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Abstract. In this paper we prove that every Stein manifold S admits a proper
holomorphic immersion into any Stein manifold of dimension 2 dimS enjoying
the density property or the volume density property.

1 Introduction

A complex manifold X is said to enjoy the density property if the Lie algebra
generated by the C-complete holomorphic vector fields is dense in the Lie algebra
of all holomorphic vector fields on X (see Varolin [26, 25] or [13, Sect. 4.10]).
Similarly one defines the volume density property of a complex manifold
endowed with a holomorphic volume form, as well as the algebraic versions of
these properties (see Kaliman and Kutzschebauch [16]). This important class
has been the focus of intensive recent research for affine algebraic and Stein
manifolds; see the papers [3, 4, 5, 19, 17, 18, 20, 21, 22], among others. These
manifolds are highly symmetric and enjoy the Andersén–Lempert property [1] on
approximation of isotopies of injective holomorphic maps between Runge domains
by holomorphic automorphisms; see [15, Theorem 1.1] for Cn and [13, Theorem
4.10.5, p. 143]. Furthermore, every Stein manifold with the density property is an
Oka manifold; see [13, Proposition 5.6.23, p. 223].

The following general embedding theorem has been discovered recently.

Theorem 1.1 (Andrist et al. [2, Theorem 1.1]). Let X be a Stein manifold with

the (volume) density property. If S is a Stein manifold and 2 dim S + 1 ≤ dimX,
then any continuous map S → X is homotopic to a proper holomorphic embedding

S ↪→ X.

In this paper we complete the picture by proving the corresponding result on the
existence of proper holomorphic immersions into manifolds of double dimension.
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Theorem 1.2. Let X be a Stein manifold enjoying the density property or the

volume density property. If S is a Stein manifold with 2 dim S = dimX, then any
continuous map S → X is homotopic to a proper holomorphic immersion with

simple double points.

An immersion f : S → X is said to have simple double points if for any
pair of distinct points p, q ∈ S with f (p) = f (q) the tangent planes dfp(TpS) and
dfq(TqS) intersect trivially within Tf (p)X , and f has no triple points. Clearly, any
such pair (p, q) is isolated, and if f is proper then the sequence (p j , q j ) ∈ S × S of
pairs of double points is such that each of the sequences p j and q j is discrete in S.

The special case of Theorem 1.2 with X = C2 dim S is a classical theorem
of Bishop [7] and Narasimhan [23]. When S is an open Riemann surface and
dimX = 2, Theorem 1.2 was proved beforehand by Andrist and Wold [6].

Let us mention a few related open problems. Assume that S and X are Stein
manifolds and X has the (volume) density property. Can one always find a proper
holomorphic map S → X when dim S < dimX? This is possible for X = Cn

according to the papers of Bishop and Narasimhan cited above. The second
question is whether the immersion and the embedding dimensions in the above
theorems can be lowered. Recall that every Stein manifold of dimension d ≥ 1
admits a proper holomorphic immersion into the complex Euclidean space of
dimension [ 3d+1

2 ], and if d > 1 then it admits a proper holomorphic embedding
into C[ 3d

2 ]+1 (see Eliashberg and Gromov [9] and Schürmann [24]). Examples of
Forster [10] show that this embedding dimension is minimal for every d > 1, and
the immersion dimension is minimal for even values of d and is off by at most one
for odd values of d . The optimal non-proper immersion dimension is [ 3d

2 ]. Their
proofs rely on the product structure of Cn and do not generalize to more general
target manifolds. The problem whether every open Riemann surface embeds
properly holomorphically into C2 is still open, although considerable progress has
been made in the last decade. A discussion of these topics can be found in [13,
Chap. 9].

By using the technique of this paper, it is possible to obtain a more precise
version of Theorem 1.2 in the spirit of the results given by [14, Theorem 15] and
[2, Theorem 1.2], i.e., with interpolation and with the control of the image of the
set S \K for a given compactO(S)-convex subset K of the source Stein manifold S.

The paper is organized as follows. In Section 2 we collect some preliminaries
and develop the notion of a very special Cartan pair which plays an important
role in the proof. In Section 3 we prove the main technical result, Lemma 3.1.
Although it is similar to [2, Lemma 2.2], its proof relies strongly on the fact that the
attaching set of the convex bump in a very special Cartan pair can be an arbitrarily
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thin convex slab. This allows us to ensure that the immersion into X , given in
an induction step of the proof, is an embedding on the attaching set of the bump.
This condition is important in the rest of the argument where the (volume) density
property of X is used to approximate the given immersion on the attaching set by
an immersion of the bump. The rest of the procedure, gluing these two maps etc.,
is the same as in [2, proof of Lemma 2.2]. With Lemma 3.1 in hand, Theorem 1.2
is proved in exactly the same way as [2, Theorem 1.1].

Remark 1.3. Lemma 3.1 also serves to complete the details in the proof of
[14, Theorem 15], due to T. Ritter and the author, in the second case when the
compact set L ⊂ Cn in the statement of that theorem is polynomially convex and
n = 2 dimX . (In [14], X denotes the source Stein manifold which corresponds to S

in the present paper, while the target manifold is Cn.) The proof of [14, Theorem
15] is complete when L is convex or holomorphically contractible, while the case
when L is polynomially convex and n = 2 dimX can be seen by supplementing the
proof in [14] by Lemma 3.1 below.

2 Preliminaries

LetO(S) denote the algebra of all holomorphic functions on a complex manifold S,
endowed with the compact-open topology. A compact set K in S is said to be
O(S)-convex if for every point p ∈ S \ K there exists a function g ∈ O(S) with
|g(p)| > supK |g|.

If S is a closed complex subvariety of a Stein manifold X , then a compact set
K ⊂ S is O(S)-convex if and only if it is O(X)-convex. We shall need a version of
this result for immersed submanifolds with simple double points.

Lemma 2.1. Assume that S and X are Stein manifolds and f : S → X is a
proper holomorphic immersion with only simple double points. Then a compact

subset K ⊂ S is O(S)-convex if and only if its image f (K ) ⊂ X is O(X)-convex.

Proof. Let �S denote the diagonal of S × S. The hypothesis on f implies
that there are at most countably many pairs (aj , b j ) ∈ S × S \ �S such that
the sequences a j and b j are discrete in S, f (a j ) = f (b j ) for all j , and any
(a, b) ∈ S × S \�S satisfying f (a) = f (b) is one of the pairs (aj , b j ). The image
� = f (S) ⊂ X is a closed complex subvariety of X whose only singularities are
simple normal crossings at the points c j = f (a j ) = f (b j ). Since f is proper, the
sequence c j ∈ � is discrete.

Assume that the compact set K ⊂ S isO(S)-convex. Let p ∈ �\ f (K ). If p �= c j

for all j , then p = f (q) for a unique point q ∈ S \ K . Since the sequences a j , b j



4 F. FORSTNERIČ

are discrete in S, the Cartan–Oka–Weil theorem gives a function g ∈ O(S) such
that g(q) = 1, |g| < 1/2 on K , and g(aj ) = g(bj ) for all j . Hence there is a
unique holomorphic function h ∈ O(�) such that h ◦ f = g. Then h(p) = 1 and
|h| < 1/2 on f (K ), so p /∈ f̂ (K )O(�). If p = c j for some j , we choose g ∈ O(S)
such that g(aj ) = g(b j ) = 1, |g| < 1/2 on K , and g(ai) = g(bi) for all i �= j ; the
conclusion is the same as above. This proves that f (K ) is O(�)-convex, and hence
also O(X)-convex.

Conversely, if K ⊂ S is a compact set such that f (K ) ⊂ X is O(X)-convex,
then K̃ = f −1( f (K )) is O(S)-convex. The condition on f implies that K̃ is the
union of K with at most finitely many points p1, . . . , pm ∈ S \K . By the Oka–Weil
theorem there exists g ∈ O(S) such that g(pi) is close to 1 for i = 1, . . . ,m and
|g| < 1/2 on K . Hence the points pi do not belong to the hull of K , so K is
O(S)-convex. �

A compact set K in a topological space S is said to be regular if K is the
closure of its interior K̊ .

Definition 2.2. A pair K ⊂ L of compact convex sets in RN is a simple
convex pair if there are a linear function λ : RN → R and constant a ∈ R such
that

(2.1) K = {z ∈ L : λ(z) ≤ a}.

Lemma 2.3. Given regular compact convex sets C ⊂ B in RN and an open
set U ⊂ RN containing C, there is a finite sequence of regular compact convex

sets K1 ⊂ K2 ⊂ · · · ⊂ Km+1 = B such that C ⊂ K1 ⊂ U and (Ki,Ki+1) is a simple

convex pair for every i = 1, . . . ,m.

Proof. Given a linear function λ : RN → R and a number a ∈ R we let

H (λ, a) = {x ∈ RN : λ(x) ≤ a}.

Since C is compact and convex, it is the intersection of closed half-spaces. Hence
there exist finitely many linear functions λ1, . . . , λm : RN → R and numbers
a1, . . . , am ∈ R such that

C ⊂
m⋂

i =1

H (λi, ai) ⊂ U.

The sets Ki =
⋂m

j =i H (λ j , a j ) ∩ B for i = 1, . . . ,m and Km+1 = B then satisfy the
lemma. (If Ki = Ki+1 for some i, then Ki may be removed from the sequence.) �
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A compact set K in a complex manifold S is said to be Stein compact if K

admits a basis of open Stein neighborhoods in S. If K ⊂ A are compacts in S, we
say that K is O(A)-convex if there is an open set W ⊂ S containing A such that K

is O(W )-convex. By O(A) we denote the algebra of functions that are holomorphic
in open neighborhoods of A (depending on the function).

The following notion of a special Cartan pair is a small variation of [13,
Definition 5.7.2, p. 234]. A slightly more restrictive notion was used in [2] where
the sets C ⊂ B were assumed to be smoothly bounded strongly convex, while
A and D = A ∪ B were strongly pseudoconvex (a strongly pseudoconvex Cartan
pair). The main novelty is the notion of a very special Cartan pair in which the
attaching set of the convex bump is a thin convex slab; this plays an important role
in the proof of Lemma 3.1 in the following section.

Definition 2.4. A pair of compact sets (A,B) in a complex manifold S is a
special Cartan pair if

(i) the sets A, B , D = A ∪ B and C = A ∩ B are Stein compacts,
(ii) A and B are separated in the sense that A \ B ∩ B \ A = ∅, and
(iii) there is a holomorphic coordinate system on a neighborhood of B in S in

which B and C = A ∩ B are regular convex sets.
A special Cartan pair (A,B) with C = A ∩ B is very special if
(iv) there is a holomorphic coordinate system on a neighborhood of B in S in

which (C,B) is a simple convex pair (see Definition 2.2).

If K is a compact convex set in RN , then a slice of K is the intersection of K

with a real affine hyperplane, and a slab of K is a subset of the form

Ka,b = {x ∈ K : a ≤ λ(x) ≤ b},
where a < b are real numbers and λ : RN → R is a linear function. The number
b−a is called the thickness of the slab Ka,b. If K is a compact subset of a manifold
S that is contained in a local chart and is convex in that chart, then a slice or a slab
of K will be understood as a subset of the respective type in the given chart.

Lemma 2.5. Assume that (A,B) is a special Cartan pair in a complex man-
ifold S. Given an open set W ⊂ S containing A, there is a finite sequence of

compact sets
A ⊂ A1 ⊂ A2 ⊂ · · ·Am+1 = A ∪ B

such that A1 ⊂ W, for every i = 1, . . . ,m we have Ai+1 = Ai ∪ Bi where (Ai,Bi) is
a very special Cartan pair, and Ci = Ai ∩ Bi is an arbitrarily thin slab of Bi . If the

set B is O(D)-convex where D = A ∪ B, then the pairs (Ai,Bi) can be chosen such
that Bi is O(Ai+1)-convex for every i = 1, . . . ,m.



6 F. FORSTNERIČ

Proof. Let C = A ∩ B . By the assumption, there are an open neighborhood
V0 ⊂ S of B and a biholomorphic map θ : V0 → Ṽ0 ⊂ Cd onto an open convex
subset of Cd such that θ(C) ⊂ θ(B) are regular compact convex set in Cd . We use
the chart θ to define the notions of convexity, slices, slabs, and simple convex pairs
in V0.

Pick an open neighborhood U of C, with U ⊂ W , and choose a compact convex
set C̃ ⊂ U which contains C in its interior.

Lemma 2.3 furnishes a sequence K1 ⊂ K2 ⊂ · · · ⊂ Km+1 = B of regular
compact convex sets (with respect to the chart θ : V0 → Ṽ0) such that

(2.2) B ∩ C̃ ⊂ K1 ⊂ U

and (Ki,Ki+1) is a simple convex pair for every i = 1, . . . ,m (see Definition 2.2).
This means that for every i there are an R-linear function λi : Cd → R and a
number bi ∈ R such that

(2.3) Ki = {x ∈ Ki+1 : λi (θ(x)) ≤ bi}.
Choose a number ai ∈ R with ai < bi and close to bi . For every i = 1, . . . ,m let

(2.4) Ai = A ∪ Ki, Bi = {x ∈ Ki+1 : ai ≤ λi (θ(x))}.
Assuming that ai is chosen sufficiently close to bi for each i, condition (2.2) implies
that

A ∩ Bi = ∅ for i = 1, . . . ,m.

Then Ai ∪ Bi = A ∪ Ki+1 = Ai+1 ⊂ A ∪ B and

(2.5) Ci = Ai ∩ Bi = {x ∈ Ki+1 : ai ≤ λi (θ(x)) ≤ bi}.
Thus, Ci is a slab of the compact convex set Ki+1. Note also that D = A∪B = Am+1

which is a Stein compact. It is easily verified by a downward induction on i that Ai

is a Stein compact and (Ai,Bi) is a very special Cartan pair for every i = 1, . . . ,m.
Note that every Bi is a convex subset of B (in the θ-coordinates). If B is O(D)
convex, then it clearly follows that Bi is O(Ai+1)-convex for every i = 1, . . . ,m. �

Remark 2.6. We have a lot of freedom in the choices of the slabs Ci

(2.5). In particular, we can replace ai and bi by any pair of numbers a′
i, b

′
i

with ai < a′
i < b′

i < bi and redefine the sets Ki (2.3), Ai ,Bi (2.4) and Ci (2.5)
accordingly. In particular, the attaching slabs Ci of the convex bumps Bi can be
chosen arbitrarily thin, a fact that will be important in the proof of Lemma 3.1 in
the following section.
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3 The main lemma

In this section we prove the following main lemma which implies Theorem 1.2 in
exactly the same way as [2, Lemma 2.2] implies [2, Theorem 1.1].

Lemma 3.1. Assume that S is a complex manifold of dimension d, and X is

a Stein manifold of dimension 2d with the density property or the volume density
property. Let (A,B)be a specialCartan pair in S (seeDefinition 2.4). SetC = A∩B

and D = A ∪ B. Assume that

(a) L is a compact O(X)-convex set in X,
(b) K is a compact set contained in Å \ C such that K ∪ B is O(D)-convex,

(c) W ⊂ S is an open set containing A, and
(d) f : W → X is a holomorphic map such that f −1(L) ⊂ K̊ ; equivalently,

(3.1) f (W \ K̊ ) ⊂ X \ L.

Then it is possible to approximate f as closely as desired, uniformly on A, by a
holomorphic immersion f̃ : W̃ → X on a neighborhood W̃ of D = A∪B such that

(3.2) f̃ (W̃ \ K̊ ) ⊂ X \ L.

Proof. By the definition of a very special Cartan pair (see Definition 2.4) there
are an open neighborhood V0 of B and a biholomorphic map θ : V0 → Ṽ0 ⊂ Cd

onto an open convex subset of Cd such that θ(C) ⊂ θ(B) are regular compact
convex sets in Cd . In the sequel, when speaking of convex subsets of V0, we mean
sets whose θ-images in Cd are convex.

Replacing S by a Stein neighborhood of the compact strongly pseudoconvex
domain D = A ∪ B , we may assume that D is O(S)-convex. Hence, any subset
of D which is O(D)-convex is also O(S)-convex. In particular, this holds for the
sets B and K ∪ B by the assumption (b). The same is true for the set C which is
convex in B . Furthermore, we claim that A is O(S)-convex. Indeed, given a point
p ∈ D \ A = B \ A, there is a function g ∈ O(B) such that g(p) = 1 and |g| < 1/2
on C. Since B is O(S)-convex, we can approximate g uniformly on B by a function
h ∈ O(S) satisfying the same conditions. In particular, |h| < 1/2 on bA ∩ B which
contains the relative boundary of the set B \ A in D. Since B \ A is a relative
neighborhood of p in D, Rossi’s local maximum modulus principle implies that p
does not belong to the O(D)-convex hull of A and the claim follows.

By Lemma 2.5 it suffices to consider the case when (A,B) is a very special
Cartan pair. Indeed, the cited lemma allows us to replace a special Cartan pair by
a finite sequence of very special Cartan pairs, so we obtain a map f̃ satisfying the
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conclusion of Lemma 3.1 by a finite number of applications of the same lemma
for a very special Cartan pair.

Hence we shall assume from now on that (A,B) is a very special Cartan pair.

Let W ⊂ S be a neighborhood of A as in conditions (c) and (d). Pick a smoothly
bounded strongly pseudoconvex Runge domain W0 � W such that A ⊂ W0. We
claim that f can be approximated as closely as desired uniformly on A by a proper
holomorphic immersion g : W0 → X such that g−1(L) ⊂ K̊ . To see this, pick
a strongly plurisubharmonic exhaustion function σ : X → R such that {σ < 0}
on L and σ > 0 on f (W0 \ K ); such σ exists because L is O(X)-convex and
f (W0 \ K ) ∩ L = ∅. Given ε > 0, we can apply [8, Theorem 1.1] in order
to approximate f uniformly on A by a proper holomorphic map g : W0 → X

satisfying σ(g(z)) > σ( f (z)) − ε for all z ∈ W0. Choosing ε > 0 small enough
ensures that g−1(L) ⊂ K̊ ; equivalently, g(W0 \ K ) ⊂ X \ L. Since n = 2d , the
general position argument shows that g can be chosen as an immersion with simple
double points. Replacing f by g, we may assume that f satisfies these conditions.

The image � = f (W0) ⊂ X is a closed immersed complex submanifold of X

with simple double points. By Lemma 2.1 it follows that a compact subsetM ⊂ W0

is O(W0)-convex if and only if its image f (M ) ⊂ X is O(X)-convex. By what has
been said above, the sets f (A), f (C), and f (K ∪ C) are O(X)-convex. By (3.1))
we also have that L ∩� ⊂ f (K ), and hence the sets L′ = L ∪ f (K ) and L′ ∪ f (C)
are O(X)-convex in view of [11, Lemma 6.5].

At this point we arrive at the main difference with respect to [2, proof of
Lemma 2.2]. In that lemma, the map f : W0 → X can be chosen an embedding
since n > 2d . In the present case, with n = 2d , it is an immersion with simple
double points. However, the attaching set C = A ∩B of the bump B can be chosen
as a thin slab of the convex set B (see Lemma 2.5 and Remark 2.6). A suitable
choice of C ensures that f is an embedding on a neighborhood of C. Indeed, most
slices of B (which are convex sets of real dimension 2d − 1) do not contain any of
the finitely many double points of f ; it then suffices to let C be a sufficiently thin
slab around such a slice and to adjust the sets A and B accordingly (see Remark
2.6).

We assume from now on that f (C) is embedded in X . Pick a compact set
P ⊂ X \ L′ containing f (C) in its interior such that L′ ∪ P is also O(X)-convex.

Choose small open convex neighborhoods U ⊂ V of the sets C and B , respec-
tively, such that U � V ∩ W0 and V � V0. (The notation V � V0 means that the
closure of V is compact and contained in V0.) We choose U small enough such
that f |U is an embedding (recall that f |C is an embedding). The normal bundle
of the immersion f : W0 → X is holomorphically trivial over the convex set U by
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the Oka–Grauert principle (see [13, Theorem 5.3.1, p. 213]). Let Dn−d denote the
unit polydisc in Cn−d . It follows that there are a neighborhood W1 ⊂ W0 of A, a
convex neighborhood U1 ⊂ U of C, and a holomorphic map F : W1 × Dn−d → X

such that F is injective on U1 × Dn−d (hence biholomorphic onto the open subset
F (U1 ×Dn−d ) of X) and F (z, 0) = f (z) holds for all z ∈ W1. By a further shrinking
of the neighborhood U1 ⊃ C and rescaling of the variable w ∈ Dn−d we may also
assume that the Stein domain

(3.3) � := F (U1 × Dn−d ) ⊂ P ⊂ X \ L′

is Runge in P̊ and its closure � is O(P)-convex. Since L′ ∪ P is O(X)-convex,
it follows that L′ ∪ � is also O(X)-convex. Hence there is a Stein neighborhood
�′ ⊂ X of L′ such that � ∩�′

= ∅ and the union �0 := � ∪�′ is a Stein Runge
domain in X .

Since the sets U1 ⊂ V are convex, we can find an isotopy rt : V → V of
injective holomorphic self-maps, depending smoothly on the parameter t ∈ [0, 1],
such that
(1) r0 is the identity map on V ,

(2) rt(U1) ⊂ U1 for all t ∈ [0, 1], and

(3) r1(V ) ⊂ U1.
In fact, in the coordinates on V0 provided by the coordinate map θ : V0 → Ṽ0 ⊂ Cd

we can choose rt to be a family of linear contractions towards a point in U1.
Consider the isotopy of biholomorphic maps φt : V ×Dn−d → V ×Dn−d defined

by

(3.4) φt(z, w) = (rt(z), w), z ∈ V, w ∈ Dn−d , t ∈ [0, 1].

Since r1(V ) ⊂ U1 by the condition (3) above, we have that

(3.5) φ1(V × Dn−d ) ⊂ U1 × Dn−d .

Recall that � is given by (3.3) and �0 = � ∪�′. We define a smooth isotopy of
injective holomorphic maps ψt : �0 → X (t ∈ [0, 1]) by

(3.6) ψt = F ◦ φt ◦ F−1 on �; ψt = Id on �′.

The map ψt is defined on � since

rt(U1) ⊂ U1

(and hence φt(U1 × Dn−d ) ⊂ U1 × Dn−d ). Note that ψ0 is the identity on �0 and
the domain ψt(�0) is Runge in X for all t ∈ [0, 1].
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If we assume that X enjoys the density property, then the Andersén–Lempert–
Forstnerič–Rosay theorem [13, Theorem 4.10.5, p. 143] allows us to approximate
the map ψ1 : �0 → X uniformly on compacts in �0 by holomorphic automor-
phisms � ∈ Aut(X). Consider the injective holomorphic map

(3.7) G = �−1 ◦ F ◦ φ1 : V × Dn−d → X.

Note thatG is well-defined and injective on V×Dn−d in viewof (3.5) and becauseF
is injective on U1 × Dn−d . By (3.5) and (3.3) we have that

(F ◦ φ1)(V × Dn−d ) ∩ L′ ⊂ F (U1 × Dn−d ) ∩ L′ = � ∩ L′ = ∅.

Since ψ1 equals the identity map on �′ ⊃ L′ by (3.6), � can be chosen to
approximate the identity as closely as desired on a neighborhood of L′, so we may
assume that

G(V × Dn−d ) ⊂ X \ L′.

From (3.7) and the first equation in (3.6) we see that

G = �−1 ◦ F ◦ φ1 = �−1 ◦ψ1 ◦ F on U1 × Dn−d .

Since �−1 ◦ψ1 is close to the identity map on� = F (U1 ×Dn−d ), G is arbitrarily
close to F uniformly on compacts in U1×Dn−d . Hence we can apply [12, Theorem
4.1] (see also [13, Theorem 9.7.1, p. 432]) to glue F and G into a holomorphic
map F̃ : (A∪B)× 1

2D
n−d → X such that F̃ is close to F on A× 1

2D
n−d and to G on

B × 1
2D

n−d . The holomorphic map f̃ := F̃(· , 0) : A ∪ B = D → X then satisfies
the conclusion of Lemma 3.1, except that it need not be an immersion with simple
double points; this can be achieved by a small perturbation since 2d = n. If the
approximations are close enough, then f̃ (B)∩L = ∅ and f̃ −1(L) ⊂ K̊ , so condition
(3.2) holds.

This proves Lemma 3.1 in the case when X enjoys the density property. A
similar argument applies if X enjoys the volume density property with respect to
a holomorphic volume form; the details are the same as in [2, proof of Lemma
2.2]. �

Proof of Theorem 1.2. Theorem 1.2 follows from Lemma 3.1 in exactly
the same way as [2, Theorem 1.1] follows from [2, Lemma 2.2]; the proof goes
as follows. One distinguishes the noncritical case and the critical case. In the
noncritical case we have a pair of compact strongly pseudoconvex domains A ⊂ A′

in S, given by two sublevel sets of a strongly plurisubharmonic function without
critical points on A \ A′. We are also given a holomorphic immersion f : A → X
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on a neighborhood of A, a compact O(A)-convex set K ⊂ Å, and a compact O(X)-
convex set L ⊂ X such that f (A\K̊ ) ⊂ X \L (see (3.1)). We wish to approximate f
as closely as desired uniformly on A by a holomorphic immersion f̃ : A′ → X

satisfying f̃ (A′ \ K̊ ) ⊂ X \ L (see (3.2)). As explained in [2, Proposition 2.3], we
can obtain A′ from A by attaching finitely many special convex bumps of the type
used in Lemma 3.1 so that we have a special Cartan pair at every stage. (Note
that strongly pseudoconvex Cartan pairs, used in [2], are also special Cartan pairs
in the sense of Definition 2.4.) Hence, an immersion f̃ : A′ → X with the stated
properties is obtained by successively applying Lemma 3.1 finitely many times.
The critical case, which amounts to the change of topology at a critical point of
a strongly plurisubharmonic exhaustion function on X , is handled in exactly the
same way as in [2]. �
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