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Abstract Let M be an open Riemann surface. We prove that every meromorphic
function onM is the complexGaussmap of a conformal minimal immersionM → R

3

which may furthermore be chosen as the real part of a holomorphic null curve M →
C
3.Analogous results are proved for conformalminimal immersionsM → R

n for any
n > 3. We also show that every conformal minimal immersion M → R

n is isotopic
through conformalminimal immersionsM → R

n to a flat one, andwe identify the path
connected components of the space of all conformal minimal immersions M → R

n

for any n ≥ 3.
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1 Introduction

Let M be an open Riemann surface. The exterior differential on M splits as the sum
d = ∂+∂ of theC-linear part ∂ and theC-antilinear part ∂.Given a conformalminimal
immersion X = (X1, . . . , Xn) : M → R

n (n ≥ 3), the 1-form ∂X = (∂X1, . . . , ∂Xn)

with values in C
n is holomorphic, it does not vanish anywhere on M, and it satisfies

the nullity condition
∑n

j=1(∂X j )
2 = 0; we refer to Osserman [20] for these classical

facts. Therefore, ∂X determines the Kodaira-type holomorphic map

GX : M → CP
n−1, GX (p) = [∂X1(p) : · · · : ∂Xn(p)] (p ∈ M). (1.1)

ThemapGX is known as the generalized Gauss map of X and is of great importance in
the theory of minimal surfaces; see [20] and the papers [11,12,14,15,21–23], among
many others. Note that GX assumes values in the complex hyperquadric

Qn−2 =
{
[z1 : . . . : zn] ∈ CP

n−1 : z21 + · · · + z2n = 0
}

. (1.2)

In this paper we prove the following result.

Theorem 1.1 Let M be an open Riemann surface and n ≥ 3 be an integer. For every
holomorphic map G : M → Qn−2 ⊂ CP

n−1 into the quadric (1.2) there exists a
conformal minimal immersion X : M → R

n with the generalizedGaussmap GX = G
and with vanishing flux. If in addition the map G is full, then X can be chosen to have
arbitrary flux and to be an embedding if n ≥ 5 and an immersion with simple double
points if n = 4.

Recall that a map G : M → CP
n−1 is said to be full if its image is not contained in

any proper projective subspace. The flux of a conformal minimal immersion X : M →
R
n is the group homomorphism FluxX : H1(M; Z) → R

n given by

FluxX (γ ) =
∫

γ

�(∂X) = − i

∫

γ

∂X for every closed curve γ ⊂ M. (1.3)

Here, i = √−1 and �, � denote the real and the imaginary part, respectively.
We shall write Cn∗ = C

n \ {0} and C∗ = C \ {0}. Denote by π : Cn∗ → CP
n−1 the

canonical projection π(z1, . . . , zn) = [z1 : · · · : zn]. Then, Qn−2 = π(A∗) where

A =
⎧
⎨

⎩
(z1, . . . , zn) ∈ C

n :
n∑

j=1

z2j = 0

⎫
⎬

⎭
(1.4)

is the null quadric and A∗ = A \ {0}. Fixing a nowhere vanishing holomorphic
1-form θ on M (such exists by the Oka–Grauert principle), the holomorphic map
∂X/θ : M → C

n assumes values in A∗ and we have that GX = π ◦ (∂X/θ).

Since an open Riemann surface M is homotopy equivalent to a wedge of cir-
cles, every holomorphic map G : M → CP

n−1 lifts to a holomorphic map f =
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Every Meromorphic Function is the Gauss Map… 3013

( f1, . . . , fn) : M → C
n∗ such that G = π ◦ f = [ f1 : · · · : fn] (see Lemma5.1). If

G (M) ⊂ Qn−2, then f (M) ⊂ A∗. Clearly, G is full if and only if span( f (M)) = C
n .

The main idea behind the proof of Theorem 1.1 is to find a nowhere vanishing holo-
morphic function h : M → C∗ such that the 1-form Φ = h f θ with values in C

n

integrates to a conformal minimal immersion X : M → R
n with ∂X = Φ; hence

GX = G . This is the case if and only if the real periods of Φ vanish:

∫

γ

�(Φ) = 0 for all closed curves γ inM . (1.5)

If this holds then, fixing a base point p0 ∈ M, X is obtained by the formula

X (p) = 2
∫ p

p0
�(Φ) for all p ∈ M. (1.6)

If M is simply connected, then (1.5) holds for any holomorphic function h on M, and
hence in this case the first part of Theorem1.1 is obvious. However, if M is topologi-
cally nontrivial, then the task becomes a fairly involved one; a suitable multiplier h is
provided by Theorem1.5 which is the main technical result of the paper.

In the case n = 3, the quadric Q1 ⊂ CP
2 (1.2) is the image of a quadratically

embedded Riemann sphereCP1 ↪→ CP
2, and the complex Gauss map of a conformal

minimal immersion X = (X1, X2, X3) : M → R
3 is defined to be the holomorphic

map

gX = ∂X3

∂X1 − i ∂X2
= ∂X2 − i ∂X1

i ∂X3
: M −→ CP

1. (1.7)

The function gX equals the stereographic projection of the real Gauss map N =
(N1, N2, N3) : M → S

2 ⊂ R
3 to the Riemann sphere CP1; explicitly,

gX = N1 + iN2

1 − N3
: M −→ C ∪ {∞} = CP

1.

We can recover the differential ∂X = (∂X1, ∂X2, ∂X3) from the pair (gX , φ3) with
φ3 = ∂X3 by the classical Weierstrass formula

∂X = Φ = (φ1, φ2, φ3) =
(
1

2

(
1

gX
− gX

)

,
i

2

(
1

gX
+ gX

)

, 1

)

φ3. (1.8)

(See [20, Lemma 8.1, p. 63].) Conversely, given a pair (g, φ3) consisting of a holo-
morphic map g : M → CP

1 and a meromorphic 1-form φ3 on M, the meromorphic
1-form Φ = (φ1, φ2, φ3) defined by (1.8) satisfies

∑3
j=1 φ2

j = 0; it is the differ-
ential ∂X of a conformal minimal immersion (1.6) if and only if it is holomorphic,
nowhere vanishing, and its real periods vanish. Hence, Theorem1.1 has the following
immediate corollary.
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3014 A. Alarcón et al.

Corollary 1.2 Let M be an open Riemann surface. Every holomorphic map g : M →
CP

1 is the complex Gauss map (1.7) of a conformal minimal immersion X : M → R
3

with vanishing flux. If g is nonconstant, then we can find X with arbitrary given flux.

Note that a nonconstant map g : M → CP
1 ∼= Q1 ⊂ CP

2 is full as a map into
CP

2.

The complex Gauss map of a minimal surface in R
3 provides crucial information

about its geometry. Several important properties of the surface dependonly on itsGauss
map, in particular, the Gauss curvature and the Jacobi operator (see, e.g., [17–20]).
Thus, Corollary1.2 has applications to the theory of stable minimal surfaces. Recall
that an immersed open minimal surface S ⊂ R

3 is stable if any relatively compact
smoothly bounded domain D ⊂ S has the minimal area (in the induced metric) among
all small variations of D which keep the boundary bD fixed; equivalently, if the index
of any such D is zero. Let X : M → R

3 be a conformal minimal immersion and let
gX denote its complex Gauss map (1.7). It is classical (see Barbosa and do Carmo
[5, Theorem 1.2]) that the minimal surface X (M) is stable if the spherical image
gX (M) ⊂ CP

1 of X (M) has area less than 2π. This holds for example if gX (M)

lies in the unit disk D ⊂ C. Recall that every open Riemann surface M carries a
holomorphic function h with no critical points (see Gunning and Narasimhan [13]).
For any null vector ν ∈ A2∗, the map M � x �→ �(h(x)ν) ∈ R

3 is a flat conformal
minimal immersion with constant Gauss map, hence stable. In view of Barbosa and
do Carmo [5], Corollary1.2 gives the following more general result in this direction.

Corollary 1.3 If M is an open Riemann surface and g : M → CP
1 is a holomorphic

mapwhose image g(M) has area less than 2π, then there is a stable conformalminimal
immersion M → R

3 with the complex Gauss map g.

We also prove the following result concerning isotopies (i.e., smooth 1-parameter
families) of conformal minimal immersions into R

3.

Theorem 1.4 Given an openRiemann surface M and a conformalminimal immersion
X : M → R

3, there exists an isotopy Xt : M → R
3 (t ∈ [0, 1]) of conformal minimal

immersions such that X0 = X and the complexGaussmap g of X1 (1.7) is nonconstant
and avoids any two given points of the Riemann sphere. There also exists an isotopy
Xt as above such that X0 = X and X1 is flat.

Theorem1.4 shows in particular that every conformalminimal immersionM → R
3

of an open Riemann surface can be deformed to a stable one.
In Sect. 7 we prove a more precise result to the effect that for any n ≥ 3 the path

connected components of the space of all conformal minimal immersions M → R
n

are in bijective correspondence with the path connected components of the space of all
nonflat conformal minimal immersions M → R

n; see Theorem7.1. There is only one
connected component when n > 3, but the situation is more complicated in dimension
n = 3.

The results presented above are proved in Sect. 5 using complex analytic methods.
We now explain the main underlying technical result.

LetM be an openRiemann surface and let n ∈ N.Aholomorphicmap f : M → C
n

is said to be full if the image f (M) does not lie in any affine hyperplane of Cn . A
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holomorphic 1-form 
 = (φ1, . . . , φn) on M with values in Cn is said to be full if the
map Φ/θ : M → C

n is full, where θ is a holomorphic 1-form vanishing nowhere on
M; clearly the definition is independent of the choice of θ.

The following is the main technical result of this paper; it is proved in Sect. 4.

Theorem 1.5 Let M be an open Riemann surface and let n ∈ N be an integer. Let
Φt = (φt,1, . . . , φt,n), t ∈ [0, 1], be a continuous family of full holomorphic 1-forms
on M with values in C

n, and let qt : H1(M; Z) → C
n, t ∈ [0, 1], be a continuous

family of group homomorphisms. Then there exists a continuous family of holomorphic
functions ht : M → C∗, t ∈ [0, 1], such that

∫

γ

ht Φt = qt (γ ) for every closed curve γ ⊂ M and t ∈ [0, 1]. (1.9)

Furthermore, if the condition (1.9) holds at t = 0 with the constant function h0 = 1,
then the homotopy ht : M → C∗ can be chosen with h0 = 1.

Flux-vanishing conformalminimal surfaces inR3 admit an elementary deformation
through the family of associated surfaces which share the same complex Gauss map.
On the other hand, conformal minimal surfaces with vertical flux admit the López-
Ros deformation (see [16]) which homothetically deforms the complex Gauss map
while preserving the third component. Recently, the first two named authors proved
that every conformal minimal immersion M → R

3 is isotopic to the real part of a
holomorphic null curve M → C

3 (see [1, Theorem 1.1]). Theorem1.5 allows one
to lift isotopies of full holomorphic maps Gt : M → Qn−2 ⊂ CP

n−1 (t ∈ [0, 1]) to
isotopies of conformal minimal immersions Xt : M → R

n with the generalized Gauss
maps Gt and prescribed flux maps pt : H1(M; Z) → R

n . In particular, we obtain the
following stronger form of [1, Theorem 1.1] in which the generalized Gauss map is
preserved.

Corollary 1.6 Let M be an open Riemann surface and let n ≥ 3 be an integer. Every
conformal minimal immersion X : M → R

n is isotopic through conformal minimal
immersions Xt : M → R

n (t ∈ [0, 1]) to the real part X1 = �Z of a holomorphic
null curve Z : M → C

n such that all maps Xt in the family have the same generalized
Gauss map GX : M → CP

n−1. Furthermore, if the generalized Gauss map GX of X
is full, then there is an isotopy Xt as above such that X0 = X and X1 has any given
flux.

It has been proved very recently in [9] that the inclusion of the space of real
parts of all nonflat holomorphic null curves M → C

n into the space of all nonflat
conformal minimal immersions M → R

n satisfies the parametric h-principle with
approximation; in particular, it is a weak homotopy equivalence, and a strong homo-
topy equivalence if the homology group H1(M; Z) is finitely generated. (Both spaces
carry the compact-open topology.) However, the constructions in the papers [1,9] do
not preserve the Gauss map, so this particular aspect of Corollary 1.6 is new.

In the proof of Theorem1.5 we exploit the fact thatC∗ = C\ {0} and the punctured
null quadric A∗ (1.4) are Oka manifolds. (See the survey [10] for an introduction
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3016 A. Alarcón et al.

to Oka theory and the monograph [8] for a comprehensive treatment.) Furthermore,
in order to achieve the correct periods of the 1-forms htΦt [see (1.9)], we apply a
technique similar to Gromov’s convex integration lemma (compare to [9, Sect. 3] and
the references therein), but using the C-linear span instead of the convex hull.

1.1 Organization of the Paper

In Sects. 2 and 3 we prove the technical lemmas which are used to obtain the suitable
family ofmultipliers ht in Theorem1.5. In Sect. 4 we prove Theorem1.5, and in Sect. 5
we show how it implies Theorems1.1, 1.4 and Corollary1.6. In Sect. 6 we prove that,
for a compact bordered Riemann surface M, the space of all conformal minimal
immersions M → R

n with prescribed generalized Gauss map and flux carries the
structure of a real analytic Banach manifold (see Theorem6.1). Finally, in Sect. 7
we identify the path components of the space of all conformal minimal immersions
M → R

n for any n ≥ 3 (see Theorem7.1).

1.2 Notation

We shall use the notation C∗ = C \ {0}, Cn∗ = C
n \ {0} (n ≥ 2), C0 = {0}, i =√−1, Z+ = {0, 1, 2, . . .}, N = {1, 2, . . .}, and R+ = [0, +∞).

If M is an open Riemann surface and A ⊂ M is a subset, we denote by O(A) the
space of functions A → Cwhich are holomorphic on an open neighborhood (depend-
ing of the function) of A in M. Similarly, by a holomorphic 1-form on A we mean the
restriction to A of a holomorphic 1-form on an unspecified open neighborhood of A
in M.

If A is a compact smoothly bounded domain inM and r ∈ Z+,wedenote byA r (A)

the space of C r functions A → C which are holomorphic in the interior Å = A \ bA.

Similarly, we define the spacesO(A, Z) andA r (A, Z) ofmaps A → Z to a complex
manifold Z . For simplicity we write A (A) = A 0(A) and A (A, Z) = A 0(A, Z).

2 Multiplier Functions on Families of Paths

In this section we prove a couple of technical lemmas which allow us to construct
families of multipliers ht (1.9) in Theorem1.5. We first explain how to construct such
multipliers on the interval I = [0, 1] ⊂ R; in the following section we use these
results in the geometric setting which arises in the proof of Theorem1.5. The main
result of this section is Lemma2.3whose proof proceeds in two steps: firstwe construct
multipliers which give approximately correct values, and then we use Lemma2.1 to
correct the error.

Recall that a path f : I = [0, 1] → C
n is said to be full if the C-linear span of its

image equals Cn . The path is nowhere flat if for any proper affine subspace Σ ⊂ C
n

the set {s ∈ I : f (s) ∈ Σ} is nowhere dense in I. Note that a real analytic path which
is full is also nowhere flat; the converse holds for any continuous path.
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For n ∈ N consider the period map P : C (I, Cn) → C
n defined by

P( f ) =
∫ 1

0
f (s) ds ∈ C

n, f ∈ C
(
I, Cn) .

Webeginwith the following existence result forperiod dominatingmultiplier functions
for families of paths [0, 1] → C

n .

Lemma 2.1 Let I ′ be a nontrivial closed subinterval of I = [0, 1], let Q be a compact
Hausdorff space, and let n ∈ N. Given a continuous map f : Q × I → C

n such that
f (q, ·) is full on I ′ for every q ∈ Q, there exist finitely many continuous functions
g1, . . . , gN : I → C (N ≥ n), supported on I ′, such that the function h : CN × I → C

given by

h(ζ, s) :=
N∏

i=1

(1 + ζi gi (s)) , ζ = (ζ1, . . . , ζN ) ∈ C
N , s ∈ I,

is a period dominating multiplier of f, meaning that the map

∂

∂ζ
P (h(ζ, ·) f (q, ·)) ∣

∣
ζ=0 : T0CN ∼= C

N → C
n is surjective for every q ∈ Q.

(2.1)

Remark 2.2 Note that (2.1) is an open condition which remains valid with the same
function h if we replace f by any f ′ ∈ C (Q × I, Cn) sufficiently close to f.

Proof Let N ≥ n be an integer and, for each i ∈ {1, . . . , N }, let gi : I → C be a
continuous function supported on I ′; both the number N and the functions gi will be
specified later. Let ζ = (ζ1, . . . , ζN ) be holomorphic coordinates on C

N . Set

h(ζ, s) :=
N∏

i=1

(1 + ζi gi (s)) , (ζ, s) ∈ C
N × I, (2.2)

and observe that

∂h(ζ, s)

∂ζi

∣
∣
∣
∣
ζ=0

= gi (s), s ∈ I, i ∈ {1, . . . , N }. (2.3)

Let P̃ : Q × C
N → C

n be the map given by

P̃(q, ζ ) = P (h(ζ, ·) f (q, ·)) =
∫ 1

0
h(ζ, s) f (q, s) ds, (q, ζ ) ∈ Q × C

N .
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3018 A. Alarcón et al.

By (2.3) we have

∂P̃(q, ζ )

∂ζi

∣
∣
∣
∣
∣
ζ=0

=
∫ 1

0

∂h(ζ, s)

∂ζi

∣
∣
∣
∣
ζ=0

f (q, s) ds =
∫ 1

0
gi (s) f (q, s) ds. (2.4)

We now explain how to choose the functions g1, . . . , gN . Since f (q, ·) is full on I ′
for every q ∈ Q, compactness of Q and continuity of f ensure that there are distinct
points s1, . . . , sN ∈ I̊ ′ for a big N such that

span { f (q, s1) , . . . , f (q, sN )} = C
n for all q ∈ Q. (2.5)

Let ε > 0 be small enough such that the intervals [si − ε, si + ε] (i = 1, . . . , N )

are pairwise disjoint and contained in I ′; the precise value of ε will be specified later.
Let gi : I → C be any continuous function supported on (si − ε, si + ε) ⊂ I ′ and
satisfying

∫ 1

0
gi (s) ds =

∫ si+ε

si−ε

gi (s) ds = 1. (2.6)

To conclude the proof, it remains to show that the derivative

∂

∂ζ
P (h(ζ, ·) f (q, ·)) ∣

∣
ζ=0 : T0CN ∼= C

N → C
n

is surjective for every q ∈ Q. SinceP(h(ζ, ·) f (q, ·)) = P̃(q, ζ ), it suffices to prove
that

∂

∂ζ
P̃(q, ζ )

∣
∣
ζ=0 : T0CN ∼= C

N → C
n is surjective for every q ∈ Q.

Indeed, for small ε > 0 we have in view of (2.4) and (2.6) that

∂P̃(q, ζ )

∂ζi

∣
∣
∣
∣
∣
ζ=0

=
∫ 1

0
gi (s) f (q, s) ds ≈ f (q, si ) for all q ∈ Q and i ∈{1, . . . , N }.

Therefore, if ε > 0 is chosen small enough, condition (2.5) guarantees that

span

{
∂P̃(q, ζ )

∂ζ1

∣
∣
∣
ζ=0

, . . . ,
∂P̃(q, ζ )

∂ζN

∣
∣
∣
ζ=0

}

= C
n for all q ∈ Q.

This concludes the proof of Lemma2.1. ��
We now show the existence of multiplier functions for families of paths which

enable us to prescribe the periods. Recall that I = [0, 1].
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Lemma 2.3 Let f : I 2 = I × I → C
n and α : I → C

n be continuous maps. Assume
that the path ft := f (t, ·) : I → C

n is nowhere flat for every t ∈ I. Then there exists
a continuous function h : I 2 → C∗ such that h(t, s) = 1 for t ∈ I and s ∈ {0, 1}
and

∫ 1

0
h(t, s) f (t, s) ds = α(t), t ∈ [0, 1]. (2.7)

If in addition we have that
∫ 1
0 f (0, s) ds = α(0), then h can be chosen such that

h(0, s) = 1 for s ∈ [0, 1].
Proof It suffices to prove that for any ε > 0 there exists a function h : I 2 → C∗ such
that

∣
∣
∣
∣

∫ 1

0
h(t, s) f (t, s) ds − α(t)

∣
∣
∣
∣ < ε, t ∈ [0, 1]. (2.8)

The exact result (2.7) can then be obtained by writing the parameter interval for the
s-variable as a union I = I1 ∪ I2, where I1 and I2 are nontrivial subintervals with a
common endpoint (for example, I1 = [0, 1/2] and I2 = [1/2, 1]) and applying the
approximate result (2.8) with a sufficiently small ε > 0 on I1 and a period dominating
argument on I2 (see Lemma2.1) in order to correct the error.

Since ft is nowhere flat and hence full for each fixed t ∈ [0, 1], there is a division
0 = s0 < s1 < · · · < sN = 1 of I such that

span { ft (s1) , . . . , ft (sN )} = C
n .

The same condition then holds for each t ′ ∈ I sufficiently close to t. By adding more
division points and using compactness of I , we obtain a division satisfying the above
condition for all t ∈ I. Set

Vj (t) =
∫ s j

s j−1

ft (s) ds, j = 1, . . . , N .

Note that Vj (t) is close to ft (s j )(s j − s j−1) if the segments are short. By passing to
a finer division if necessary, we may therefore assume that

span {V1(t), . . . , VN (t)} = C
n, t ∈ I.

For each t ∈ I we let Σt ⊂ C
N denote the affine complex hyperplane defined by

Σt =
⎧
⎨

⎩
(g1, . . . , gN ) ∈ C

N :
N∑

j=1

g j Vj (t) = α(t)

⎫
⎬

⎭
.

Clearly, there exists a continuous map g = (g1, . . . , gN ) : I → C
N such that g(t) ∈

Σt for every t ∈ I. (We may view g as a section of the affine bundle over I whose
fiber over the point t equals Σt .) This can be written as follows:
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N∑

j=1

∫ s j

s j−1

g j (t) ft (s) ds = α(t), t ∈ I.

Note that
∑N

j=1 Vj (t) = ∫ 1
0 ft (s) ds. Hence, if

∫ 1
0 f (0, s) ds = α(0), then g can be

chosen such that g(0) = (1, . . . , 1) ∈ C
N . We assume in the sequel that this holds

since the proof is even simpler otherwise.
By a small perturbation we may assume that g j (t) ∈ C∗ for every t ∈ I and

j = 1, . . . , N . (At this point we need that the parameter space I is one dimensional.)
This changes the exact condition in the above display to the approximate condition

∣
∣
∣
∣
∣
∣

N∑

j=1

∫ s j

s j−1

g j (t) ft (s) ds − α(t)

∣
∣
∣
∣
∣
∣
<

ε

2
, t ∈ I. (2.9)

We shall now view the vector g(t) = (g j (t)) j ∈ C
N for every fixed t ∈ I as a

step function of the variable s ∈ I which equals the constant g j (t) on the j-segment
s ∈ [s j−1, s j ] for every j = 1, . . . , N . Next, we approximate this step function by
a continuous function ht = h(t, ·) : I → C∗ which agrees with the step function,
except near the division points s0, s1, . . . , sN where we modify it in order to make it
continuous and to assume the value 1 at the endpoints 0, 1 of I. Replacing the step
function in (2.9) by this new function h(t, s)will cause an error of size< ε/2 provided
themodification is supported on sufficiently short segments around the division points.
This will yield the estimate (2.8).

We now explain the details. Let C > 1 be chosen such that

max
(t, s)∈I 2

| f (t, s)| ≤ C, max
t∈I, j=1,...,N

∣
∣g j (t)

∣
∣ ≤ C.

Due to simple connectivity of I , we can find for every j = 1, . . . , N a homotopy of
maps g j,τ : I → C∗ (0 ≤ τ ≤ 1) such that the following conditions hold:

• g j,0(t) = 1 for all t ∈ I,
• g j,1(t) = g j (t) for all t ∈ I,
• g j,τ (0) = 1 for all τ ∈ [0, 1] (the homotopy is fixed at t = 0), and
• |g j,τ (t)| ≤ C for all t ∈ I and τ ∈ [0, 1].

This holds for example if g j,τ (t) = g j (τ t).
Pick a number η > 0 such that

4C(C + 1)Nη < ε. (2.10)

For each t ∈ I and j = 1, . . . , N we define the function h(t, ·) : [s j−1, s j ] → C∗ as
follows:

h(t, s) =
⎧
⎨

⎩

g j,(s−s j−1)/η(t), s ∈ [s j−1, s j−1 + η];
g j (t), s ∈ [s j−1 + η, s j − η];
g j,(s j−s)/η(t), s ∈ [s j − η, s j ].
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This means that h(t, ·) spends most of its time (the middle segment [s j−1+η, s j −η])
at the point g j (t), and it travels between the point 1 ∈ C∗ (where it is at the endpoints
s = s j−1 and s = s j ) and the point g j (t) along the trace of the path τ �→ g j,τ (t) ∈ C∗.
This defines a continuous function h : I 2 → C∗ satisfying

|h(t, s)| ≤ C for all (t, s) ∈ I 2.

It follows easily from (2.9), (2.10), the definition of h and the last estimate that h
satisfies the condition (2.8). This completes the proof. ��

3 Period Dominating Families of Multipliers on Admissible Sets

The main result of this section is Lemma3.2 which provides small deformations of
families of multipliers that make small but arbitrary changes in their integrals. This
replaces Lemma2.1 (which pertains tomultipliers on the interval [0, 1]) in the geomet-
ric setting that arises in proving the inductive step in Theorem1.5. The proof of Lemma
3.2 uses the construction from Lemma2.1 together with theMergelyan approximation
theorem on admissible sets in a Riemann surface; see Definition 3.1. In the proof of
Theorem1.5 we shall combine Lemmas2.3 and 3.2.

We begin with some preparations.

Definition 3.1 A nonempty compact subset S of an open Riemann surface M is said
admissible if it is Runge in M and of the form S = K ∪ Γ, where K is the union
of finitely many pairwise disjoint smoothly bounded compact domains in M and
Γ := S \ K is a finite union of pairwise disjoint smooth Jordan arcs meeting K only
at their endpoints (or not at all) and such that their intersections with the boundary bK
of K are transverse.

Let S = K ∪ Γ be an admissible subset of an open Riemann surface M. Given a
complex submanifold Z of Cn, we denote by

A (S, Z) (3.1)

the set of all continuous maps S → Z which are holomorphic on S̊ = K̊ .
Given a basis B = {C1, . . . ,Cl} of the homology group H1(S; Z), a holomorphic

1-form θ vanishing nowhere on M, and a function f ∈ A (S, Cn) for some n ∈ N,

we define the period map associated to (B, f, θ) as the map

P f =
(
P f
1 , . . . ,P f

l

)
: A (S) → (

C
n)l (3.2)

given by

P f
j (h) =

∫

C j

h f θ ∈ C
n, h ∈ A (S), j = 1, . . . , l. (3.3)
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It is clear that P f
j (h) lies in span( f (S)) and it only depends on the homology class

of C j for j = 1, . . . , l. If S is connected but not simply connected, then it is easily
seen that there is a collection C1, . . . ,Cl of smooth Jordan curves in S̊ ∪ Γ forming a
homology basis B of S such that the support |B| = ⋃l

j=1 C j of B is a Runge subset

of M and each curve C j contains a nontrivial arc C̃ j which is disjoint from Ck for all
k �= j.

Given a compact Hausdorff space Q, we let A (Q × S, Z) denote the space of
continuous maps f : Q × S → Z such that f (q, ·) ∈ A (S, Z) for all q ∈ Q.

Lemma 3.2 Let S = K ∪ Γ be a connected admissible subset of an open Riemann
surface M, and denote by l ∈ Z+ the dimension of the first homology group H1(S; Z).

Also, let θ be a nowhere vanishing holomorphic 1-form on M, and let Q be a compact
Hausdorff space. Assume that f : Q × S → C

n is a map of class A (Q × S) such
that f (q, ·) is full on K and nowhere flat on Γ for all q ∈ Q. There exist finitely
many holomorphic functions g1, . . . , gN ∈ O(M) (N ≥ nl) such that the function
� : CN × M → C given by

�(ζ, p) =
N∏

i=1

(1 + ζi gi (p)) , ζ = (ζ1, . . . , ζN ) ∈ C
N , p ∈ M,

is a period dominating multiplier of f, meaning that for every q ∈ Q the map

C
N � ζ �−→ P f,q (�(ζ, ·)) ∈ (

C
n)l (3.4)

has maximal rank equal to ln at ζ = 0. [Here, P f,q is the period map associated to
a fixed basis B of H1(S; Z), the map f (q, ·), and the 1-form θ; see (3.2), (3.3).]
Proof If S is simply connected then l = 0 and hence (Cn)l = {0}. In this case the
integer N = 1 and the function g1 ≡ 0 (hence � ≡ 1) satisfy the conclusion of the
lemma.

Assume now that S is not simply connected and so l > 0. Choose a collection
C1, . . . ,Cl of smooth Jordan curves in S̊ ∪ Γ forming a Runge homology basis B of
S such that each curve C j contains a nontrivial arc C̃ j which is disjoint from Ck for
all k �= j. For each j = 1, . . . , l we fix a parameterization γ j : [0, 1] → C j with
C̃ j ⊂ γ j ((0, 1)).The assumptions on f imply that themap f (q, ·)◦γ j : [0, 1] → C

n

is nowhere flat for everyq ∈ Q and j ∈ {1, . . . , l}.Denote by |B| = ⋃l
j=1 C j ⊂ S̊∪Γ

the support of B. For each q ∈ Q we denote byP f,q = (P f,q
1 , . . . ,P f,q

l ) : C (|B|) →
(Cn)l the map whose j th component is given by

P f,q
j (g) =

∫

C j

g f (q, ·)θ =
∫ 1

0
g

(
γ j (s)

)
f
(
q, γ j (s)

)
θ

(
γ j (s), γ̇ j (s)

)
ds, g ∈ C (C j ).

For each j ∈ {1, . . . , l}, Lemma 2.1 furnishes an integer N j ≥ n and continuous
functions g j,k : C j → C (k = 1, . . . , N j ) supported on C̃ j such that the function
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h j
(
ζ j , p

) =
N j∏

k=1

(
1 + ζ j,kg j,k(p)

)
, ζ j = (

ζ j,1, . . . , ζ j,N j

) ∈ C
N j , p ∈ C j ,

satisfies

∂

∂ζ j
P f,q

j

(
h j

(
ζ j , ·)) ∣

∣
ζ j=0 : T0CN j ∼= C

N j → C
n is surjective for every q ∈ Q.

(3.5)

We extend each function g j,k by 0 to |B| \ C j , approximate g j,k : |B| → C by a
holomorphic function g̃ j,k ∈ O(M), and set

�(ζ, p) =
l∏

j=1

N j∏

k=1

(
1 + ζ j,k g̃ j,k(p)

)
,

ζ = (ζ1, . . . , ζl) ∈ C
N1 × · · · × C

Nl , p ∈ M.

Set N = ∑l
j=1 N j ≥ nl and identify C

N = C
N1 × · · · × C

Nl . If the approximation
of g j,k by g̃ j,k is close enough for each ( j, k), then (3.5) ensures that

∂

∂ζ
P f,q

j (�(ζ, ·)) ∣
∣
ζ=0 : T0CN ∼= C

N → (
C
n)l is surjective for every q ∈ Q.

This concludes the proof of Lemma3.2. ��

4 Proof of Theorem 1.5

In this section we prove Theorem1.5 as a consequence of the following approximation
result for multiplier functions. Recall that I = [0, 1].
Theorem 4.1 Assume that S = K ∪ Γ is an admissible subset of a connected open
Riemann surface M (seeDefinition3.1), θ is a nowhere vanishing holomorphic 1-form
on M, and n ∈ N is an integer. Let ft : M → C

n (t ∈ I ) be a continuous family of
full holomorphic maps and qt : H1(M; Z) → C

n be a continuous family of group
homomorphisms. Then, every continuous family of functions ϕt : S → C∗ (t ∈ I ) of
class A (S) such that

∫

γ

ϕt ftθ = qt (γ ) for every closed curve γ ⊂ S and t ∈ I

may be approximated uniformly on I × S by continuous families of holomorphic
functions ϕ̃t : M → C∗ such that

∫

γ

ϕ̃t ftθ = qt (γ ) for every closed curve γ ⊂ M and t ∈ I .
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Furthermore, if ϕ0 extends to a holomorphic function M → C∗ such that
∫
γ

ϕ0 f0θ =
q0(γ ) for all closed curves γ ⊂ M, then the homotopy ϕ̃t can be chosen with ϕ̃0 = ϕ0.

The proof of Theorem4.1 consists of an inductive procedure; the following two
lemmas provide the inductive step of the construction.

Lemma 4.2 (The noncritical case) Let M, S = K ∪ Γ ⊂ M, θ, n, and ft (t ∈ I =
[0, 1])beas inTheorem4.1. Also let L bea compact, smoothly bounded,Rungedomain
in M such that S ⊂ L̊ and S is a deformation retract of L . Then, every continuous
family of functions ϕt : S → C∗ (t ∈ I ) of classA (S)may be approximated uniformly
on I × S by continuous families of functions ϕ̃t : L → C∗ (t ∈ I ) of classA (L) such
that (ϕ̃t −ϕt ) ftθ is exact on S for all t ∈ I. Furthermore, if ϕ0 is of classA (L), then
the homotopy ϕ̃t can be chosen with ϕ̃0 = ϕ0.

Proof We may assume without loss of generality that S is connected, hence so is L;
otherwise we apply the same argument to each connected component. Let l ∈ Z+
denote the dimension of H1(S; Z).

Let f : I × M → C
n and ϕ : I × S → C∗ be the continuous maps defined by

f (t, ·) = ft and ϕ(t, ·) = ϕt for all t ∈ I. The assumptions on ft and ϕt ensure that
ϕt ft ∈ A (S) is full and nowhere flat on Γ for all t ∈ I. Thus, Lemma3.2 furnishes
holomorphic functions g1, . . . , gN : M → C such that the function� : CN ×M → C

given by

�(ζ, p) =
N∏

i=1

(1 + ζi gi (p)) , ζ = (ζ1, . . . , ζN ) ∈ C
N , p ∈ M

is a period dominating multiplier of ϕ f, in the sense that the period map

C
N � ζ �→ Pϕ f,t (�(ζ, ·)) ∈ (

C
n)l (4.1)

has maximal rank equal to ln at ζ = 0 for every t ∈ I. [Here, Pϕ f,t is the period map
associated to a basis B of H1(S; Z), the map ϕt ft , and the 1-form θ; see (3.2) and
(3.3).] In particular, since

�(0, ·) ≡ 1, (4.2)

the implicit function theorem guarantees that the range of the period map (4.1)
restricted to any ball W around the origin in C

N contains an open neighborhood
of

Pϕ f,t (�(0, t)) = Pϕ f,t (1) ∈ (
C
n)l , t ∈ I. (4.3)

Let W be a small such ball satisfying �(ζ, p) �= 0 for all ζ ∈ W and p ∈ L; such
exists by (4.2) and compactness of L .

By the parametric version ofMergelyan’s theorem,we can approximateϕ uniformly
on I ×S by functions φ : I ×L → C∗ of classA (I ×L); recall that S is a deformation
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retract of L and C∗ is an Oka manifold. Set φt = φ(t, ·) for all t ∈ I. Furthermore,
if ϕ0 is of class A (L), then the homotopy φt (t ∈ I ) can be chosen with φ0 = ϕ0.

Thus, if the approximation of ϕ by φ is close enough the implicit function theorem
furnishes a continuous path β : I → W such that

Pφ f,t (�(β(t), ·)) = Pϕ f,t (1) for every t ∈ I.

If furthermore ϕ0 is of class A (L) and φ0 = ϕ0, then the path β can be chosen such
that β(0) = 0 ∈ W ⊂ C

N . It follows that the homotopy

ϕ̃t := �(β(t), ·)φt : L → C∗, t ∈ I,

satisfies the conclusion of the lemma provided that W is chosen small enough and the
approximation of ϕ by φ is made sufficiently close. ��
Lemma 4.3 (The critical case) Let M, θ, n, and ft (t ∈ I = [0, 1]) be as in The-
orem4.1. Let ρ : M → R+ = [0, +∞) be a smooth strongly subharmonic Morse
exhaustion function and pick numbers 0 < a < b ∈ R which are not critical values of
ρ and such that ρ has exactly one critical point p in L \ K̊ , where K = {ρ ≤ a} and
L = {ρ ≤ b}. Also let ϕt : K → C∗ and qt : H1(L; Z) → C

n (t ∈ I ) be continuous
families of functions and group homomorphisms such that, for each t ∈ I, ϕt is of
class A (K ) and qt (γ ) = ∫

γ
ϕt ftθ holds for all closed curves γ ⊂ K . Then the fam-

ily ϕt may be approximated uniformly on I × K by continuous families of functions
ϕ̃t : L → C∗ (t ∈ I ) of class A (L) such that

∫

γ

ϕ̃t ftθ = qt (γ ) for every closed curve γ ⊂ L and t ∈ I .

Furthermore, if ϕ0 is of class A (L) and q0(γ ) = ∫
γ

ϕ0 f0θ for every closed curve
γ ⊂ L , then the homotopy ϕ̃t : L → C∗ (t ∈ I ) can be chosen such that ϕ̃0 = ϕ0.

Proof By our assumptions, p ∈ L̊ \ K and the Morse index of ρ at p is either 0 or 1.
Case 1 the Morse index of ρ at p equals 0. In this case a new connected component
of the sublevel set {ρ ≤ s} appears when s passes the value ρ(p), and this gives
a new connected and simply connected component D of L . Since K is a strong
deformation retract of L \ D, Lemma4.2 provides a continuous family of functions
ϕ̃t : L \ D → C∗ (t ∈ I ) of class A (L \ D) which approximates the family ϕt as
closely as desired uniformly on I × K and such that (ϕ̃t − ϕt ) ftθ is exact on K for
every t ∈ I. Furthermore, if ϕ0 is of classA (L), then the homotopy ϕ̃t : L \ D → C∗
can be chosen with ϕ̃0 = ϕ0. Finally, define ϕ̃t (t ∈ I ) on D as any continuous family
of maps of classA (D, C∗); if ϕ0 is of classA (L), we can choose ϕ̃t = ϕ0 on D for
all t ∈ I. This concludes the proof in Case 1.
Case 2 the Morse index of ρ at p equals 1. In this case there exists a smooth Jordan arc
Γ ⊂ L̊ \ K̊ with endpoints in bK and otherwise disjoint from K such that S := K ∪Γ

is an admissible subset of M (see Definition3.1) and a strong deformation retract
of L . If the endpoints of Γ lie in different components of K , then the inclusion
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K ↪→ S induces an isomorphism of the homology groups; otherwise there appears
a new closed curve Γ0 ⊂ S, containing Γ, which is not in the homology of K . In
each of these two cases we can use Lemma 2.3 to construct a homotopy of continuous
maps ht : Γ → C∗ (t ∈ I ) such that the family of functions ψt : S = K ∪ Γ → C∗,
given by ψt = ϕt on K and ψt = ht on Γ, is continuous in t ∈ I and, for each
t ∈ I, ψt is of classA (S) and satisfies

∫
�0

ψt ftθ = qt (�0) if � lies in a closed curve
�0. Furthermore, if ϕ0 is of classA (L) and q0(γ ) = ∫

γ
ϕ0 f0θ holds for every closed

curve γ ⊂ L , then the homotopy ht : Γ → C∗ (t ∈ I ) can be chosen with h0 = ϕ0|Γ .

Lemma 4.2, applied to the homotopy ψt : S → C∗ (t ∈ I ), completes the task. ��
Proof of Theorem 4.1 Since the compact set S is assumed to be Runge in M, there
exist a smooth strongly subharmonic Morse exhaustion function ρ : M → R and a
number a1 ∈ R such that a1 is a regular value of ρ, S ⊂ {ρ < a1}, and S is a strong
deformation retract of M1 := {ρ ≤ a1}. Let p1, p2, . . . be the (isolated) critical points
of ρ in M \M1 and assume without loss of generality that a1 < ρ(p1) < ρ(p2) < · · ·
Choose a strictly increasing divergent sequence of real numbers {a j } j≥2 such that
ρ(p j−1) < a j < ρ(p j ) for all j = 2, 3, . . . (in particular, a2 > a1); if ρ has only
finitely many critical points in M \ M1, then we choose the remainder terms of the
sequence {a j } j≥2 arbitrarily. Set M0 := S and Mj := {ρ ≤ a j } for all j ≥ 2. Thus,
each Mj for j ∈ N is a smoothly bounded compact Runge domain in M and we have
that

S = M0 � M1 � M2 � · · · �
⋃

j∈Z+
Mj = M.

Let ϕ0
t := ϕt : S → C∗ (t ∈ I ) be a continuous family of functions of class

A (S). Pick a number ε > 0. An inductive application of Lemmas4.2 and 4.3 pro-
vides a sequence of continuous families ϕ

j
t : Mj → C∗ (t ∈ I ) of functions of class

A (Mj ), j ∈ N, such that the following conditions hold for each t ∈ I and j ∈ N:

(a) ϕ
j
t approximates ϕ

j−1
t as closely as desired uniformly on I × Mj−1,

(b)
∫
γ

ϕ
j
t ftθ = qt (γ ) holds for every closed curve γ ⊂ Mj , and

(c) if ϕ0
0 extends to a holomorphic function M → C∗ such that

∫
γ

ϕ0
0 f0θ = q0(γ )

holds for all closed curves γ ⊂ M, then the homotopy ϕ
j
t can be chosen with

ϕ
j
0 = ϕ0

0 .

If the approximation in (a) is close enough for every j ∈ N, we obtain a limit contin-
uous family of holomorphic functions

ϕ̃t := lim
j→∞ ϕ

j
t : M → C (t ∈ I ),

such that, for each t ∈ I, ϕ̃t does not vanish anywhere on M, ϕ̃t is uniformly ε-close
to ϕt = ϕ0

t on S = M0, and
∫
γ

ϕ̃t ftθ = qt (γ ) holds for every closed curve γ ⊂ M.

Furthermore, if ϕ0 = ϕ0
0 extends to a holomorphic function M → C∗ such that∫

γ
ϕ0 f0θ = q0(γ ) for all closed curves γ ⊂ M, then the homotopy ϕ̃t (t ∈ I ) can be

chosen such that ϕ̃0 = ϕ0. This concludes the proof of Theorem4.1. ��
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Proof of Theorem 1.5 Let M, n, Φt , and qt be as in Theorem1.5. Choose a nowhere
vanishing holomorphic 1-form θ on M and set ft = Φt/θ : M → C

n for each t ∈ I.
Let S ⊂ M be a compact, smoothly bounded, simply connected domain, and consider
the constant map ϕt ≡ 1 ∈ C∗ on S, t ∈ I. Theorem4.1 applied to these data provides
a homotopy of holomorphic functions ht := ϕ̃t : M → C∗ (t ∈ [0, 1]) satisfying the
conclusion of Theorem1.5. ��

5 Applications of Theorem 1.5 to Minimal Surfaces

In this section we show how Theorem 1.5 can be used to prove Theorems1.1, 1.4
and Corollary 1.6. The other results stated in Introduction follow from these as has
already been indicated.

Recall that π : Cn∗ = C
n \ {0} → CP

n−1 denotes the canonical projection onto
the projective space, so π(z1, . . . , zn) = [z1 : · · · : zn] are homogeneous coordinates
on CPn−1. We shall need the following lemma concerning the lifting of holomorphic
maps with respect to this projection.

Lemma 5.1 Let M be an open Riemann surface and Q ⊂ P be compact Hausdorff
spaces with Q a strong deformation retract of P. (If Q is empty, we assume that P is
contractible.)Given a continuous map g : M × P → CP

n−1 such that g(·, p) : M →
CP

n−1 is holomorphic for every p ∈ P and a continuous map f : M × Q → C
n∗ such

that π ◦ f = g|M×Q and f (·, p) : M → C
n∗ is holomorphic for every p ∈ Q, there

exists a continuous map f̃ : M × P → C
n∗ satisfying the following conditions:

(a) π ◦ f̃ = g,
(b) f̃ = f on M × Q, and
(c) f̃ (·, p) : M → C

n∗ is holomorphic for every p ∈ P.

Proof Note that the map π : Cn∗ → CP
n−1 is a holomorphic fiber bundle with fiberC∗

which is an Oka manifold. For such bundles, the parametric Oka principle for liftings
holds for maps from any reduced Stein space, in particular, for maps from an open
Riemann surface (see [7, Theorem 4.2]). In our situation this means the following:

Given a continuous map f̃ : M × P → C
n∗ satisfying conditions (a) and (b) above,

there is a homotopy f̃t : M × P → C
n∗ (t ∈ [0, 1]) such that f̃0 = f̃ , every map f̃t in

the family enjoys conditions (a) and (b), and the final map f̃1 also satisfies condition
(c).

This reduces the proof to the existence of a continuous map f̃ : M × P → C
n∗

satisfying conditions (a) and (b) [but not necessarily condition (c)]. Let π : E →
CP

n−1 denote the holomorphic line obtained by adding the zero section E0 ∼= CP
n−1

to the C∗-bundle π : Cn∗ → CP
n−1. Since M is homotopy equivalent to a wedge of

circles, the pullback g∗E → M by any map g : M → CP
n−1 is a trivial complex line

bundle overM, andhence it admits a nowhere vanishing section.Clearly, such a section
corresponds to a lifting f̃ : M → C

n∗ of the map g. Furthermore, if P is a contractible
compact Hausdorff space, then by the same argument a map g : M × P → CP

n−1

lifts to a map f̃ : M × P → C
n∗. Similarly, if Q ⊂ P is a nonempty subspace

such that P deformation retracts onto Q and we already have a lifting f̃ of g over
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M × Q, then f̃ extends to a lifting f̃ : M × P → C
n∗ extending g. This completes the

proof. ��
We may assume in the sequel that the Riemann surface M is connected; otherwise

we can apply the same proofs separately to each connected component.

Proof of Theorem 1.1 Assume first that the map G : M → Qn−2 ⊂ CP
n−1 is full.

Let p : H1(M; Z) → R
n be any group homomorphism. By Lemma5.1 there is a

holomorphic lifting f : M → A∗ of G , where A∗ = A \ {0} ⊂ C
n is the punctured

null quadric (1.4). Pick a holomorphic 1-form θ without zeros on M; such exists by
the Oka–Grauert principle. Let q : H1(M; Z) → C

n be the group homomorphism
given by

q(γ ) =
∫

γ

f θ for every closed curve γ ∈ H1(M; Z).

Choose a homotopy of group homomorphisms qt : H1(M; Z) → C
n (t ∈ [0, 1])

such that q0 = q and q1 = i p. If q = q1 + iq2 with q1, q2 : H1(M; Z) → R
n, we

can take

qt = (1 − t)q1 + i
(
(1 − t)q2 + t p

)
, t ∈ [0, 1].

Theorem1.5, applied to the 1-form Φ = f θ and the homotopy of group homomor-
phisms qt , furnishes a nowhere vanishing holomorphic function h : M → C∗ such
that the 1-form h f θ has periods equal to i p. In particular, its real part is exact and
hence it integrates to a conformal minimal immersion X : M → R

n with FluxX = p
by setting

X (p) = 2
∫ p

p0
�(h f θ), p ∈ M,

for any initial point p0 ∈ M. The Gauss map of X equals [∂X ] = [h f θ ] = [ f ] = G .

If p = 0, then X is the real part of a holomorphic null curve X + iY : M → C
n .

In order to prove that X can be chosen an embedding if n ≥ 5 and an immersion
with simple double points if n = 4, we proceed as in [3, proof of Theorem 4.1] (see
also [2, Sect. 6]), with the only difference that we use Lemma3.2 from the present
paper in order to make a generic perturbation of the integral

∫
γ

�(h f θ) along an arc
γ ⊂ M connecting a given pair of points p, q ∈ M. We leave out the obvious details.

If the map G is not full, we can apply the same proof with C
n replaced by the

C-linear span Λ = span( f (M)) ⊂ C
n of the image of the lifted map f : M → A∗.

Note that f is full in Λ, so the same proof applies and gives a conformal minimal
immersion X : M → R

n with the generalized Gauss map G and with FluxX being
any homomorphism p : H1(M; Z) → R

n such that q = i p has range in Λ. If Λ is a
complex line, the result also follows from theGunning–Narasimhan theorem [13]. The
general position theorem still applies and shows that X can be chosen an embedding
if dimΛ ≥ 5 and an immersion with simple double points if dimΛ = 4. ��
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In the proof of Theorem1.4 we shall need the following lemma.

Lemma 5.2 Let M be an open Riemann surface. For any holomorphic map g : M →
CP

1 there is a homotopy of holomorphic maps gt : M → CP
1 (t ∈ [0, 1]) such that

g0 = g, gt is nonconstant for every t ∈ (0, 1], and g1(M) omits any two given points
of the Riemann sphere.

Note that if M equalsC orC∗ then a nonconstant Gauss map g : M → CP
1 cannot

omit three points of the Riemann sphere in view of Picard’s theorem.

Proof of Lemma 5.2 Without loss of generality we may assume that g : M → CP
1

is a nonconstant holomorphic map. Pick a pair of points a, b ∈ CP
1. The surface

M contains a 1-dimensional embedded CW-complex C ⊂ M such that there is a
strong deformation retraction ρt : M → M (t ∈ [0, 1]), i.e., ρ0 = IdM , ρt |C = IdC
for all t ∈ [0, 1], and ρ1(M) = C. (Such a CW-complex C ⊂ M representing the
topology ofM can be obtained as theMorse complex of aMorse strongly subharmonic
exhaustion function on M.) By a small generic deformation of C we may assume
that g(C) ⊂ CP

1 \ {a, b}. Consider the homotopy of continuous maps ht = g ◦
ρt : M → CP

1 for t ∈ [0, 1]. Clearly, h0 = g and h1 = g ◦ ρ1; hence h1(M) =
g(C) ⊂ CP

1 \ {a, b}. Since CP
1 \ {a, b} ∼= C∗ is an Oka manifold, there is a

homotopy ht : M → CP
1 \ {a, b} (t ∈ [1, 2]) connecting the continuous map h1 to

a holomorphic map h2 : M → CP
1 \ {a, b}. Clearly, we can arrange by a generic

deformation that h2 is nonconstant.
Pick a pair of points p, q ∈ M such that h2(p) �= h2(q). By general position we

may assume that ht (p) �= ht (q) for all t ∈ (0, 2]. [Note that themaps ht for t ∈ (0, 2)
are merely continuous, so it is trivial to satisfy this condition.] Since CP1 is an Oka
manifold, we can apply the 1-parametric Oka property with interpolation on the pair
of points {p, q} ⊂ M in order to deform the homotopy (ht )t∈[0,2] with fixed ends h0
and h2 to a homotopy (gt )t∈[0,2] consisting of holomorphic maps gt : M → CP

1 such
that gt (p) = ht (p) and gt (q) = ht (q) for all t ∈ [0, 2] (see [8, Theorem 5.4.4]). In
particular, g0 = g and the map gt is nonconstant for each t ∈ (0, 2]. To conclude the
proof we reparametrize the interval [0, 2] of the homotopy back to [0, 1]. ��
Proof of Theorem 1.4 Let X : M → R

3 be a conformal minimal immersion. Denote
by g : M → CP

1 its complex Gauss map (1.7). To simplify the notation, we identify
CP

1 with the quadric Q1 ⊂ CP
2 (1.2), so g is obtained from the generalized Gauss

map GX = [∂X ] by the formula (1.7). Fix a nowhere vanishing holomorphic 1-form
θ on M and let f = ∂X/θ : M → A∗ [see (1.4)]. By taking into account the above
identification, we shall write π ◦ f = g.

Let a, b ∈ CP
1 be any pair of points. By Lemma5.2 there is a homotopy of

holomorphic maps gt : M → CP
1 (t ∈ [0, 1]) such that g0 = g, gt is nonconstant

for every t ∈ (0, 1], and g1(M) ⊂ CP
1 \ {a, b}. By Lemma5.1, applied with Q =

{0} ⊂ P = [0, 1], there is a homotopy of holomorphic maps ft : M → A∗ such that
f0 = f and π ◦ ft = gt for every t ∈ [0, 1]. By Theorem 1.5 there is a homotopy of
holomorphic multipliers ht : M → C∗ such that h0 = 1 and the real 1-form �(ht ftθ)

is exact for every t ∈ [0, 1]. (We can also arrange that the complex 1-form h1 f1θ is
exact.) Fix a point p0 ∈ M. Then, for any t ∈ [0, 1] the map Xt : M → R

n given by
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Xt (p) = X (p0) + 2
∫ p

p0
� (ht ftθ) , p ∈ M,

is a conformal minimal immersion with the complex Gauss map π(ht ft ) = π( ft ) =
gt , and we also have X0 = X since h0 = 1. This proves the first part of the theorem.

To prove the second part, we choose the homotopies gt and Xt as above such
that g1(M) ⊂ C∗ and FluxX1 = 0. To simplify the notation, we drop the index 1
and simply write X and g. To complete the proof, it remains to find an isotopy of
conformal minimal immersions connecting X = (X1, X2, X3) to a flat immersion.

Since X has vanishing flux, the holomorphic 1-form ∂X = (∂X1, ∂X2, ∂X3) is
exact. Setφ3 = ∂X3.From theWeierstrass representation (1.8)we see theholomorphic
1-forms φ3, gφ3, and g−1φ3 are exact since they are linear combinations with constant
coefficients of the components of ∂X.Consider the 1-parameter family of holomorphic
1-forms

Φλ =
(
1

2

(
1

g
− λ2g

)

,
i

2

(
1

g
+ λ2g

)

, λ

)

φ3, λ ∈ C.

Note that Φλ is nowhere vanishing and exact for every λ, Φ1 = ∂X, Φλ/θ has values

in A∗, and Φ0 =
(
1
2 ,

i
2 , 0

)
φ3
g is clearly flat. Therefore, for every λ ∈ C the 1-form

Φλ integrates to a holomorphic null curve Zλ(p) = X (p0) + 2
∫ p
p0

Φλ (p ∈ M). The

family of conformal minimal immersions Xλ = �Zλ : M → R
3 for λ ∈ [0, 1] then

connects X1 = X to the flat immersion X0. ��

Proof of Corollary 1.6 Let p = FluxX : H1(M; Z) → R
n, and let p′ : H1(M; Z) →

R
n be any group homomorphism. Assume first that X is full. Fix a point p0 ∈ M.

Applying Theorem1.5 to the isotopy of homomorphism

qt = i(t p′ + (1 − t)p) : H1(M; Z) → iRn (5.1)

and 1-forms Φt = 2∂X we obtain a homotopy of conformal minimal immersions
Xt : M → R

n (t ∈ [0, 1]) of the form

Xt (p) = X (p0) + 2
∫ p

p0
� (ht ∂X) , p ∈ M,

with FluxXt = tp′ + (1 − t)p (t ∈ [0, 1]) and with h0 = 1, so X0 = X. Then,
FluxX1 = p′. By choosing p′ = 0 we get FluxX1 = 0 and hence X1 is the real part of a
holomorphic null curve M → C

n . Note that the generalized Gauss map of Xt equals
[ht ∂X ] = [∂X ] = GX and hence is independent of t ∈ [0, 1]. If X is not full, we can
apply the same proof with C

n replaced by the C-linear span Λ ⊂ C
n of the image of

the map ∂X/θ : M → A∗ ⊂ C
n, assuming that the range of qt (5.1) belongs to Λ for

every t ∈ [0, 1]. If p′ = 0, this holds if and only if i p has range in Λ. ��

123

Author's personal copy



Every Meromorphic Function is the Gauss Map… 3031

6 A Structure Theorem

In light of Theorem1.1, it is a natural problem to describe the space of all conformal
minimal immersions with the same generalized Gauss map. In this section, we prove
that the space of all holomorphic null curves from a compact bordered Riemann
surface to Cn with a given generalized Gauss map is a complex Banach manifold (see
Corollary6.2); if we consider instead conformal minimal immersions M → R

n (also
with prescribed flux map), then we get a real analytic Banach manifold (see Corollary
6.3). These results are in the spirit of [3, Theorem 3.1].

Recall that a compact bordered Riemann surface is a compact Riemann surface M
with nonempty boundary ∅ �= bM ⊂ M consisting of finitely many pairwise disjoint
smooth Jordan curves. The interior M̊ = M \ bM of such M is called a bordered
Riemann surface. Every compact bordered Riemann surface M is diffeomorphic to a
smoothly bounded, compact domain in an open Riemann surface M̃ (see, e.g., Stout
[24]).

We begin with the following technical result concerning the derivative maps.

Theorem 6.1 Let M be a compact bordered Riemann surface, let θ be a nowhere
vanishing holomorphic 1-form on M, and let f : M → C

n∗ be a map of classA (M).

Then the following hold:

(i) For any r ∈ Z+ and group homomorphism q : H1(M; Z) → span( f (M)) ⊂ C
n

the space of all functions h ∈ A r (M, C∗) satisfying
∫

γ

h f θ = q(γ ) for every closed curve γ ⊂ M

is a complex Banach manifold with the natural C r (M)-topology.
(ii) For any r ∈ Z+ and group homomorphism q : H1(M; Z) → span( f (M)) ⊂ C

n

the space of all functions h ∈ A r (M, C∗) satisfying
∫

γ

�(h f θ) = �(q(γ )) for every closed curve γ ⊂ M

is a real analytic Banach manifold with the natural C r (M)-topology.

Proof Set l = dim H1(M; Z), Σ = span( f (M)) ⊂ C
n, and n∗ = dim(Σ) ≤ n. Let

P : A (M) → (Cn)l be the period map associated to a fixed basis B of H1(M; Z) =
Z
l , f, and θ [see (3.2)].
If M is simply connected, then l = 0 and the theorem is trivial. Indeed, in this

case the period conditions are void and hence (i) and (ii) hold since A r (M, C∗) is a
complex Banach manifold (see [6, Theorem 1.1]).

Assume now that l > 0. Pick an integer r ∈ Z+ and a group homomorphism
q : H1(M; Z) → Σ. Denote by A r

q (M, C∗) [resp. A r�q(M, C∗)] the set of all func-
tions h ∈ A r (M, C∗) satisfying

∫
γ
h f θ = q(γ ) [resp.

∫
γ

�(h f θ) = �(q(γ ))] for
all closed curves γ ⊂ M. By Lemma3.2, the differential dPh0 of the restricted period
mapP : A r (M, C∗) → Σ l at any point h0 ∈ A r (M, C∗) has maximal rank equal to
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ln∗. Thus, the implicit function theorem ensures that h0 admits an open neighborhood
Ω ⊂ A r (M, C∗) such that Ω ∩ A r

q (M, C∗) is a complex Banach submanifold of
Ω which is parametrized by the kernel of the differential dPh0 of P at h0; this is
a complex codimension ln∗ subspace of the complex Banach space A r (M, C) [the
tangent space ofA r (M, C∗)]. Likewise, Ω ∩A r�q(M, C∗) is a real analytic Banach
submanifold of Ω which is parametrized by the kernel of the real part �(dPh0) of
dPh0 . This proves (i) [resp. (ii)].

Corollary 6.2 Let M and f be as in Theorem6.1. For any integer r ≥ 1 the space of
holomorphic immersions F : M → C

n of class A r (M) with the generalized Gauss
map GF = π ◦ f : M → CP

n−1 is a complex Banach manifold.

Proof Let θ be a holomorphic 1-form vanishing nowhere on M. By Theorem6.1 (i),
applied to the integer r − 1 ∈ Z+ and the group homomorphism q ≡ 0, the space
A r−1

q (M, C∗) of all functions h ∈ A r−1(M,C∗) such that h f θ is exact on M is a

complex Banach manifold with the natural C r−1(M)-topology. Fixing p0 ∈ M̊, the
integrationM � p �→ z+∫ p

p0
h f θ,with an arbitrary choice of the initial value z ∈ C

n,

provides an isomorphism between the Banach manifoldA r−1
q (M, C∗) ×C

n and the
space of holomorphic immersions M → C

n of class A r (M) with the generalized
Gauss map π ◦ f ; hence the latter is also a complex Banach manifold.

Corollary 6.3 Let M be a compact bordered Riemann surface and f : M → A∗ be
a map of class A (M), where A is the null quadric (1.4). Then the following hold:

(i) For any integer r ≥ 1 the space of conformal minimal immersions X : M → R
n

of class C r (M) with the generalized Gauss map GX = π ◦ f : M → CP
n−1 is

a real analytic Banach manifold with the natural C r (M)-topology.
(ii) For any integer r ≥ 1 and any group homomorphism q : H1(M; Z) →

span( f (M)) ∩ {z ∈ C
n : �(z) = 0} ⊂ C

n the space of conformal minimal
immersions X : M → R

n of class C r (M) with the generalized Gauss map
GX = π ◦ f : M → CP

n−1 and the flux map FluxX = iq : H1(M; Z) → R
n is

real analytic Banach manifold.

Proof Let θ be a holomorphic 1-form vanishing nowhere on M. By Theorem6.1 (ii),
applied to the integer r − 1 ∈ Z+ and the group homomorphism q ≡ 0, the space
A r−1

�q (M, C∗) of all functions h ∈ A r−1(M, C∗) such that �(h f θ) is exact on M is

a real analytic Banach manifold with the natural C r−1(M)-topology. Fixing p0 ∈ M̊,

the integration M � p �→ x+∫ p
p0

�(h f θ),with an arbitrary choice of the initial value

x ∈ R
n, provides an isomorphism between the Banach manifoldA r−1

�q (M, C∗)×R
n

and the space of conformal minimal immersions M → R
n of class A r (M) with

the generalized Gauss map π ◦ f, and so the latter is also a Banach manifold. This
proves (i).

Assertion (ii) follows from the same argument applied to the group homomorphism
−q and using Theorem6.1 (i) instead of Theorem6.1 (ii). ��
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7 Path Components of the Space of Conformal Minimal Immersions
M → R

n

Assume that M is an open connected Riemann surface and n ≥ 3 is an integer. Recall
that a conformal minimal immersion X : M → R

n is said to be flat if its image X (M)

lies in an affine 2-plane of Rn; otherwise it is nonflat. Let us denote by M(M, Rn)

the space of all conformal minimal immersions M → R
n endowed with the compact-

open topology, and let M∗(M, Rn) denote the open subset of M(M, Rn) consisting
of all nonflat immersions. Fix a nowhere vanishing holomorphic 1-form θ on M and
consider the maps

M
(
M, Rn) −→ O(M, A∗) ↪−→ C (M, A∗),

where A∗ = An−1∗ ⊂ C
n is the punctured null quadric (1.4), the first map above is

given by X �→ ∂X/θ, and the second map is the natural inclusion of the space of all
holomorphic maps M → A∗ into the space of all continuous maps.

Since A∗ is an Oka manifold, the inclusion O(M, A∗) ↪→ C (M, A∗) is a weak
homotopy equivalence by the main result of Oka theory (see [8, Chap. 5]). Forstnerič
and Lárusson proved in [9] that the restricted mapM∗(M, Rn) → O(M, A∗), X �→
∂X/θ, is also a weak homotopy equivalence. (If the homology group H1(M; Z)

is finitely generated, then both these maps are actually homotopy equivalences,
in fact, inclusions of deformation retracts; see [9, Sect. 6].) Even more, the map
O(M, A∗) → H1(M, Cn) sending f ∈ O(M, A∗) to the cohomology class of f θ
is a Serre fibration; see Alarcón and Lárusson [4]. It follows in particular that the path
connected components of M∗(M, Rn) are in bijective correspondence with the path
components of the space C (M, An−1∗ ). Since M is homotopy equivalent to a bouquet
of circles and we have π1(A

2∗) = H1(A
2∗; Z) = Z2 = Z/2Z and π1(A

n−1∗ ) = 0
if n > 3, it follows that the path components of M∗(M, R3) are in bijective corre-
spondence with group homomorphisms H1(M; Z) → Z2 [hence with elements of
the abelian group (Z2)

l where l ∈ Z
+ ∪ {∞} denotes the number of generators of

H1(M;Z)], and M∗(M, Rn) is path connected if n > 3 (see [9, Corollary 1.4]).
In this section we show the following result which also includes flat immersions.

Theorem 7.1 Let M be an open connected Riemann surface. The natural inclusion
M∗(M, Rn) ↪→ M(M, Rn) of the space of all nonflat conformalminimal immersions
M → R

n into the space of all conformal minimal immersions induces a bijection
of path components of the two spaces. In particular, the set of path components of
M(M, R3) is in bijective correspondence with the elements of the abelian group (Z2)

l

where H1(M; Z) = Z
l (l ∈ Z+ ∪ {∞}), and M(M, Rn) is path connected if n > 3.

In view of [9, Corollary 1.4], the case n > 3 of Theorem7.1 trivially follows from
the following result.

Theorem 7.2 Let M be a connected open Riemann surface. Given a flat conformal
minimal immersion X : M → R

n (n ≥ 3), there exists an isotopy Xt : M → R
n (t ∈

[0, 1]) of conformal minimal immersions such that X0 = X and X1 is nonflat.
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In dimension n = 3, we obtain Theorem7.1 by combining [9, Corollary 1.4] with
the following resultwhich shows that every homotopy class ofmapsM → A2∗ contains
the derivative of a flat conformal minimal immersion M → R

3.

Theorem 7.3 Let M be a connected open Riemann surface and θ be a nowhere van-
ishing holomorphic 1-form on M. For every group homomorphism p : H1(M; Z) →
Z2 there exists a flat conformal minimal immersion X : M → R

3 satisfying
H1(∂X/θ) = p.

We begin with some preparations. Set I := [0, 1]. For any continuous function
a : I → C we denote byPa : C (I, C) → C

2 the period map given by

Pa( f ) =
∫ 1

0
a(s)

(
f (s), f (s)2

)
ds, f ∈ C (I, C).

Lemma 7.4 Let I ′ be a nontrivial closed subinterval of I = [0, 1] and let f : I → C

and a : I → C∗ be continuous functions such that f is not constant on I ′. There exist
finitely many continuous functions g1, . . . , gN : I → C (N ≥ 2), supported on I ′,
such that the function h : CN × I → C given by

h(ζ, s) :=
N∏

i=1

(1 + ζi gi (s)) , ζ = (ζ1, . . . , ζN ) ∈ C
N , s ∈ I,

is such that the map

∂

∂ζ
Pa (h(ζ, ·) f ) ∣

∣
ζ=0 : T0CN ∼= C

N −→ C
2 is surjective.

Proof As in the proof of Lemma2.1 we pick an integer N ≥ 2 and continuous func-
tions g1, . . . , gN : I → C, supported on I ′, which will be specified later, and define
h as in (2.2). Let ζ = (ζ1, . . . , ζN ) be holomorphic coordinates in C

N . Consider the
period map P : CN → C

2 given by

P(ζ ) = Pa (h(ζ, ·) f ) =
∫ 1

0
a(s)

(
h(ζ, s) f (s), h(ζ, s)2 f (s)2

)
ds, ζ ∈ C

N .

Equation (2.3) gives

∂P(ζ )

∂ζi

∣
∣
∣
∣
ζ=0

=
∫ 1

0
a(s)

(
gi (s) f (s), 2gi (s) f (s)

2
)
ds, i ∈ {1, . . . , N }.

Since f is continuous and nonconstant on the interval I ′, there are points s1, . . . , sN ∈
I̊ ′ such that

span
{(

f (si ) , 2 f (si )
2
)

: i = 1, . . . , N
}

= C
2.
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Reasoning as in the proof of Lemma 2.1, taking into account that the function a has no
zeros on I, we conclude the proof by suitably choosing the functions gi with support
in a small neighborhood of si in I ′. ��
Lemma 7.5 Let f : I → C and a : I → C∗ be continuous functions and assume
that f is not constant. Also let x1, x2 ∈ C be complex numbers. Then there exists a
continuous function h : I → C∗ such that h(s) = 1 for s ∈ {0, 1} and

∫ 1

0
a(s)

(
h(s) f (s), h(s)2 f (s)2

)
ds = (x1, x2) .

Proof As in the proof of Lemma2.3, and in view of Lemma 7.4, it suffices to prove
that for any ε > 0 there exists a function h : I → C∗ such that

∣
∣
∣
∣

∫ 1

0
a(s)

(
h(s) f (s), h(s)2 f (s)2

)
ds − (x1, x2)

∣
∣
∣
∣ < ε, t ∈ [0, 1]. (7.1)

To construct such a function h we reason as follows. Since a vanishes nowhere on I
and f is continuous and nonconstant, there exist a big integer N ∈ N and numbers
0 < s1 < · · · < sN < 1 such that the map C

N → C
2 given by

(y1, . . . , yN ) �−→
N∑

i=1

a(si )
(
yi f (si ) , y2i f (si )

2
)

,

is surjective. Fix numbers τ > 0 and 0 < ε′ < ε which will be specified later, and
choose numbers y1, . . . , yN ∈ C∗ such that

∣
∣
∣
∣
∣

N∑

i=1

a (si )
(
yi f (si ) , y2i f (si )

2
)

− (x1, 2τ x2)

∣
∣
∣
∣
∣
< ε′. (7.2)

Given a constant η > 0 to be specified later, we let h : I → C∗ be a continuous
function satisfying h(0) = h(1) = 1 and also the following conditions:

(a) |h(s)| ≤ 1 for s ∈ [0, η] ∪ [1 − η, 1],
(b) h(s) = yi

2τ
for s ∈ [si − τ, si + τ ], i = 1, . . . , N ,

(c) |h(s)| ≤
∣
∣
∣
yi
2τ

∣
∣
∣ for s ∈ [si − τ − η, si − τ ] ∪ [si + τ, si + τ + η], i = 1, . . . , N ,

and
(d) |h(s)| ≤ η for s ∈ [η, s1 − τ − η] ∪

(⋃N−1
i=1 [si + τ + η, si+1 − τ − η]

)
∪ [sN +

τ + η, 1 − η].
We choose τ and η sufficiently small so that the intervals in (d) are nonempty, pairwise
disjoint and contained in I̊ = (0, 1). Furthermore, if τ > 0 is chosen small enough,
then condition (b) ensures that the following estimate holds for each i = 1, . . . , N :
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∣
∣
∣
∣
∣

∫ si+τ

si−τ

a(s)
(
h(s) f (s), h(s)2 f (s)2

)
ds − a (si )

(

yi f (si ) ,
y2i
2τ

f (si )
2

)∣
∣
∣
∣
∣
< ε′.

(7.3)

On the other hand, if η > 0 is sufficiently small, then (a), (c), and (d) guarantee that

∣
∣
∣
∣

∫ s1−τ

0
a(s)

(
h(s) f (s), h(s)2 f (s)2

)
ds

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ 1

sN+τ

a(s)
(
h(s) f (s), h(s)2 f (s)2

)
ds

∣
∣
∣
∣

+
N−1∑

i=1

∣
∣
∣
∣

∫ si+1−τ

si+τ

a(s)
(
h(s) f (s), h(s)2 f (s)2

)
ds

∣
∣
∣
∣ < ε′. (7.4)

Choosing ε′ < ε/(N + 2), inequalities (7.2)–(7.4) yield (7.1), which concludes the
proof. ��

With Lemmas7.4 and 7.5 in hand, one may easily adapt the arguments in Sects. 3
and 4 in order to prove the following proposition.

Proposition 7.6 Let M be an open Riemann surface, q : H1(M; Z) → C
2 be a group

homomorphism, and θ be a holomorphic 1-form vanishing nowhere on M. Also let
S = K ∪ Γ ⊂ M be an admissible subset (see Definition3.1) and u : S → C∗ be a
function of class A (S) such that

∫

γ

(
u, u2

)
θ = q(γ ) for every closed curve γ ⊂ S.

Then u may be approximated uniformly on S by nowhere vanishing holomorphic
functions g : M → C∗ such that

∫

γ

(
g, g2

)
θ = q(γ ) for every closed curve γ ⊂ M .

We point out that, when using Lemmas7.4 and 7.5 in order to prove an analogue
of Lemma 3.2 in the current context, the role of the function θ(γ j (s), γ̇ j (s)) in the
proof of that lemma is played by the function a(s) in Lemmas7.4 and 7.5. We leave
the details of the proof of Proposition7.6 to the interested reader.

Proof of Theorem 7.2 Clearly it suffices to prove the theorem for n = 3.Let X : M →
R
3 be a flat conformal minimal immersion. Without loss of generality we may assume

that ∂X = (1, i, 0)φ3 where φ3 is an exact holomorphic 1-form vanishing nowhere
on M. Choose a nonconstant holomorphic function g : M → C∗ such that gφ3 and
g2φ3 are exact 1-forms on M; the existence of such g is ensured by Proposition7.6.
Set

Φλ =
(
1 − λ2g2, i

(
1 + λ2g2

)
, 2λg

)
φ3, λ ∈ C.
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Note that Φλ is an exact holomorphic 1-form and the map Φλ/φ3 assumes values in
the punctured null quadric A∗ ⊂ C

3 (1.4) for every λ ∈ C. Thus, fixing a base point
p0 ∈ M, every Φλ provides a conformal minimal immersion Xλ : M → R

3 by the
formula

Xλ(p) = X (p0) + 2
∫ p

p0
� (Φλ) , p ∈ M.

Note that the Gauss map of Xλ equals 2λg (cf. (1.8)).”
Since Φ0 = ∂X and g is nonconstant, we have that X0 = X and X1 is nonflat,

and hence the isotopy Xt : M → R
n (t ∈ [0, 1]) satisfies the conclusion of the

theorem. ��
Proof of Theorem 7.3 Let A∗ ⊂ C

3 be as above [see (1.4)]. Fix a group homomor-
phism p : H1(M; Z) → Z2. Choose a continuous map g : M → C∗ such that for
every generator γ of H1(M; Z) we have that H1(g)(γ ) = 0 ∈ Z if p(γ ) = 0 ∈ Z2,

and H1(g)(γ ) = 1 ∈ Z if p(γ ) = 1 ∈ Z2. By the Oka principle we can assume that
g is holomorphic. Identifying C∗ with the ray C∗ · (1, i, 0) ⊂ A∗, the generator of
H1(C∗; Z) = Z maps to the generator of H1(A∗; Z) = Z2, and hence we have that
H1((1, i, 0)g) = p : H1(M; Z) → Z2.

Pick a nowhere vanishing holomorphic 1-form θ on M. Lemma 2.3 furnishes a
holomorphic function h : M → C∗, homotopic to the constant map M → 1 through
maps M → C∗, such that

∫
γ
ghθ = 0 holds for every closed curve γ in M. Set

Φ = (1, i, 0)hgθ; clearly this is an exact holomorphic 1-form on M with values in
C
3, themap f = Φ/θ = (1, i, 0)gh assumes values in the rayC∗·(1, i, 0) ⊂ A∗, and

H1( f ) = p : H1(M; Z) → Z2. Hence, fixing a point p0 ∈ M, the map X : M → R
3

defined by X (p) = 2
∫ p
p0

�(Φ) (p ∈ M) defines a flat conformal minimal immersion
such that ∂X = Φ and hence H1(∂X/θ) = p. This completes the proof. ��
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