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ABSTRACT. In this paper we show that Mergelyan’s theorem holds for
maps from open Riemann surfaces to Oka manifolds. This is used to
prove the analogue of Arakelian’s theorem on uniform approximation of
holomorphic maps from closed subsets of plane domains to any compact
complex homogeneous manifold.
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1. INTRODUCTION

The goal of this paper is to extend some results of holomorphic approximation
theory to maps with values in complex manifolds. We focus on two classical ap-
proximation theorems: Mergelyan’s theorem [43], extended to compact sets in open
Riemann surfaces by E. Bishop [10], and Arakelian’s theorem [3].

Given a closed set F in a complex manifold X, we denote by &/ (F) the algebra
of all continuous functions on E which are holomorphic in the interior E. In a series
of papers beginning in 1964, N.U. Arakelian [3], [4], [5] proved that the following

conditions are equivalent for a closed set F in a domain X C C:

(a) Every function in &/ (E) is a uniform limit of functions holomorphic on X.
(b) The complement X*\ E of E in the one point compactification X* = XU{x}
of X is connected and locally connected.

A closed set E satisfying these equivalent conditions is called an Arakelian set in
X. When FE is compact, condition (b) simply says that X \ F is connected, and in
this case Arakelian’s theorem coincides with S. N. Mergelyan’s theorem [413].

In Section 4 we prove the following version of Arakelian’s theorem for maps from
plane domains into any compact complex homogeneous manifold. See also Theorem
5.3 and Corollary 5.4 for a generalisation to maps from more general open Riemann
surfaces.
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Theorem 1.1. Assume that Y is a compact complexr homogeneous manifold or
Y = C". If E is an Arakelian set in a domain X C C, then every continuous
map X — Y which is holomorphic in E can be approximated uniformly on E by
holomorphic maps X — Y.

If in addition M is a closed subset of Y of Hausdorff dimension < 2dimY — 2
then the approximating maps may be chosen to have range in'Y \ M.

As an interesting special case, we see that Arakelian’s theorem holds for maps
from plane domains into any projective space CP".

The distance between maps into Y is measured with respect to a fixed Riemann-
ian metric on Y; due to compactness any two such metrics are comparable, and
hence the statement of the theorem is independent of the choice of the metric. On
C™ we use the standard Euclidean metric. The main case is when M = &; the
result for maps into Y\ M follows by applying the transversality theorem, moving
the map slightly so that the image misses M (see Lemma 4.2). By topological
reasons it is necessary to assume that the map E — Y to be approximated extends
to a continuous map X — Y.

Global approximation theorems, such as Theorem 1.1, fail in general without
assuming a suitable holomorphic flexibility property of the target manifold. (A
discussion of flexibility properties of complex manifolds can be found in [24, Chap-
ter 7].) In particular, if Y is Kobayashi hyperbolic then a nonconstant holomorphic
map from the disc into Y cannot be approximated by holomorphic maps C — Y.
It is likely impossible to characterize the class of compact complex manifolds Y
for which Theorem 1.1 holds. Natural candidates are Oka manifolds. A complex
manifold Y is said to be an Oka manifold if the Runge approximation theorem
holds for maps X — Y from any Stein manifold X (or, more generally, from any
reduced Stein space), with approximation on compact O(X)-convex subsets of X.
(For Y = C, this is the Oka—Weil theorem.) For the precise statement, see [24, The-
orem 5.4.4] and its corollaries. Introductory surveys of Oka theory can be found in
[23], [25]. Every complex homogeneous manifold is an Oka manifold according to
Grauert [33] (see also [24, Proposition 5.6.1]). Although we do not know whether
Theorem 1.1 holds for maps to all Oka manifolds, we will show that Mergelyan’s
theorem does.

If K is a compact set in a Riemann surface X then a relatively compact connected
component of X \ K is called a hole of K (in X). The theorem of S. N. Mergelyan
[13] from 1951, extended to open Riemann surfaces by E. Bishop [10] in 1958, says
that for any compact set K without holes in an open Riemann surface X, every
function f € &/(K) is a uniform limit of functions in O(X). With the aid of a
theorem of E. Poletsky [44] (see Theorem 2.2) we obtain the following extension of
Mergelyan’s theorem to maps into Oka manifolds. This provides the induction step
in the proof of Theorem 1.1 (see Section 4).

Theorem 1.2 (Mergelyan theorem for maps from Riemann surfaces to Oka mani-
folds). Assume that K is a compact set without holes in an open Riemann surface
X, and let Y be an Oka manifold. Then, every continuous map f: X — Y which
is holomorphic in K can be approzimated uniformly on K by holomorphic maps
X — Y homotopic to f.



MERGELYAN’S AND ARAKELIAN’S THEOREMS FOR MANIFOLD-VALUED MAPS 467

We also have a local Mergelyan approximation theorem for maps into an arbi-
trary complex manifold. Let us recall the following notion.

Definition 1.3. A compact set K in a Riemann surface X has the Mergelyan
property (also called the Vitushkin property) if every function in &/ (K) can be
approximated uniformly on K by functions holomorphic in open neighborhoods of
K in X.

Theorem 1.4 (Local Mergelyan theorem for manifold-valued maps). If X is a
Riemann surface and K is a compact set in X with the Mergelyan property, then
K also has the Mergelyan property for maps to an arbitrary complex manifold Y :
every continuous map f: K — Y which is holomorphic in K can be approrimated
uniformly on K by holomorphic maps U = Uy =Y from open neighborhoods of K
mn X.

Theorems 1.2 and 1.4 are proved in Section 2.

In view of Runge’s theorem [48], a compact set K in C has the Mergelyan
property if and only if &/ (K) equals Z(K), the uniform closure in € (K) of the
space of rational functions with poles off K. A characterization of this class of plane
compacts in terms of the continuous analytic capacity was given by A. G. Vitushkin
in 1966 [53], [541]. See also the exposition in T. W. Gamelin’s book [28].

Earlier instances of Mergelyan’s theorem for manifold-valued maps from com-
pact sets in C were obtained by K. Ké&nigsberger (1986) (for maps to complex Lie
groups; his paper is mentioned in [17] and [55], but is not listed by MathSciNet
or Zentralblatt), T. Dietmair [17] (for maps to complex homogeneous manifolds),
and J. Winkelmann [55] (for maps to C? \ R?, and to C™ \ A where A is a closed
subset of C™ of Hausdorff dimension < 2n —2). The first two mentioned results are
special cases of Theorem 1.2 since every complex homogeneous manifold is Oka.
This is not the case for Winkelmann’s theorem concerning maps to the domain
C2 \ R2, which is not known to be Oka. Mergelyan’s theorem for ¥* functions
(ke N={1, 2,...}) on compact sets in C was proved by J. Verdera in 1986, [52],
who showed that for every compact set K in C and compactly supported function
f € €*(C) such that 0f/0Z vanishes on K to order k—1, f can be approximated in
%€*(C) by functions holomorphic in neighborhoods of K. Verdera’s result extends
to manifold-valued maps by the proof of Theorem 1.4.

Some Mergelyan type approximation theorems are also known for maps from
higher dimensional Stein manifolds. For example, if D is a relatively compact
strongly pseudoconvex domain in a Stein manifold X and Y is an arbitrary complex
manifold, then any map D — Y of class &/*(D, Y) forsome k € Z, = {0, 1,2, ...}
can be approximated in the €% topology by maps holomorphic in open neighbor-
hoods of D in X (see [19, Theorem 1.2] and [24, Theorem 8.11.4]). Approximation
of manifold-valued maps on Stein compacts of the form K U M, where K is a Stein
compact and M is a totally real submanifold, was obtained in [21, Theorem 3.2].
See also [24, Corollaries 5.4.6, 5.4.7 and Theorem 8.11.4] and the survey [20] by
J. E. Fornaess, E. F. Wold and the author.

It is natural to ask whether Arakelian’s theorem, and its extensions presented
in this paper, holds for maps from more general open Riemann surfaces. In 1975,
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P. M. Gauthier and W. Hengartner [32] proved that Arakelian’s condition (the com-
plement X* \ E of E in the one point compactification X* = X U {x} of X is
connected and locally connected) is necessary for uniform approximation of func-
tions on a closed subset F in an arbitrary connected open Riemann surface X,
but the converse fails in general. Several sufficient conditions can be found in the
papers by P. M. Gauthier [31] and A.Boivin and P. M. Gauthier [12, pp. 119-121].
In Section 5 we give a sufficient condition on an open Riemann surface X (see Def-
inition 5.2) which makes it possible to prove the Arakelian theorem for maps from
X to compact homogeneous manifolds (see Theorem 5.3 and Corollary 5.4).

It is also natural to ask whether Arakelian’s theorem holds for certain closed
subsets F in pseudoconvex domains X C C™ for n > 1, or in more general Stein
manifolds. A special case studied in the literature are closed sets of the form
E = KUM, where K is a compact O(X)-convex subset of X and M is a (possibly
stratified) totally real submanifold of X. Assuming that E = K U M as above is
O(X)-convex and has the bounded exhaustion hulls property (see Definition 5.1),
Carleman type approximation theorems for functions in the fine topology on E
were obtained by P.Manne [41], P.Manne, E.F. Wold, and N.@vrelid [42], and
B.S.Magnusson and E.F.Wold [10]. Recently, B. Chenoweth [14] extended these
results to maps with values in an arbitrary Oka manifold. On the other hand,
nothing seems known about uniform approximation on closed sets E whose interior
E fails to be relatively compact. The main problem seems to be lack of holomorphic
integral kernels with properties comparable to those of the Cauchy-Green kernel in
the plane. Such kernels have been constructed on strongly pseudoconvex domains
by G.M. Henkin [35] and E. Ramirez de Arellano [15] (see also [26, Section 3] and
the monographs [36], [39], [16]). Unlike the Cauchy—Green kernel, Henkin-Ramirez
kernels depend on the domain, and it seems difficult, if not impossible, to apply
them in Arakelian type approximation.

We wish to draw reader’s attention to the recent survey [20] of holomorphic
approximation theory, with emphasis on generalisations of Runge’s, Mergelyan’s,
Carleman’s and Arakelian’s theorems to higher dimensional domains and manifold-
valued maps.

2. PRELIMINARIES

Let X be a complex manifold. We denote by € (X) and O(X) the Frechét
algebras of all continuous and holomorphic functions on X, respectively; these
spaces carry the compact-open topology. Given a compact set K in X, we denote by
¢ (K) the Banach algebra of all continuous complex valued functions on K endowed
with the sup-norm, by O(K) the algebra of all functions f that are holomorphic
in a neighborhood Uy C X of K (depending on the function) with inductive limit
topology, and by O(K) the uniform closure of {f|x: f € O(K)} in €(K). By
&/ (K') we denote the closed subalgebra of € (K') consisting of all continuous function
K — C which are holomorphic in the interior K. Ifre {0, 1,2, ..., 00}, we let
€™ (K) denote the space of all functions on K which extend to r-times continuously
differentiable functions on X, and " (K) = ¢7(K) N O(K). Given a complex
manifold Y, we use the analogous notation O(X, Y), O(K,Y), & (K, Y), etc., for
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the corresponding classes of maps into Y. Furthermore, we denote by
6loc (Ka Y)

the set of all maps f € &/ (K, Y) which are locally approximable by holomorphic
maps, in the sense that every point x € K has an open neighborhood U C X such
that f|rnp € O(K NU). (Note that uniform approximability on a compact set
is independent of the choice of a Riemannian distance function on Y.) We have
natural inclusions

{flk: FEOK,Y)} CO(K,Y) C Ol (K, Y) C (K, Y).

When Y = C, we delete it from the notation.
We say that the space &/ (K, Y') enjoys the Mergelyan property if

(K, Y)=0(K,Y), (2.1)

and that it enjoys the local Mergelyan property if
O1c(K,Y)=d(K,Y). (2.2)
According to Bishop’s localization theorem [11], the Mergelyan property for func-

tions on a compact set K in a Riemann surface X is localizable:

Given [ € E€(K), if every point x € K has a compact neighborhood D, C X
such that f|xnp, € O(K N D), then f € O(K).

The following converse result is due to A.Boivin and B. Jiang [13, Theorem 1]:

Let E be a closed subset of a Riemann surface X. If o/ (E) = O(E), then
o/ (EN D)= O(EN D) holds for every closed parametric disc D C X.

Recall that a closed parametric disc is the preimage D = ¢~1(A) of a closed disc
A C ¢(U) C C, where (U, ¢) is a holomorphic chart on X.

For compact sets K in C we have O(K) = #(K) by Runge’s theorem, and
hence the Mergelyan property o/ (K) = O(K) is equivalent to «/(K) = Z(K).
This property of K was characterized by Vitushkin [53] in terms of continuous
analytic capacity.

The following observation amounts to a standard application of the Bishop—
Narasimhan—-Remmert embedding theorem (see [24, Theorem 2.4.1]) and the Doc-
quier-Grauert tubular neighborhood theorem (see [18] or [24, Theorem 3.3.3]).

Lemma 2.1. Assume that K is a compact set in a complex manifold X satisfying
the Mergelyan property for functions: O(K) = &/ (K). LetY be a complex manifold,
and assume that f € o (K, Y) satisfies one of the following conditions.

(a) The image f(K) CY has a Stein neighborhood in'Y .
(b) The graph Gy = {(z, f(z)): @ € K} has a Stein neighborhood in X x Y.

Then, f € O(K,Y).

Proof. Assume that condition in (b) holds. We embed a Stein neighborhood of
the graph G as a complex submanifold ¥ of a Euclidean space CV, apply the
hypothesis O(K) = «/(K) componentwise, and compose the resulting maps into
C¥ (which are holomorphic in open neighborhoods of K) with a holomorphic re-
traction onto ¥. This gives a sequence of approximating holomorphic maps from

open neighborhoods of K into Y. A similar argument applies in case (a). U
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Recall that a compact set K in a complex manifold X is said to be a Stein
compact if K admits a basis of open Stein neighbourhoods in X. The following
theorem is due to E.Poletsky [44, Theorem 3.1]; see also [20, Theorem 32] and the
related discussion.

Theorem 2.2 (Poletsky [44]). Let K be a Stein compact in a complex manifold X,
and let Y be an arbitrary complex manifold. For every f € O\oo(K,Y) the graph
of f on K is a Stein compact in X X Y. In particular, if o/ (K,Y) has the local
Mergelyan property (2.2), then the graph of every map f € </(K,Y) is a Stein
compact in X X Y.

Poletsky’s proof uses the technique of fusing plurisubharmonic functions. It is
similar in spirit to the proofs of Y.-T.Siu’s theorem [50] on the existence of open
Stein neighborhoods of Stein subvarieties, given by M. Coltoiu [15] and J.-P. De-
mailly [16]. (See also [24, Section 3.2].) In the special case when K is the closure
of a strongly pseudoconvex domain in a Stein manifold, it was proved beforehand,
and by a different method, that the graph of any map f € &/(K,Y) is a Stein
compact in X x Y (see [22, Corollary 1.3]).

Proof of Theorem 1.4. Since every open Riemann surface is a Stein manifold (see
H.Behnke and K. Stein [9]), any compact subset K of an open Riemann surface X
is a Stein compact. Let f € &/(K,Y). Pick a point p € K and choose a closed
parametric disc D C X around p. According to the theorem of Boivin and Jiang [13,

Theorem 1] mentioned above, the assumption o7 (K) = O(K) implies &/ (K N D) =
O(KND). By choosing D small enough, f(K N D) lies in a Stein domain in Y, and
Lemma 2.1 implies that f is approximable uniformly on K N D by maps that are
holomorphic in neighborhoods of KN D. This shows that f € Ojc(K, Y). Theorem
2.2 implies that the graph of f over K has a Stein neighborhood in X x Y, and

Lemma 2.1 shows that f € O(K, Y). O
Proof of Theorem 1.2. Since K has no holes in X, Bishop-Mergelyan theorem [10],

[13] shows that «/(K) = O(K). Theorem 1.4 implies that «/(K,Y) = O(K, Y)
holds for every complex manifold Y. Assume now that Y is an Oka manifold and
that f € &/ (K,Y) extends to a continuous map f: X - Y. Let g: U —» Y be a
holomorphic map in a neighborhood of K approximating f uniformly on K. By
gluing g with f on U \ K we obtain a continuous map §: X — Y which agrees
with ¢ in a smaller neighborhood of K and is homotopic to f. It follows from Oka
theory (see [24, Theorem 5.4.4]) that |k is a uniform limit of holomorphic maps

F: X — Y homotopic to g, and hence to f. O

Remark 2.3. Poletsky stated the following [44, Corollary 4.4]:

(*) If K is a Stein compact in a complex manifold X such that o/ (K) has the
Mergelyan property, then o/ (K,Y) has the Mergelyan property for any complex
manifold Y.

The proof in [44] tacitly assumes that under assumptions of the corollary the
space &/ (K, Y) has the local Mergelyan property, but no explanation for this is
given. As pointed out in the proof of Theorem 1.4, this holds for compact sets in
Riemann surfaces in view of the theorem of Boivin and Jiang [13, Theorem 1]. It
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is easily seen that o/ (K, Y) has the local Mergelyan property when the set K has
%! boundary.

We refer the reader to [20, Section 7.2] for a more complete discussion of Mer-
gelyan type approximation theorems for manifold-valued maps. O

3. A SPLITTING LEMMA ON CLOSED CARTAN PAIRS IN C

In this section we prepare an important technical tool that will be used in the
proof of Theorem 1.1; see Lemma 3.3. We begin by introducing appropriate geo-
metric configurations of closed sets in Riemann surfaces.

Definition 3.1. Let X be a Riemann surface. A pair of closed subsets (A, B) of
X is a Cartan pair if it satisfies the following two conditions.

(a) The set K = AN B is compact.
(b) AABNn B\A=2.

The sets A and B in the above definition need not be compact. This is a variation
of the usual notion of a Cartan pair (see [24, Definition 5.7.1]).

We denote by Tk the Cauchy-Green operator with support on a compact set
KcC:

Tk(g9)(z) = l/ 9(Q) dudv, z€C, (=u+iv. (3.1)
T Jkz=¢
Recall that for any g € LP(K), p > 2, Tk(g) is a bounded continuous function
on C that is holomorphic on C\ K, vanishes at infinity, and satisfies the uniform
Holder condition with exponent o = 1 — 2/p; furthermore, T : LP(K) — €*(C) is
a continuous linear operator. (See L. Ahlfors [2, Lemma 1, p.51] or A.Boivin and
P. Gauthier [12, Lemma 1.5].) In particular, Tx maps % (K) boundedly into the
space 6,(C) of bounded continuous functions on C endowed with the supremum
norm. Moreover, d Tk (g) = g holds in the sense of distributions, and in the classical
sense on any open subset ) C C where g is of class €. (For the precise Ahlfors—
Beurling estimate of Tk in terms of the area of K, we recommend the paper by
T. W. Gamelin and D. Khavinson [29]. Another excellent source for this topic is the
book [7] by K. Astala, T.Iwaniec and G. Martin; see in particular Section 4.3.)
The following lemma provides a solution of the Cousin-I problem with bounds
on a Cartan pair in a plane domain.

Lemma 3.2. Let (A, B) be a Cartan pair in a domain X C C and set K = ANB.
There ezist bounded linear operators A: o/ (K) — «/(A), B: (K) — «/(B),
satisfying

g=A(g) —B(g) for everyge o (K). (3.2)

Proof. By condition (b) in Definition 3.1 there is a smooth function x: X — [0, 1]
such that y = 0 in a neighborhood of A\ B and x = 1 in a neighborhood of B\ A.
For any g € &/(K), the product xg extends to a continuous function on A that
vanishes on A\ B, and (x—1)g extends to a continuous function on B that vanishes
on B\ A. Furthermore,

Ad(xg) =9((x —1)g) = gdx
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is a continuous function on K which is smooth on K (note that dx(z) = dx/0z
is smooth). Since Jx vanishes on A\ B U A\ B, we see that g0y extends to a
continuous function on A U B which is smooth in the interior and supported in K.
Set

Alg) = x9 — T (90x), B(g) = (x — 1)g — Tx(99x).
By the properties of the Cauchy—Green operator Tk (3.1), A and B are sup-norm

bounded linear operators </ (K) — €(C), A(g)la € «/(A), B(g)|p € «/(B), and
(3.2) holds. O

Given a compact subset K of C and an open set W C C™, we consider maps
v: K xW — K x C" of the form

v(z, w) = (2, g(z, w)), z€K, weW, (3.3)

where g = (g1, ..+, gn): K x W — C". We say that ~ is of class & (K x W) if g
is continuous on K x W and holomorphic in K x W. Let Id(z, w) = (z, w) denote
the identity map on C x C™. With ~ as in (3.3) we set

dist g w (7, 1d) = sup{|g(z, w) —w|: z € K, w € W}.

Lemma 3.3. Let (A, B) be a Cartan pair in a domain X C C (see Definition 3.1).
Set K = AN B. Given a bounded open conver set 0 € W C C™ and a number
€ (0, 1), there is a 6 > 0 satisfying the following property.
For every map v: K x W — K x C™ of the form (3.3) and of class o/ (K x W),
with distg «w (7, Id) < §, there exist maps

ay: AxrW = AxC", By: BxrW — BxC",

of the form (3.3) and of class o/ (A xrW) and o/ (B x rW), respectively, depending
smoothly on vy, such that ayq = 1d, Biq = Id, and

yoay =, holds on K x rW.

Proof. This is a version of [24, Proposition 5.8.1], where the reader can find ref-
erences to the original sources. Its proof is obtained by following the proof of the
cited result and using Lemma 3.2. For the application of the latter lemma, note
that the linear operator T (3.1), and hence also the operators .4, B in Lemma 3.2,
can also be applied to functions g(z, w) as in (3.3) depending holomorphically on
a parameter w € W C C™. Indeed, the function Tk (xg(-, w)) € €(C) depends
holomorphically on w if g does since the cut-off function y is independent of the w
variable. It follows that A(g) and B(g) in (3.2) also depend holomorphically on w.
This gives the exact analogue of [24, Lemma 5.8.2] on any Cartan pair (A, B) in
a plane domain X C C. By using this result, Lemma 3.3 is obtained by following
the proof of [24, Proposition 5.8.1] step by step. O

The following lemma provides a continuous gluing of an approximating map on
a closed subset with the given globally defined map.

Lemma 3.4. Given a compact €' manifold Y with a Riemannian distance func-
tion disty, there is a number r > 0 such that the following holds. If E is a closed
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subset of a manifold X, f: X =Y is a continuous map, and g: E — Y is a contin-
uous map satisfying sup,¢ g disty (g(z), f(x)) < r, then there exists a continuous
map §: X — Y that agrees with g on E and is homotopic to f.

Proof. We embed Y as a €' submanifold of a Euclidean space RY. There is an
open tubular neighborhood Q C RY of Y and a retraction p: Q — Y. Since Y is
compact, there is a number r > 0 such that for every point y € Y the Euclidean
ball BY(y, r) € RY is contained in €. Since any two distance functions on a
compact manifold are comparable, it suffices to prove the lemma with disty being
the restriction of the Euclidean distance function on R to Y and the number 7
defined above. We consider f and g as maps to RY with range contained in Y.
Assume that sup,cp |f(z) — g(z)| < r. By Tietze’s theorem, we can extend g to a
continuous map g; : X — RY. By continuity there is an open neighborhood U C X
of E such that sup,c; |f(x) — g1(x)] < r. Let x: X — [0, 1] be a continuous
function which equals 1 on E and satisfies supp(x) € U. The map h = xg1 +
(1 —x)f: X — RY then agrees with g on E, with f on X \ U, and it satisfies
sup,cx |f(z) —h(z)| < r. Furthermore, hy = th+ (1 —t)f: X — R" is a homotopy
from h = hy to f = hg such that sup,cy |f(x) — he(z)| < r for all for t € [0, 1].
In particular, the homotopy h; has range in 2. The map g = poh: X — Y and
the homotopy §; = pohs: X — Y for t € [0, 1] then satisfy the conclusion of the
lemma. ]

4. PROOF OF THEOREM 1.1

We begin by recalling a more convenient interpretation of Arakelian’s condition
on a closed set F in a domain X C C. For simplicity of exposition we shall consider
the case X = C, noting that the arguments adapt easily to an arbitrary domain
in C.

Given a closed set E C C, we denote by Hg the union of all its holes. (Recall
that a hole of E is a relatively compact connected component of its complement

C\E)

Definition 4.1 (Bounded exhaustion hulls property). A closed set E in C has
the bounded exhaustion hulls property (BEH) if the set Hgua is bounded for every
closed disc A in C.

It is well known and easily seen that a closed subset £ C C with connected
complement enjoys the BEH property if and only if CP* \ E is locally connected at
0o = CP'\ C, i.e., E is a Arakelian set.

Proof of Theorem 1.1. We follow the scheme of proof of Arakelian’s theorem given
by Rosay and Rudin [17] (1989), adapting it to manifold-valued maps.

In the special case when Y = C™ the theorem holds by applying the original
Arakelian’s theorem componentwise, using also Lemma 4.2 below to obtain a map
whose image avoids a given set M C C™ as in the statement of the theorem.

From now on we assume that Y is a compact homogeneous manifold.

Since the set E C C has connected complement and enjoys the BEH property,
we can inductively find a sequence of closed discs A; C Asy C --- C U?; A; =C
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such that, letting H; = Hrua, denote the union of holes of U A;, we have that
AV Uﬁi C Ai+1 fori=1,2,.... Set

E():E, EZ:EUAZUHZ fori:1,2,.... (41)
Note that E; is a closed Arakelian set in C and we have that

E; C Eiy1, E\Ag1=Ei\ Ay, U E; =C.
i=0

The situation is illustrated in Fig. 4.1, where the disc A will be chosen in (4.9).

FIGURE 4.1. Sets in the inductive step

Let f = fo: C — Y be a continuous map such that fo|p € #(FE). Fix a
Riemannian distance function disty on Y. (Since Y is compact, any two such
metrics are comparable to each other, so a particular choice will not matter.) We
must show that for every € > 0 there is a holomorphic map F': C — Y such that

sup disty (f(2), F(2)) <. (4.2)
z€E
We assume that 0 < ¢ < r, where r» > 0 is the number for which Lemma 3.4 holds.

We shall inductively construct a sequence of continuous maps f;: C - Y (i =

1,2, ...) such that f;|g, € &(E;, Y) and the following estimates hold:

disty (fi(2), fi_1(2)) <27%, z¢€ E;_4. (4.3)

Since the sets E; exhaust C, the sequence f; converges uniformly on compacts in
C to a holomorphic map F = lim; ., f;: C — Y satisfying (4.2).

We begin with technical preparations. We shall be using the method of gluing
holomorphic dominating fibre-sprays, suitably adapted to the case at hand. For
general background and further details of this technique we refer the reader to [24,
Chapter 5].

Recall that the manifold Y is assumed to be complex homogeneous, i.e., Y =
G/H where G is a complex Lie group and H is a complex Lie subgroup of G. Let
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g = C" (n = dimG) denote the Lie algebra of G, and let exp: g — G be the
associated exponential map. Note that the holomorphic map s: Y x g — Y defined
by

s(y, t) =expt-y, yev, teg, (4.4)
satisfies s(y, 0) = y and its partial differential
Is(y, 1)
_— :g=C"—>1T,)Y 4.5
ot o g y (4.5)

is surjective for every point y € Y. Thus, s is a dominating sprayon Y defined on the
trivial bundle Y x g =2 Y x C". (See Gromov [34, 4.6B] or [24, p. 231] for the notion
of dominating sprays and elliptic manifolds. These notions are briefly recalled in
Section 6.) By compactness of Y there are positive constants ¢y > 0, ¢; > 0 such
that

disty (y, s(y, t)) < alt|, yeY, teC” [t <co. (4.6)

Set Y/ := C x Y and denote its elements by ¢y = (z, y), with z € C and y € Y.
The projection
Y = C, w(zvy) =z,

is a trivial fibre bundle over C with fibre Y. Let £ = Y’ x C" denote the trivial rank
n complex vector bundle over Y. We identify Y’ with the zero section Y’ x {0}"
of £&. Given a point ¥’ € Y’ we denote by 0,, € £ the zero element of the fibre
&y = C". Note that for any vector bundle & — Y”, the restriction T'€|y+ of the
tangent bundle of the total space to the zero section Y is isomorphic to the direct
sum TY' & £.

The spray map s (4.4) defines the dominating fibre-spray o: £ — Y’ associated
to the trivial fibration 7: Y/ — C, by

U(Za Y, t) = <Z7 S(ya t))v S (Ca Yy e Y7 teCm. (47)

The domination property of o refers to the fact that for any point ' = (2, y) € Y7,
the restriction of the differential

dO’o,ZTo,(c/‘:T/Y/EB(SI%T/Y/ 4.8
Y Y Y Y Y

to the fibre £, = C™ maps C” surjectively onto the tangent space at ' = (z, y) to
the fibre 771(2) 2 Y of the projection 7: Y’ — C (this follows from the domination
property (4.5) of the spray s). This restriction is called the wertical derivative of
the fibre-spray o. For further details on dominating fibre-sprays we refer to [24,
Section 6.1].

We are now ready to explain the induction step i — 1 — 4.

Assume that f;_;: C — Y is a continuous map such that f;_1|g,_, € & (E;—1).
Recall that A; U H,; C Ai+1. Pick a closed disc A in C such that

A; Uﬁl CAC Ai—l—l- (49)
(See Fig. 4.1.) Since E; = EUA; U H; (see (4.1)), it follows from (4.9) that
ENA=FE,_ 1 \A=F\A. (4.10)
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Since F;_; has no holes, E;_1 N A;11 has no holes either. As Y is complex homo-
geneous and hence an Oka manifold, Theorem 1.2 (Mergelyan’s theorem for maps
to Oka manifolds) furnishes for any ¢ > 0 a holomorphic map h: C — Y satisfying

diSty(fifl(Z), h(Z)) < c, zeFk;,_1N AiJrl. (411)

The precise value of the constant ¢ will be determined later.
Consider the compact set

K= Ei—l N Ai+1 \A =FN Ai+1 \A, (412)

where the last identity follows from (4.10). (See Fig.4.1.) Since E has no holes,
K has no holes except perhaps A (this happens for example if E contains the disc
A;t1). Therefore, K enjoys the local Mergelyan property (see (2.2)). By Theorem
2.2 it follows that the graph

I'={(z, fi—c1(2)): 2€e K} CCxY (4.13)

of the map f;_1 on K admits an open Stein neighborhood Q C Y’ =C x Y.
Consider the subset &£ of the trivial bundle £ =Y’ x C" defined by

95y, ) :0}. (4.14)
t=0

E’:{(z,y,t):ze(c, yeY, teC, 5

(We have identified C™ with its tangent space ToC™ at the origin, considered as a
vector subspace of Ty, (Y xC").) Since the partial differential ds(y, t)/0t|;=o: C" —
T,Y is surjective for every y € Y (see (4.5)), £ is a holomorphic vector subbundle
of £. Since the domain 2 C Y’ is Stein, Cartan’s Theorem B shows that

Ela :5,|Q@8H (4.15)

for some holomorphic vector subbundle £” of &|q = N x C™ (see [24, Corollary
2.6.6]). It follows from (4.14) and (4.15) that for each point ' = (z, y) € Q the
restriction of the differential dog , (4.8) to the fibre £, maps £, isomorphically onto
T,Y. We claim that, as a consequence of this and the implicit function theorem,
there exist a smaller neighborhood Q' C Q of T' in C X Y, a neighborhood 0 € W C
C™, and a holomorphic map

G:Z={(z,y1, 92, t): (z, 1), (2, 92) €V, teW} - C"
satisfying
oz, y1, t) = O’(Z, Y2, G(z, y1, Y2, t)), (z, Y1, Y2, t) € Z, (4.16)
and
Gz, y,y, t)=t, (2,9)eQ, teW. (4.17)

Let us explain the construction of G. Given t € C™ and a point ' = (2, y) € Q we
let
oy " / "
t - ty/ @ ty/ 6 gyl @ gy/
be the decomposition corresponding to the holomorphic direct sum (4.15). Choosing
the neighborhoods €' and W as above and small enough, the implicit function
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theorem furnishes a unique map G of the form
G(Z7 Y1, Y2, t) = t,(z,yQ) @ GH(Z7 Y1, Y2, t) € g(/z,yg) @gll (Cn

(z.y2) —
satisfying conditions (4.16) and (4.17).
Recall that h: C — Y is a holomorphic map satisfying condition (4.11). Choosing
the constant ¢ > 0 in (4.11) small enough and inserting the values y; = f;_1(z) and
ya = h(z) (z € K) into the map G, we obtain the map

g(z, t) := G(z, fi—1(2), h(z),t) €eC", ze K, teW, (4.18)
of class &/ (K x W) which, in view of (4.16), satisfies the condition
U(Z7 fifl(z)a t) = U(Za h(2)7 g(Za t))v S Ka teWw. (419>

Consider the Cartan pair decomposition (4, B) of F; = AU B defined by
A=E\A=E\A, B=E;NAi4
(See Definition 3.1 and Figure 4.1.) From (4.10) and (4.12) we see that
ANB=E;N(A1 \A)=EN (A1 \A) = K.

Pick a number 0 < rg < 1. Assuming as we may that the holomorphic map
h: C —Y is sufficiently uniformly close to f;—1 on K (see (4.11)) and g is given by
(4.18), the map v: K x W — K x C™ of class &/ (K x W), defined by

Y(z, t) = (2, g(z, t), ze€K, teW, (4.20)

is close to the identity map on K x W in view of (4.17), with disty (7, Id) depending
on the constant ¢ > 0 in (4.11). By choosing ¢ small enough, Lemma 3.3 furnishes
maps
alz, t) = (z, a(z, t), z€ A, teryW,
B(z,t) = (2, b(2, 1)), z€B, temrW,

of class & (A x roW) and o7 (B x roW), respectively, uniformly close to the iden-
tity on their respective domains (depending on the constant ¢ > 0 in (4.11)) and
satisfying

(4.21)

yoa=ph onK x roW. (4.22)
From (4.7), (4.19), (4.20), (4.21), and (4.22) it follows that
s(fi—1(2), a(z, 1)) = s(h(2), b(z, t)) €Y, z€ K, terW.
The two sides of the above equation define a map f;: E; — Y of class & (E;) given
by

fi(z) = s(fi-1(2), a(z,0)) ifz € A,
1 s(R(z), b(z, 0)) if z € B.

From (4.6) and the construction of f; we see that the estimate (4.3) holds provided
the constant ¢ > 0 in (4.11) is chosen small enough.

Finally, applying Lemma 3.4 we may extend f; from FE; to a continuous map
fi: C = Y. This concludes the induction step and proves the theorem for maps
to any compact complex homogenous manifold Y. For the last part, we need the
following lemma due to J. Winkelmann [55, Proposition 2.1].
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Lemma 4.2. Assume that Y = C™, or that Y is a compact homogenous manifold
of dimension m. Let M be a closed subset of Y of Hausdorff dimension < 2m — 2k
for some k =1,..., m —1. Then for any complex manifold X of dimension k,
every holomorphic map X — Y can be uniformly approxrimated by holomorphic

maps X - Y \ M.

Proof. Let s: £ =Y x C* — Y be a dominating spray of the form (4.4) on Y
for some n > m. (If Y = C™, we may use the spray £ = C™ x C™ — C™,
s(z,t) = z+t.) Given a holomorphic map f: X — Y, we consider the map
f: X x C" =Y defined by
flz, t)=s(f(z), t)eY, zeX, teC"

By compactness of Y and the domination property of the spray s there is a ball
W C C" around the origin such that the partial differential of f with respect to
the variable t is surjective at all points (z,t) € X x W. It follows that for a
generic t € W the map f; = f(, t): X — Y misses M by dimension reasons (see
R. Abraham [1]). By choosing ¢ close to 0, f; approximates f uniformly on X. This
proves the lemma. O

This completes the proof of Theorem 1.1. O

5. ARAKELIAN’S THEOREM ON MORE GENERAL OPEN RIEMANN SURFACES

We now inspect and conceptualise the above proof to see under which conditions
on an open Riemann surface X and a closed subset E C X does Theorem 1.1 hold.
Given a compact set K in a complex manifold X, its O(X)-convex hull is

K ={ze X:|f(2)| <sup|f| for all f € O(X)}.
K

The set K is said to be O(X)-convex if K = K. If X is an open Riemann surface
then K is the union of K with all its holes (see H. Behnke and K. Stein [0]). Sim-
ilarly, one defines the O(X)-convex hull of a closed subset E C X by E = U, E;
for any normal exhaustion Fy C Ey C --- C Ufil FE; = E by compact subsets; the

result is independent of the choice of exhaustion. (See [12, Definition 2.1] or [14,
Section 2.1].) We also define

hE)=E\E. (5.1)

In an open Riemann surface X, h(E) is the closure of the union of all holes of E.
The following notion is due to P. Manne, E. F. Wold, and N. @vrelid [42, Defini-
tion 2.1]; see also [410] and [14, Section 2.1].

Definition 5.1. A closed subset E of a Stein manifold X is said to have bounded
exhaustion hulls property if there is a normal exhaustion Ky C Ko C --- C |, K; =
X by compact O(X)-convex sets such that the set h(E U K;) is compact for every
i=1,2,....

For closed sets in X = C, this coincides with Definition 4.1. Just as in this special
case, a closed set E in an open Riemann surface X is an Arakelian set (i.e., the



MERGELYAN’S AND ARAKELIAN’S THEOREMS FOR MANIFOLD-VALUED MAPS 479

complement of E in the one point compactification of X is connected and locally
connected) if and only if E = F and E has bounded exhaustion hulls property.

Given a compact set K in an open Riemann surface X, we denote by €% (K) the
space of (0, 1)-forms with continuous coefficients on K, endowed with the supremum
norm. Choose a nowhere vanishing holomorphic 1-form 6 on X (see [24, Theorem
5.3.1 (c)]). Then, the map € (K) 3 g — gf € €% (K) is an isomorphism of Banach
space.

We now introduce the key analytic condition used in our proof of Arakelian’s
theorem. We denote by %,(X) the Banach space of bounded continuous functions
on X endowed with the supremum norm.

Definition 5.2. An open Riemann surface X satisfies Condition BH if for every
compact set K in X there is a bounded linear operator Tk : €% (K) — %,(X)
satisfying the following two conditions.

(1) For every g € €%1(K) we have 0Tk (g) = g in the sense of distributions,
where we take g = 0 on X \ K (so the function Tk (g) is holomorphic there).

(2) Tk is a holomorphic operator in the following sense: if g(-, w) € €% (K)
is a family depending holomorphically on a parameter w € W C C", then
Tk (g(-, w)) € 6(X) also depends holomorphically on w.

The acronym BH in the above definition stands for bounded holomorphic, the
two key properties of operators Tx. On any domain X C C the Cauchy—Green
operator Tk (3.1) satisfies these and even stronger conditions as discussed in the
Introduction. We shall consider further examples on more general Riemann surface
below.

Theorem 5.3. Let X be an open Riemann surface satisfying Condition BH (see
Definition 5.2), and let E C X be a closed Arakelian set. If Y is a compact complex
homogeneous manifold, then every continuous map X — Y that is holomorphic in
E can be approzimated uniformly on E by holomorphic maps X — Y.

Proof. The assumption that E is Arakelian means that E is O(X)-convex and has
bounded exhaustion hulls property (see Definition 5.1). For any compact set K C
X, the set h(EUK) (see (5.1)) is compact, and the hull EUK = EUKURFEUK)
is closed and O(X)-convex (see [14, Lemma 3]). Hence, we can find a sequence of
compact, smoothly bounded, O(X)-convex subsets Ay C Ay C --- C U2, Ay =X
such that, letting H; = h(EUA;) (see (5.1)), we have A; UH; C A;4q for all i € N.
Asin (4.1) we set

Ey=E, E=EUANUH =EUA;, i=1,2 ... (5.2)

We now apply the inductive construction in the proof of Theorem 1.1. Condition
BH ensures that Lemma 3.2 remains valid, with the same proof. The same holds
for Lemma 3.3 whose proof uses Lemma 3.2 and the assumption that the operator
Tk is holomorphic in the sense of condition (2) in Definition 5.2. It remains to
follow the proof of Theorem 1.1. O

Natural operators that may satisfy Condition BH 5.2) are given by Cauchy ker-
nels. H. Behnke and K. Stein [9, Theorem 3] constructed Cauchy kernels, also called
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elementary differentials, on any relatively compact domain in an open Riemann sur-
face X. (See also H.Behnke and F.Sommer [3, p. 584].) Globally defined Cauchy
kernels were constructed by S.Scheinberg [19] and P. M. Gauthier [30] in 1978-79.
A Cauchy kernel is a meromorphic 1-form w on X x X which is holomorphic off
the diagonal and has the form

1
w(z, €) = <C—Z + h(z, C)) d¢
in any pair of local holomorphic coordinates on X, where h is a holomorphic func-
tion. In particular, w has simple poles with residues one along the diagonal of X x X
and no other poles. For any relatively compact domain © C X with piecewise ¢!
boundary and function f € €*(Q) one has the generalised Cauchy-Green formula:

1 1 _
1) =5m | £Qwle 0 - 5 [ B7O nwlz ), zen
™ Jan 27 Jq
Given a compact subset K C X, the linear operator Tk : €% (K) — €(X),
1
Tx(9)(z) = =5~ 9O Aw(z (), gebV(K), z€X,
™ CeEK

satisfies condition (2) in Definition 5.2, and it also satisfies condition (1) on any
relatively compact domain in X containing K. When X = C and w(z, ) = Cd_CZ’
Tk is the classical Cauchy—Green operator (3.1). This gives the following corollary

to Theorem 5.3

Corollary 5.4. If X is a relatively compact domain in an open Riemann surface
R then Arakelian’s theorem (the conclusion of Theorem 5.3) holds for maps from
X to an arbitrary compact complex homogeneous manifold.

The corollary applies in particular to any bordered Riemann surface and, more
generally, to any open Riemann surface X of finite topological type (i.e., of finite
genus and finitely many ends) such that at least one end of X is not a puncture.
By a theorem of E.L. Stout [51], such Riemann surface X is biholomorphic to a
relatively compact domain in another open Riemann surface.

6. A REMARK ON ELLIPTIC MANIFOLDS

We recall the following notion due to M. Gromov [34]; see also [24, Definition
5.6.13].

Definition 6.1. A complex manifold Y is elliptic if there is a triple (&, 7, s),
where 7: £ = Y is a holomorphic vector bundle (the spray bundle) and s: £ - Y
is a holomorphic map (the spray map), such that for every point y € Y we have
that s(0,) = y and the differential dsg, : To,€ — T,,Y maps the vertical subspace
&, = m(y) of the tangent space Ty, € surjectively onto T;,Y. (Here, 0, denotes
the zero element of £, and we identified Tp, &, with &,.) Such (€, 7, s) is called a
dominating (holomorphic) spray on Y.

The manifold Y is special elliptic if it admits a dominating spray defined on a
trivial bundle £ =Y x C" for some n > dimY.
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Given a dominating spray s: £ — Y, we denote by

Ds(y) = dso,

g, & = TY, yev, (6.1)

the wvertical derivative of s at the point 0, = y x {0}"; this is the restriction of the
differential dso, : To,& — T,Y to the vertical subspace Ty, &, = &, of Tp £.

Gromov proved in [34] that every elliptic manifold is an Oka manifold; see [27]
and [24, Theorem 6.2.2] for the details. Further information on elliptic manifolds
can be found in [24, Chapters 5-7]. There is no known example of a nonelliptic
Oka manifold. For a Stein manifold, the properties of being Oka, elliptic, and
special elliptic coincide (see [34, 3.2.A] or [24, Proposition 5.6.15]). Note that every
complex homogeneous manifold Y is special elliptic since it admits a dominating
spray of the form (4.4). However, there exist many nonhomogeneous special elliptic
manifolds; for example, complements C™\ A of affine algebraic subvarieties A C C"
of dimension < n — 2 (see [24, Proposition 6.4.1]).

Our proof of Theorem 1.1 given in Section 4 only depends on the existence of
a dominating spray on Y defined on a trivial bundle, so it applies to any compact
special elliptic manifold. We note here that every such manifold is actually complex
homogeneous.

Proposition 6.2. Fvery compact special elliptic manifold is complexr homogeneous.

Proof. Let s: £ =Y x C" — Y be a dominating spray on a compact manifold Y.
Recall that Ds denotes the vertical derivative (6.1) of s at the zero section Y x {0}
of £. Given a holomorphic section £: Y — £, the map

Yoy = V(y) :=Ds(y)(&(y)) € T,Y

is then a holomorphic vector field on Y. (The point £(y) on the right-hand side
of the formula is considered as an element of Ty &, which we can identify with
&, =C)

Applying this argument to basis sections &1, ..., &, of the trivial bundle £ = Y x
C™ yields holomorphic vector fields Vi, ..., V,, on Y, and the domination property
of s implies that their values at any point y € ¥ span the tangent space T, Y. Thus,
the manifold Y is flexible in the sense of Arzhantsev et al. [0]. Since Y is compact,
these vector fields are complete, and hence their flows are complex 1-parameter
subgroups of the holomorphic automorphism group Aut(Y’). The spanning property
(flexibility) easily implies that Aut(Y") acts transitively on Y. Since the holomorphic
automorphism group of a compact complex manifold is a finite dimensional complex

Lie group, it follows that Y is a homogeneous space of the complex Lie group
Aut(Y). O

There exist many nonhomogeneous compact Oka manifolds, for instance, blowups
of certain compact algebraic manifolds such as projective spaces, Grassmanians,
etc.; see [24, Propositions 6.4.5 and 6.4.6] and the papers [37], [38]. It is not known
whether every Oka manifold is elliptic, but Proposition 6.2 tells us that there are
(compact) Oka manifolds which are not elliptic, or there are elliptic manifolds which
are not special elliptic.
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