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Abstract In this paper we construct a properly embedded holomorphic disc in the
unit ball B

2 of C
2 having a surprising combination of properties: on the one hand, it

has finite area and hence is the zero set of a bounded holomorphic function on B
2; on

the other hand, its boundary curve is everywhere dense in the sphere bB
2. A similar

result is proved in higher dimensions. Our construction is based on an approximation
result in contact geometry, also proved in the paper.

Mathematics Subject Classification 32H02 · 37J55 · 53D10

1 Introduction

In this paper we prove the following result which answers a question posed by Filippo
Bracci in a private communication. Let D = {z ∈ C : |z| < 1} be the open unit disc,
and let B

n = {(z1, . . . , zn) ∈ C
n : |z|2 = ∑n

j=1 |z j |2 < 1} be the open unit ball in
the complex Euclidean space C

n for any n ∈ N = {1, 2, 3, . . .}.
Theorem 1.1 For every n > 1 and ε > 0 there exists a proper holomorphic
embedding F : D ↪→ B

n which extends to an injective holomorphic immersion
F : D\{±1} → B

n
such that Area(F(D)) < ε and the boundary F(bD\{±1}) is

everywhere dense in bB
n.
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720 F. Forstnerič

Our construction provides an injective holomorphic immersion F of an open neigh-
borhoodU ⊂ C of D\{±1} into C

n which is transverse to the sphere bB
n and satisfies

F(U ) ∩ B
n = F(D). A minor modification of the proof, replacing Lemma 4.3 by

Lemma 4.5, yields a map F as above which extends holomorphically across bD except
at one boundary point. (Clearly it is impossible for F to be smooth on all of D.) The
result seems especially interesting in dimension n = 2 since an embedded holomor-
phic disc of finite area in the ball B2 is the zero set of a bounded holomorphic function
on B

2 according to Berndtsson [4, Theorem 1.1], so we have the following corollary
to Theorem 1.1.

Corollary 1.2 There is a bounded holomorphic function on B
2 whose zero set is

a smooth complex curve of finite area, biholomorphic to the disc, with injectively
immersed boundary curve that is everywhere dense in the sphere bB

2.

It would be interesting to know whether there exists a holomorphic fibration B
2 →

D by discs as in Theorem 1.1. As Bracci pointed out, nonexistence of such a fibration
would lead to an analytic proof of the theorem of Koziarz andMok [17] that there is no
fibration of the ball over the disc which is invariant under the action of a co-compact
group of automorphisms of the ball.

In the literature there are only few known constructions of properly embedded
holomorphic discs with interesting global properties in the two-ball, or in any two-
dimensional manifold. A recent one, due to Alarcón, Globevnik and López [3], gives a
complete properly embedded holomorphic disc in B

2; however, such discs necessarily
have infinite area. On the other hand, it was shown byGlobevnik and Stout in 1986 [12,
Theorem VI.1] that every strongly pseudoconvex domain D ⊂ C

n (n ≥ 2) with real
analytic boundary bD contains a proper holomorphic disc F : D → D (not necessarily
embedded) of arbitrarily small area such that F(D) = F(D) ∪ ω, where ω is a given
nonempty connected subset of bD. (It is easy to achieve the latter improvement also in
our result.) The main new point here is that we find properly embedded holomorphic
discs with these properties, even in the lowest dimensional case n = 2. The principal
difficulty is that double points of a complex curve in a complex surface are stable
under deformations, and there are no known constructive methods of removing them.
One of our main new tools is a deformation procedure, based on transversality and the
use of certain special harmonic functions, to ensure that double points never appear
during the construction; see Lemma 3.1. This makes our construction considerably
more subtle than the one in [12]. We also use a more precise version of the exposing of
boundary points [10, Lemma 2.1]; see Lemma 4.3. The mentioned result in [10] has
been extended to strongly pseudoconvex domains in higher dimension (see Diederich,
Fornæss and Wold [8]) and was used in the study of the squeezing function and the
boundary behaviour of intrinsic metrics; see Zhang [22] and the references therein.

The construction begins with a new result in contact geometry. The sphere bB
n =

S2n−1 for n > 1 carries the contact structure ξ given by the distribution of complex
tangent hyperplanes. The complement of a point in bB

n is contactomorphic to the
Euclidean space R

2n−1
(x,y,z) with its standard contact structure ξ0 = ker(dz + xdy),

where x, y ∈ R
n−1, z ∈ R and xdy = ∑n

j=1 x j dy j . A smooth curve f : R → bB
n is
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A properly embedded holomorphic disc in the ball... 721

said to be complex tangential, or ξ -Legendrian, if ḟ (t) ∈ ξ f (t) for every t ∈ R. The
following result is proved in Sect. 2.

Theorem 1.3 Let n > 1. Every continuousmap f0 : R → R
2n−1 canbeapproximated

in the fine C 0 topology by real analytic injective ξ0-Legendrian immersions f : R ↪→
R
2n−1.

It is possible that Theorem 1.3 holds in every real analytic contact manifold
(X, ξ). Approximation by immersed (not necessarily injective) real analytic Legen-
drian immersion R ↪→ (X, ξ) were obtained by Globevnik and Stout [12, Theorem
V.1]. Results on approximation of smoothly embedded compact isotropic submani-
folds by real analytic ones can be found in the monograph by Cieliebak and Eliashberg
[7, Sect. 6.7]; however, the arguments given there do not seem to apply to noncompact
isotropic submanifolds.

Write R+ = {t ∈ R : t ≥ 0} and R− = {t ∈ R : t ≤ 0}. The following is an
immediate corollary to Theorem 1.3.

Corollary 1.4 Let n > 1. For every nonempty open connected subset ω of bB
n there

exists a real analytic injective complex tangential immersion f : R ↪→ ω such that the
cluster set of each of the sets f (R+) and f (R−) equals ω. This holds in particular
for ω = bB

n.

The existence of a real analytic complex tangential injective immersion f : R →
bB

n whose image � = f (R) ⊂ bB
n is dense in bB

n is the starting point of our
construction. A suitably chosen (thin) complexification of � is an embedded complex
disc �0 ⊂ C

n of arbitrarily small area such that �0 ∩ B
n = � (see Lemma 5.1). By

pulling�0 slightly inside the ball along� by a suitably chosen holomorphicmultiplier,
where the amount of pulling diminishes sufficiently fast as we approach either of the
two ends of� so that the boundary of�0 remains in the complement of the closed ball,
we obtain a properly embedded holomorphic disc � in B

n of arbitrarily small area
whose boundary approximates � as closely as desired in the fine C 0 topology, and
hence they are dense in the sphere bB

n . Since � is dense in bB
n , it is a rather subtle

task to obtain injectivity of the limit disc. Themain difficulty is that injectivity is not an
open condition among immersions of noncompact manifolds in any fine topology. (On
the other hand, immersions form an open set in the fineC 1 topology; see e.g. [19, Sect.
2.15].) We find a disc F(D) ⊂ B

n satisfying Theorem 1.1 as a limit of an inductively
constructed sequence of properly embedded holomorphic discs Fk : D ↪→ B

n , where
each Fk is holomorphic on a neighborhoodof the closed discD. In the induction stepwe
are given a properly embedded complexdisc�k = Fk(D) ⊂ B

n with smooth boundary
b�k = Fk(bD) ⊂ bB

n which intersects the Legendrian curve � = f (R) ⊂ bB
n

transversely at a pair of points p±
k . (There may be other intersection points. The disc

�k is actually the intersection of a somewhat bigger embedded holomorphic disc in
C
n with the ball B

n .) Let E+
k and E−

k be compact arcs in � with an endpoint p+
k and

p+− , respectively. The first step is to find a small perturbation of �k , fixing the points
p±
k , such that the boundary of the new embedded disc intersects the arcs E±

k only at
the points p±

k (see Lemma 3.1). The next disc �k+1 is then obtained by stretching �k

along the arcs E±
k to the other endpoints q±

k of E±
k so that the stretched out part lies in a
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722 F. Forstnerič

thin tube around E+
k ∪E−

k ; see Lemma 4.3. The sequence of embedded discs obtained
in this way converges in the weak C 1 topology, and also in the fine C 0 topology on
D\{±1}, to an embedded disc satisfying Theorem 1.1. The details are given in Sect.
5.

In conclusion, we mention the following natural question that was raised by a
referee.

Problem 1.5 Does Theorem 1.1 hold for discs in an arbitrary strongly pseudoconvex
domain in C

n , n ≥ 2, in place of the ball?

Our methods at several steps crucially depend on having real analytic boundary,
and Theorem 1.3 (on Carleman approximation of Legendrian curves by embedded real
analytic Legendrian images of R) is currently proved only for the standard contact
structure on the round sphere in C

n , given by the distribution of complex tangent
planes.

2 Densely embedded real analytic Legendrian curves

In this section we prove Theorem 1.3. Let n ∈ N. We denote the coordinates on R
2n+1

by (x, y, z), where x = (x1, . . . , xn) ∈ R
n , y = (y1, . . . , yn) ∈ R

n , and z ∈ R. The
standard contact structure ξ0 = ker α0 on R

2n+1 is given by the 1-form

α0 = dz +
n∑

i=1

xi dyi = dz + xdy. (2.1)

A smooth immersion f : M → (R2n+1, ξ0 = ker α0) from a smooth manifold M is
said to be isotropic if f ∗α0 = 0; an isotropic immersion is Legendrian if M has the
maximal possible dimension n. (See the monographs by Cieliebak and Eliashberg [7]
and Geiges [11] for background on contact geometry.) In this paper we only consider
maps fromR and call themLegendrian irrespectively of the dimension of themanifold.

Let k ∈ Z+ = {0, 1, 2, . . .}. A neighborhood of a C k map f0 : R → R
n in the fine

C k topology on the space C k(R, R
n) is of the form

{
f ∈ C k(R, R

n) : | f ( j)(t) − f ( j)
0 (t)| < ε(t) ∀t ∈ R ∀ j = 0, . . . , k

}
,

where ε : R → (0,+∞) is a positive continuous function, f ( j)(t) denotes the deriva-
tive of order j of f at the point t ∈ R, and |· | is the standard Euclidean norm on R

n .
(See Whitney [21] or Golubitsky and Guillemin [13] for more information.)

Proof of Theorem 1.3 Let (x, y, z) be coordinates on R
2n+1 as above. We consider

R
2n+1 as the standard real subspace of C

2n+1 and use the same letters to denote
complex coordinates on C

2n+1. The contact form α0 on R
2n+1 (2.1) then extends to a

holomorphic contact form on C
2n+1, and a holomorphic map f : D → C

2n+1 from a
domain D ⊂ C will be called Legendrian if f ∗α0 = 0.
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A properly embedded holomorphic disc in the ball... 723

Recall that D = {ζ ∈ C : |ζ | < 1}. Let r > 0. Note that a holomorphic map

f : rD → C
2n+1 is real on the real axis if and only if f (ζ ) = f (ζ̄ ) for all ζ ∈ rD.

For any holomorphic map f as above, the symmetrized map

f̃ (ζ ) = 1

2

(
f (ζ ) + f (ζ̄ )

)
(2.2)

is holomorphic and real on the real axis.
Let f0 = (x0, y0, z0) : R → R

2n+1 be a given continuous map. Given a continuous
function ε : R → (0,+∞) and a number η0 > 0, we shall construct a sequence of
holomorphic polynomial Legendrian maps f j : C → C

2n+1 and a sequence η j > 0
such that the following conditions hold for every j ∈ N, where (d1) is vacuous:

(a j ) f j (ζ ) = f j (ζ̄ ) for ζ ∈ C,
(b j ) f j : [− j, j] ↪→ R

2n+1 is a Legendrian embedding,
(c j ) | f j (t) − f0(t)| < ε(t) for t ∈ [− j, j],
(d j ) || f j − f j−1||C 1(( j−1)D) < η j−1, and

(e j ) 0 < η j < η j−1/2 and every C 1 map g : [− j, j] → R
2n+1 satisfying the

condition ||g − f j ||C 1([− j, j]) < 2η j is an embedding.

It is immediate that the sequence f j converges uniformly on compacts in C to a
holomorphic Legendrianmap f = lim j→∞ f j : C → C

2n+1 whose restriction toR is
a real analytic Legendrian embedding f : R ↪→ R

2n+1 satisfying | f (t)− f0(t)| ≤ ε(t)
for all t ∈ R. This will prove Theorem 1.3.

We begin by explaining the base of the induction ( j = 1). Set

ε1 = min{ε(t) : −1 ≤ t ≤ 1} > 0.

We can find a smooth Legendrian embedding g : [− 1, 1] ↪→ R
2n+1 such that

|g(t) − f0(t)| < ε1/2 for all t ∈ [− 1, 1]. (2.3)

(See e.g. Geiges [11, Theorem 3.3.1, p. 101], Gromov [15], or [2, Theorem A.6].) Let
us recall this elementary argument for the case n = 1, i.e., in R

3. From the contact
equation dz + xdy = 0 we see that the third component z of a Legendrian curve
g(t) = (x(t), y(t), z(t)) for t ∈ [−1, 1] is uniquely determined by the formula

z(t) = z(0) −
∫ t

0
x(s)ẏ(s)ds, t ∈ [−1, 1]. (2.4)

Hence, a loop γ in the Lagrangian (x, y)-plane adds a displacement for the amount
− ∫

γ
xdy to the z-variable. By Stokes’s theorem, this equals the negative of the signed

area of the region enclosed by γ . Hence, it suffices to approximate the (x, y)-projection
of the given continuous arc f0 : [− 1, 1] → R

3 by a smooth immersed arc containing
small loops whose signed area creates a suitable displacement in the z-direction,
thereby uniformly approximating f0 by a smooth Legendrian arc g : [− 1, 1] → R

3.
Furthermore, by a general position argument (see e.g. [13]) we can approximate its
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724 F. Forstnerič

Lagrange projection gL = (x, y) : [− 1, 1] → R
2 in C 2([− 1, 1]) by a smooth

immersion with only simple (transverse) double points. Note that g(t1) = g(t2) for
some pair of numbers t1 �= t2 if and only if gL(t1) = gL(t2) and

∫ t2
t1

x(s)ẏ(s)ds = 0.
Since gL has at most finitely many double point loops, we can arrange by a generic
C 2-small perturbation of gL away from its double points that the signed area enclosed
by any of its double point loops is nonzero, thereby ensuring that the new map g is
a Legendrian embedding and the estimate (2.3) still holds. Furthermore, we see from
(2.4) that C 2 approximation of the Lagrange projection gL gives C 1 approximation
of the last component z. A similar argument applies in any dimension.

Let g be as above, satisfying (2.3). Pick a number δ with 0 < δ < ε1/2. We claim
that there is a polynomial Legendrian map f1 = (x1, y1, z1) : C → C

2n+1 satisfying

f1(ζ ) = f1(ζ̄ ) and
‖ f1 − g‖C 1([−1,1]) < δ < ε1/2. (2.5)

To find such f1, we apply Weierstrass’s theorem to approximate the Lagrange projec-
tion gL = (x, y) : [− 1,+1] → R

2n of g inC 2([− 1, 1])byaholomorphic polynomial
map (x1, y1) : C → C

2n which is real on the real axis [the last condition is easily
ensured by replacing the approximating map with its symmetrization, see (2.2)]. We
then obtain the last component z1 of f1 by integration as in (2.4):

z1(ζ ) = z0(0) −
∫ ζ

0
x1(t)ẏ1(t) dt.

Note that z1 is then also real on the real axis. If δ > 0 is chosen small enough, then
f1 : [− 1, 1] → R

2n+1 ⊂ C
2n+1 is a Legendrian embedding. Thus, conditions (a1)

and (b1) hold, and the inequalities (2.3) and (2.5) yield (c1). Condition (d1) is vacuous.
Pick a constant η1 > 0 such that condition (e1) holds. This provides the base of the
induction.

Assume that for some j ∈ N we have found maps f1, . . . , f j and numbers
η1, . . . , η j satisfying conditions (ak)–(ek) for k = 1, . . . , j . In particular, there is a
number 0 < σ < 1 such that f j : [− j − σ, j + σ ] ↪→ R

2n+1 is a Legendrian embed-
ding. Set E j = jD ∪ [− j − 1, j + 1] ⊂ C. After decreasing σ > 0 if necessary, the
same arguments as in the initial step furnish a map f̃ j : ( j +σ)D∪[− j −1, j +1] →
C
2n+1 which equals f j on ( j + σ)D and such that f j : [− j − 1, j + 1] ↪→ R

2n+1 is
a smooth Legendrian embedding satisfying

| f̃ j (t) − f0(t)| < ε(t), t ∈ [− j − 1, j + 1].

Write f̃ j = (x̃ j , ỹ j , z̃ j ). We apply Mergelyan’s approximation theorem and the sym-
metrization argument (cf. (2.2)) in order to find a holomorphic polynomial map
(x j+1, y j+1) : C → C

2n which is real on R and approximates the map (x̃ j , ỹ j ) as
closely as desired in C 2(E j ). Setting

z j+1(ζ ) = z0(0) −
∫ ζ

0
x j+1(t)ẏ j+1(t) dt, ζ ∈ C,
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A properly embedded holomorphic disc in the ball... 725

we get a polynomial Legendrian map f j+1 = (x j+1, y j+1, z j+1) : C → C
2n+1 which

is real onR and approximates f j inC 1(E j ). If the approximation is close enough then
f j+1 satisfies conditions (a j+1)–(d j+1). Finally, pick η j+1 > 0 satisfying condition
(e j+1) and the induction may proceed. This completes the proof of Theorem 1.3. ��

3 A general position result

In this section we prove a general position result (see Lemma 3.1) which is used in the
proof of Theorem 1.1. For simplicity of notation we focus on the case n = 2, although
the proof carries over to the higher dimensional case n > 2.

Recall that D = {z ∈ C : |z| < 1}. Let T = bD = {z ∈ C : |z| = 1}. For any
k ∈ Z+ ∪ {+∞} and domain D ⊂ C with smooth boundary we denote byA k(D) the
space of functions h : D → C of class C k(D) which are holomorphic in D, and we
write A 0(D) = A (D). We also introduce the function space

H = {h = u + iv ∈ A ∞(D) : h(z̄) = h(z), u|T = 0 near ± 1}. (3.1)

Note that for every h = u + iv ∈ H we have h(±1) = 0, u(z̄) = u(z) and v(z̄) =
−v(z) for all z ∈ D; in particular, v(x) = 0 for all x ∈ [−1, 1]. Note that H
is a nonclosed real vector subspace of A ∞(D). Every function in H is uniquely
determined by a smooth real function u ∈ C∞(T) supported away from the points±1
and satisfying u(eit ) = u(e−it ) for all t ∈ R. Indeed, if u : D → R is the harmonic
extension of u : T → R and v is the harmonic conjugate of u determined by v(0) = 0,
then the function h = u + iv belongs to H and is given by the classical integral
formula

h(z) = T [u](z) = 1

2π

∫ 2π

0

eiθ + z

eiθ − z
u(eiθ ) dθ, z ∈ D. (3.2)

The real part of the integral operator on the right hand side above is the Poisson integral,
while the imaginary part is the Hilbert (conjugate function) transform. We write

H ± = {h = u + iv ∈ H : ±u ≥ 0}, H ±∗ = H ±\{0}. (3.3)

Note that the sets H ± and H ±∗ are cones, i.e., closed under addition and multipli-
cation by nonnegative (resp. positive) real numbers, and we haveH + ∩ H − = {0}.
Furthermore,

h = u + iv ∈ H +∗ �⇒ u > 0 on D,
∂u

∂x
(−1) > 0,

∂u

∂x
(1) < 0 (3.4)

where the last two inequalities follow from the Hopf lemma (since u|T = 0 near ±1).
The use of these function spaces will become apparent in the proof of Theorem 1.1 in
the following section.

Let σ : C
2∗ := C

2\{0} → CP
1 denote the projection onto the Riemann sphere

whose fibres are complex lines through the origin.

Lemma 3.1 Let f = ( f1, f2) : D → C
2∗ be a map of class A ∞(D) such that

123



726 F. Forstnerič

(a) | f |2 := | f1|2 + | f2|2 ≤ 1 on (−1, 1) = D ∩ R,
(b) | f | > 1 on T\{±1}, and
(c) σ ◦ f : D → CP

1 is an immersion.

Assume that E ⊂ bB
2 is a smoothly embedded compact curve such that f (±1) /∈ E.

Given a number η ∈ (0, 1), there is a function h ∈ H +∗ arbitrarily close to 0 in
C 1(D) such that the immersion

fh := e−h f : D → C
2∗ (3.5)

satisfies the following conditions:

(1) | fh | < 1 on (−1, 1) and | fh | > (1 − η)| f | + η > 1 on T\{±1},
(2) fh is transverse to bB

2, and
(3) fh(D) ∩ E = ∅.

Remark 3.2 Themain point to ensure injectivity is to achieve condition (3). By dimen-
sion reasons, this is easly done by a more general type of perturbation of f . However,
we use the specific perturbations obtained by multiplying with a function e−h with
h ∈ H +∗ in order to be able to control the very subtle induction process in the proof of
Theorem 1.1. Note that σ ◦ fh = σ ◦ f : D → CP

1 is an immersion by the assumption,
and hence fh is an immersion. If fh satisfies the conclusion of the lemma, then the
set

C = {z ∈ D : fh(z) ∈ bB
2} ⊂ D ∪ {±1}

is a smooth, closed, not necessarily connected curve containing the points ± 1, and its
image fh(C) = fh(D) ∩ bB

2 is a smooth curve disjoint from E . Hence, C and fh(C)

are finite unions of pairwise disjoint smooth Jordan curves. Each connected component
of fh(C) bounds a connected component of the complex curve fh(D)∩B

2 (a properly
immersed complex disc in B

2). Since | fh | < 1 on (− 1, 1), there is a component � of
D\C containing (− 1, 1), and b� ⊂ D ∪ {±1} is a closed Jordan curve containing the
points ± 1. This component � will be of main interest in the proof of Theorem 1.1. ��
Proof Given h = u + iv ∈ H , we define the functions ρ = ρ0 and ρh by

ρ = log | f | : D → R, ρh := log |e−h f | = −u + ρ : D → R. (3.6)

Conditions (a) and (b) on f imply that

ρ ≤ 0 on [− 1, 1] = D ∩ R, ρ(± 1) = 0, ρ > 0 on T\{±1}. (3.7)

It is obvious that for any function h ∈ H +∗ with sufficiently small C 0(D) norm and
such that the support of u|T = �h|T avoids a certain fixed neighborhood of the points
±1, the map fh given by (3.5) satisfies condition (1) of the lemma. (Recall that �h|T
vanishes near the points ± 1 by the definition of the spaceH .) In particular, for every
fixed h ∈ H +∗ this holds for the map fth for all small enough t > 0.
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A properly embedded holomorphic disc in the ball... 727

Note that the map fh (3.5) intersects the sphere bB
2 transversely if and only if 0 is

a regular value of the function ρh (3.6). From (3.7) it follows that ∂ρ
∂x (− 1) ≤ 0 and

∂ρ
∂x (1) ≥ 0. Together with (3.4) we see that for every h ∈ H +∗ we have

∂ρh

∂x
(− 1) = ∂ρ

∂x
(− 1) − ∂u

∂x
(− 1) < 0,

∂ρh

∂x
(1) > 0.

Replacing f by e−h f for some such h close to 0, we may assume that ρ = log | f |
satisfies these conditions. Hence, there are discs U± ⊂ C around the points ± 1,
respectively, such that dρ �= 0 on D∩ (U

+ ∪U
−
). Since this set is compact, it follows

that for all h ∈ H with sufficiently small C 1(D) norm we have that

dρh �= 0 on D ∩ (U
+ ∪U

−
). (3.8)

Furthermore, since the curve E does not contain the points f (± 1), we may choose
the discs U± small enough such that

fh
(
D ∩ (U

+ ∪U
−
)
) ∩ E = ∅ (3.9)

holds for all h ∈ H sufficiently close to 0 in C 1(D).
Recall that ρ = log | f | < 0 on (− 1, 1) = D ∩ R. Hence, there is an open

set U0 � D containing the compact interval (− 1, 1)\(U+ ∪ U−) ⊂ R such that
ρ ≤ −c < 0 on U 0 for some constant c > 0. Since ρ > 0 on T\{±1}, a similar
argument gives an open set U1 � C containing the compact set T\(U+ ∪ U−) (the
union of two closed circular arcs) such that ρ ≥ c′ > 0 on U1 ∩ D for some c′ > 0.
It follows that for all h ∈ H sufficiently close to 0 in C 1(D) we have that ρh < 0 on
U 0, ρh > 0 on U 1 ∩ D, and hence

fh
(
D ∩ (U0 ∪U1)

) ∩ bB
2 = ∅. (3.10)

For such h it follows in view of (3.8) that

{z ∈ D : fh(z) ∈ bB
2, dρh(z) = 0} ⊂ K := D\(U0 ∪U1 ∪U+ ∪U−). (3.11)

Note that the set on the left hand side above is precisely the set of points in D at
which the map f fails to be transverse to the sphere bB

2. The set K is compact and
contained in D\(− 1, 1). Pick h = u+ iv ∈ H +∗ and consider the family of functions
ρth = −tu + ρ for t ∈ R. Since ∂ρth/∂t = −u < 0 on D, transversality theorem (see
Abraham [1]) implies that for a generic choice of t , 0 is a regular value of the function
ρth |D. By choosing t > 0 small enough and taking into account also (3.8) and (3.10),
we infer that the map fth = e−th f : D → C

2∗ is transverse to bB
2 (hence condition

(2) holds) and it also satisfies condition (1). Replacing f by fth , we may assume that
f satisfies conditions (1) and (2).
It remains to achieve also condition (3) in the lemma.From (3.9) and (3.10) it follows

that {z ∈ D : fh(z) ∈ E} is contained in the compact set K ⊂ D defined in (3.11). To
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728 F. Forstnerič

conclude the proof, it suffices to find finitely many functions h1, . . . , hN ∈ H +∗ such
that, writing t = (t1, . . . , tN ) ∈ R

N , the family of maps

ft (z) = exp

(

−
N∑

j=1

t j h j (z)

)

f (z), z ∈ D (3.12)

satisfies ft (D) ∩ E = ∅ for a generic choice of t ∈ R
N near 0. By choosing t =

(t1, . . . , tN ) ∈ R
N close enough to 0 and such that t j > 0 for all j = 1, . . . , N , the

map ft will also satisfy conditions (1) and (2) in the lemma, thereby completing the
proof.

Claim: For every point z ∈ D\(− 1, 1) there exist functions h1, h2 ∈ H + such that
the values h1(z), h2(z) ∈ C are R-linearly independent.

Proof of the claim Let δθ denote the probability measure on T representing the Dirac
mass of the point eiθ ∈ T. Choose a sequence of smooth nonnegative even functions
u j : T → R+ supported near ±i such that u j (eiθ ) = u j (e−iθ ) for all θ ∈ R and

lim
j→∞

1

2π
u jdθ = δπ/2 + δ−π/2

as measures. From (3.2) we have that

lim
j→∞ T [u j ](z) = T [δπ/2 + δ−π/2](z) = i + z

i − z
+ −i + z

−i − z
= 2

1 − |z|4 − 2i�(z2)

|1 + z2|2 .

(3.13)
The imaginary part of this expression vanishes precisely when �(z2) = 0 which
is the union of the two coordinate axes. Since u j is an even function, we see that
h j = T [u j ] is real on the segment J = {iy : y ∈ (− 1, 1)} = D ∩ iR, and it is
nonvanishing at any given point z0 = iy0 ∈ J\{0} for all big j ∈ N as follows
from (3.13). Let φa(z) = (z − a)/(1 − az) for a ∈ (− 1, 1); this is a holomorphic
automorphism of the disc which maps the interval [− 1, 1] to itself, and if a �= 0
then φa(J ) ∩ J = ∅. Note that φa(z̄) = φa(z) and φa(± 1) = ± 1; hence, the
precomposition h �→ h ◦ φa preserves the class H +∗ . Choosing a ∈ (− 1, 1)\{0} we
have that �(h j ◦ φa)(z0) = �h j (φa(z0)) �= 0 for j ∈ N big enough as is seen from
(3.13) and the fact that the point φa(z0) ∈ D does not lie in the union of the coordinate
axes. This gives two functions in H +∗ , namely h j and h j ◦ φa , whose values at the
given point z0 = iy0 ∈ J\{0} are R-linearly independent. This establishes the claim
for points in J\{0}, and for other points in D\(− 1, 1) we get the same conclusion by
precomposing with an automorphisms φa , a ∈ (− 1, 1). ��

Since the set K (3.11) is compact and contained in D\(− 1, 1), the above claim
yields finitely many functions h1, . . . , hN ∈ H +∗ such that for every point z ∈ K the
vectors h j (z) ∈ C ( j = 1, . . . , N ) span C over R. Consider the corresponding family
of maps ft : D → C

2 given by (3.12). Note that
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∂ ft (z)

∂t j

∣
∣
∣
∣
t=0

= −h j (z) f (z), j = 1, . . . , l.

It follows that the map

D × R
N � (z, t) �→ ft (z) ∈ C

2 (3.14)

is a submersion over K at t = 0, and hence for all t ∈ R
N near 0. Indeed, we have

σ ◦ ft = σ ◦ f : D → CP
1 which is an immersion by the assumption (c), while for

each z ∈ K the partial differential ∂t ft (z)|t=0 is surjective onto the radial direction
C f (z) = ker dσ f (z) by the choice of the functions h1, . . . , hN . Transversality theorem
[1] implies that for a generic t ∈ R

N near 0 the map ft |K : K → C
2 misses E by

dimension reasons. In view of (3.9) and (3.10) it follows that for any such t we have
ft (D) ∩ E = ∅.
The case n > 2 requires a minor change in the last step of the proof. The map (3.14)

is now a submersion onto its image which is an immersed complex 2-dimensional
submanifold of C

n . This submanifold intersects the curve E in a set of finite linear
measure, and hence for a generic choice of t ∈ R

N the map ft |K : K → C
n misses

E as before. ��

4 A lemma on conformal mappings

The main results of this section are Lemmas 4.3 and 4.5 on the behaviour of biholo-
morphic maps from planar domains onto domains with exposed boundary points.

Let z = x+iy denote the coordinate onC. Consider the antiholomorphic involutions

τx (x + iy) = −x + iy, τy(x + iy) = x − iy. (4.1)

Note that τx ◦ τy = τy ◦ τx is the reflection z �→ −z across the origin 0 ∈ C. The
involutions τx , τy generate an abelian group

� = 〈τx , τy〉 ∼= Z
2
2. (4.2)

A set D ⊂ C is said to be �-invariant if γ (D) = D holds for all γ ∈ �. A map
φ : D → C defined on a �-invariant set is said to be �-equivariant if

φ = γ ◦ φ ◦ γ holds for all γ ∈ �.

Since each γ ∈ � is an involution, this is equivalent to γ ◦φ = φ ◦γ . A �-equivariant
map φ : D → C takes R ∩ D into R and iR ∩ D into iR ∩ D′; in particular, φ(0) = 0.
For every map φ from a �-invariant domain, the map φ̃ = 1

4

∑
γ∈� γ ◦ φ ◦ γ is

�-equivariant.

Definition 4.1 A nonempty connected domain D ⊂ C is special if it is bounded with
C∞ smooth boundary, simply connected, and �-invariant.
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It is easily seen that a special domain D intersects the real line in an interval (−a, a)

for some a > 0, and at the points ±a the boundary bD is tangent to the vertical line
x = ±a. This interval (−a, a)will be called the base of D. The analogous observation
holds for the intersection of D with the imaginary axis. Recall that a biholomorphism
between a pair of bounded planar domainswith smooth boundaries extends to a smooth
diffeomorphism between their closures in view of the theorems by Carathéodory [6]
and Kellogg [16]. We record the following observation.

Lemma 4.2 Assume that D is a special domain (Def. 4.1) and φ : D → D′ is a
biholomorphic map onto a bounded domain D′ = φ(D) with smooth boundary satis-
fying

φ(0) = 0 and φ′(0) > 0. (4.3)

Then φ is �-equivariant if and only if the domain D′ is special. In particular, a
special domain D ⊂ Cwith the base (−a, a) admits a�-equivariant biholomorphism
φ : D → D satisfying (4.3) and φ(±1) = ±a.

Proof Assume that D′ is special. For every γ ∈ � the map γ ◦ φ ◦ γ : D → D′ is
then a well defined biholomorphism satisfying the normalization (4.3), so it equals φ.
This shows that φ is �-equivariant. The converse is obvious. ��

The following exposing of boundary points lemma is the main result of this section.

Lemma 4.3 Assume that D ⊂ C is a special domain with the base (−a, a). Fix a
number b > a and set I+ = [a, b], I− = [−b,−a], and I = I+ ∪ I−. Given an open
neighborhood V ⊂ C of I , a number ε > 0, and an integer k ∈ Z+ there exists a
�-equivariant biholomorphism φ : D → φ(D) = D′ onto a special domain D′ with
the base (−b, b) satisfying the following conditions:

(a) φ(0) = 0, φ′(0) > 0, φ(±a) = ±b,
(b) D ⊂ D′ ⊂ D ∪ V (hence D\V = D′\V ), and
(c) ‖φ − Id‖C k (D\V ) < ε.

Remark 4.4 The main improvement over [10, Lemma 2.1] is that the domain D′
agrees with D outside a thin neighborhood V of the arcs I = I+ ∪ I− (part (b)).
Also, the biholomorphic map φ : D → φ(D) = D′ is �-equivariant and hence it
maps the interval D̄ ∩ R = [−a, a] diffeomorphically onto D̄′ ∩ R = [−b, b]. These
improvements are crucial.

Proof We shall follow the proof of [10, Lemma 2.1] with certain refinements.
By using a biholomorphism D → D furnished by Lemma 4.2 (which extends to a

C∞ diffeomorphism D → D), we see that it suffices to prove the result when D = D

and hence a = 1. Choose a smaller open neighborhood V0 ⊂ C of I = I+ ∪ I−
such that V 0 ⊂ V . Pick a number ε0 ∈ (0, ε); it precise value will be specified later.
Fix a pair of small discs U+

0 � U+
1 centered at the point 1 ∈ C, let U−

0 � U−
1 be

the corresponding discs centered at the point − 1 given by U−
j = τx (U

+
j ), and set

Uj = U+
j ∪ U−

j for j = 0, 1. (Here, τx and τy are the involutions (4.1).) We choose
these discs small enough such that

U1 ⊂ V0 � V . (4.4)
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Decreasing the number ε0 > 0 if necessary we may assume that

dist(U0, C\U1) >
ε0

2
. (4.5)

Fix an integer n ∈ N with n > 1/(b − 1) and let

In = [1, 1 + 1/n] ∪ [−1 − 1/n,−1].

Recall that I = [1, b] ∪ [−b,−1]. Choose a smooth C-valued map θn on a neighbor-
hood of the compact set

Kn =
(

1 + 1

2n

)

D ∪ In (4.6)

which equals the identity on a neighborhood of the closed disc (1 + 1
2n )D, maps the

interval [1, 1 + 1
n ] ⊂ R diffeomorphically onto the interval [1, b] ⊂ R, and satisfies

τx ◦ θn ◦ τx = θn .

In particular, we have that

θn(1 + 1/n) = b, θn(−1 − 1/n) = −b. (4.7)

By Mergelyan’s theorem [18] we can approximate θn as closely as desired in C 1(Kn)

by a polynomial map ϑn : C → C. (Mergelyan’s theorem provides uniform approxi-
mation, but we can apply his result to the derivative of θn and integrate back in order to
getC 1 approximation.) Furthermore, we can achieve that ϑn satisfies the interpolation
conditions (4.7) and also ϑn(± 1) = ± 1. Finally, replacing ϑn by 1

4

∑
γ∈� γ ◦ ϑn ◦ γ

we ensure that ϑn is �-equivariant. Assuming that ϑn is sufficiently close to θn in
C 1(Kn), it follows that ϑn is biholomorphic in an open neighborhood of Kn (4.6).
Since ϑn is �-equivariant, it maps the interval [1, 1 + 1/n] diffeomorphically onto
[1, b] and maps [− 1− 1/n,− 1] diffeomorphically onto [−b,− 1]. Furthermore, we
may assume that

|ϑn(z) − z| <
ε0

2
for all z ∈

(

1 + 1

2n

)

D and n >
1

b − 1
, (4.8)

and that the �-invariant domain

�n := ϑ−1
n (D) �

(

1 + 1

4n

)

D (4.9)

is an arbitrarily small smooth perturbation of the disc D, with ±1 ∈ b�n .
Pick an open neighborhood W+

n ⊂ C of the interval [1, 1 + 1/n] ⊂ R and set
Wn = W+

n ∪ τx (W+
n ). By choosing n big and W+

n small, we may assume that

Wn ⊂ U0 and ϑn(Wn) ⊂ V0. (4.10)
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Let
�n = �n ∪ Rn (4.11)

be a special domain with the base (−1 − 1/n, 1 + 1/n), obtained by attaching to �n

a thin �-invariant strip Rn around the arcs [1, 1 + 1/n) ∪ (−1 − 1/n,−1] such that
Rn ⊂ Wn . Together with the second inclusion in (4.10) we get

ϑn(Rn) ⊂ V0. (4.12)

The (unique) biholomorphic map

ψn : D → �n, ψn(0) = 0, ψ ′
n(0) > 0 (4.13)

is �-equivariant and satisfies ψn(±1) = ±(1 + 1/n) by Lemma 4.2. As n → ∞, the
domains �n ⊂ �n converge to the disc D in the sense of Carathéodory (the kernel
convergence, see [20, Theorem 1.8]), and their closures�n ⊂ �n also converge to the
closed disc D. It follows that the sequence of conformal diffeomorphisms ψn : D →
�n converges to the identitymap uniformly onD byRado’s theorem (see Pommerenke
[20, Corollary 2.4, p. 22] or Goluzin [14, Theorem 2, p. 59]). In particular, we have
that

|ψn(z) − z| <
ε0

2
, z ∈ D (4.14)

for all big enough n ∈ N. We claim that, for such n, the �-invariant domain

D′ = ϑn(�n) (4.15)

and the �-equivariant biholomorphic map

φ = ϑn ◦ ψn : D → D′ (4.16)

satisfy the conclusion of the lemma provided that the number ε0 > 0 is chosen small
enough. Indeed, condition (a) holds by the construction. We now verify condition (b).
Firstly, by (4.9), (4.11), and (4.13) we have that

D = ϑn(�n) ⊂ ϑn(�n) = ϑn(ψn(D)) = φ(D) = D′.

Assume now that w ∈ D′\V0. By (4.15) we have w = ϑn(ζ ) for some ζ ∈ �n =
�n ∪ Rn . Since ϑn(Rn) ⊂ V0 by (4.12) while w /∈ V0, we have ζ ∈ �n . By (4.9) it
follows that w = ϑn(ζ ) ∈ D. This shows that

D′\V0 = D\V0 (4.17)

and hence establishes condition (b) with V0 in place of V (and hence also for V ).
Finally we verify condition (c). Assume that z ∈ D\U1. Conditions (4.5) and (4.14)

implyψn(z) ∈ �n\U0. Since�n = �n ∪ Rn by (4.11) and Rn ⊂ Wn ⊂ U0 by (4.10),
we infer in view of (4.9) that �n\U0 ⊂ �n ⊂ (

1 + 1
4n

)
D and hence
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ψn(z) ∈ (
1 + 1

4n

)
D for all z ∈ D\U1.

By (4.8), (4.14), and (4.16) we conclude that

|φ(z)−z| ≤ |ϑn(ψn(z))−ψn(z)|+|ψn(z)−z| <
ε0

2
+ ε0

2
= ε0, z ∈ D\U1. (4.18)

Since V0 ⊂ V and D\V0 ⊂ D\U1 by (4.4), this establishes condition (c) for k = 0.
To complete the proof, we will show that the C k estimates of φ − Id on D\V

follow from the uniform estimate (4.18) on D\V0 in view of the Cauchy estimates
and the reflection principle. Pick a compact arc J ⊂ bD\V 0 such that J\V lies
in the relative interior of J . Choose an open neighborhood E ⊂ C of J which is
invariant with respect to the antiholomorphic reflection τ(z) = 1/z̄ around the circle
bD and such that E ∩ V 0 = ∅. By decreasing ε0 > 0 if necessary we may assume
that ε0 < dist(E, V 0). It follows from (4.18) that for every z ∈ E ∩ D we have
|φ(z)− z| < ε0 and hence φ(z) ∈ D\V0. In view of (4.17) it follows in particular that

φ(E ∩ bD) ⊂ bD\V0. (4.19)

We extend φ to D ∪ E by setting

φ(w) = τ ◦ φ ◦ τ(w), w ∈ E\D.

Since τ fixes the circle bD pointwise, the extended map agrees with φ on E ∩ bD in
view of (4.19). Since τ(w) ∈ E ∩ D and hence φ ◦ τ(w) ∈ D\V0 by what was said
above, the extended map φ : D ∪ E → C satisfies the estimate |φ(z) − z| < Cε0 for
all z ∈ (D\V0) ∪ E , where the constant C > 1 depends only on the distortion caused
by the reflection τ on E . Since the compact set D\V is contained in the open set � =
(D\V 0)∪E , the Cauchy estimates give ‖φ−Id‖C k (D\V ) ≤ C ′‖φ−Id‖C 0(�) < C ′Cε0

for some constant C ′ depending only on k and dist(D\V, C\�). Choosing ε0 > 0
small enough, this is < ε. The proof is complete. ��

An obvious adaptation of the above proof gives the following lemma in which the
exposing occurs at a single boundary point. As mentioned in the introduction, the use
of this lemma in the proof of Theorem 1.1 yields a proper holomorphic embedding
F : D ↪→ B

n which extends to a holomorphic embedding of a neighborhood U ⊂ C

of D\{1} such that the curve F(bD\{1}) ⊂ bB
n is dense in bB

n .

Lemma 4.5 Let b > 1. Given an open neighborhood V ⊂ C of the interval I =
[1, b] ⊂ R and numbers ε > 0 and k ∈ Z+, there exists a biholomorphism φ : D →
φ(D) = D′ onto a smoothly bounded domain D′ satisfying the following conditions:

(a) φ(0) = 0, φ′(0) > 0, φ(1) = b, φ(x − iy) = φ(x + iy),
(b) D ⊂ D′ ⊂ D ∪ V , and
(c) ‖φ − Id‖C k (D\V ) < ε.
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Note thatφ extends to a smooth diffeomorphism φ : D → D̄′. Condition (a) implies
that D′ ⊃ D∪[1, b) and that φ maps the interval [− 1, 1] ⊂ R diffeomorphically onto
[− 1, b].

5 Proof of Theorem 1.1

For simplicity of notation we focus on the case n = 2 which is of main interest,
although the proof holds for any n ≥ 2.

Let z = x + iy denote the coordinate on C. Let � denote the group (4.2). Given a
positive continuous even function g > 0 on R, we let Sg ⊂ C denote the �-invariant
strip

Sg = {x + iy : x ∈ R, |y| < g(x)}. (5.1)

Let f = ( f1, f2) : R ↪→ bB
2 be a real analytic complex tangential embedding with

dense image, furnished by Corollary 1.4. By complexification, f extends to a holo-
morphic immersion f : Sg0 ↪→ C

2 for some g0 as above. Fix g0 and write S = Sg0 .
Since the function | f |2 = | f1|2 + | f2|2 is strongly subharmonic on S and constantly
equal to 1 on R, we have | f (x + iy)| ≥ 1 + c(x)|y|2 for a positive smooth function
c : R → (0,∞) (see e.g. [5] for the details). Hence, if the strip S is chosen thin enough
then

1 ≤ | f |2 = | f1|2 + | f2|2 < 2 on S, (5.2)

and | f | = 1 holds precisely on R. This means that the immersed complex curve
f (S) ⊂ C

2 touches the sphere bB
2 tangentially along f (R) and satisfies

f (S\R) ⊂ √
2B

2\B
2
. (5.3)

Lemma 5.1 Given ε > 0, there is a strip Sg of the form (5.1), with 0 < g(x) < g0(x)
for all x ∈ R, such that f : Sg → C

2 is an injective immersion and

Area( f (Sg)) =
∫

Sg
| f ′|2dxdy < ε.

Proof Consider a double sequence b j > 0 ( j ∈ Z) such that

0 < b j < min{g0(x) : j − 1 ≤ x ≤ j}, j ∈ Z.

It follows that the rectangle

Pj = {z = x + iy ∈ C : j − 1 ≤ x ≤ j, |y| < b j } � S

is compactly contained in S. We claim that the sequence b j can be chosen such
that f is injective on the union

⋃
j∈Z Pj . Indeed, assume that the numbers b j for

j = 0,± 1, . . . ,±k have already been chosen such that f is an injective immersion
on the set Qk = ⋃

| j |≤k Pj . In view of (5.3) if follows that f is an injective immersion
on Qk ∪R; hence it is an injective immersion in an open neighborhood of the compact
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set Qk ∪ [−k − 1, k + 1]. Therefore we can choose the constants bk+1 > 0 and
b−k−1 > 0 small enough such that f is also an injective immersion on Qk+1, and
hence the inductionmayproceed. Finally, choosing a positive even continuous function
g > 0 on R satisfying

max{g(x) : j − 1 ≤ x ≤ j} < b j , j ∈ Z,

it follows that Sg ⊂ ⋃
j∈Z Pj = ⋃

k∈N Qk and hence f is injective on Sg . By decreas-
ing g if necessary we can clearly achieve that the area of the disc f (Sg) is as small as
desired. ��

Replacing the function g0 by g and the initial strip S = Sg0 by the strip Sg furnished
by Lemma 5.1, we shall assume that

f : S ↪→ C
2 is an injective holomorphic immersion. (5.4)

Recall that σ : C
2∗ → CP

1 denotes the canonical projection onto the Riemann
sphere. At each point z = (z1, z2) ∈ bB

2 the complex line ξz ⊂ TzC2 tangent to bB
2

is transverse to the line Cz = σ−1(σ (z)) ∪ {0}, and hence dσz : ξz → Tσ(z)CP
1 is

an isomorphism. Since the immersed curve f : R → bB
2 satisfies ḟ (t) ∈ ξ f (t) for

every t ∈ R, it follows that σ ◦ f : R → CP
1 is an immersion. Hence, if the strip S

is chosen thin enough then

σ ◦ f : S → CP
1 is an immersion. (5.5)

We shall frequently use the following observation.

Lemma 5.2 Let D be a relatively compact domain in C and F : D → C
2∗ be an

injective immersion of class A 1(D) such that σ ◦ F : D → CP
1 is an immersion. If

h ∈ H∞(D) is sufficiently small in the sup-norm, then e−h F : D → C
2∗ is an injective

immersion.

Proof Let c = sup{|F(z)| : z ∈ D} > 0. Consider the set

� = {
(z, w) ∈ D × D : σ ◦ F(z) = σ ◦ F(w)

} = �0 ∪ �′,

where �0 = {(z, z) : z ∈ D} and �′ = �\�0. Since σ ◦ F : D → CP
1 is an

immersion, it is locally an embedding, and hence the set�′ is compact. Since F : D →
C
2∗ is injective, it follows that

δ := inf
{|F(z) − F(w)| : (z, w) ∈ �′} > 0.

Choose μ > 0 such that |eζ −1| < δ/3c when |ζ | < μ. Assuming that |h(z)| < μ for
all z ∈ D and taking into account that |F | < c on D, we have for every (z, w) ∈ �′
that
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∣
∣e−h(z)F(z) − e−h(w)F(w)

∣
∣ ≥ |F(z) − F(w)| −

−∣
∣e−h(z)F(z) − F(z)

∣
∣ − ∣

∣e−h(w)F(w) − F(w)
∣
∣

≥ δ − cδ/3c − cδ/3c = δ/3 > 0.

This shows that the map e−h F : D → C
2 is injective. Since σ ◦ (e−h F) = σ ◦ F is

an immersion by the assumption, e−h F is also an immersion. ��
We shall find an embedded disc inB

2 satisfying Theorem 1.1 by pulling the embed-
ded strip f (S) ⊂ C

2∗ slightly into the ball along the curve f (R) ⊂ bB
2, where the

amount of pulling decreases fast enough as we go to infinity inside the strip. When
doing so, we shall pay special attention to ensure injectivity; this is a fairly delicate
task since the curve f (R) = f (S) ∩ bB

2 is dense in bB
2. To this end, we shall

be considering smoothly bounded, simply connected, �-invariant domains D ⊂ C

satisfying
R ⊂ D ⊂ D ⊂ S. (5.6)

Assume that h = u + iv ∈ A 1(D) satisfies

u > 0 on R and e2u < | f |2 on bD. (5.7)

Consider the map F of class A 1(D) defined by

F = (F1, F2) = e−h( f1, f2) : D → C
2∗. (5.8)

On the real axis we have that |F |2 = e−2u | f |2 < | f |2 = 1, while on the boundary
bD we have that |F |2 = e−2u | f |2 > 1 in view of (5.7). This means that

F(R) ⊂ B
2 and F(bD) ∩ B

2 = ∅. (5.9)

Assume in addition that F is transverse to the sphere bB
2. Let

� ⊂ {z ∈ D : F(z) ∈ B
2} (5.10)

denote the connected component of the set on the right hand side containing R. It
follows that � ⊂ D and F |� : � → B

2 is a proper holomorphic map extending
holomorphically to � and mapping b� to the sphere bB

2. Clearly, � is Runge in
C and hence conformally equivalent to the disc; indeed, there is a biholomorphism
D → � extending holomorphically toD\{±1}. The proof of Theorem1.1 is concluded
by the following lemma.

Lemma 5.3 Given ε > 0, there exist a smoothly bounded, simply connected, �-
invariant domain D ⊂ C satisfying (5.6) and a function h = u + iv ∈ A 1(D)

satisfying (5.7) such that the map F = e−h f : D → C
2∗ is an injective immersion

transverse to bB
2 satisfying

(α) Area(F(�)) < ε, where � is defined by (5.10), and
(β) the curve F(b�) ⊂ bB

2 is everywhere dense in the sphere bB
2.
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Proof We begin by explaining the scheme of proof.
We shall construct an increasing sequence of special domains D1 ⊂ D2 ⊂ D3 ⊂

· · · ⊂ S (see Def. 4.1) whose union D = ⋃∞
j=1 Dj is a simply connected, smoothly

bounded, �-invariant domain satisfying (5.6). The first domain D1 is a round disc
centered at 0; by rescaling the coordinate on C we may assume that D1 = D is the
unit disc. For every n ∈ N we let Dn+1 = Dn ∪ Sn be a special domain with the base
(−n − 1, n + 1) ⊂ R, furnished by Lemma 4.3. (Recall that Sn is a thin strip around
the interval (−n − 1, n + 1).) For each n ≥ 2 let ψn be the biholomorphism

ψn : Dn → Dn−1, ψn(0) = 0, ψ ′
n(0) > 0.

By Lemma 4.2, ψn extends to a smooth �-equivariant diffeomorphism ψn : Dn →
Dn−1 satisfying ψn([−n, n]) = [−n + 1, n − 1] and ψn(±n) = ±(n − 1). Set

�1 = Id|D1
, �n = ψ2 ◦ · · ·ψn : Dn → D1 ∀n = 2, 3, . . . . (5.11)

At the same time, we shall find a sequence of multipliers hn ∈ A ∞(Dn) (n ∈ N) of
the form hn = h̃n ◦ �n , with h̃n ∈ H +∗ (see (3.3)), such that the map

Fn = e−hn f : Dn ↪→ C
2∗

is an embedding of classA ∞(Dn) that is transverse to bB
2, and Fn+1 approximates Fn

as closely as desired in C 0(Dn) and in C 1(Dn\Un), whereUn = U+
n ∪U−

n is a small
neighborhood of the points ±n for every n ∈ N. In the induction step, we shall use
Lemma 3.1 in order to find a small perturbation of Fn such that Fn(Dn) intersects the
pair of arcs E+

n = f ([n, n+1]) ⊂ bB
2 and E−

n = f ([−n−1,−n]) ⊂ bB
2 only at the

points f (±n). Thiswill allowus to construct the nextmap Fn+1 = e−hn+1 f : Dn+1 ↪→
C
2∗ which is an embedding mapping the strip Dn+1\Dn into a small neighborhood of

the arcs E+
n ∪ E−

n . The sequence hn will be chosen such that it converges to a function
h = u + iv = h̃ ◦ � ∈ A 1(D) satisfying (5.7), with h̃ = limn→∞ h̃n ∈ A 1(D1).
Furthermore, we will ensure that the limit map F = limn→∞ Fn = e−h f : D → C

2∗
(which satisfies (5.9) in view of (5.7)) is an injective immersion that is transverse to
the sphere bB

2. The domain � (5.10) will then satisfy the conclusion of the lemma,
and F(�) ⊂ B

2 will be a properly embedded holomorphic disc satisfying Theorem
1.1.

We now turn to the details. Recall that | f |2 > 1 on S\R. We begin by choosing a
function h1 = u1 + iv1 ∈ H +∗ on D1 = D, close to 0 in C 1(D1), such that

e2u1 <
1

2

(
| f |2 + 1

)
on bD1\{±1} (5.12)

and the map F1 = e−h1 f : D1 → C
2∗ of classA ∞(D1) is an embedding (see Lemma

5.2) which is transverse to bB
2 (see Lemma 3.1). From (5.12) we infer that |F1| =

e−u1 | f | > 1 on bD1\{±1}. Recall that |F1| < 1 on (−1, 1) since u1 > 0 on D1 and
| f | = 1 on R. Let
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738 F. Forstnerič

C1 = {z ∈ D1 : F1(z) ∈ bB
2}, �1 = F1(C1) = F1(D1) ∩ bB

2.

We have that C1 ⊂ D1 ∪ {±1}, each of the sets C1 and �1 is a union of finitely many
smooth closed Jordan curves, and�1 bounds the embedded complex curve F1(D1)∩B

2

(see Remark 3.2). By [9] the curve �1 is transverse to the distribution ξ ⊂ T (bB
2) of

complex tangent planes, and hence the ξ -Legendrian embedding f : R ↪→ bB
2 is not

tangent to �1 at the points f (±1) ∈ �1. Thus, there is a number 0 < δ < 1 such that

f
([1 − δ, 1 + δ] ∪ [−1 − δ,−1 + δ]) ∩ �1 = { f (1), f (−1)}.

Applying Lemma 3.1 with the smooth compact curve

E = f ([−2,−1 − δ] ∪ [1 + δ, 2]) ⊂ bB
2\�1

we can approximate h1 ∈ H +∗ as closely as desired in theC 1(D1) norm by a function

h̃1 ∈ H +∗ such that, after redefining the map F1 by setting F1 = e−h̃1 f and also
redefining the curves C1 and �1 accordingly, the above conditions still hold and in
addition we have

f ([1, 2]∪[−2,−1])∩�1 = f ([1, 2]∪[−2,−1])∩F1(D1) = { f (1), f (−1)}. (5.13)

Write h̃1 = ũ1 + iṽ1. This completes the initial step.
We now explain how to obtain the next embedding F2 : D2 ↪→ C

2∗. This is the first
step of the induction, and all subsequent steps will be of the same kind.

Choose a compact set M ⊂ S containing D1 ∪ [− 2,+ 2] in the interior. Pick a
small number μ = μ1 > 0. By (the proof of) Lemma 5.2 we may decrease μ > 0
if necessary such that for any domain D′ ⊂ M and function h ∈ A (D′) satisfying
|h| < μ on D′ the map e−h f : D′ → C

2∗ is injective. Since ũ1 vanishes on bD1 = T

near ± 1 by the definition of the classH , there are small discs U±
1 around the points

± 1 such that
ũ1 vanishes on bD1 ∩U±

1 . (5.14)

Furthermore, since h̃1(± 1) = 0, we can shrink the discs U±
1 if necessary to get

|h̃1| < μ on D1 ∩ (U
+
1 ∪U

−
1 )). (5.15)

Choose a pair of smaller open discs W±
1 � V±

1 � U±
1 around the points ± 1. Lemma

4.3 furnishes a special domain D2 with the base (− 2,+ 2) satisfying D1 ⊂ D2 ⊂ M
and a �-equivariant conformal diffeomorphismψ2 = �2 : D2 → D1 withψ2(0) = 0
and ψ ′

2(0) > 0. (By the construction, D2 is the union of D1 and an arbitrarily thin �-
invariant strip S2 around the interval (−2, 2) ⊂ R, with ±2 ∈ bD2.) We may choose
D2 such that the attaching set D2 ∩ bD1 is contained in W+

1 ∪W−
1 . Consider the pair

of compact sets

K = D1\(W+
1 ∪ W−

1 ), L = D2\D1 ∪ (D1 ∩ (V
+
1 ∪ V

−
1 )). (5.16)
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Note that

K ∪ L = D2, K ∩ L = D2 ∩ (
(V

+
1 \W+

1 ) ∪ (V
−
1 \W−

1 )
)
.

By Lemma 4.3, the domain D2 can be chosen such that �2 is as close as desired to
the identity map in C 1(K ) and

�2(L) ⊂ U+
1 ∪U−

1 . (5.17)

Set
h2 = u2 + iv2 := h̃1 ◦ �2 ∈ A ∞(D2). (5.18)

Note that u2 > 0 on D2, u2 vanishes on bD2\D1 by (5.14) and (5.17), h2(± 2) = 0,
and

|h2| < μ on D2\D1 (5.19)

which follows from (5.15), (5.16), and (5.17). Assuming that the approximations are
close enough, we see from (5.12) that

e2u2 <
1

2

(
| f |2 + 1

)
on bD2\{± 1}. (5.20)

We claim that the immersion

F2 = e−h2 f : D2 → C
2∗

of class A ∞(D2) is injective provided that the approximations are close enough.
Indeed, F2 is injective on L by the choice of the constant μ > 0, the estimate (5.15),
the inclusion (5.17), and the definition (5.18) of h2. Assuming as we may that �2 is
close enough to the identity on K (see Lemma 4.3), the function h2|K is so close to
h̃1|K that F2 is injective on K in view of Lemma 5.2. To obtain injectivity of F2 on
D2, it remains to see that

F2(L\K ) ∩ F2(K\L) = ∅.

Note that F2 maps L\K into a small neighborhood of the two arcs f ([1, 2] ∪
[− 2,− 1]). Since these arcs intersects F1(D1) only at the points F1(± 1) = f (± 1) ∈
�1 (cf. (5.13)) and F2 can be chosen as close as desired to F1 on the set K which does
not contain the points ± 1, the claim follows.

By a slight adjustment of h̃1 [and hence of h2, see (5.18)], keeping the above
conditions, we may assume that the embedding F2 : D2 ↪→ C

2 is transverse to
bB

2 (see Lemma 3.1). Each of the sets C2 = {z ∈ D2 : F2(z) ∈ bB
2} and

�2 = F2(C2) = F2(D2) ∩ bB
2 is then a finite unions of smooth Jordan curves. By

another application of Lemma 3.1 we can find aC 1(D1)-small deformation h̃2 ∈ H +∗
of h̃1 such that, redefining h2 by setting h2 = h̃2 ◦ �2 ∈ A ∞(D2) and adjusting the
map F2 accordingly, the above conditions remain valid and in addition we have that

f ([−3,−2] ∪ [2, 3]) ∩ F2(D2) = { f (2), f (−2)}.
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This completes the first step of the induction, and we are now ready to apply the same
arguments to themap F2 and the domain D2 tofind the next embedding F3 : D3 ↪→ C

2∗.
Clearly this construction can be continued inductively. It yields

• an increasing sequence of special domains D1 ⊂ D2 ⊂ D3 ⊂ · · · such that Dn

has the base (−n, n), Dn+1 = Dn ∪ Sn where Sn is a thin strip around the interval
(−n−1, n+1), and the union D = ⋃∞

n=1 Dn ⊂ S is a smoothly bounded, simply
connected, �-invariant domain,

• a sequence Un = U−
n ∪U+

n of small pairwise disjoint neighborhood of the points
{−n, n} such that Dn−1 ∩Un = ∅ for every n = 2, 3, . . . ,

• a sequence of �-equivariant diffeomorphisms �n = ψ2 ◦ · · · ψn : Dn → D1 of
class A ∞(Dn), where �1 = Id|D1

and ψn : Dn → Dn−1 for n ≥ 2 (see (5.11)),
• a sequence of multipliers

hn = h̃n ◦ �n ∈ A ∞(Dn) with h̃n ∈ H +∗ , (5.21)

• a sequence of embeddings Fn = e−hn f : Dn ↪→ C
2∗ of class A ∞(Dn),

such that the following conditions hold for every n ∈ N:

(an) the conformal diffeomorphism ψn+1 : Dn+1 → Dn is arbitrarily close to the
identity in C 1(Dn\Un) and satisfies ψn+1(Dn+1\Dn) ⊂ Un ;

(bn) the function hn = un+ivn (5.21) satisfies un > 0 on Dn and e2un < 1
2 (| f |2+1)

on bDn\{±n} (see (5.20));
(cn) h̃n+1 approximates h̃n as closely as desired in C 1(D1);
(dn) hn+1 approximates hn as closely as desired in C 0(Dn) and in C 1(Dn\Un);
(en) |hn+1| is as small as desired uniformly on Dn+1\Dn (see (5.19));
(fn) the map Fn+1 approximates Fn as closely as desired uniformly on Dn and in

C 1(Dn\Un), and Fn+1 is as close as desired to f uniformly on Dn+1\Dn .

Note that (fn) is a consequence of (an), (cn), (dn), and (en).
Assuming that these approximations are close enough at every step, we can draw the

following conclusions. The sequence �n : Dn → D1 converges to the �-equivariant
biholomorphicmap� : D = ⋃∞

n=1 Dn → Dwith�(0) = 0 and� ′(0) > 0.Note that
�(R) = (−1, 1), and � extends to a C∞ diffeomorphism D → D\{±1}. Secondly,
the sequence hn ∈ A ∞(Dn) converges in the weak C 1(D) topology (i.e., in the C 1

topology on every compact subset of D) to a function

h = u + iv = h̃ ◦ � ∈ A 1(D) where h̃ = lim
n→∞ h̃n ∈ A 1(D1) (5.22)

[the second limit h̃ exists in the C 1(D1) topology in view of condition (cn)] satisfying

u > 0 on D, e2u ≤ 1

2

(
| f |2 + 1

)
< | f |2 on bD. (5.23)

Thirdly, the sequence of embeddings Fn = e−hn f : Dn ↪→ C
2∗ converges in the

weak C 1(D) topology to the map F = e−h f : D → C
2 of class A 1(D). Since
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A properly embedded holomorphic disc in the ball... 741

σ ◦ F = σ ◦ f : D → CP
1 is an immersion, F is an immersion on D. Lemma 5.2

shows that F is injective (hence an embedding) on every domain Dn , and therefore
also on D, provided that the approximation of Fn by Fn+1 is close enough in C 0(Dn)

for every n ∈ N (see (fn)). Note that conditions (5.7) holds in view of (5.23), and hence
F satisfies condition (5.9). It follows that the simply connected domain� (5.10) (with
R ⊂ � ⊂ � ⊂ D) is well defined, and the restricted map F |� : � ↪→ B

2 is a properly
embedded holomorphic disc. Since every map Fn : Dn → C

2 is transverse to bB
2,

the same is true for F : D → C
2 provided the approximation is close enough at every

step.
It remains to show conditions (α) and (β) in the lemma.
Given a sequence ε1 > ε2 > · · · > 0 with limn→∞ εn = 0, conditions (dn) and (en)

show that the sequence hn (5.21) can be chosen such that its limit h (5.22) satisfies

|h| < εn on Dn+1\Dn for all n ∈ N.

This implies that F(b�) ⊂ bB
2 consists of a pair of curves in the sphere which are

as close as desired to the curve f (R) ⊂ bB
2 in the fine C 0 topology. Since f (R) is

dense in bB
2, the same is true for F(b�) provided the approximation is close enough,

so condition (β) holds. (This argument is similar to the one in [12, proof of Theorem
VI.1].)

It remains to estimate the area of the disc F(�) ⊂ B
2. Set

c = max
{
|h̃′(z)| : z ∈ D1

}
(5.24)

where h̃ ∈ A 1(D1) is as in (5.22). Note that c > 0 can be made as small as desired by
choosing all termsof the sequence h̃n ∈ H +∗ small enough in theC 1(D1)norm.Recall
that h = h̃ ◦ � (see (5.22)). We have h′(z) = h̃′(�(z))� ′(z) and hence |h′(z)|2 ≤
c2|� ′(z)|2 for z ∈ D. Differentiation of F = e−h f gives F ′ = −e−hh′ f + e−h f ′.
Note that u > 0 and hence e−u < 1 on D. Recall also that | f |2 ≤ 2 on S (see (5.2)).
Using the inequality |a + b|2 ≤ 2(|a|2 + |b|2), which holds for any a, b ∈ C

n , we
thus obtain

Area(F(�)) =
∫

�

|F ′|2dxdy ≤ 2
∫

�

e−2u |h′|2| f |2dxdy + 2
∫

�

e−2u | f ′|2dxdy

≤ 4c2
∫

�

|� ′(z)|2dxdy + 2
∫

�

| f ′|2dxdy
= 4c2Area(�(�)) + 2Area( f (�)).

Since �(�) ⊂ �(D) = D, we have Area(�(�)) ≤ π , and hence the first term is
bounded by ε/2 if c > 0 is small enough. Lemma 5.1 shows that the second term can
be chosen < ε/2. This completes the proof of Lemma 5.3, and hence of Theorem 1.1.
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the question answered in the paper, Bo Berndtsson for the communication regarding the reference [4], Josip
Globevnik for helpful discussions and the reference to his work [12] with E. L. Stout, Finnur Lárusson for
remarks concerning the exposition, and Erlend F. Wold for the communication on Sect. 4.

References

1. Abraham, R.: Transversality in manifolds of mappings. Bull. Am. Math. Soc. 69, 470–474 (1963)
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