorem 1.1, this corresponds to the local analysis near an immersed Legendrian

curve R → X in a complex contact manifold (X , ξ). When applying these results in con-

juction with Theorem 1.1, we consider only Legendrian curves in an open neighborhood

� ⊂ R× C
2n of R× {0}2n which corresponds to a Darboux patch in (X , ξ). The following

lemma is seen by an obvious calculation; see [5, Lemma 3.1] for the case R = C.

Lemma 3.1. Let α be the contact form (3.1) on R × C
2n. Given a holomorphic map f =

(x,y, z) : D → R× C
2n, the map f̃ = (x,y, z̃) : D → R× C

2n with

z̃(ζ ) = z(ζ )−
∫ ζ

0
f ∗α, ζ ∈ D (3.2)

is a holomorphic α-Legendrian disc satisfying

||z̃ − z||0,D ≤ sup
|ζ |<1

∣∣∣∣∫ ζ

0
f ∗α

∣∣∣∣ .
The same is true if D is replaced by a bordered Riemann surface M provided that the

holomorphic 1-form f ∗α has vanishing periods over all closed curves in M . �

Proof of Theorem 1.2. Let f : R → X be a holomorphic Legendrian immersion from

an open Riemann surface R to a complex contact manifold (X , ξ) of dimension 2n +
1 ≥ 3. It suffices to show that for every compact smoothly bounded domain M ⊂ R

the restriction f |M : M → X can be approximated in the C 1(M)-norm by a Legendrian

embedding f̃ : M → X of class A 1(M) = C 1(M) ∩ O(M̊). Fix such a domain M . After

shrinking R around M , Theorem 1.1 provides a holomorphic immersion F : Y = R ×
rB2n → X , where B

2n is the unit ball in C
2n and r > 0, such that F |R×{0}2n = f and the

contact structure F ∗ξ is given by the 1-form α (3.1). The non-isotropic dilation

z �→ t2z, y1 → t2y1; xj �→ txj, yj �→ tyj for j = 2, . . . ,n (3.3)

for t ∈ C
∗ preserves the contact structure (3.1), so we may assume that r = 1.
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906 A. Alarcón and F. Forstnerič

For simplicity of notation, we present the proof in the case n = 1, so dimX = 3,

Y = R× B
2 and

α = dz − y θ(x), x ∈ M , (y, z) ∈ B
2.

Let � be the complex subvariety of Y × Y defined by

� = {(
(x,y, z), (x ′,y ′, z′)

) ∈ Y × Y : F(x,y, z) = F(x ′,y ′, z′)
} = �Y ∪�′, (3.4)

where�Y denotes the diagonal ofY×Y and�′ is the union of the irreducible components

of � disjoint from �Y . Since F is an immersion, we have dim�′ = 3 or else �′ = ∅; in the

latter case, F (and hence f ) is an embedding and there is nothing to prove.

Let M � x �→ g0(x) = (x, 0, 0) ∈ Y denote the inclusion map M ↪→ M × {0}2 ⊂ Y .

Since f is an immersion, there is an open neighborhood U ⊂ M ×M of the diagonal �M

such that U ∩ �′ = ∅. To prove the theorem, we must find arbitrarily close to g0 in the

C 1(M)-norm a holomorphic α-Legendrian map g : M → Y such that the associated map

g2 : M ×M → Y × Y , g2(x,x ′) = (g(x),g(x ′)) (x,x ′ ∈ M)

satisfies the condition

g(M ×M \ U) ∩�′ = ∅. (3.5)

Assuming that g is close enough to g0, this condition ensures that f̃ = F ◦ g : M →
X is a holomorphic Legendrian embedding which approximates the initial Legendrian

immersion f : M → X . Indeed, (3.5) implies that f̃ (x) �= f̃ (x ′) for all (x,x ′) ∈ M × M \ U ,

while for (x,x ′) ∈ U \�M the same holds provided that g is close to g0 in the C 1(M)-norm.

To find Legendrian maps g satisfying (3.5), we apply the transversality method

together with the technique of controlling the periods. The argument is similar to the

one in [5, Lemma 4.4] in the case when R = C, Y = C
3 and α = dz − y dx. It suffices to

construct a holomorphic map H : M× r0BN → Y , where B
N is the unit ball in C

N for some

big integer N ∈ N and r0 > 0, satisfying the following conditions:

(a) H(· , 0) = g0 is the inclusion map M ↪→ M × {0}2 ⊂ Y ,

(b) H(· , ξ) : M → Y is a holomorphic Legendrian immersion for every ξ ∈ r0BN ,

and

(c) the map H2 : M ×M × r0BN → Y × Y , defined by

H2(x,x ′, ξ) = (
H(x, ξ),H(x ′, ξ)

)
, x, x ′ ∈ M , ξ ∈ r0B

N ,
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Darboux Charts Around Holomorphic Legendrian Curves 907

is a submersive family of maps on M ×M \ U , in the sense that

∂ξ |ξ=0 H
2(x,x ′, ξ) : C

N → TxY⊕Tx′Y is surjective for every (x,x ′) ∈ M ×M \ U .

Assume for a moment that suchH exists. By compactness ofM×M \U , it follows

from (c) that the partial differential ∂ξH2 is surjective on (M × M \ U) × rBN for some

0 < r ≤ r0. For such r, the map H2 : (M × M \ U) × rBN → Y × Y is transverse to

any complex subvariety of Y × Y , in particular, to �′ (see (3.4)). It follows that for a

generic choice of ξ ∈ rBN the map H2(· , · , ξ) : M × M → Y × Y is transverse to �′ on

M ×M \U , and hence it does not intersect �′ by dimension reasons. (See Abraham [1] or

[17, Section 7.8] for the details of this argument.) Choosing ξ sufficiently close to 0 ∈ C
N

gives a holomorphic α-Legendrian embedding g = H(· , ξ) : M → Y close to g0 in the

C 1(M)-norm, so F ◦ g : M → X is a ξ-Legendrian embedding as explained above.

It remains to explain the construction of H . It suffices to find for any given pair

of points (p,q) ∈ M ×M \ U a holomorphic spray H as above, with N = 3, such that

H(p, ξ) = (p, 0, 0) for all ξ , and ∂ξ |ξ=0 H(q, ξ) : C
3 → TqY is an isomorphism. (3.6)

Since submersivity of the differential is an open condition andM×M \U is compact, we

then obtain a spray H satisfying conditions (a)–(c) by composing finitely many sprays

satisfying (3.6) (cf. [4, proof of Theorem 2.4]).

Let V be a nowhere vanishing holomorphic vector field on R, and let φt(x) denote

the flow of V with the initial condition φ0(x) = x. Every h ∈ A 1(M) sufficiently close to

the zero function determines a holomorphic map φ[h] : M → R defined by

φ[h](x) = φh(x)(x), x ∈ M .

Note that φ[0] is the identity map, and the Taylor expansion in any local coordinate on

R is

φ[h](x) = x + h(x)V(x)+ O(|h(x)|2).

Fix a pair of distinct points p �= q in M . Choose a smooth embedded arc E ⊂ M

connecting p to q. Let C1, . . . ,C� ⊂ M̊ be closed curves forming a basis of the homology

group H1(M ;Z) = Z
� such that

(⋃�

k=1 Ck
) ∩ E = ∅ and the compact set

(⋃�

k=1 Ck
) ∪ E is

Runge in M . Let P = (P1, . . . ,P�) be the period map with the components

Pj(h1,h2) =
∫
Cj

h2 φ[h1]∗θ , j = 1, . . . , � (3.7)
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908 A. Alarcón and F. Forstnerič

defined for all h1 ∈ A 1(M) close enough to 0 and all h2 ∈ A 1(M). Here, φ[h1]∗θ denotes

the pull-back of the 1-form θ by the map φ[h1] : M → R.

Let μ > 0 be a small number whose value will be determined later. Choose

holomorphic functions g1, . . . ,g�,h1,h2 ∈ O(M) satisfying the following conditions:

(i)
∫
Cj
gk θ = δj,k for all j,k = 1, . . . , � (here, δj,k is the Kronecker symbol);

(ii) gk(p) = 0 and |gk(x)| < 1 for all x ∈ E and k = 1, . . . , �;

(iii) h1(p) = 0, h1(q) = 1, h2(p) = h2(q) = 0;

(iv)
∫
E h2 θ = −1;

(v) |hj(x)| < μ for all x ∈ ⋃�

k=1 Ck and j = 1, 2.

Functions with these properties are easily found by first constructing suitable smooth

functions on the curves
(⋃�

k=1 Ck
)∪E and applyingMergelyan’s approximation theorem.

Let ξ = (ξ1, ξ2, ξ3) ∈ C
3 and ζ = (ζ1, . . . , ζ�) ∈ C

�. Consider the function

ỹ(x, ξ2, ξ3, ζ ) = ξ2h2(x)+ ξ3h1(x)+
�∑

k=1

ζk gk(x), x ∈ M . (3.8)

Note that ỹ(x, 0, 0, 0) = 0 for all x ∈ M and ỹ(p, ξ2, ξ3, ζ ) = 0 for all (ξ2, ξ3, ζ ). Condition (i)

implies that

Pj

(
0, ỹ(· , 0, 0, ζ )) =

∫
Cj

�∑
k=1

ζk gk θ = ζj

for j = 1, . . . , �, and hence

∂

∂ζ

∣∣∣∣
ζ=0

P(0, ỹ(· , 0, 0, ζ )) : C
� −→ C

� is the identity map. (3.9)

The implicit function theorem then shows that the period vanishing equation

P(ξ1h1, ỹ(· , ξ2, ξ3, ζ )
) =

(∫
Cj

ỹ(· , ξ2, ξ3, ζ ) φ[ξ1h1]∗θ
)
j=1,...,�

= 0 (3.10)

(which trivially holds at ξ = 0 and ζ = 0) can be solved on ζ = ζ(ξ) in a neighborhood of

0 ∈ C
3, with ζ(0) = 0. Differentiation of (3.10) on ξ at ξ = 0 and (3.9) give

ζ ′(0) = − ∂

∂ξ

∣∣∣∣
ξ=0

P(ξ1h1, ỹ(· , ξ2, ξ3, 0)
)
.
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Darboux Charts Around Holomorphic Legendrian Curves 909

We claim that

|ζ ′(0)| = O(μ). (3.11)

To see this, note that

Pj

(
ξ1h1, ỹ(· , ξ2, ξ3, 0)

) =
∫
Cj

(ξ2h2 + ξ3h1)φ[ξ1h1]∗θ .

The partial derivatives on ξ2 and ξ3 equal
∫
Cj
hiθ (i = 1, 2) which are of size O(μ) by

condition (v), while the partial derivative on ξ1 vanishes at ξ = 0; this proves (3.11).

Define the holomorphic spray z̃(· , ξ) with the core z̃(· , 0) = 0 on M by

z̃(x, ξ) = −
∫ x

p
ỹ(· , ξ2, ξ3, ζ(ξ)) φ[ξ1h1]∗θ , x ∈ M . (3.12)

By the choice of ζ(ξ) the integral is independent of the choice of the path. It follows that

the holomorphic map H(· , ξ) : M → Y defined by

H(x, ξ) = (
φ[ξ1h1](x), ỹ(x, ξ2, ξ3, ζ(ξ)), z̃(x, ξ)

)
, x ∈ M

is α-Legendrian for every ξ ∈ rB3 and is also holomorphic with respect to ξ . Obviously,

H satisfies the first condition in (3.6). We have

∂

∂ξ

∣∣∣∣
ξ=0

φ[ξ1h1](q) = (V(q), 0, 0) (3.13)

∂

∂ξ

∣∣∣∣
ξ=0

ỹ(q, ξ2, ξ3, ζ(ξ)) = (0, 0, 1)+ O(μ), (3.14)

∂

∂ξ2

∣∣∣∣
ξ=0

z̃(q, ξ) = −
∫
E
h2θ + O(μ) = 1 + O(μ). (3.15)

The equation (3.13) is immediate from the definition of the flow and the condition h1(q) =
1 (see (iii)), (3.14) is obvious from the definition of ỹ and conditions h1(q) = 1, h2(q) = 0

(see (iii)), and in (3.15)we used condition (iv) onh2. The error termsO(μ) in (3.14) and (3.15)

come from the contribution by ζ ′(0) (see (3.11)). By choosing the constant μ > 0 small

enough, we see from (3.13), (3.14), and (3.15) that H also satisfies the second condition

in (3.6). This completes the proof of Theorem 1.2. �

Remark 3.2 (Deformation theory of Legendrian curves). Let f0 : R → X be an immersed

holomorphic Legendrian curve, and let M be a compact smoothly bounded domain in
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910 A. Alarcón and F. Forstnerič

R. The proof of Theorem 1.2 then shows that the space of all Legendrian immersions

f : M → X of class A 1(M) which are close to f0|M is a local complex Banach manifold.

Indeed, in a Darboux chart around f0 provided by Theorem 1.1, we consider the space

of small perturbations of class A 1(M) of all components of f0 except the z-component;

clearly this is an open set in a complex Banach space. We have seen in the proof of

Theorem 1.2 that the period vanishing condition for the 1-form
∑n

j=1 xjdyj is of maximal

rank, and hence it defines a local complex Banach submanifold. In view of Lemma 3.1,

this submanifold parametrizes the space of all small Legendrian perturbations of f0|M .
For the details in a related case of directed holomorphic immersions, we refer to [4,

Theorem 2.3]. �

4 Proof of Theorem 1.3

Theorem 1.3 follows by an inductive application of the following lemma.

Lemma 4.1. Let (X , ξ) be a complex contact manifold, and let distX be a distance func-

tion on X induced by a Riemannian metric. Given a compact bordered Riemann surface

M , a point u0 ∈ M̊ , a holomorphic Legendrian immersion f0 : M → X , and a number ε > 0,

there exists a holomorphic Legendrian embedding f : M ↪→ X such that

sup
u∈M

distX (f (u), f0(u)) < ε (4.1)

and

inf
{
lengthX (f (γ )) : γ ⊂ M is a path connecting u0 and bM

}
>

1

ε
. (4.2)

�

By using this lemma, it is a trivial matter to construct a sequence of holomor-

phic Legendrian embeddings fj : M ↪→ X converging uniformly on M to a topological

embedding f = limj→∞ fj : M ↪→ X which is as close as desired to f0 uniformly on M and

whose restriction to M̊ is a complete holomorphic Legendrian embedding. We refer to

[3, proof of Theorem 1.1] for a detailed explanation in a similar geometric context.

In the standard case when X = C
2n+1 is endowed with the standard contact

structure, Lemma 4.1 coincides with [5, Lemma 6.5]. Although the latter lemma is stated

only for the case when M is the disc, it is explained there how the proof extends to any

compact bordered Riemann surface. In the case at hand, we shall use [5, Lemma 6.5]

together with the existence of Darboux charts furnished by Theorem 1.1.
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Darboux Charts Around Holomorphic Legendrian Curves 911

For simplicity of notation, we assume that dimX = 3; the same proof applies

in general. We also assume without loss of generality that M is a compact smoothly

bounded domain in an open Riemann surface, R, and that f0 extends to a holomor-

phic Legendrian immersion R → (X , ξ). By Theorem 1.2, we may further assume, up to

shrinking R around M if necessary, that f0 : R ↪→ (X , ξ) is a holomorphic Legendrian

embedding.

Choose a holomorphic immersion x0 : R → C (see [22]). After shrinking R around

M if necessary, Theorem 1.1 provides a holomorphic embedding F : Y = R × B
2 ↪→ X

such that the contact structure F ∗ξ on Y is determined by the 1-form α = dz−ydx0. More

precisely, letting α0 = dz − ydx denote the standard contact form on C
3 and G : Y → C

3

the immersion G(u,y, z) = (x0(u),y, z), we have α = G∗α0. Note that g0 = G(· , 0, 0) =
(x0, 0, 0) : R → C

3 is an α0-Legendrian immersion.

Fix a Riemannian metric on R with the distance function distR. By using the

Euclidean metric on C
2 we thus get a metric and a distance function on Y = R× B

2.

Let r0 > 0 be the radius of injectivity of the immersion x0 : R → C on M . This

means that for every point u ∈ M , x0 maps the geodesic disc D(u, r0) ⊂ R around u

bijectively onto its image x0(D(u, r0)) ⊂ C. Let r ′
0 > 0 be chosen such that the Euclidean

disc D(x0(u), r ′
0) ⊂ C lies inside x0(D(u, r0)) for every u ∈ M ; recall that M is compact.

Lemma 4.2. There is a constant C ≥ 1 such that for every function x : M → C which

is uniformly r ′
0-close to x0 : M → C on M there exists a unique map φ : M → R which is

r0-close to the identity on M such that x = x0 ◦ φ and

C−1‖x − x0‖M ≤ distM (φ, IdM ) ≤ C‖x − x0‖M . (4.3)

If x is holomorphic on M then so is φ. �

Proof. For every u ∈ M we have x(u) ∈ x0(D(u, r0)), and hence there is a unique point

φ(u) ∈ D(u, r0) such that x0(φ(u)) = x(u). Clearly, this determines the map φ with the

stated properties. The estimate (4.3) follows from the inverse mapping theorem. �

Since F : Y → X is a biholomorphism onto the domain F(Y) ⊂ X , there is a

number η > 0 such that for every immersion h : M → Y satisfying

distY (h, IdM ) < η (4.4)
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912 A. Alarcón and F. Forstnerič

and

inf
{
lengthY (h(γ )) : γ ⊂ M is a path connecting u0 and bM

}
>

1

η
, (4.5)

the immersion f = F ◦ h : M → X satisfies the estimates (4.1) and (4.2). Furthermore, if

h is a holomorphic α-Legendrian embedding, then f = F ◦ h : M → X is a holomorphic

ξ-Legendrian embedding. Hence, f satisfies the conclusion of Lemma 4.1.

It remains to find h. Pick a number δ > 0. By [5, Lemma 6.5], there is a holomorhic

α0-Legendrian immersion g1 = (x1,y1, z1) : M → C
3 which is uniformly δ-close to g0 =

(x0, 0, 0) on M and satisfies

inf
{
length(g1(γ )) : γ ⊂ M is a path connecting u0 and bM

}
>

1

δ
.

In particular, the first component x1 of g1 is δ-close to x0 on M . Choosing δ > 0 small

enough, Lemma 4.2 ensures that x1 = x0 ◦ φ for some holomorphic map φ : M → R;

furthermore, the map h = (φ,y1, z1) : M → Y = R × B
2 is a holomorphic α-Legendrian

immersion satisfying (4.4) and (4.5). By Theorem1.2,we can chooseh to be an embedding.

This completes the proof.

5 Contact Neighborhoods of Isotropic Stein Submanifolds

In this section, we consider isotropic complex submanifolds M of higher dimension in

a complex contact manifold (X2n+1, ξ), and we prove a contact neighborhood theorem in

the case when M is a Stein submanifold; see Theorem 5.3. In the special case when M

is Stein and contractible, we construct a Darboux chart around it; see Theorem 5.6. For

simplicity of exposition, we assume thatM is embedded, although the analogous results

also apply to immersed submanifolds.

We begin by recalling a few basic facts; see for example [27, 28]. The quotient

projection

TX
α−→ ν := TX/ξ

onto the normal line bundle ν of the contact subbundle ξ is a nowhere vanishing holo-

morphic 1-form α on X with values in ν such that ξ = ker α. The differential dα defines

a holomorphic section of �2(ξ ∗) ⊗ ν, and α ∧ (dα)n �= 0 is a nowhere vanishing section

of the line bundle KX ⊗ ν⊗(n+1), where KX = �2n+1(T∗X) is the canonical line bundle of X .
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Darboux Charts Around Holomorphic Legendrian Curves 913

This provides a holomorphic line bundle isomorphism

ν⊗(n+1) ∼= K−1
X = �2n+1(TX) (5.1)

between the (n+1)-st tensor power of the normal bundle ν and the anticanonical bundle

K−1
X of X . On any open subset of X over which the bundle ν is trivial, we may consider

α as a scalar-valued 1-form determined up to a nonvanishing holomorphic factor. The

condition α ∧ (dα)n �= 0 implies that

ω := dα|ξ

is a holomorphic symplectic form on the contact bundle ξ which is determined up to a

nonvanishing factor (since d(f α) = fdα+ df ∧ α = fdα on ξ = ker α), so the pair (ξ ,ω) is

a conformal symplectic holomorphic vector bundle over X . The restriction of ω to any

fiber ξx (x ∈ X) is a nondegenerate skew-symmetric bilinear form ωx : ξx × ξx → C.

Given an R-linear subspace U of ξx , we denote by U⊥ its ωx-orthogonal comple-

ment:

U⊥ =
⋂
u∈U

kerωx(u, · ) ⊂ ξx .

Note that U⊥ depends only on the conformal class of α, and hence only on the contact

structure ξ . Since ωx(u, · ) : ξx → C is a C-linear form, U⊥ is a complex subspace of ξx . We

say that U is ωx-isotropic if U ⊂ U⊥; equivalently, ωx(u,v) = 0 for any pair of vectors

u,v ∈ U . Since U⊥ is complex, it follows that UC := Span
C
(U) ⊂ U⊥. Since the 2-form ωx

on ξx is nondegenerate, we have the following dimension formula (see [20, Section 2.4]):

dimC U
C + dimC U

⊥ = dimC ξx = 2n. (5.2)

It follows that any real isotropic subspace U of ξx satisfies dimR U ≤ 2n, and we have

dimR U = 2n if and only if U = UC = U⊥; such U is said to be ωx-Lagrangian. In

particular, we see that every Lagrangian subspace of ξx is complex.

These notions and observation extend in an obvious way to smooth submani-

folds M of X . Thus, M is isotropic with respect to the contact structure ξ = ker α if

TxM ⊂ ξx holds for all x ∈ M ; equivalently, if α|TM = 0. This implies that ω = dα|ξ
also vanishes on the tangent bundle TM , so TxM is ωx-isotropic for every x ∈ M and

therefore dimR M ≤ 2n. A ξ-isotropic submanifold M of X is said to be Legendrian

if it has maximal real dimension 2n. We have seen above that for any such subman-

ifold, the tangent space TxM at each point x ∈ M is a complex linear subspace of ξx
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914 A. Alarcón and F. Forstnerič

(satisfying TxM = (TxM)⊥); it follows thatM is a complex submanifold of X . This obser-

vation seems worthwhile recording. (The special case for dimX = 3 was observed in

[19, Proposition 1.5].)

Lemma 5.1. Let (X , ξ) be a complex contact manifold. Every smooth Legendrian

submanifold M of (X , ξ) is a complex submanifold of X . �

Since a Stein manifold does not admit any compact complex submanifolds of

positive dimension, the lemma implies

Corollary 5.2. A Stein contact manifold does not have any compact smooth Legendrian

submanifolds. �

We now introduce the relevant decomposition of the complex normal bundle

N(M ,X) = TX |M/TM

of an isotropic complex submanifold M ⊂ X . Assume that dimX = 2n + 1 ≥ 3 and

dimM = m ∈ {1, . . . ,n}. Recall that ν = TX/ξ . We have

N(M ,X) = ν|M ⊕ (ξ |M/TM⊥)⊕ (TM⊥/TM). (5.3)

(Compare with [20, (2.6), p. 69] for the analogous decomposition in the smooth case.) IfM

is a Steinmanifold, then the component bundles in (5.3) can be embedded as holomorphic

vector subbundles ofN(M ,X), and the latter is a holomorphic subbundle of the restricted

tangent bundle TX |M = TM⊕N(M ,X). In particular, (5.3) can be seen as an internal direct

sum of holomorphic vector subbundles. Since the rank of the bundle TM⊥ equals 2n−m

in view of the dimension formula (5.2), the summands on the right hand side of (5.3)

have ranks 1,m, and 2(n − m), respectively. By [20, Lemma 2.5.4], the bundle ξ |M/TM⊥

is isomorphic to the cotangent bundle T∗M via the bundle isomorphism

ξ |M/TM⊥ → T∗M , ξx � v �→ ivω|TM ∈ T∗
xM (x ∈ M). (5.4)

Thus, assuming that the normal bundle ν = TX/ξ of ξ is trivial over the submanifoldM ,

the only bundle in the decomposition (5.3) which depends on the isotropic embedding

M ↪→ X is the rank 2(n−m) conformal symplectic normal bundle

CSN(M ,X) := TM⊥/TM . (5.5)
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Darboux Charts Around Holomorphic Legendrian Curves 915

This brings us to the following holomorphic contact neighborhood theorem, analogous

to the corresponding result in smooth contact geometry (see e.g., [20, Theorem 2.5.8,

p. 71]).

Theorem 5.3. Let (Xi, ξi) (i = 0, 1) be complex contactmanifolds of dimension 2n+1 ≥ 3

with locally closed isotropic Stein submanifolds Mi ⊂ Xi. Suppose that νi = TXi/ξi is

trivial over Mi for i = 0, 1, and there is a holomorphic vector bundle isomorphism

of conformal symplectic normal bundles � : CSN(M0,X0) → CSN(M1,X1) that covers

a biholomorphism f : M0 → M1. Then f extends to a holomorphic contactomorphism

F : N (M0) → N (M1) of suitable Stein neighborhoods of Mi in Xi such that

TF |CSN(M0,X0) = �. (5.6)

�

Theorem 1.4 in the introduction follows from Theorem 5.3 by noting that for

a Legendrian submanifold M of (X , ξ) (that is, an isotropic submanifold of maximal

dimension) the conformal normal bundle (5.5) has rank zero, and hence the condition

regarding � in Theorem 5.3 is void.

Proof. The proof is analogous to that of [20, Theorem 2.5.8]. We also take into account

[20, Remark 2.5.12] and get the sharper statement as in [20, Theorem 6.2.2, p. 294].

The assumption that the line bundle νi = TXi/ξi is trivial on Mi implies that

ξi = ker αi for a holomorphic scalar-valued contact form αi in a neighborhood of Mi in

Xi (i = 0, 1). Hence we can identify νi|Mi
with the line subbundle 〈Ri〉 of TXi|Mi

spanned

by the Reeb vector field Ri of the contact form αi. Let ωi = dαi|ξi be the associated

holomorphic symplectic formon the contact subbundle ξi. There is a unique holomorphic

isomorphism

� : N(M0,X0) → N(M1,X1)

of normal bundles, covering the biholomorphism f : M0 → M1, which is determined on

the component subbundles in the decomposition (5.3) as follows:

• on the line subbundle ν0 = 〈R0〉, we have �(R0(x)) = R1(f (x)), x ∈ M0;

• on CSN(M0,X0), we let � = � : CSN(M0,X0) → CSN(M1,X1) be the isomor-

phism in the statement of the theorem; and
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916 A. Alarcón and F. Forstnerič

• on ξ |M0/(TM0)
⊥
ω0

∼= T∗M0 (see (5.4)), we let � = T∗(f −1), the cotangent map of

the biholomorphism f −1 : M1 → M0.

Since the submanifolds Mi ⊂ Xi are locally closed and Stein, the Docquier–Grauert–Siu

tubular neighborhood theorem (see [17, Theorem 3.3.3, p. 67]) implies that for i = 0, 1

there are an open Stein neighborhood �i ⊂ Xi of Mi and a biholomorphism �i : �i → �′
i

onto a neighborhood �′
i of the zero section in the normal bundle N(Mi,Xi) such that, if

we identify the zero section with Mi and note the canonical decomposition

T(N(Mi,Xi))|Mi
∼= TMi ⊕ N(Mi,Xi) = TXi|Mi

,

the differential T�i|Mi
: TXi|Mi

→ T(N(Mi,Xi))|Mi
is the identity map. After suitably

shrinking the neighborhoods �i ⊃ Mi, the composition

G = �−1
1 ◦� ◦�0 : �0 → �1

is a biholomorphismextending f : M0 → M1 such that the contact formsG∗α1 and α0 agree

on TX0|M0 alongwith their differentials. It follows from the construction that the tangent

map TG respects the decomposition (5.3) of the component bundles; in particular, we

have TG = � on CSN(M0,X0).

It remains to correct G to a contactomorphism. This is accomplished by finding

a biholomorphic map ψ on a neighborhood of M0 in X0 which fixes M0 and satisfies

Tψ = Id on TX0|M0 and ψ∗(G∗α1) = α0.

The biholomorphism F = G ◦ψ from a neighborhood ofM0 in X0 onto a neighborhood of

M1 in X1 then satisfies F ∗α1 = α0 and also (5.6).

A biholomorphism ψ with these properties is furnished by the following propo-

sition, applied with the pair of contact forms α = α0 and β = G∗α1 on X = X0, with the

isotropic Stein submanifold M = M0 ⊂ X0.

Proposition 5.4. Assume that (X ,α) is a complex contact manifold with a locally closed

isotropic Stein submanifoldM ⊂ X , and β is a holomorphic 1-form on a neighborhood of

M inX such that α = β and dα = dβ hold on TX |M . Then there exist a neighborhood� ⊂ X

of M and a biholomorphism ψ : � → ψ(�) ⊂ X , fixing M pointwise, whose differential

agrees with the identity map on TX |M and satisfies ψ∗β = α. �

The proof of the proposition is obtained by a refinement of Moser’s method. We

shall adjust [20, proof of Theorem 6.2.2, p. 294] to the holomorphic case.
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Proof. The conditions imply that

αt = (1 − t)α + tβ (t ∈ [0, 1])

is an isotopy of contact 1-forms in a neighborhood of M in X such that αt and dαt are

independent of t on TX |M ; hence, the Reeb vector field Rt of αt is also independent of t

along M . Since M is Stein, there is a complex submanifold � of X containing M such

that T�|M = (ker α)|M . By shrinking � around M if necessary, we may assume that the

pullback of dαt to� is a holomorphic symplectic form ωt on� whose restriction to T�|M
is independent of t. Hence the 2-form

η = ω1 − ω0 = ω̇t

on� is closed and it vanishes on T�|M . SinceM is Stein, the generalized Poincaré lemma

(see [20, Corollary A.4, p. 403]) gives a holomorphic 1-form ζ on a neighborhood of M in

� that vanishes to the second order on M and satisfies

dζ = η = ω̇t.

Let Vt be the holomorphic vector field on � uniquely determined by the equation

ζ + Vt�ωt = 0.

Then Vt vanishes to the second order onM . Its flow φt (t ∈ [0, 1]) exists in a neighborhood

of M in �, it fixes M pointwise, and it satisfies Tφt = Id on T�|M . Furthermore,

d

dt
(φ∗

tωt) = φ∗
t (LVtωt + ω̇t) = φ∗

t

(
d(Vt�ωt)+ ω̇t

) = φ∗
t (−dζ + ω̇t) = 0

which implies φ∗
tωt = ω0 for all t ∈ [0, 1]; in particular, φ∗

1ω1 = ω0. We extend φ1 from

� to a biholomorphism φ on a neighborhood of M in X by requiring that it sends flow

lines of the Reeb vector field R0 to those of R1. Since R0 = R1 on M , this gives Tφ = Id

on TX |M . This extension satisfies φ∗(dβ) = dα on a neighborhood of M .

Replacing β by φ∗β, we have thus reduced the proof to the case when α = β on

TX |M and dα = dβ holds on a neighborhood ofM in X . As before, set αt = (1−t)α+tβ and

look for a holomorphic flow ψt satisfying ψ∗
t αt = α0 for all t ∈ [0, 1]. Since α̇t = β − α is a

closed 1-form that vanishes on TX |M , the generalized Poincaré lemma (see [20, Corollary

A.4, p. 403]) can be used as above to obtain a solution satisfying Tψt = Id on TX |M for

every t ∈ [0, 1]. (Equivalently, the vector field Vt generating the flow ψt vanishes to the
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918 A. Alarcón and F. Forstnerič

second order on M .) The map ψ = ψ1 then satisfies the conclusion of Proposition 5.4.

For further details, see [20, proof of Theorem 6.2.2]. �

This completes the proof of Theorem 5.3. �

Remark 5.5. In the smooth case, Proposition 5.4 holds for any smooth submanifoldM

of X . In the holomorphic case, the tubular neighborhood theorem, which is used in the

proof of the generalized Poincaré lemma, is available only if M is a Stein manifold. �

The following result is an analogue of Theorem 1.1 in the case when M is a

topologically contractible Stein manifold, embedded as an isotropic submanifold in a

complex contactmanifold (X , ξ). Contractibility ofM implies that all holomorphic vector

bundles over M are topologically trivial, and hence holomorphically trivial by the Oka-

Grauert principle (see [17, Section 5.3]). This allows us to choose global holomorphic

coordinates on the normal bundle N(M ,X), thereby obtaining the Darboux normal form

(5.7) for the contact structure ξ in a tubular neighborhood of M in X by following the

proof of Theorem 1.1.

Theorem 5.6. Let (X , ξ) be a complex contactmanifold of dimension 2n+1 ≥ 3. Assume

that M is a contractible Stein manifold of dimension m, θ1, . . . , θm are holomorphic

1-forms on M providing a framing of the cotangent bundle T∗M , and f : M → X is a

holomorphic isotropic immersion. Then there are a neighborhood � ⊂ M × C
2n+1−m of

M × {0} and a holomorphic immersion F : � → X (embedding if f is an embedding) such

that F |M×{0} = f and the contact structure F ∗ξ on � is given by the contact 1-form

α = dz −
m∑
j=1

yjθj −
n∑

i=m+1

yidxi, (5.7)

where (xm+1, . . . ,xn,y1, . . . ,yn, z) are complex coordinates on C
2n+1−m. �

Proof. The proof is similar to that of Theorem 1.1, so we only include a brief sketch.

Let p = 2n − m. Since f : M → X is isotropic, we have m ≤ n and hence p ≥ n.

As in that proof, we find a Stein open neighborhood � ⊂ M × C
p+1 of M × {0}p+1 and a

holomorphic immersion F : � → X , with F |M×{0} = f , such that F ∗ξ = ker β, where β is a

holomorphic 1-form on � satisfying β ∧ (dβ)n �= 0 and M × {0}p+1 is a β-Legendrian

submanifold of M × C
p+1. Let x denote points in M and ζ = (ζ0, ζ1, . . . , ζp) be com-

plex coordinates on C
p+1. Along M × {0}p+1 = {ζ = 0} we have β(x) = ∑p

j=0 aj(x)dζj

(x ∈ M) for some holomorphic functions aj ∈ O(M) without common zeros. The 1-forms
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θ1, . . . , θm on M do not appear in the above expression since M × {0}p+1 is β-Legendrian.

By the same argument as in the proof of Theorem 1.1 we transform β to the 1-form

dζ0 along M × {0}p+1, and we rename the variable ζ0 by calling it z. After dividing

β with the coefficient of dz (which is nonvanishing in a neighborhood of M × {0}p+1)

we have

β = dz +
m∑
i=1

( p∑
j=1

ai,j(x)ζj

)
θi(x)+

p∑
j,k=1

cj,k(x)ζk dζj + β̃, (5.8)

where the 1-form β̃ contains all termswhose coefficients are of order≥ 2 in the variables

ζ1, . . . , ζp or they contain the z variable; these terms disappear in β ∧ (dβ)n at all points

of M × {0}p+1. By a similar argument as in the proof of Theorem 1.1, we see that the

m × p matrix of coefficients A(x) = (ai,j(x)) in (5.8) has maximal rank m at every point

x ∈ M . (Indeed, if this fails at some point x0 ∈ M , we easily see that β ∧ (dβ)n = 0 at

(x0, 0) ∈ M × {0}p+1.) Hence, Lemma 2.1 provides a holomorphic change of coordinates

(x, z, ζ ) �→ (x, z,B(x)ζ ), with B(x) ∈ GLp(C) for all x ∈ M , which reduces β to

β = dz −
m∑
i=1

ζiθi +
p∑

j,k=1

cj,k(x)ζk dζj + β̃. (5.9)

Since d(ζiθi) = dζi ∧ θi + ζidθi = dζi ∧ θi onM × {0}, the differentials dθi do not contribute

to dβ on M × {0}p+1, and (dβ)n contains the factor ∧m
i=1(dζi ∧ θi). Hence, we can move the

terms with dζ1, . . . , dζm in the second sum in (5.9), as well as all terms containing ζkdζj

for any j > m and k ≤ m, into the remainder β̃ since none of these terms contributes to

β ∧ (dβ)n on M × {0}p+1. Renaming the variables ζ1, . . . , ζm by calling them y1, . . . ,ym, we

thus have

β = dz −
m∑
i=1

yiθi +
p∑

j,k=m+1

cj,k(x)ζk dζj + β̃. (5.10)

Ifm = p (in which case the immersion f : M → X is Legendrian), we are done. Otherwise,

we finish the reduction as in the proof of Theorem 1.1, changing the second sum on the

right-hand side of (5.10) to −∑n
i=m+1 yidxi after having suitably renamed the variables

ζm+1, . . . , ζp.

Once the normalization of β along M × {0}p+1 has been achieved, one com-

pletes the proof exactly as before by applying Moser’s method, thereby removing the

remainder β̃ and changing β to the normal form (5.7) in a neighborhood of M × {0}p+1

in M × C
p+1. �
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[18] Forstnerič, F. “Hyperbolic complex contact structures on C
2n+1.” J. Geom. Anal. (2017):

doi:10.1007/s12220-017-9800-9.
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