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Abstract. In this paper, we prove that every conformal minimal immersion
of a compact bordered Riemann surface M into a minimally convex domain

D ⊂ R3 can be approximated uniformly on compacts in M̊ = M \ bM by

proper complete conformal minimal immersions M̊ → D. We also obtain a
rigidity theorem for complete immersed minimal surfaces of finite total curva-
ture contained in a minimally convex domain in R3, and we characterize the
minimal surface hull of a compact set K in Rn for any n ≥ 3 by sequences
of conformal minimal discs whose boundaries converge to K in the measure
theoretic sense.

1. Introduction

Amajor problem in minimal surface theory is to understand which domains in R3

admit complete properly immersed minimal surfaces and how the geometry of the
domain influences the conformal properties of such surfaces. (For background on
this topic, see e.g. [43, Section 3].) In the present paper, we obtain general existence
and approximation results for complete proper conformal minimal immersions from
an arbitrary bordered Riemann surface into any minimally convex domain in R3;
see Theorems 1.1, 1.7, and 1.9. We also show that one cannot expect similar results
in a wider class of domains in R3.

Let n ≥ 3. A domainD ⊂ Rn is said to beminimally convex if it admits a smooth
exhaustion function ρ : D → R that is strongly 2-plurisubharmonic (also called
minimal strongly plurisubharmonic), meaning that for every point x ∈ D, the sum
of the smallest two eigenvalues of the Hessian Hessρ(x) is positive. (See Definitions
2.1 and 2.3.) A domain D with C 2 boundary is minimally convex if and only if
κ1(x) + κ2(x) ≥ 0 for each point x ∈ bD, where κ1(x) ≤ κ2(x) ≤ · · · ≤ κn−1(x)
are the normal curvatures of bD at the point x with respect to the inner normal
(see Theorem 1.2). In particular, a domain in R3 bounded by a properly embedded
minimal surface is minimally convex (see Corollary 1.3). Clearly, every convex
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domain is also minimally convex, but there exist minimally convex domains without
any convex boundary points (see Example 1.4).

Our first main result is the following.

Theorem 1.1. Assume that D is a minimally convex domain in R3, and let M
be a compact bordered Riemann surface with nonempty boundary bM . Then, ev-
ery conformal minimal immersion F0 : M → D can be approximated uniformly
on compacts in M̊ = M \ bM by proper complete conformal minimal immersions

F : M̊ → D with Flux(F ) = Flux(F0).

Recall that a compact bordered Riemann surface is a compact connected ori-
ented surface, M , endowed with a complex structure whose boundary bM �= ∅
consists of finitely many smooth Jordan curves. The interior, M̊ = M \ bM , of
such M is an (open) bordered Riemann surface. A conformal minimal immersion
F : M → Rn is an immersion which is angle preserving and harmonic; such a map
parametrizes a minimal surface in Rn. The flux of F is the group homomorphism
Flux(F ) : H1(M,Z) → Rn whose value on any closed oriented curve γ ⊂ M is
Flux(F )(γ) =

∮
γ
	(∂F ); here, ∂F is the (1, 0)-differential of F and 	 denotes the

imaginary part. An immersion F : M̊ → Rn is said to be complete if the pull-back
F ∗ds2 of the Euclidean metric on Rn is a complete Riemannian metric on M̊ .

Note that Theorem 1.1 pertains to a fixed conformal structure on the surface M .
The analogous result for convex domains in Rn for any n ≥ 3 is [2, Theorem 1.4];
see also [7, Theorem 1]. Theorem 1.1 seems to be the first general existence and
approximation result for (complete) proper minimal surfaces in a class of domains
in R

3 which contains all convex domains, but also many nonconvex ones; convexity
has been impossible to avoid with the existing construction methods. Comparing
with the results in the literature, it is known that there are properly immersed
minimal surfaces in R3 with arbitrary conformal structure (see [6, 8, 9]) and that
every domain D ⊂ R

3 which is convex, or has a smooth strictly convex boundary
point, admits complete properly immersed minimal surfaces that are conformally
equivalent to any given bordered Riemann surface (see [2]). These were the most
general known results in this direction up to now.

As shown by Remark 1.11 and Examples 1.13 and 1.14, the hypothesis of minimal
convexity is essentially optimal in Theorem 1.1. In Example 1.13 we exhibit a
bounded, simply connected domain D ⊂ R3 such that a certain conformal minimal
disc F0 : D → D cannot be approximated by proper conformal minimal discs D →
D. (Here, D = {ζ ∈ C : |ζ| < 1}.) In another direction, Mart́ın, Meeks, and
Nadirashvili constructed bounded (nonsimply connected) domains in R3 which do
not admit any complete properly immersed minimal surfaces with an annular end
(see [42]). We point out in Example 1.14 that there is a domain from [42] which
does not admit any proper minimal discs. Clearly, Theorem 1.1 fails in both these
examples even without the completeness condition.

In Remark 3.8, we indicate a generalization of Theorem 1.1, and of the related
subsequent results in this paper, to a certain class of not necessarily convex domains
in R

n for any n > 3. However, we have optimal results only in dimension n = 3.
Theorem 1.1 is proved in Section 3; here is a brief outline. Let ρ : D → R be a

Morse minimal strongly plurisubharmonic exhaustion function with the (discrete)
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critical locus P . For every point x ∈ D \ P we find a small embedded conformal
minimal disc x ∈ Mx ⊂ D such that the restriction of ρ to Mx has a strict
minimum at x and increases quadratically. Furthermore, for points in a simply
connected compact set in D \ P we can choose a smooth family of such discs
satisfying uniform estimates for the rate of growth of ρ (see Lemma 3.1). By
using these discs and an approximate solution of a Riemann-Hilbert type boundary
value problem (see Theorem 3.2), we can lift the boundary of a given conformal
minimal immersion M → D to a higher level of the function ρ, paying attention
not to decrease the level of ρ much anywhere on M and to approximate the given
immersion on a chosen compact subset of M̊ (see Proposition 3.3). This procedure
can be carried out so that the image of the boundary bM avoids the critical locus of
ρ. A recursive application of this lifting method leads to the construction of a proper
conformal minimal immersion M̊ → D. (Analogous results for proper holomorphic
maps can be found in [18, 19].) This construction method is geometrically simpler
than the one developed by the authors in [2], the main advantage being the higher
flexibility of the Riemann-Hilbert method that is available in dimension n = 3
(compare Theorem 3.2 with [2, Theorem 3.5]).

Completeness of the immersion is achieved by combining the boundary lifting
procedure with a technique, developed recently in [2], that enables one to increase
the intrinsic boundary distance in M by an arbitrarily big amount while staying
C 0 close to a given conformal minimal immersion M → Rn (see [2, Lemmas 4.1
and 4.2]). A recursive application of these two techniques yields Theorem 1.1. (See
Section 3 for the details.)

Before proceeding, we place the class of minimal plurisubharmonic functions and
minimally convex domains into a wider framework, and we provide some examples.

Minimal plurisubharmonic functions are a special case, with p = 2, of the class
of p-plurisubharmonic functions which have been studied by Harvey and Lawson
in [34]; see also [21, 31–33]. A real-valued C 2 function u on a domain D ⊂ Rn is
said to be (strongly) p-plurisubharmonic for some integer p ∈ {1, 2, . . . , n} if the
restriction of u to any p-dimensional affine subspace of Rn is (strongly) subhar-
monic (see Definition 2.1); equivalently, if the sum of the p smallest eigenvalues
of the Hessian of u is nonnegative (positive) at every point (see Proposition 2.2).
The restriction of a p-plurisubharmonic function to a p-dimensional minimal sub-
manifold is a subharmonic function on the submanifold (see Proposition 2.2). Note
that 1-plurisubharmonic functions are convex functions, while n-plurisubharmonic
functions are subharmonic functions. The set Pshp(D) of all p-plurisubharmonic
functions on D is closed under addition and multiplication by nonnegative numbers.

A domain D ⊂ Rn is said to be p-convex if it admits a strongly p-plurisub-
harmonic exhaustion function ρ : D → R (see Definition 2.3 and Proposition 2.6).
Thus, 1-convex domains are linearly convex, while 2-convex domains are minimally
convex. Every domain in Rn is n-convex; this is a special case of a theorem of Greene
and Wu [30] (see also Demailly [16]) that every connected noncompact Riemannian
manifold admits a smooth strongly subharmonic exhaustion function. Harvey and
Lawson proved that for smoothly bounded domains in Rn, p-convexity is a local
property of the boundary, akin to Levi pseudoconvexity in complex analysis. For
future reference, we state the following summary of their main results from [34].
Harvey and Lawson considered bounded domains in R

n, but we show in Section
2.3 that Theorem 1.2 also holds for unbounded domains.
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Theorem 1.2 (Section 3 in [34]). Let 1 ≤ p < n be integers, and let D ⊂ Rn be
a domain with C 2 boundary, not necessarily bounded. The following conditions are
equivalent.

(a) D is p-convex.
(b) There exist a neighborhood U ⊂ Rn of bD and a C 2 function ρ : U → R

such that D ∩ U = {ρ < 0}, dρ �= 0 on bD ∩ U = {ρ = 0}, and
(1.1) trLHessρ(x) ≥ 0 for every tangent p-plane L ⊂ TxbD, x ∈ bD.

(Here Hessρ(x) is the Hessian (2.1) of ρ at x, and trL denotes the trace of
the restriction to L.) Property (1.1) is independent of the choice of ρ.

(c) If x ∈ bD and κ1 ≤ κ2 ≤ · · · ≤ κn−1 are the principal curvatures of bD
from the inner side at x, then κ1 + κ2 + · · ·+ κp ≥ 0.

(d) There exists a neighborhood U of bD such that the function − log dist(· , bD)
is p-plurisubharmonic on D ∩ U .

Theorem 1.2 shows in particular that a domain D ⊂ R3 with C 2 boundary is
minimally convex if and only if the principal curvatures of the boundary bD satisfy
κ1(x)+κ2(x) ≥ 0 at every point x ∈ bD. Theorem 1.1 applies to any such domain.

The following is a corollary to Theorem 1.2 in the case D = R
3 (note that we

have κ1 + κ2 = 0 on a minimal surface S ⊂ R3); the general case is proved in
Section 2.2.

Corollary 1.3. If S is a properly embedded minimal surface in R3, then every
connected component of R3 \ S is a minimally convex domain. More generally, if
D ⊂ R3 is a minimally convex domain and S is a closed embedded minimal surface
in a neighborhood of D, then every connected component of D \ S is minimally
convex.

Example 1.4. Let D be the domain

D = {(x, y, z) ∈ R
3 : x2 + y2 > cosh2 z}.

Since the boundary of D is a minimal surface (a catenoid), D is minimally convex
by Corollary 1.3. Clearly, D does not have any convex boundary point, and its
fundamental group π1(D) equals Z.

Remark 1.5. Note that the Hessian of a minimal strongly plurisubharmonic function
on a domain in R

3 has at most one negative eigenvalue at every point. Hence, Morse
theory implies that a minimally convex domain D has the homotopy type of a 1-
dimensional CW complex; in particular, the higher homotopy groups πk(D) for
k > 1 all vanish. Similarly, a p-convex domain has the homotopy type of a CW
complex of dimension at most p− 1.

Remark 1.6. In the literature on minimal surfaces, a smoothly bounded domain D
in Rn is said to be (strongly) mean-convex if the sum of the principal curvatures
of bD from the interior side is nonnegative (resp. positive) at each point. This is
precisely condition (c) in Theorem 1.2 with p = n− 1; hence, a smoothly bounded
domain in Rn is mean-convex if and only if it is (n − 1)-convex. In particular,
mean-convex domains in R3 coincide with smoothly bounded minimally convex
domains. Mean-convex domains have been studied as natural barriers for minimal
hypersurfaces in view of the maximum principle; see Section 2.4 and Remark 5.7.
Nontrivial proper minimal hypersurfaces in mean-convex domains often arise as
solutions to Plateau problems. For instance, Meeks and Yau [45] proved that every
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null-homotopic Jordan curve in the boundary of a mean-convex domain D ⊂ R3

bounds an area minimizing minimal disc in D. This method does not seem to
provide examples of complete minimal surfaces or those normalized by a given
bordered Riemann surface other than the disc. For a discussion of this subject, see
e.g. [15, Section 6.5].

Our proof of Theorem 1.1 also shows that boundaries of conformal minimal
surfaces can be pushed to a minimally convex end of a domain D ⊂ R

3 as in
the following theorem. An analogous result in the holomorphic category is [19,
Theorem 1.1].

Theorem 1.7. Assume that Ω ⊂ D are open sets in R3 and that ρ : Ω → (0,+∞)
is a smooth minimal strongly plurisubharmonic function such that for any pair of
numbers 0 < c1 < c2 the set Ωc1,c2 = {x ∈ Ω: c1 ≤ ρ(x) ≤ c2} is compact. Let
M be a compact bordered Riemann surface with nonempty boundary bM . Every
conformal minimal immersion F0 : M → D satisfying F0(bM) ⊂ Ω can be approx-

imated uniformly on compacts in M̊ = M \ bM by complete conformal minimal

immersions F : M̊ → D such that F (z) ∈ Ω for every z ∈ M̊ sufficiently close to
bM and

(1.2) lim
z→bM

ρ(F (z)) = +∞.

In a typical application of Theorem 1.7, the set Ω is a collar around a mini-
mally convex boundary component S ⊂ bD. (By Theorem 1.2, a smooth boundary
component S ⊂ bD is minimally convex if and only if − log dist(· , S) is minimal
plurisubharmonic near S.) Theorem 1.7 furnishes a proper complete conformal

minimal immersion F : M̊ → D whose boundary cluster set is contained in S as
shown by condition (1.2).

Next, we consider the class of strongly minimally convex domains.

Definition 1.8. A domain D ⊂ R
n with C 2 boundary is strongly p-convex for

some p ∈ {1, . . . , n − 1} if it admits a C 2 defining function ρ on a neighborhood
U of bD (i.e., D ∩ U = {ρ < 0} and dρ �= 0 on bD = {x ∈ U : ρ(x) = 0}) whose
Hessian satisfies the strict inequality in (1.1):

trLHessρ(x) > 0 for every tangent p-plane L ⊂ TxbD, x ∈ bD.

A strongly 2-convex domain is said to be strongly minimally convex.

The analogue of Theorem 1.2 holds in this setting. In particular, a bounded
domain D � Rn with C 2 boundary is strongly p-convex for some p ∈ {1, . . . , n−1}
if and only if the principal curvatures κ1 ≤ κ2 ≤ · · · ≤ κn−1 of bD at any point
x ∈ bD satisfy κ1+κ2 + · · ·+κp > 0. Note that D is strongly (n− 1)-convex if and
only if it is strongly mean-convex (see Remark 1.6).

Our next result improves Theorem 1.1 for bounded strongly minimally convex
domains.

Theorem 1.9. Let D be a bounded strongly minimally convex domain in R3

(Definition 1.8). Given a compact bordered Riemann surface M with nonempty
boundary bM and a conformal minimal immersion F0 : M → D, we can approxi-
mate F0 uniformly on compacts in M̊ by continuous maps F : M → D such that
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F (bM) ⊂ bD, F : M̊ → D is a proper complete conformal minimal immersion,
Flux(F0) = Flux(F ), and

(1.3) sup
ζ∈M

‖F (ζ)− F0(ζ)‖ ≤ C
√

max
ζ∈bM

dist(F0(ζ), bD)

for some constant C > 0 depending only on D.

The improvement over Theorem 1.1 is that the approximating map F can now
be chosen continuous up to the boundary of M , so F (bM) ⊂ bD is a union of
finitely many closed curves, and we have the estimate (1.3). Since F is complete,

the minimal surface F (M̊) ⊂ D has infinite area, and hence its boundary F (bM) is
necessarily nonrectifiable in view of the isoperimetric inequality. The corresponding
result for smoothly bounded strongly convex domains in Rn for any n ≥ 3 is
[2, Theorem 1.2]; see also [1] for a previous partial result in this line. As in the
latter result, we are unable to achieve that F is a topological embedding on bM , so
F (bM) needs not consist of Jordan curves.

Theorem 1.9 implies the following corollary.

Corollary 1.10. Every domain D ⊂ R
3 having a C 2 strongly minimally convex

boundary point contains complete properly immersed minimal surfaces extending
continuously up to the boundary and normalized by any given bordered Riemann
surface.

Proof. Assume that x0 ∈ bD is a strongly minimally convex boundary point, i.e.,
such that κ1(x0) + κ2(x0) > 0. Then there are a neighborhood U of x0 and a
strongly minimally convex domain D′ ⊂ D such that D ∩ U = D′ ∩ U . (It suffices
to intersectD by a small ball around x0 and smooth the corners.) Given a conformal
minimal immersion F0 : M → D′ whose image F0(M) lies close enough to the point

x0 (such exists since M is compact), the map F : M → D
′
, furnished by Theorem

1.9, satisfies F (bM) ⊂ bD ∩ U in view of the estimate (1.3), and hence the map

F : M̊ → D is proper. �

Following Meeks and Pérez [43, Section 3], a domain W ⊂ R3 is said to be
universal for minimal surfaces if every complete, connected, properly immersed
minimal surface in W is either recurrent (when the surface is open) or a parabolic

surface with boundary. Since every open bordered Riemann surface M̊ = M \bM is
transient, Theorem 1.7 and Corollary 1.10 show that every domain D ⊂ R3 which
has a minimally convex end or a strongly minimally convex boundary point fails
to be universal for minimal surfaces. In particular, there are domains in R

3 which
are not universal for minimal surfaces and have no convex boundary points; for
example, the catenoidal domain in Example 1.4.

Remark 1.11. The conclusion of Theorem 1.7 fails along a compact smooth bound-
ary component S ⊂ bD which is strongly minimally concave; i.e., κ1(x)+κ2(x) < 0
for every point x ∈ S. Indeed, Theorem 1.2 furnishes an open neighborhood U of S
in R3 and a minimal strongly plurisubharmonic function φ : U → R that vanishes
on S and is positive on D ∩ U . The maximum principle applied with φ shows that
there is no minimal surface in D ∩ U with boundary in S. The same argument
holds locally near a smooth strongly minimally concave boundary point x0 ∈ bD.
In this case there is a neighborhood U ⊂ R3 of x0 such that there are no proper
minimal surfaces in D ∩ U with boundary in bD ∩ U .
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For a complete proper minimal surface there is another restriction on the location
of its boundary points. Assume that D ⊂ R3 is a domain with C 2 boundary
and F : D → D is a complete conformal proper minimal immersion from the disc
D = {ζ ∈ C : |ζ| < 1} extending continuously to D. Then the boundary curve
F (bD) ⊂ bD does not contain any strongly concave boundary points of D (see
[10]). This is especially relevant in connection to Theorem 1.9. However, we do not
know whether F (bD) could contain a strongly minimally concave boundary point;
the following remains an open problem.

Problem 1.12. Let D be a smoothly bounded domain in R3 and let F : D → D
be a complete conformal proper minimal immersion extending continuously to D

(hence F (bD) ⊂ bD). Do we have κ1(x) + κ2(x) ≥ 0 for every point x ∈ F (bD)?

We now illustrate by a couple of examples that Theorem 1.1 fails in general
for domains in R3 which are not minimally convex. Since every domain in R3 is
3-convex (i.e., it admits a strongly subharmonic exhaustion function; see [16, 30]),
we see in particular that the hypothesis of 2-convexity cannot be replaced by 3-
convexity in Theorem 1.1.

Example 1.13. We exhibit a simply connected domain D ⊂ R3 of the form D =
2B \K, where B is the unit ball of R3 and K is a compact set contained in a thin
shell around the unit sphere S = bB, such that the image of every proper conformal
minimal disc F : D → D avoids the ball 1

2B ⊂ D. Clearly, Theorem 1.1 fails in this
example even without the completeness condition. Note however that D admits
complete properly immersed minimal surfaces normalized by any given bordered
Riemann surface in view of Theorem 1.7 applied to the strongly convex boundary
component 2S ⊂ bD.

The example is essentially the one given in [27, Section 5] in the context of
holomorphic discs in domains in C2. We cover the unit sphere S ⊂ R3 by small
open spherical caps C1, . . . , Cm (i.e., every Cj is the intersection of S by a half-

space defined by an affine plane Hj ⊂ R3) such that
⋃m

j=1 Co(Cj) ∩ 1
2B = ∅.

(Here, Co denotes the convex hull.) Pick a number r > 1 so close to 1 that
S ⊂

⋃m
j=1 Co(rCj). Choose pairwise distinct numbers ρ1, . . . , ρm very close to r

such that the pairwise disjoint spherical caps Γj = ρjCj satisfy S ⊂
⋃m

j=1Co(Γj)

and
⋃m

j=1 Co(Γj) ∩ 1
2B = ∅. Let D = 2B \

⋃m
j=1 Γj . For any proper conformal

minimal disc F : D → D, its boundary cluster set Λ(F ) (i.e., the set of all limit
points limj→∞ F (ζj) ∈ bD along sequences ζj ∈ D with limj→∞ |ζj | = 1) is a
connected compact set in bD; hence it is contained in the sphere 2S or in one of
the caps Γj . Assume now that F (ζ0) ∈ 1

2B for some ζ0 ∈ D. If Λ(F ) ⊂ Γj for some
j ∈ {1, . . . ,m}, then F (D) ⊂ Co(Γj) by the maximum principle, a contradiction

since Co(Γj) does not intersect the ball 1
2B. If on the other hand Λ(F ) ⊂ 2S, there

is a point ζ1 ∈ D with F (ζ1) ∈ S. Pick j ∈ {1, . . . ,m} such that F (ζ1) ∈ Co(Γj).
Since F has no cluster points on Γj , the set U = {ζ ∈ D : F (ζ) ∈ Co(Γj)} is a
nonempty relatively compact domain in D, and F (bU) lies in the affine plane Hj

which determines the spherical cap Γj . By the maximum principle it follows that
F maps all of U , and hence the whole disc D, into Hj , a contradiction.

Mart́ın, Meeks, and Nadirashvili constructed bounded domains in R
3 which do

not admit any proper complete minimal surfaces of finite topology (see [42]). In the
next example we show that the collection in [42] includes a domain D ⊂ R3 which
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carries no proper minimal discs, irrespective of completeness. A similar result in
the holomorphic category is due to Dor [17], who constructed a bounded domain
D in C

m for any m ≥ 2 which does not admit any proper holomorphic discs.

Example 1.14. Let S be the cylindrical shell

S =
{
(x, y, z) ∈ R

3 : 1 < ‖(x, y)‖ =
√
x2 + y2 < 2, 0 < z < 1

}
.

For 0 < t < 1, let Ct := S ∩ {(x, y, z) ∈ R3 : z = t} denote the planar round open
annulus obtained by intersecting the cylinder S with the plane z = t. For j ∈ N,
denote by Ct,j the planar round compact annulus Ct,j = {(x, y, z) ∈ Ct : 1 +

1
2j ≤

‖(x, y)‖ ≤ 2 − 1
2j }. Obviously, bCt,j = {(x, y, z) ∈ R3 : ‖(x, y)‖ ∈ {1 + 1

2j , 2 −
1
2j },

z = t}. Let t1, t2, t3, . . . denote the sequence

1

2
,
1

3
,
2

3
,
1

4
,
2

4
,
3

4
, · · · , 1

n
,
2

n
, · · · , n− 1

n
, · · · .

Set Γ =
⋃

j∈N
bCtj ,j ⊂ S and D = S \ Γ. By [42, Proof of Theorem 1], D is a

domain in R3, and the boundary cluster set Λ(E) ⊂ D \D of any proper minimal
annular end E ⊂ D lies in a horizontal plane of R3. By the maximum principle,
this implies that every proper minimal disc D → D is contained in a horizontal
plane, but clearly D does not admit any such discs. More generally, D does not
carry any proper minimal surfaces of finite genus and with a single end.

All minimal surfaces in Theorems 1.1, 1.7, and 1.9 are images of bordered Rie-
mann surfaces, hence finitely connected. If one does not insist on the approximation
and the control of the conformal structure on these surfaces, then our methods also
give complete proper minimal surfaces of arbitrary topological type.

Corollary 1.15. If D is a domain in R
3 which has a minimally convex end in the

sense of Theorem 1.7 or a strongly minimally convex boundary point, then every
open orientable smooth surface S carries a complete proper minimal immersion
S → D with arbitrary flux.

Corollary 1.15 is proved at the end of Section 3. For domains D ⊂ R
n (n ≥ 3)

that are convex or have a C 2 smooth strictly convex boundary point, this has
already been established in [2]; for n = 3 see also Ferrer, Mart́ın, and Meeks [25].

Theorems 1.1, 1.7, and 1.9 show that every minimally convex domain in R3 ad-
mits many complete properly immersed minimal surfaces of hyperbolic conformal
type. In contrast, the following rigidity type result shows that only very few mini-
mally convex domains contain a complete proper minimal surface S ⊂ R3 of finite
total curvature. (Note that these are the simplest complete minimal surfaces of
parabolic conformal type.)

Theorem 1.16. Let S ⊂ R3 be a complete connected properly immersed minimal
surface with finite total curvature in R3. If D ⊂ R3 is a smoothly bounded minimally
convex domain containing S, then D = R

3 or S is a plane; in the latter case, the
connected component of D containing S is a slab, a half-space, or R3.

By a slab in R3, we mean a domain bounded by two parallel planes.
In particular, if D is a connected component of R3 \ S where S is a nonflat

properly embedded minimal surface of finite total curvature in R
3, then Theorem

1.16 shows that D is a maximal minimally convex domain, in the sense that the
only smoothly bounded minimally convex domain containing D is R3 itself.
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Theorem 1.16 is proved in Section 4 as an application of a general maximum
principle at infinity for complete, finite total curvature, noncompact minimal sur-
faces with compact boundary in minimally convex domains of R3; see Theorem 4.1.
Maximum principles at infinity have been the key in many celebrated classification
results in the theory of minimal surfaces; see for instance [44] and the references
therein. In the proof of Theorem 4.1, we exploit the geometry of complete mini-
mal surfaces of finite total curvature along with the Kontinuitätssatz for conformal
minimal surfaces; see Proposition 2.9 for the latter.

In Section 5, we indicate how the Riemann-Hilbert technique, developed in [2],
allows us to extend all main results of the paper [21] to null hulls of compact sets
in C

n (see Definition 5.4) and minimal hulls of compact sets in R
n (see Definition

2.5) for any n ≥ 3.
After the completion of this paper, Alarcón, Forstnerič, and López obtained

analogues of Theorems 1.1 and 1.9 in the nonorientable framework (see [4]).

2. p-plurisubharmonic functions and p-convex domains

We begin this preparatory section by summarizing basic results concerning p-
plurisubharmonic functions and p-convex domains in R

n which are used in the
paper, referring to the papers of Harvey and Lawson [32–34] and the references
therein for a more complete account. We add the proof of Theorem 1.2 for un-
bounded domains (see Subsection 2.3) and formulate the Kontinuitätssatz for min-
imal submanifolds (see Proposition 2.9). In Subsection 2.5, we recall the notion of
a null plurisubharmonic function and develop one of the main tools that will be
used in the proof of Theorems 1.1, 1.7, and 1.9.

We denote by 〈· , · 〉 and ‖· ‖ the standard Euclidean inner product and the Eu-
clidean norm on R

n, respectively. We shall use the same notation for the Euclidean
norm on Cn.

2.1. p-plurisubharmonic functions. Let x = (x1, . . . , xn) be coordinates on Rn.
Given a domain D ⊂ Rn and a C 2 function u : D → R, the Hessian of u at a
point x ∈ D is the quadratic form Hessu(x) = Hessu(x; · ) on the tangent space
TxR

n ∼= R
n, given by

(2.1) Hessu(x; ξ) =
n∑

j,k=1

∂2u

∂xj∂xk
(x) ξjξk, ξ = (ξ1, . . . , ξn) ∈ R

n.

The trace of the Hessian is the Laplace operator on Rn: tr (Hessu) = �u =∑n
j=1

∂2u
∂x2

j
.

The Euclidean metric ds2 =
∑n

j=1 dxj⊗dxj on Rn induces a Riemannian metric

g = gM on any smoothly immersed submanifold M → R
n. A function u ∈ C 2(D)

is subharmonic on a submanifold M ⊂ D if �M (u|M ) ≥ 0, where �M is the
Laplace operator on M associated to the metric gM induced by the immersion. In
particular, if L is an affine p-dimensional subspace of Rn given by

L =
{
x(ξ) = a+

p∑
j=1

ξjvj ∈ R
n : ξ1, . . . , ξp ∈ R

}
,

where a ∈ Rn and v1, . . . ,vp ∈ Rn is an orthonormal set, then u is subharmonic on
L∩D if and only if the function ξ �→ u(x(ξ)) is subharmonic on {ξ ∈ Rp : x(ξ) ∈ D}.
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Definition 2.1. An upper semicontinuous function u : D → R∪{−∞} on a domain
D ⊂ Rn is p-plurisubharmonic for some integer p ∈ {1, . . . , n} if the restriction
u|L∩D to any affine p-dimensional plane L ⊂ R

n is subharmonic on L ∩ D. A
2-plurisubharmonic function is also called minimal plurisubharmonic.

The set of all p-plurisubharmonic functions on D is denoted by Pshp(D). Fol-
lowing the notation introduced in [21], we shall write

Psh2(D) = MPsh(D).

It is obvious that Psh1(D) ⊂ Psh2(D) ⊂ · · · ⊂ Pshn(D). An n-plurisubharmonic
function on a domain D ⊂ Rn is a subharmonic function in the usual sense, and a
1-plurisubharmonic function is a convex function. Clearly, Pshp(D) is closed under
addition and multiplication by nonnegative real numbers. Most of the familiar
properties of plurisubharmonic functions on domains in C

n extend to p-plurisub-
harmonic functions on domains in Rn (see e.g. [32, Section 6]). In particular, every
p-plurisubharmonic function can be approximated by smooth p-plurisubharmonic
functions.

Proposition 2.2 (Proposition 2.3 and Theorem 2.13 in [34]). Let 1 ≤ p ≤ n be
integers and let D be a domain in Rn. The following conditions are equivalent for
a function u ∈ C 2(D):

(a) u is p-plurisubharmonic on D.
(b) trLHessu(x) ≥ 0 for every point x ∈ D and every p-dimensional linear

subspace L ⊂ R
n (here, trL denotes the trace of the restriction to L).

(c) If λ1(x) ≤ λ2(x) ≤ · · · ≤ λn(x) are the eigenvalues of Hessu(x), then

(2.2) λ1(x) + · · ·+ λp(x) ≥ 0 for every x ∈ D.

(d) u|M is subharmonic on every minimal p-dimensional submanifold M ⊂ D.

Sketch of proof. The equivalences (a)⇔(b)⇔(c) are easily seen, and (d)⇒(a) is ob-
vious. The nontrivial implication (b)⇒(d) follows from the following formula which
holds for every smooth submanifold M ⊂ Rn (cf. [31, Proposition 2.10]):

(2.3) �M (u|M ) = trMHessu −HMu.

Here, trMHessu is the trace of the restriction of the Hessian of u to the tangent
bundle of M , and HM is the mean curvature vector field of M . If M is a minimal
submanifold, then HM = 0, and we get that �M (u|M ) = trMHessu ≥ 0. �
Definition 2.3. A function u ∈ C 2(D) on a domain D ⊂ R

n is strongly p-pluri-
subharmonic if trLHessu(x) > 0 for every p-dimensional affine linear subspace L ⊂
Rn and every point x ∈ D ∩ L. Equivalently, if λ1(x) ≤ λ2(x) ≤ · · · ≤ λn(x) are
the eigenvalues of Hessu(x), then λ1(x) + · · ·+ λp(x) > 0 for all x ∈ D.

The analogue of Proposition 2.2 holds for strongly p-plurisubharmonic functions;
in particular, we have the following result.

Proposition 2.4. A function u ∈ C 2(D) on a domain D ⊂ R
n is strongly p-

plurisubharmonic if and only if u|M is strongly subharmonic on every minimal
p-dimensional submanifold M ⊂ D.

Observe that for any u ∈ Pshp(D)∩C 2(D), the function u(x)+ε‖x‖2 is strongly
p-plurisubharmonic for every ε > 0. It follows that every p-plurisubharmonic func-
tion can be approximated by smooth strongly p-plurisubharmonic functions.
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If h is a smooth real function on R and u is a C 2 function on a domain D ⊂ Rn,
then for each point x ∈ D and vector ξ = (ξ1, . . . , ξn) ∈ Rn we have

(2.4) Hessh◦u(x, ξ) = h′(u(x)) Hessu(x, ξ) + h′′(u(x)) ‖∇u(x)· ξ‖2.
It follows that if u is (strongly) p-plurisubharmonic and h is (strongly) increasing
and convex on the range of u, then h ◦ u is also (strongly) p-plurisubharmonic.

2.2. p-convex hulls and p-convex domains.

Definition 2.5 (Definitions 3.1 and 3.3 in [34]). Let K be a compact set in a
domain D ⊂ Rn and let p ∈ {1, 2, . . . , n}. The p-convex hull (or the p-hull) of K in
D is the set

K̂p,D = {x ∈ D : u(x) ≤ sup
K

u for all u ∈ Pshp(D)}.

We shall write K̂p = K̂p,Rn . The 2-hull is also called the minimal hull and denoted

K̂M,D = K̂2,D; K̂M = K̂M,Rn .

A domain D ⊂ Rn is p-convex if K̂p,D is compact for every compact set K ⊂ D. A
2-convex domain is also called minimally convex.

Since Pshp(D) ⊂ Pshp+1(D) for p = 1, . . . , n−1, we have K ⊂ K̂n ⊂ · · · ⊂ K̂2 ⊂
K̂1 = Co(K). Simple examples show that these inclusions are strict in general.

The following result is [34, Theorem 3.4]; the proof is similar to the classical one
concerning holomorphically convex domains in C

n.

Proposition 2.6. A domain D ⊂ Rn is p-convex for some p ∈ {1, 2, . . . , n} (see
Definition 2.5) if and only if it admits a smooth strongly p-plurisubharmonic ex-
haustion function.

The proof of the next result follows the familiar case of plurisubharmonic func-
tions; see e.g. Hörmander [35, Theorem 5.1.5, p. 117].

Proposition 2.7. Let D be a p-convex domain in Rn, and let K ⊂ D be a compact

p-convex set, i.e., K = K̂p,D. Then the following conditions hold.

(a) There exists a smooth p-plurisubharmonic exhaustion function ρ : D → R+

such that ρ−1(0) = K and ρ is strongly p-plurisubharmonic on D \K.
(b) For every p-plurisubharmonic function u on a neighborhood U of K there

exists a p-plurisubharmonic exhaustion function v : D → R which agrees
with u on K and is smooth strongly p-plurisubharmonic on D \K.

Proof of (a). For any point x ∈ D \K there exists a smooth strongly p-plurisub-
harmonic function u on D such that u < 0 on K and u(x) > 0. Pick a smooth
function h : R → R+ which equals zero on (−∞, 0] and is strongly increasing and
strongly convex on (0,∞). Then h ◦ u ≥ 0 vanishes on a neighborhood of K and
is strongly p-plurisubharmonic on a neighborhood V of x in view of (2.4). Hence
we can pick a countable collection {(Vj , uj)}j∈N, where Vj is an open set in D \K,
uj ≥ 0 is a smooth p-plurisubharmonic function on D that vanishes near K and is
strongly p-plurisubharmonic on Vj , and

⋃∞
j=1 Vj = D \ K. If the numbers εj > 0

are chosen small enough, then the series v =
∑∞

j=1 εjuj ≥ 0 converges in C ∞(D).
By the construction, v vanishes precisely on K and is strongly p-plurisubharmonic
on D \ K. Finally, take ρ = v + h ◦ τ , where τ is a smooth p-plurisubharmonic
exhaustion function on D that is negative on K.
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Proof of (b). We may assume that U is compact. Choose a smooth function χ on
Rn such that χ = 1 on a neighborhood of K and suppχ ⊂ U . Let ρ be as in part
(a). The function v = χu + Cρ then satisfies condition (b) if the constant C > 0
is chosen big enough. Indeed, the (very) positive Hessian of Cρ compensates the
bounded negative part of the Hessian of χu on the compact support of dχ which is
contained in U \K. �

2.3. Domains with smooth p-convex boundaries.

Proof of Theorem 1.2. As pointed out in the Introduction, these results were proved
by Harvey and Lawson [34] for bounded domains; here we extend their arguments
to unbounded domains.

Thus, let D ⊂ Rn be a domain with boundary bD of class C 2. Assume first that
condition (a) holds; i.e., D is p-convex. It is immediate that such D is also locally
p-convex, in the sense that every point x ∈ bD has a neighborhood U ⊂ R

n such
thatD∩U is p-convex (cf. [34, (3.1) and Theorem 3.7]; the cited results also give the
converse implication for bounded domains). Furthermore, local p-convexity admits
the following differential theoretic characterization (cf. [34, Remark 3.11]):

A smoothly bounded domain D ⊂ R
n is locally p-convex at x ∈ bD if and only if

there are a neighborhood U ⊂ Rn of x and a local smooth defining function ρ for D
(i.e., D ∩ U = {ρ < 0} and dρ �= 0 on bD ∩ U = {ρ = 0}) such that

trLHessρ(y) ≥ 0 for every tangent p-plane L ⊂ TybD, y ∈ bD ∩ U.

This property is independent of the choice of ρ and is equivalent to property (c) in
Theorem 1.2 (that the sum of p smallest principal curvatures of bD is nonnegative).
Furthermore, setting δ = dist(· , bD), D is locally p-convex if and only if the function
− log δ is p-plurisubharmonic on a collar around bD in D (cf. [34, Summary 3.16]).

This justifies the implications (a)⇒(b)⇔(c)⇒(d) in Theorem 1.2.
It remains to prove that (d)⇒(a). Assume that (d) holds; i.e., the C 2 function

− log δ is p-plurisubharmonic on an interior collar U ⊂ D around bD. Choose a
smooth cut-off function χ : Rn → [0, 1] which equals 0 on an open set V ⊂ D
containing D \ U and equals 1 on an open set W ⊂ Rn containing Rn \ D. Its
differential dχ has support in the set U \W whose closure is contained in D. The
product −χ log δ is then a function of class C 2(D) which is p-plurisubharmonic near
bD and tends to +∞ along bD. Let h : R+ → R+ be a smooth, increasing, strongly
convex function. If h is chosen such that its derivative h′(t) > 0 grows sufficiently
fast as t → +∞, then we see from (2.4) that the function

ρ(x) = −χ(x) log δ(x) + h(‖x‖2), x ∈ D,

is a strongly p-plurisubharmonic exhaustion function on D, so condition (a) holds.
�

Corollary 2.8. A domain D ⊂ Rn (not necessarily bounded) whose boundary bD is
a smooth embedded minimal hypersurface is (n−1)-convex (also called mean-convex;
see Remark 1.6). In particular, a domain in R3 bounded by a closed embedded
minimal surface is minimally convex.

2.4. The maximum principle and the Kontinuitätssatz. Since the restriction
of a p-plurisubharmonic function u on a domain D ⊂ R

n to a minimal p-dimensional
submanifold M ⊂ D is subharmonic on M (cf. Propositions 2.2 and 2.4), it fol-
lows from the maximum principle for subharmonic functions that, for any compact
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minimal p-dimensional submanifold M ⊂ D with boundary bM , we have the im-
plication

bM ⊂ K =⇒ M ⊂ K̂p,D.

The same conclusion holds for immersed minimal submanifolds and for minimal p-
dimensional currents. Furthermore, we have the following result, which is analogous
to the classical Kontinuitätssatz (also called the continuity principle) in complex
analysis. (Compare with Harvey and Lawson [34], proof of Theorem 3.9 on p. 159.)

Proposition 2.9 (Kontinuitätssatz for minimal submanifolds). Assume that D is
a p-convex domain in Rn for some p ∈ {1, . . . , n} and {Mt}t∈[0,1) is a continu-
ous family of immersed compact minimal p-dimensional submanifolds of Rn with
boundaries bMt. If M0 ⊂ D and

⋃
t∈[0,1) bMt is contained in a compact subset of

D, then
⋃

t∈[0,1) Mt is also contained in a compact subset of D.

Proof. Let K denote the closure of the set M0 ∪
⋃

t∈[0,1) bMt in D. By the hy-

pothesis, K is compact. Since D is p-convex, the p-hull L = K̂p,D ⊂ D of K is
also compact. Consider the set J = {t ∈ [0, 1) : Mt ⊂ L}. We have 0 ∈ J by
the hypothesis. We claim that J = [0, 1). Since the family Mt is continuous in
t and L is compact, J is closed. It remains to see that J is also open. Assume
that t0 ∈ J ; then Mt0 ⊂ L ⊂ D. By continuity, it follows that Mt ⊂ D for all
t ∈ [0, 1) sufficiently close to t0, and the maximum principle implies that Mt ⊂ L
for all such t. �
Problem 2.10. Assume that 1 < p < n and D is a domain in R

n which satisfies
the conclusion of Proposition 2.9 for minimal p-dimensional submanifolds. Does
it follow that D is p-convex? Is the function − log dist(· , bD) p-plurisubharmonic
on D?

If bD is smooth, then the validity of the Kontinuitätssatz for D implies (by Har-
vey and Lawson; cf. Theorem 1.2 above) that − log dist(· , bD) is p-plurisubharmonic
near bD; even in this case, it is not clear whether it is p-plurisubharmonic on all
of D. The analogous result in complex analysis is Oka’s theorem, saying that the
function − log dist(· , bD) is plurisubharmonic on any Hartogs pseudoconvex domain
D ⊂ Cn (see e.g. [51, Theorem 5.6, p. 96]). Its proof breaks down in the present
situation since the sum of two minimal discs in Rn is not a minimal disc in general.

The following result will be used in the proof of Theorem 1.16 in Section 4.

Proposition 2.11 (The maximum principle for minimal submanifolds). Let D be
a proper p-convex domain in R

n and let M ⊂ D be a compact, connected, immersed
minimal p-dimensional submanifold with boundary bM . Then the following hold:

(a) dist(bM, bD) = dist(M, bD).
(b) If D has smooth boundary and dist(x0, bD) = dist(bM, bD) for some point

x0 ∈ M̊ = M \ bM , then bD contains a translate of M .
(c) If the assumption in part (b) holds for p = 2, n = 3 (i.e., M is a compact

minimal surface with boundary in a minimally convex domain D ⊂ R3 and
dist(x0, bD) = dist(bM, bD) for some x0 ∈ M̊), then M is a piece of a
plane. Moreover, if y0 ∈ bD is such that ‖x0 − y0‖ = dist(bM, bD), then⋃

t∈[0,1) t(y0 − x0) +M ⊂ D and (y0 − x0) +M ⊂ bD.

Proof of (a). Assume that dist(x0, bD) < dist(bM, bD) for some x0 ∈ M̊ . Pick
a point y0 ∈ bD such that dist(x0, bD) = ‖x0 − y0‖ and a number t0 with



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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‖x0−y0‖ < t0 < dist(bM, bD). The family of translates Mt = M+t(y0−x0)/‖y0−
x0‖ for t ∈ [0, t0] then violates Proposition 2.9. This contradiction proves part (a).

Proof of (b). By Theorem 1.2, there are a neighborhood U ⊂ R
n of bD and a

p-plurisubharmonic function ρ on U such that U ∩ D = {x ∈ U : ρ(x) < 0}. Let

x0 ∈ M̊ be such that c = dist(x0, bD) = dist(M, bD). Pick a point y0 ∈ bD with
‖x0−y0‖ = c. There is a compact connected neighborhood V ⊂ M of x0 in M such
that the translate W = V + y0 −x0 is contained in U , and hence in U ∩D by part
(a). Clearly y0 ∈ W . Since the function ρ|W ≤ 0 is subharmonic and ρ(y0) = 0,
it is constantly equal to zero by the maximum principle, and hence W ⊂ bD. This
means that for every x ∈ V , we have

(2.5) x+ y0 − x0 ∈ bD and dist(x, bD) = dist(M, bD).

This argument shows that the set of points x ∈ M satisfying (2.5) is open, and
clearly it is also closed, so it equals M . Thus M + y0 − x0 ⊂ bD.

Proof of (c). Let x0 and y0 be as in the statement of (c). Then M does not
intersect the open ball centered at y0 of radius ‖x0 − y0‖ = dist(bM, bD). This
implies that y0 = x0 + cN(x0), where N: V → S2 is a Gauss map of the orientable
surface V ⊂ M introduced in part (b). Since (2.5) holds for all x ∈ V , we see that
N(x) = N(x0) for all x ∈ V . This shows that V , and hence also M , is a piece of a
plane and (c) follows. �
2.5. Null plurisubharmonic functions. Let z = (z1, . . . , zn) = x + iy be com-
plex coordinates on Cn, with zj = xj + iyj for j = 1, . . . , n. We shall write
0 = (0, . . . , 0) for the origin in Rn or in Cn. Given a C 2 function ρ : Ω → R

on a domain Ω ⊂ C
n, we denote by Lρ(z; · ) its Levi form at a point z ∈ Ω:

(2.6) Lρ(z;w) =

n∑
j,k=1

∂2ρ

∂zj∂z̄k
(z)wjwk, w = (w1, . . . , wn) ∈ C

n.

We shall use the following lemma, whose proof amounts to a simple calculation.

Lemma 2.12. Let B = (bj,k) be a real symmetric n × n matrix, and let w =
u+ iv ∈ Cn. Then

2

n∑
j,k=1

bj,kujuk = �

⎛
⎝ n∑

j,k=1

bj,kwjwk

⎞
⎠+

n∑
j,k=1

bj,kwjwk.

A function ρ : D → R on a domain D ⊂ R
n will also be considered as a function

on the tube TD = D × iRn ⊂ Cn which is independent of the imaginary variable:

(2.7) ρ(x+ iy) = ρ(x) for all x ∈ D and y ∈ R
n.

Fix a point x ∈ D and a vector u ∈ Rn. The Hessian Hessρ(x; · ) (2.1) has coeffi-
cients

bj,k :=
∂2ρ

∂xj∂xk
(x) = 4

∂2ρ

∂zj∂z̄k
(x) ∈ R.

Lemma 2.12 shows that for every w = u+ iv ∈ Cn, we have

(2.8)
1

2
Hessρ(x;u) =

1

4
�

⎛
⎝ n∑

j,k=1

bj,kwjwk

⎞
⎠+ Lρ(x;w).
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Replacing w by −iw = v − iu and noting that Lρ(x;±iw) = Lρ(x;w) while the
first term on the right hand side of (2.8) changes sign, we obtain

Hessρ(x;u) + Hessρ(x;v) = 4Lρ(x;u+ iv).

In particular, if (u,v) is an orthonormal pair of vectors in Rn and we set

L = x+ spanR{u,v} ⊂ R
n, Λ = x+ spanC{u+ iv} ⊂ C

n,

then it follows that

(2.9) �(ρ|L)(x) = 4Lρ(x;u+ iv) = �(ρ|Λ)(x).
Set aj = ∂ρ

∂xj
(x) ∈ R for j = 1, . . . , n. The identity (2.8) implies that for every

point z = x+ iy ∈ TD and vector w = u+ iv ∈ Cn near 0 ∈ Cn, we have the Taylor
expansion

ρ(z+w) = ρ(x) +
n∑

j=1

ajuj +
1

2
Hessρ(x;u) + o(‖u‖2)

= ρ(x) + �

⎛
⎝ n∑

j=1

ajwj +
1

4

n∑
j,k=1

bj,kwjwk

⎞
⎠+ Lρ(x;w) + o(‖w‖2).

Denote by Σx ⊂ Cn the local complex hypersurface near the origin 0 ∈ Cn given
by

(2.10) Σx =
{
w :

n∑
j=1

ajwj +
1

4

n∑
j,k=1

bj,kwjwk = 0
}
.

It follows that

(2.11) ρ(z+w) = ρ(z) + Lρ(x;w) + o(‖w‖2), z = x+ iy ∈ TD, w ∈ Σx.

We need to recall the connection between minimal plurisubharmonic functions on
a domain D ⊂ Rn and null plurisubharmonic functions on the tube TD = D×iRn ⊂
Cn; the latter class of functions was introduced in [21].

Let A ⊂ Cn denote the null quadric:

(2.12) A = {z = (z1, . . . , zn) ∈ C
n : z21 + z22 + · · ·+ z2n = 0}, A∗ = A \ {0}.

Definition 2.13 (Definitions 2.1 and 2.4 in [21]). Let Ω be a domain in Cn for
some n ≥ 3.

(a) An upper semicontinuous function u : Ω → R ∪ {−∞} is null plurisubhar-
monic (u ∈ NPsh(Ω)) if, for any affine complex line L ⊂ C

n directed by
a null vector θ ∈ A∗, the restriction of u to L ∩ Ω is subharmonic. (If
u ∈ C 2(Ω), this is equivalent to the condition that Lu(z;w) ≥ 0 for every
z ∈ Ω and w ∈ A∗.)

(b) A function u ∈ C 2(Ω) is null strongly plurisubharmonic if Lu(z;w) > 0 for
every z ∈ Ω and w ∈ A∗.

Note that a vector 0 �= w = u+ iv ∈ Cn belongs to the null quadric A (2.12) if
and only if the vectors u,v ∈ R

n are orthogonal and have equal length:

(2.13) u+ iv ∈ A∗ ⇐⇒ u·v = 0 and ‖u‖ = ‖v‖.
Assume that (u,v) is an orthonormal pair in R

n. In view of (2.9), we have the
following result for functions u ∈ C 2(D); the general case for upper semicontinuous
functions is seen similarly.
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Lemma 2.14 (Lemma 4.3 in [21]). Let D be a domain in Rn and let TD =
D × iRn ⊂ Cn.

• If u is (strongly) minimal plurisubharmonic on D, then the function
U(x+ iy) = u(x) is (strongly) null plurisubharmonic on TD.

• Conversely, assume that a function U : TD → R is independent of the vari-
able y = 	z, and let u(x) = U(x + i0) for x ∈ D. If U is (strongly) null
plurisubharmonic on TD, then u is (strongly) minimal plurisubharmonic
on D.

Recall that a null holomorphic disc in C
n (n ≥ 3) is a holomorphic map F =

(F1, . . . , Fn) : D → Cn satisfying the nullity condition F ′(ζ) ∈ A; equivalently,

(2.14) F ′
1(ζ)

2 + F ′
2(ζ)

2 + · · ·+ F ′
n(ζ)

2 = 0, ζ ∈ D.

More generally, a holomorphic immersion F : M → Cn from an open Riemann
surfaceM is a holomorphic null curve if the derivative of F in any local holomorphic
coordinate on M satisfies the condition (2.14). It follows from (2.13) and the
Cauchy-Riemann equations that the real and the imaginary parts of a holomorphic
null disc F : D → Cn are conformal minimal discs in Rn; conversely, every conformal
minimal disc is the real part of a holomorphic null disc. We have the following
observation.

Proposition 2.15 (Proposition 2.7 in [21]). An upper semicontinuous function u
on a domain Ω ⊂ Cn (n ≥ 3) is null plurisubharmonic if and only if the function
u ◦ F is subharmonic on D for every null holomorphic disc F : D → Ω.

3. Proof of Theorems 1.1, 1.7, and 1.9

We begin with technical preparations.
Let ρ : D → R be a smooth minimal strongly plurisubharmonic exhaustion func-

tion on a domainD ⊂ R3. We extend ρ to a function on the tube TD = D×iR3 ⊂ C3

which is independent of the imaginary variable; see (2.7). By Lemma 2.14, the ex-
tended function ρ is null strongly plurisubharmonic on TD. For every point x ∈ D
we denote by Σx ⊂ C3 the local complex hypersurface at 0 ∈ C3 given by (2.10):

(3.1) Σx =
{
w = (w1, w2, w3) :

3∑
j=1

∂ρ

∂xj
(x)wj +

3∑
j,k=1

∂2ρ

∂zj∂z̄k
(x)wjwk = 0

}
.

Let P denote the critical locus of ρ. We assume in the sequel that x ∈ D \P ; then
Σx is nonsingular at 0 ∈ Σx and its tangent space is

(3.2) T0 Σx =
{
w ∈ C

3 :
3∑

j=1

∂ρ

∂xj
(x)wj = 0

}
.

Note that the coefficients aj =
∂ρ
∂xj

(x) of the equation in (3.2) are real. By shrinking

Σx around 0 if necessary, we may assume that the hypersurface Σx is nonsingular.
The intersection of the null quadric A (2.12) with any complex 2-plane 0 ∈ Λ ⊂

C3 consists of two complex lines which may coincide for certain Λ. However, for
a 2-plane Λ =

{
w = (w1, w2, w3) ∈ C3 :

∑3
j=1 ajwj = 0

}
with real coefficients

a1, a2, a3 ∈ R not all equal to 0, the intersection A ∩ Λ consists of two distinct
complex lines as is seen by a simple calculation. Identifying the tangent space
TzC

3 with C3, we may consider the null quadric A as a subset of TzC
3 for any
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point z ∈ C3. By what has been said above, for any point z ∈ Σx sufficiently
close to 0 the intersection A ∩ TzΣx is a union of two distinct complex lines. This
defines on Σx a couple of holomorphic direction fields, and hence (by integration)
a couple of 1-dimensional complex analytic foliations by holomorphic null curves.
In particular, for any point x ∈ D \P we have two distinct embedded holomorphic
null discs N 1

x ,N 2
x ⊂ Σx passing through 0. Although there is no well defined global

ordering of these two null discs when x runs over D \ P , such an ordering clearly
exists on every simply connected subset. By the definition of Σx and (2.11), we
have that

ρ(z+w) = ρ(z) + Lρ(x;w) + o(‖w‖2), w ∈ Σx.

This holds in particular for all w ∈ N 1
x ∪ N 2

x ⊂ Σx. Since ρ is null strongly
plurisubharmonic on TD, the Levi form Lρ(x; · ) is positive on the null lines T0N j

x

for j = 1, 2. It follows that for every point z = x + iy ∈ TD with x ∈ D \ P there
exist constants Cx > 0 and δx > 0 such that

(3.3) ρ(z+w) ≥ ρ(z) + Cx‖w‖2, w ∈ N 1
x ∪N 2

x , ‖w‖ ≤ δx.

Moreover, the constants Cx and δx can clearly be chosen uniform for all points x in
any given compact subset of D \ P . By projecting the discs N 1

x , N 2
x to R3 we get

a corresponding family of conformal minimal discs with the analogous properties.
We summarize the above discussion in the following lemma.

Lemma 3.1. Let D be a domain in R3, and let ρ : D → R be a C 2 minimal
strongly plurisubharmonic function with the critical locus P . For every compact
set L ⊂ D \ P there exist a constant c = cL > 0 and families of embedded null
holomorphic discs σj

x = αj
x + iβj

x : D → C3 (x ∈ L, j = 1, 2), depending locally C 1

smoothly on the point x ∈ L and satisfying the following conditions:

(a) σj
x(0) = 0;

(b) {x+ αj
x(ζ) : ζ ∈ D} ⊂ D;

(c) the function D � ζ �→ ρ
(
x+ αj

x(ζ)
)
is strongly convex and satisfies

(3.4) ρ
(
x+ αj

x(ζ)
)
≥ ρ(x) + c‖ζ‖2, ζ ∈ D.

The conformal minimal discs αj
x : D → R3, furnished by Lemma 3.1, will be used

to push the boundary F (bM) of a given conformal minimal immersion F : M → D
to a higher level set of ρ, except near the critical points of ρ, which shall be avoided
by a different method explained in what follows. The relevant tool for this lifting is
the following. (Related results on the Riemann-Hibert problem for null curves are
given by [3, Theorem 4] in dimension n = 3 and by [2, Theorem 3.5] in arbitrary
dimension n ≥ 3.)

Theorem 3.2 (Riemann-Hilbert problem for conformal minimal surfaces in R3).
Let M be a compact bordered Riemann surface with nonempty boundary bM �= ∅,
let I1, . . . , Ik be pairwise disjoint compact subarcs of bM which are not connected

components of bM , and set I =
⋃k

j=1 Ij. Choose a thin annular neighborhood
A ⊂ M of bM and a smooth retraction ρ : A → bM . Assume that

• F : M → R3 is a conformal minimal immersion of class C 1(M),
• r : bM → [0, 1] is a continuous function supported on I, and
• α : I × D → R3 is a map of class C 1 such that for every ζ ∈ I the map
D � ξ �→ α(ζ, ξ) ∈ R3 is a conformal minimal immersion with α(ζ, 0) = 0.
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Let the map κ : bM × D → R3 be given by

(3.5) κ(ζ, ξ) = F (ζ) + α
(
ζ, r(ζ) ξ

)
,

where we take α
(
ζ, r(ζ) ξ

)
= 0 for ζ ∈ bM \ I. Given a number η > 0 and an open

neighborhood Ω ⊂ M of I, there exists a conformal minimal immersion G : M → R
3

of class C 1(M) satisfying the following conditions:

(i) dist(G(ζ),κ(ζ,T)) < η for all ζ ∈ bM ;
(ii) dist(G(ζ),κ(ρ(ζ),D)) < η for all ζ ∈ Ω;
(iii) ‖G− F‖1,M\Ω < η;
(iv) Flux(G) = Flux(F ).

Proof. If M is the disc D, the conclusion follows from [2, Lemma 3.1], which gives
an analogous result for null holomorphic immersions in C

3. Since every conformal
minimal disc D → R3 is the real part of a holomorphic null disc D → C3, the cited
lemma can be used for the corresponding families of null discs; the real part G of
the resulting null disc then satisfies the conclusion of Theorem 3.2. (The loss of
smoothness in harmonic conjugates is not important since we can restrict our maps
to a slightly smaller disc.)

In the general case, for an arbitrary bordered Riemann surface M , one follows
the proof of [2, Theorems 3.5 and 3.6], but replacing [2, Lemma 3.3] by [2, Lemma
3.1]. The former one holds in any dimension n ≥ 3 but only applies to flat conformal
minimal discs α(ζ, · ) : D → Rn lying in parallel 2-planes, while the latter one holds
without any such restriction on α but only in dimension n = 3. �

The next result is the main technical ingredient in the proofs of Theorems 1.1,
1.7, and 1.9. Similar techniques have been used for lifting boundaries of complex
curves and Stein varieties in q-convex manifolds; see e.g. [18,19] and the references
therein.

Proposition 3.3 (Lifting boundaries of conformal minimal surfaces). Let D be
a domain in R3 and let ρ : D → R be a C 2 minimal strongly plurisubharmonic
function with the critical locus P . Given a compact set L ⊂ D \ P , there exist
constants ε0 > 0 and C0 > 0 such that the following holds.

Let M be a compact bordered Riemann surface, and let F : M → D be a confor-
mal minimal immersion of class C 1(M). Given a continuous function ε : bM →
[0, ε0] supported on the set J = {ζ ∈ bM : F (ζ) ∈ L}, an open set U ⊂ M contain-
ing supp(ε) in its relative interior, and a constant δ > 0, there exists a conformal
minimal immersion G : M → D satisfying the following conditions:

(1) |ρ(G(ζ))− ρ(F (ζ))− ε(ζ)| < δ for every ζ ∈ bM ;
(2) ρ(G(ζ)) ≥ ρ(F (ζ))− δ for every ζ ∈ M ;
(3) ‖G− F‖1,M\U < δ;
(4) ‖G− F‖0,M ≤ C0

√
ε0;

(5) Flux(G) = Flux(F ).

Proof. By approximation, we may assume that F is of class C ∞(M) (see [5, 6]).
Pick a compact set L0 ⊂ D \ P which contains L in its interior. Let cL0

be the
constant furnished by Lemma 3.1 for the set L0, and choose a number ε0 such that
0 < ε0 < cL0

. Set J0 = {ζ ∈ bM : F (ζ) ∈ L0}. By approximation, we may assume
that the function ε : bM → [0, ε0] in Proposition 3.3 is smooth and supported in the
relative interior of J0 ∩ U .
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Assume first that the support of ε does not contain any boundary curves of M ;
the general case will be obtained by two consecutive applications of this special case.
Choose finitely many closed pairwise disjoint segments I1, I2, . . . , Im ⊂ J0∩U whose
union I =

⋃m
j=1 Ij contains supp(ε) in its relative interior. Note that F (I) ⊂ L0.

Since I is simply connected, Lemma 3.1 (see in particular (3.4)) furnishes a family
of conformal minimal discs αF (ζ) : D → R3, depending smoothly on ζ ∈ I, such
that

(3.6) ρ(F (ζ) + αF (ζ)(ξ)) ≥ ρ(F (ζ)) + cL0
> ρ(F (ζ)) + ε0, ζ ∈ I, |ξ| = 1.

Without loss of generality we may assume that δ < 3ε0. Let ε̃ : I → [δ/3, ε0] be
obtained by smoothing the function max{ε, δ/3}; in particular, we assume that
ε̃ = ε on the set where ε ≥ δ/2 and δ/3 ≤ ε̃ < δ/2 on the complementary set. The
properties of the discs αx, furnished by Lemma 3.1, imply that for every fixed ζ ∈ I
the function D � ξ �→ ρ(F (ζ) + αF (ζ)(ξ)) is strongly convex, with a minimum at
ξ = 0 and no other critical points. In view of (3.6) the set

(3.7) Dζ := {ξ ∈ D : ρ(F (ζ) + αF (ζ)(ξ)) < ρ(F (ζ)) + ε̃(ζ)}
contains the origin, is simply connected (a disc), and is compactly contained in D;
furthermore, the discs Dζ depend smoothly on the point ζ ∈ I. Choose a smooth

family of diffeomorphisms φζ : D → Dζ (ζ ∈ I) which are holomorphic in D and

satisfy φζ(0) = 0. Let α : I × D → R
3 be defined by

(3.8) α(ζ, ξ) = αF (ζ)(φζ(ξ)), ζ ∈ I, ξ ∈ D.

Pick a smooth function r : I → [0, 1] such that r(ζ) = 1 when ε(ζ) ≥ δ/2 and the
support of r is contained in the relative interior of J0 ∩ U .

We now apply Theorem 3.2 to the conformal minimal immersion F : M → D,
the map α given by (3.8), and the function r. It is straightforward to verify that
the resulting conformal minimal immersion G : M → D satisfies the conclusion of
Proposition 3.3 provided that the number η > 0 in Theorem 3.2 is chosen small
enough. The existence of a constant C0 > 0 satisfying the estimate (4) in Proposi-
tion 3.3 is immediate from the geometry of the discs αj

x(· ) furnished by Lemma 3.1.
Indeed, we clearly have a uniform estimate ‖αj

x(ξ)‖ ≤ b|ξ| (ξ ∈ D, x ∈ L, j = 1, 2)
for some constant b > 0. From (3.8), we get ‖α(ζ, ξ)‖ ≤ b|φζ(ξ)| for ζ ∈ I and

ξ ∈ D. Together with (3.4), (3.7), and (3.8) one obtains

ε0 ≥ ε̃(ζ) ≥ ρ(F (ζ) + α(ζ, ξ))− ρ(F (ζ)) ≥ c|φζ(ξ)|2 ≥ c/b2‖α(ζ, ξ)‖2,
which gives ‖α(ζ, ξ)‖ ≤ C0

√
ε0 with C0 = b/

√
c. By increasing C0 slightly, this

gives (4) provided that the approximation in Theorem 3.2 (see (3.5) and (i)) is
close enough.

If the support of the function ε contains a boundary curve of M , then we write
ε = ε1+ε2 where each of the two nonnegative functions ε1, ε2 : bM → [0, ε0] satisfies
the conditions of the special case considered above. By first deforming F toG1 using
the function ε1 and subsequently deforming G1 to G = G2 using the function ε2,
the resulting conformal minimal immersion G satisfies the conclusion of Proposition
3.3, provided that the approximations are sufficiently close at each step. �

We now explain how to avoid critical points of a Morse exhaustion function
ρ : D → R when applying Proposition 3.3. To this end, we adapt the method from
[26, Section 3.11].
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Definition 3.4. A critical point x0 of a C 2 function ρ is nice if, in some neighbor-
hood of x0, ρ agrees with its second order Taylor polynomial at x0.

Lemma 3.5. Every Morse function ρ can be approximated arbitrarily closely in the
fine C 2 topology by a Morse function ρ̃ with the same critical locus and with nice
critical points. Furthermore, ρ̃ can be chosen to agree with ρ outside an arbitrarily
small neighborhood of the critical locus.

Proof. Assume that x0 is an (isolated) critical point of ρ and that

ρ(x) = Q(x) + η(x), lim
x→x0

η(x)

‖x− x0‖2
= 0.

Choose a smooth increasing function χ : R → [0, 1] such that χ(t) = 0 for t ≤ 1 and
χ(t) = 1 for t ≥ 2. Given ε > 0, we consider the function

ρε(x) = Q(x) + χ(ε−1‖x− x0‖) η(x).
Then ρε = Q on the ball ‖x − x0‖ ≤ ε and ρε = ρ on ‖x − x0‖ ≥ 2ε. As ε → 0,
the C 2 norm of ρ(x) − ρε(x) = (1 − χ(ε−1‖x − x0‖)) η(x) tends to zero. If ε > 0
is chosen small enough, then ρε satisfies the conclusion of the lemma at the critical
point x0. The same modification can be performed simultaneously at all critical
points of ρ. �

A minimal strongly plurisubharmonic function has no critical points of index
greater than 1 (see Remark 1.5). Critical points of index zero are local minima and
are not approached by the boundary F (bM) when applying Proposition 3.3.

Assume now that x0 is a nice Morse critical point of ρ with Morse index 1. The
subsequent analysis is local near x0, so we may assume, after a rigid motion of R3,
that x0 = 0 ∈ R3, ρ(x0) = 0, and

(3.9) ρ(x) = ρ(x1, x2, x3) = −a1x
2
1 + a2x

2
2 + a3x

2
3 + η(x),

where −a1 < 0 < a2 ≤ a3 and the function η vanishes in a neighborhood of the
origin. Note that a1 < a2 since ρ is minimal strongly plurisubharmonic. Choose a
number c0 > 0 small enough such that η vanishes on the set

(3.10) Pc0 := {(x1, x2, x3) ∈ R
3 : a1x

2
1 ≤ c0, a2x

2
2 + a3x

2
3 ≤ 4c0}.

The straight line arc E ⊂ R3, defined by

(3.11) E = {(x1, 0, 0) ∈ R
3 : a1x

2
1 ≤ c0},

is a local stable manifold of the critical point 0 of ρ. Set λ = a2/a1 > 1. Choose a
number μ ∈ R with 1 < μ < λ and set

(3.12) t0 = c0(1− 1/μ)2;

hence 0 < t0 < c0(1− 1/λ)2 < c0.
The following is [26, Lemma 3.11.1, p. 98], adapted to the situation at hand.

Lemma 3.6 (Assumptions as above). Assume that 0 is the only critical value of
the function ρ (3.9) in the set {−c0 < ρ < 3c0}. Then there exists a minimal
strongly plurisubharmonic function τ : D ∩ {ρ < 3c0} → R satisfying the following
conditions:

(a) {ρ ≤ −c0} ∪E ⊂ {τ ≤ 0} ⊂ {ρ ≤ −t0} ∪E (here, E is given by (3.11));
(b) {ρ ≤ c0} ⊂ {τ ≤ 2c0} ⊂ {ρ < 3c0};
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(c) there is a constant t1 ∈ (t0, c0) such that τ = ρ + t1 outside the set Pc0

(3.10);
(d) τ has no critical values in the interval (0, 2c0].

The sublevel sets {τ < c} for c > 0 in a neighborhood of the origin are shown in
[26, Figure 3.5, p. 100] (in a similar setting of strongly plurisubharmonic functions).

Proof. The choice of the number t0 (3.12) implies that there is a smooth convex
increasing function h : R → [0,+∞) satisfying the following conditions:

(i) h(t) = 0 for t ≤ t0;
(ii) for t ≥ c0 we have h(t) = t− t1 with t1 = c0 − h(c0) ∈ (t0, c0);
(iii) for t0 ≤ t ≤ c0 we have t− t1 ≤ h(t) ≤ t− t0;

(iv) for all t ∈ R we have that 0 ≤ ḣ(t) ≤ 1 and 2tḧ(t) + ḣ(t) < λ.

The construction of such a function is entirely elementary (cf. [26, pp. 98-99]; its
graph is shown in [26, Figure 3.4, p. 99]). Let τ : R3 → R be given by

(3.13) τ (x) = −h(a1x
2
1) + a2x

2
2 + a3x

2
3 + η(x).

Setting t = a1x
2
1, a calculation shows that on the set Pc0 ⊂ {η = 0} (3.10) we have

−∂2τ (x)

∂x2
1

= 2a1

(
2tḧ(t) + ḣ(t)

)
< 2a2 =

∂2τ (x)

∂x2
2

,

where the inequality holds by property (iv) of h (recall that λ = a2/a1). This shows
that τ is minimal strongly plurisubharmonic on Pc0 . The other properties of τ follow
immediately from the properties of h. (Compare with the proof of [26, Lemma
3.11.1, p. 98].) Condition (c) shows that τ is minimal strongly plurisubharmonic
also on the complement of Pc0 . Condition (d) obviously holds on Pc0 , while on the
complement of Pc0 it follows from (c) and the assumptions on ρ. �

Combining Proposition 3.3 and Lemma 3.6, we now prove the following lemma,
which provides the induction step in the proof of Theorem 1.1.

Lemma 3.7. Let ρ be a minimal strongly plurisubharmonic function on a domain
D ⊂ R3, and let a < b be real numbers such that the set

(3.14) Da,b = {x ∈ D : a < ρ(x) < b}
is relatively compact in D. Given numbers 0 < η < b−a, ε > 0, δ > 0, a conformal
minimal immersion F : M → D such that F (bM) ⊂ Da,b, a point p0 ∈ M̊ , a

number d > 0, and a compact set K ⊂ M̊ , there exists a conformal minimal
immersion G : M → D satisfying the following conditions:

(a) G(bM) ⊂ Db−η,b (equivalently, b− η < ρ(G(ζ)) < b for every ζ ∈ bM);
(b) ρ(G(ζ)) ≥ ρ(F (ζ))− δ for every ζ ∈ M ;
(c) ‖G− F‖1,K < ε;
(d) distG(p0, bM) > d;
(e) Flux(G) = Flux(F ).

Proof. If the domain Da,b (3.14) does not contain any critical points of ρ, then
a finite number of applications of Proposition 3.3 furnishes a conformal minimal
immersion G : M → D satisfying all conditions except (d); this last condition can
be achieved by an arbitrarily C 0 small deformation of G using [2, Lemma 4.1]. (The
cited lemma allows one to increase the interior boundary distance of a conformal
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minimal immersion by an arbitrarily big amount while staying arbitrarily C 0-close
to the given map.)

Assume now that x1, . . . ,xm are the (nice) critical points of ρ in Da,b (3.14). We
may assume that the numbers cj = ρ(xj) are distinct, and we enumerate the points
so that a < c1 < c2 < · · · < cm < b. We may also assume that minbM ρ ◦ F ≤ c1,
since otherwise a may be replaced by a constant satisfying c1 < a < minbM ρ ◦ F .

Pick c0 > 0 such that the conclusion of Lemma 3.6 applies to the critical point
x1 of ρ and the constant c0. Applying Proposition 3.3 finitely many times, we can
replace F by a conformal minimal immersion F1 : M → D such that F1(bM) ⊂
Dc1−c0,b and F1 satisfies conditions (b), (c), and (e) in Lemma 3.7 (with F1 in
place of G, and for some new constants ε1 and δ1 in place of ε and δ). By general
position, we can assume that F1(bM) avoids the local stable manifold E (see (3.11))
of the point x1. Let τ be the function furnished by Lemma 3.6 (for the point x1

and the constant c0). Applying Proposition 3.3 with the function τ finitely many
times, we can lift the boundary F1(bM) above the level c1 = ρ(x1) and thus obtain
a new conformal minimal immersion G1 : M → D satisfying G1(bM) ⊂ Dc1,b. As
before, G1 is chosen to satisfy conditions (b), (c), and (e) in Lemma 3.7, with G1

in place of G and F1 in place of F (and for some new constants ε2 > 0, δ2 > 0).
Now, we repeat the same procedure, first using Proposition 3.3 to push G1(bM)

close to the level ρ = c2, and subsequently lifting the boundary across ρ = c2 by
using Lemma 3.6. This furnishes a conformal minimal immersion G2 : M → D with
G2(bM) ⊂ Dc2,b.

In finitely many steps of this kind we find a conformal minimal immersion
G : M → D satisfying G(bM) ⊂ Db−η,b (condition (a)) and condition (e). Since the
number of steps depends only on the geometry of ρ, we can fulfill conditions (b)
and (c) by choosing the corresponding numbers εj > 0 and δj > 0 sufficiently small
at every step. Finally, condition (d) is achieved as in the special case by appealing
to [2, Lemma 4.1]. �

Proof of Theorem 1.1. Let F0 : M → D be a conformal minimal immersion and
let K be a compact set in M̊ . Given ε > 0, we shall find a complete proper
conformal minimal immersion F : M̊ → D satisfying ‖F−F0‖0,K = supζ∈K ‖F (ζ)−
F0(ζ)‖ < ε. Such F will be found as the limit F = limj→∞ Fj of a sequence of
conformal minimal immersions Fj : M → D that will be constructed by an inductive
application of Lemma 3.7.

Choose a minimal strongly plurisubharmonic Morse exhaustion function ρ : D →
R. Let P = {x1,x2, . . .} ⊂ D be the (discrete) critical locus of ρ, where the points
xj are enumerated so that ρ(x1) < ρ(x2) < · · · . By Lemma 3.5, we may assume that
every xj is a nice critical point of ρ. Pick increasing sequences a1 < a2 < a3 . . . and
d1 < d2 < d3 . . . such that supM ρ ◦ F0 < a1, limj→∞ aj = +∞, and limj→∞ dj =
+∞. Also, choose a decreasing sequence δj > 0 with δ =

∑∞
j=1 δj < ∞. Fix a point

p0 ∈ K̊. We shall construct a sequence of smooth conformal minimal immersions
Fj : M → D, an increasing sequence of compacts K = K0 ⊂ K1 ⊂ · · · ⊂

⋃∞
j=1 Kj =

M̊ , and a decreasing sequence of positive numbers εj > 0 such that the following
conditions hold for every j = 1, 2, . . .:

(ij) aj < ρ ◦ Fj < aj+1 on M \Kj ;
(iij) ρ ◦ Fj > ρ ◦ Fj−1 − δj on M ;
(iiij) ‖Fj − Fj−1‖1,Kj−1

< εj ;
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(ivj) distFj
(p0,M \Kj) > dj ;

(vj) Flux(Fj) = Flux(Fj−1);
(vij) εj < 2−1 min{εj−1, dist(Fj−1(M), bD), infζ∈Kj−1

‖dFj−1(ζ)‖}.
To begin the induction, set ε0 = ε/2 and K = K0. Assume inductively that, for
some j ∈ N, we have found maps F0, . . . , Fj−1, numbers ε0, . . . , εj−1, and compact
sets K0, . . . ,Kj−1 such that the above properties hold. Pick a number εj > 0
satisfying condition (vij). Applying Lemma 3.7 with the data (Fj−1,Kj−1, εj , dj)
furnishes a conformal minimal immersion Fj : M → D satisfying condition (ij) on
the boundary bM , conditions (iij), (iiij), (vj), and such that distFj

(p0, bM) > dj .

Next, pick a compact set Kj ⊂ M̊ such that Kj−1 ⊂ K̊j and conditions (ij) and
(ivj) hold. (It suffices to take Kj big enough.) This completes the induction step.

Condition (vij) implies that
∑∞

k=j+1 εk < εj for every j = 0, 1, . . .; in particular,∑∞
k=0 εk < 2ε0 = ε. Condition (iiij) ensures that the sequence Fj converges uni-

formly on compacts in
⋃∞

j=1Kj = M̊ to a harmonic map F = limj→∞ Fj : M̊ → D.

Conditions (iiij) and (vij) show that for every j = 0, 1, . . . we have that

(3.15) ‖F − Fj‖1,Kj
≤

∞∑
k=j

‖Fk+1 − Fk‖1,Kj
<

∞∑
k=j

εk+1 < 2εj+1 < εj .

In particular, ‖F − F0‖0,K < ε. The estimate (3.15), together with (vij+1), also

shows that F (Kj) ⊂ D; since this holds for all j, we have F (M̊) ⊂ D. Since
2εj+1 < infζ∈Kj

‖dFj(ζ)‖ by (vij+1), it follows from (3.15) that F is a conformal

immersion on Kj . As this holds for all j, F : M̊ → D is a conformal harmonic
(hence minimal) immersion. In view of (v), we have Flux(F ) = Flux(F0) . Finally,
conditions (ij)–(iiij) ensure that F is proper into D, while conditions (iiij) and (ivj)
show that F is complete. �

Proof of Theorem 1.7. The proof is the same as that of Theorem 1.1 modulo the
obvious modifications, replacing conditions pertaining to the distance from bD (see
condition (vij) above) by the corresponding conditions pertaining to the distance
from the end of the domain Ω on which the function ρ tends to +∞. �

Proof of Theorem 1.9. Choose a minimal strongly plurisubharmonic function ρ on
an open set D′ ⊃ D such that D = {x ∈ D′ : ρ(x) < 0} and dρ �= 0 on bD =
{ρ = 0}. Pick η > 0 such that the set {ρ < η} is relatively compact in D′ and
dρ �= 0 on the compact set

(3.16) L = {x ∈ D′ : −η ≤ ρ(x) ≤ η}.
Let C0 > 0 be a constant satisfying the conclusion of Proposition 3.3 for the data
(D′, ρ, L). In view of Theorem 1.1, we may assume that the given conformal minimal
immersion F0 : M → D satisfies

(3.17) a0 = a0(F0) := inf
ζ∈bM

ρ(F0(ζ)) > −η.

(Equivalently, F0(bM) ⊂ D ∩ L̊.) For every j = 0, 1, 2, . . . we set

aj = 2−ja0, ηj = aj+1 − aj = 2−j−1|a0|.
Pick an increasing sequence 0 < d1 < d2 < · · · with limj→∞ dj = +∞ and a
decreasing sequence δj > 0 with δ =

∑∞
j=1 δj < ∞. By following the proof of

Theorem 1.1, using also the estimate (4) in Proposition 3.3 with the constant C0
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introduced above, we find a sequence of conformal minimal immersions Fj : M →
D (j = 1, 2, . . .), an increasing sequence of compacts K = K0 ⊂ K1 ⊂ · · · ⊂⋃∞

j=1 Kj = M̊ , and a decreasing sequence of numbers εj > 0 such that the following
conditions hold for all j = 1, 2, . . .:

(ij) ρ ◦ Fj > aj on M \Kj ;
(iij) ρ ◦ Fj > ρ ◦ Fj−1 − δj on M ;
(iiij) ‖Fj − Fj−1‖1,Kj−1

< εj ;
(ivj) distFj

(p0,M \Kj) > dj ;
(vj) Flux(Fj) = Flux(Fj−1);
(vij) εj < 2−1 min{εj−1, dist(Fj−1(M), bD), infζ∈Kj−1

‖dFj−1(ζ)‖};
(viij) ‖Fj − Fj−1‖0,M ≤ C0

√
2ηj = C0

√
2−j

√
|a0|.

These properties correspond to those in the proof of Theorem 1.1, except that
condition (ij) is adjusted to the present setting, and the additional condition (viij)
follows from the estimate (4) in Proposition 3.3. (By [2, Lemma 4.1], condition
(ivj) can be achieved by a deformation which is arbitrarily small in the C 0(M)
norm, and the error made by this deformation is absorbed by the constant C0 in
(viij).)

Set C1 = C0

∑∞
j=1

√
2−j . Condition (viij) ensures that the sequence Fj converges

uniformly onM to a continuous map F : M → D satisfying ‖F−F0‖0,M ≤ C1

√
|a0|.

On the set L (3.16) the function |ρ| is proportional to the distance from bD, so the
number |a0|, defined by (3.17), is proportional to maxζ∈bM dist(F0(ζ), bD). This
gives the estimate (1.3) in Theorem 1.9 for a suitable choice of the constant C > 0
which depends only on the geometry of ρ in L. We can see as in the proof of Theorem
1.1 that F |M̊ : M̊ → D is a proper complete conformal minimal immersion. �

Proof of Corollary 1.15. This follows from Lemma 3.7 by a similar inductive proce-
dure as those in the proofs of Theorems 1.1 and 1.7. In this case we use in addition
the Mergelyan approximation theorem for conformal minimal immersions (cf. [5,6])
in order to add either a handle or an end to the surface at each step in the recur-
sive construction. In this way, we may prescribe the topology of the limit surface.
For the details of this construction, we refer to the proof of Theorem 1.4(b) and
Corollary 1.5(b) in [2]. �

Remark 3.8. The methods developed in [2] and in this paper allow us to generalize
Theorems 1.1 and 1.9 to (n − 2)-convex domains D ⊂ R

n for any n > 3. We
shall not state these generalizations but will give a brief sketch of the proof. By
definition, such a domain admits a smooth strongly (n − 2)-plurisubharmonic ex-
haustion function ρ : D → R (see Definition 2.5 and Proposition 2.6). Furthermore,
by convexifying in the normal direction, ρ can be chosen such that the level sets
Sc = {ρ = c} for noncritical values of ρ are strongly (n− 2)-convex hypersurfaces,
which means in particular that at every point p0 ∈ Sc there is a 2-dimensional
plane L ⊂ Tp0

Sc on which Hessρ is strongly positive. (See Definition 1.8.) By
choosing suitably shaped small flat discs Δp ⊂ R

n for points p near p0, lying in
affine 2-planes parallel to L, and solving the associated Riemann-Hilbert boundary
value problem (see [2, Theorem 3.6]), one can lift a small part of the boundary
of any conformal minimal disc F : D → D in a neighborhood of p0 to a higher
level set of ρ (see Proposition 3.3). The rest of the proof goes through as before.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

MINIMAL SURFACES IN MINIMALLY CONVEX DOMAINS 1759

However, if the level sets of ρ are merely (n−1)-convex (which is the same as mean-
convex), this approach would require the existence of approximate solutions of the
Riemann-Hilbert boundary value problem for nonflat conformal minimal discs (i.e.,
the analogue of [2, Lemma 3.1] for n > 3). We are unable to prove optimal results
for n > 3 at this time.

The corresponding optimal results in complex analysis, pertaining to the exis-
tence of proper holomorphic maps from strongly pseudoconvex Stein domains to
q-convex manifolds, were obtained in the papers [18, 19].

4. Maximal minimally convex domains and a maximum principle

at infinity

This section is devoted to the proof of Theorem 1.16. The main ingredient is the
maximum principle for minimal surfaces with finite total curvature in minimally
convex domains in R3, given by the following theorem.

Theorem 4.1. Assume that S ⊂ R3 is a complete, connected, immersed minimal
surface with compact boundary bS �= ∅ and finite total curvature. If D ⊂ R3 is a
smoothly bounded minimally convex domain containing S, then dist(S,R3 \ D) =
dist(bS,R3 \D).

The particular case of Theorem 4.1 when S is compact (with boundary) is already
ensured by Proposition 2.11. The main difficulty in the general case (when the
surface S is not compact) is that one must deal with the contact at infinity, a
rather delicate task.

Before proving Theorem 4.1, we show how it implies Theorem 1.16 by a Konti-
nuitätssatz type argument (see Proposition 2.9).

Proof of Theorem 1.16, assuming Theorem 4.1. Assume that Dc = R
3\D �= ∅ and

let us prove that S is a plane. Choose a relatively compact disc Ω ⊂ S and set
S′ = S \ Ω. By Theorem 4.1 we have that dist(S′, Dc) = dist(bS′, Dc), and hence
dist(S,Dc) = dist(Ω, Dc). Thus, there exist points x0 ∈ S and y0 ∈ bD such that
‖x0 − y0‖ = dist(S,Dc), and we infer from Proposition 2.11 that S is a plane.
Without loss of generality we may assume that S = {(x, y, z) ∈ R3 : z = 0}. Set
W+ = {(x, y, z) ∈ R

3 : z > 0}. We claim that if the set W+ \D is nonempty, then
it is a half-space. Indeed, assume that W+ \D �= ∅ and let us prove first that

(4.1) d+ := dist(S, bD ∩W+) = dist(S,W+ \D) > 0.

Consider the family of vertical negative half-catenoids

Σa = {(x, y, z) ∈ R
3 : x2 + y2 = a2 cosh2(z/a), z ≤ 0}, 0 < a ≤ 1.

Let A+ denote the cylinder

A+ := {(x, y, z) ∈ R
3 : x2 + y2 ≤ 2, 0 ≤ z ≤ τ+},

where τ+ > 0 is chosen small enough such that ((0, 0, τ+)+Σ1)∩{z ≥ 0} ⊂ A+ ⊂ D.
The Kontinuitätssatz for minimal surfaces (cf. Proposition 2.9) implies that

Σ+
a := ((0, 0, τ+) + Σa) ∩ {z ≥ 0} ⊂ D for all 0 < a ≤ 1.

Indeed, Σ+
a are minimal surfaces with boundaries in A+∪S ⊂ D and Σ+

1 ⊂ A+ ⊂ D.
It is easily seen that

⋃
0<a≤1 Σ

+
a contains the set {(x, y, z) ∈ R3 : x2 + y2 ≥ 2, 0 ≤

z < τ+}. Since A+ ⊂ D, we infer that D contains the slab {0 ≤ z < τ+}. This
implies that d+ ≥ τ+ > 0, thereby proving (4.1).
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If there is a point (x0, y0, d+) ∈ bD, then, arguing as in the proof of Proposition
2.11 and using that D is connected, we easily infer that the plane Π+ := {z = d+}
lies in bD ∩ {z > 0} = b(W+ \D), and hence W+ \D is a half-space. Otherwise,
Π+ ⊂ D, and we may reason as above (replacing S by Π+) to see that dist(Π+,W+\
D) > 0 in contradiction to (4.1).

A symmetric argument guarantees that {(x, y, z) ∈ R3 : z < 0} \ D is either
empty or a half-space. This concludes the proof. �

The proof of Theorem 4.1 also follows from a Kontinuitätssatz argument; how-
ever, the construction of a suitable family of minimal surfaces is much more delicate.
The surfaces will be multigraphs, obtained as solutions of suitable Dirichlet prob-
lems for the minimal surface equation over finite coverings of annuli in R2; see
Lemma 4.3.

Before going into the construction, we introduce some notation.

Definition 4.2. For each pair of numbers 0 ≤ R0 < R ≤ +∞ we set

AR0,R := {(x, y) ∈ R
2 : R0 < ‖(x, y)‖ < R}, AR0

= AR0,+∞.

Endow A0 = R
2 \ {(0, 0)} with the Euclidean metric and denote by

πn : An
0 → A0

the n-sheeted isometric covering, n ∈ N. We also set:

• An
R0,R

:= π−1
n (AR0,R) for all 0 ≤ R0 < R < +∞ and An

R0
= π−1

n (AR0
);

• cR := {(x, y) ∈ R2 : ‖(x, y)‖ = R} and cnR := π−1
n (cR), R > 0.

Obviously, bAn
R0

= cnR0
and bAn

R0,R
= cnR0

∪ cnR, 0 < R0 < R < +∞, n ∈ N.

A function u ∈ C 2(An
R0,R

) is said to satisfy the minimal surface equation in
An

R0,R
if

div
( ∇u√

1 + ‖∇u‖2
)
= 0 in An

R0,R,

equivalently, if {(p, u(p)) : p ∈ An
R0,R

} is a minimal surface (a minimal multigraph).

Given φ ∈ C 0(bAn
R0,R

), a function u ∈ C 2(An
R0,R

) ∩ C 0(A
n

R0,R) is said to be a
solution of the Dirichlet problem for the minimal surface equation in An

R0,R
with

boundary data φ if u satisfies the minimal surface equation in An
R0,R

and the bound-

ary condition u|bAn
R0,R

= φ.

Lemma 4.3. Let 0 < R0 < R1, K ∈ (0, 1), and n ∈ N. There exists a number
ε > 0, depending only on R0, R1, and K, such that the following holds. If R ≥ R1,
δ ∈ [0, ε],

(a) v : A
n

R0
→ R is a real analytic solution of the minimal surface equation in

An
R0

,

(b) ‖∇v‖ < K/2 in A
n

R0
, and

(c) we set φR,δ : bA
n
R0,R

→ R, φR,δ = v in cnR0
, and φR,δ = v + δ in cnR,

then the Dirichlet problem for the minimal surface equation in An
R0,R

with bound-
ary data φR,δ has a unique solution uR,δ. Furthermore, uR,δ enjoys the following
conditions:

(i) v ≤ uR,δ ≤ v + δ on A
n

R0,R;
(ii) uR,δ depends continuously on (R, δ) ∈ [R1,+∞)× [0, ε];

(iii) {uR,δ}R>R1
→ v as R → +∞ on compact subsets of A

n

R0
for all δ ∈ [0, ε].
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The number ε > 0 in the lemma will only depend on the existence of suitable
barrier functions νp0

at boundary points p0 ∈ bAn
R0,R

adapted to our problem. The
construction of these barrier functions in turn only depends on the constants R0,
R1, and K.

Proof. For the existence part of the lemma, we use Perron’s method for the minimal
surface equation; see for instance [29, 47].

Take arbitrary numbers R > R0 > 0 and δ ≥ 0. If w ∈ C 0(A
n

R0,R), D is a convex

disc in A
n

R0,R, and wD is the solution of the minimal surface equation in D which
equals w on bD (such exists by classical Rado’s theorem), we denote by ŵD the

continuous function in A
n

R0,R which coincides with w in A
n

R0,R \ D and with wD

in D.
By definition, a function w ∈ C 0(A

n

R0,R) is said to be a sub-solution of the

Dirichlet problem for the minimal surface equation in A
n

R0,R, defined by φR,δ given

in (c), if w ≤ φR,δ in bAn
R0,R

and w ≤ ŵD in D (hence in A
n

R0,R) for all discs D as

above. We denote by F−
R,δ the family of all such sub-solutions. Likewise, w is said to

be a super-solution for this problem if w ≥ φR,δ in bAn
R0,R

and w ≥ ŵD in D (hence

in A
n

R0,R) for all discs D in A
n

R0,R. The corresponding space of super-solutions will

be denoted by F+
R,δ. Note that v|An

R0,R
∈ F−

R,δ and (v + δ)|An
R0,R

∈ F+
R,δ for all

R > R0 and δ > 0, where v is the function given in item (a) in the statement of the
lemma; hence these are nonempty families. If w1 is a sub-solution and w2 is a super-
solution, then the maximum principle ensures that w1 ≤ w2. On the other hand,
if w1 and w2 are sub-solutions (respectively, super-solutions), then max{w1, w2}
(respectively, min{w1, w2}) also is.

We define

(4.2) uR,δ : A
n
R0,R → R, uR,δ(p) = sup

w∈F−
R,δ

w(p).

It is well known that uR,δ is a solution of the minimal surface equation in An
R0,R

.
Further,

(4.3) w1 ≤ uR,δ ≤ w2 for any w1 ∈ F−
R,δ and w2 ∈ F+

R,δ.

In particular,

(4.4) v ≤ uR,δ ≤ v + δ in An
R0,R for all R > R0 and all δ ≥ 0.

Claim 4.4. Given numbers R1 > R0 > 0 and K ∈ (0, 1), there exists ε > 0,
depending only on R0, R1, and K, such that the following holds. If R ≥ R1 and
0 ≤ δ ≤ ε, then the function uR,δ given by (4.2) is a solution to the Dirichlet
problem for the minimal surface equation with boundary data φR,δ in An

R0,R
; that

is to say,

lim
p→p0

uR,δ(p) = φR,δ(p0) for all p0 ∈ bAn
R0,R.

Proof. Choose R ≥ R1 and a point p0 ∈ bAn
R0,R

, and let us distinguish cases.

Case 1 (p0 ∈ cnR0
). Let us prove the existence of a number ε1 > 0, depending only

on R0, R1, and K, for which the following statement holds. Given δ ∈ [0, ε1] there

exists νp0
∈ C 0(A

n

R0
) such that νp0

(p0) = v(p0) = φR,δ(p0) and νp0
|An

R0,R
∈ F+

R,δ.
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Indeed, write πn(p0) = (x0, y0) ∈ cR0
. Set CR0

:= {(x, y, z) ∈ R3 : ‖(x, y)‖ < R0}
and JK := {(x, y, z) ∈ R3 : 0 ≤ z − v(p0) = K‖(x− x0, y− y0)‖}. Pick μ > 0 small
enough in terms of R0, R1, and K, such that the set

γ :=
(
(bCR0

∩ JK) ∩ {0 ≤ z − v(p0) ≤ μ}
)
∪
(
(JK \ CR0

) ∩ {z − v(p0) = μ}
)

is a Jordan curve. It follows that γ has one-to-one orthogonal projection γ0 to the
plane {z = 0} ≡ R2. Ensure also that γ0 bounds a topological disc U ⊂ R2 with
U ⊂ AR0,R1

∪ cR0
. Thus, π−1

n (U) consists of n disjoint isometric copies of U ; write

Û ⊂ An
0 for the connected component of π−1

n (U) containing p0. Denote by φ : bU →
R the (unique) continuous function such that {(p, φ(p)) : p ∈ bU = γ0} = γ.

Further, the domain U satisfies an exterior sphere condition with radius R0 (cf.
[56, Definition 1.4(i)]), and thus, if μ > 0 is sufficiently small in terms of R0, R1,
and K, the Dirichlet problem for the minimal surface equation in U with boundary
data φ has a unique solution f : U → R satisfying (f ◦πn)(p0) = φ(p0) = v(p0) and

f ◦πn > v in Û \{p0}; see [56] and take into account condition (b) in the statement
of the lemma and that γ ⊂ JK . It follows that

inf{(f ◦ πn)(p)− v(p) : p ∈ bÛ \ cnR0
} = inf{v(p0) + μ− v(p) : p ∈ bÛ \ cnR0

} > 0.

Finally, take ε1 > 0 smaller than this infimum. Note that this number does not
depend on v; take into account (b). Further, since μ depends on R0, R1, and

K but not on p0 ∈ cnR0
, the same holds for ε1. It suffices to set νp0

: A
n

R0
→ R,

νp0
= min{f ◦ πn, v + ε1} on Û , and νp0

= v + ε1 on A
n

R0
\ Û .

Since νp0
|An

R0,R
∈ F+

R,δ, δ ∈ [0, ε1], and νp0
(p0) = v(p0) = φR,δ(p0), the bounds

(4.3) and (4.4) trivially ensure that limp→p0
uR,δ(p) = φR,δ(p0).

Case 2 (p0 ∈ cnR). Let us now prove the existence of a number ε2 > 0, depending
only on R0, R1, and K, for which the following statement holds. Given δ ∈ [0, ε2],

there exists νp0
∈ C 0(A

n

R0,R) ∩ F−
R,δ such that νp0

(p0) = v(p0) + δ = φR,δ(p0).

Indeed, consider a small disc V ⊂ R2 centered at the origin and with radius less

than R1 − R0, set UR := (πn(p0) + V ) ∩ AR0,R, and let ÛR ⊂ A
n

R0,R denote the

connected component of π−1
n (UR) containing p0; obviously, πn|̂UR

: ÛR → UR is an

isometry. Choose a linear function f : R2 → R satisfying (f ◦ πn)(p0) = v(p0) and

f ◦ πn < v on ÛR \ {p0}, and take 0 < ε2 < inf{v(p) − (f ◦ πn)(p) : p ∈ bÛ \ cnR}.
The existence of such an ε2 follows from item (b), and it can be chosen depending
on neither v nor R (it only depends on R0, R1, and K). Given δ ∈ [0, ε2], it suffices

to set νp0
: A

n

R0,R → R, νp0
= max{f ◦πn+δ, v+δ−ε2} on ÛR, and νp0

= v+δ−ε2

on A
n

R0,R \ ÛR.

As above, since νp0
∈ F−

R,δ and νp0
(p0) = v(p0) + δ = φR,δ(p0), (4.3) and (4.4)

guarantee that limp→p0
uR,δ(p) = φR,δ(p0).

To finish the proof of the claim, it suffices to choose ε := min{ε1, ε2}. �

We continue with the proof of Lemma 4.3. In view of Claim 4.4 it remains to
check that, given numbers δ ∈ [0, ε] and R ≥ R1, the solution uR,δ given by (4.2)
is unique and satisfies conditions (i), (ii), and (iii). Uniqueness follows directly
from the maximum principle. Property (i) is ensured by (4.4). Since the boundary
data φR,δ depend continuously on (R, δ) ∈ [R1,+∞)× [0, ε], the same holds for the
solutions uR,δ, proving (ii). In order to prove (iii), fix a number δ ∈ [0, ε] and take
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any divergent sequence {Rj}j∈N ⊂ [R1,+∞). By standard compactness results (see
for instance [11]), the sequence {uRj ,δ}j∈N converges uniformly on compact subsets

of A
n

R0
to a solution u of the minimal surface equation in An

R0
with boundary data

u = v on cnR0
. Furthermore, (4.4) gives that v ≤ u ≤ v + δ, and hence u = v

by the maximum principle at infinity (see for instance [44]). This proves (iii) and
concludes the proof. �

Proof of Theorem 4.1. If S is compact, then the result follows from Proposition
2.11.

Assume now that S is not compact. Up to passing to the two sheeted orientable
covering, we may assume that S = X(M), where M is a noncompact Riemann
surface with compact boundary bM �= ∅ and X : M → R3 is a complete conformal
minimal immersion with finite total curvature. With this notation, we have bS =
X(bM).

The assumptions on S imply that M is of finite topology and of parabolic con-
formal type (in particular, its ends are annular conformal punctures), and the
(conformal) Gauss map N : M → S

2 of X extends conformally to the ends; see [48].
Given an annular end E ⊂ M , E ∼= D \ {0}, let nE denote the limit normal vector
of X(E) at infinity and let ΠE be the vectorial plane in R

3 orthogonal to nE .
It is also well known that the minimal immersion X is a proper map and all the

ends are finite sublinear multigraphs; see [38]. The latter means that for any annular
end E of M , there exists an open solid circular cylinder C, with axis parallel to nE ,
such that:

(i) E ∩X−1(C) is compact and contains bE;
(ii) (πE ◦ X)|E\X−1(C) : E \ X−1(C) → ΠE \ C is a finite covering, where

πE : R3 → ΠE is the orthogonal projection;
(iii) limj→∞

1
‖X(pj)‖ 〈nE , X(pj)〉 = 0 for any divergent sequence {pj}j∈N ⊂ E.

Write wE for the winding number of X(E) at infinity; note that wE is the degree
of the covering (πE ◦X)|E\X−1(C).

Recall that bS �= ∅. If D = R3, there is nothing to prove. Assume now that
Dc �= ∅ and let

d := dist(S,Dc) < +∞.

It suffices to prove the following claim:

(4.5) there exist points x0 ∈ S and y0 ∈ bD such that ‖x0 − y0‖ = d.

Indeed, assume for a moment that this holds. If x0 ∈ bS, we are done. Otherwise,
x0 ∈ S \ bS, and we infer from Proposition 2.11 that the surface S is flat and
y0 − x0 + S ⊂ bD. Thus, d = dist(bS,Dc), which concludes the proof of Theorem
4.1 provided that (4.5) holds.

We now prove the assertion (4.5). We reason by contradiction and assume that

(4.6) dist(x, Dc) > d for all x ∈ S.

Under this assumption, there exists an annular end X(E) ⊂ S with dist(X(E), Dc)
= d; recall that E is conformally equivalent to D \ {0}. Set

Et := t nE +X(E) for all t ≥ 0.
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In particular, E0 = X(E). Condition (4.6) ensures that

(4.7)
⋃

t∈[0,d]

Et ⊂ D.

Set CR := {(x, y, z) ∈ R3 : ‖(x, y)‖ < R} for R > 0. Up to a rigid motion,
a shrinking of E, and taking R0 > 0 large enough, we may assume that nE =
(0, 0,−1), X(bE) ⊂ bCR0

, and

(4.8) dist(Ed, D
c) = 0.

Given δ ≥ 0, we set γR0
(δ) := bEd+δ = (d + δ)nE + bE0 ⊂ bCR0

. Since
(
⋃

t∈[0,d] Et) ∩ CR is compact for all R ≥ R0 (see (i)), condition (4.7) provides

numbers ε > 0 and R1 > R0 such that

(4.9)
⋃

t∈[0,d+ε]

(Et ∩ CR1
) ⊂ D.

In particular, γR0
(δ) ⊂ D for all δ ∈ [0, ε]. Set γR(δ) := Ed+δ ∩ bCR for all

δ ∈ [0, ε] and R > R0. For simplicity, write n for the winding number wE of
X(E) as a multigraph over AR0

= {(x, y) ∈ R2 : ‖(x, y)‖ > R0}, and denote by
φR,δ : bA

n
R0,R

→ R the unique analytic function satisfying

γR0
(δ) ∪ γR(0) = {(p, φR,δ(p)) : p ∈ bAn

R0,R} for all δ ∈ [0, ε] and R > R0.

(See Definition 4.2 for the notation.) Likewise, let v : A
n

R0
→ R denote the unique

analytic function such that

Ed = {(p, v(p)) : p ∈ A
n

R0
}.

Without loss of generality (increasing R0 if necessary), we may assume that ‖∇v‖ <

1/4 on A
n

R0
; see property (iii) above.

On the other hand, if ε > 0 is chosen small enough, then Lemma 4.3 shows that
the Dirichlet problem for the minimal surface equation in An

R0,R
with boundary

data φR,δ has a unique solution uR,δ for all R ≥ R1 and δ ∈ [0, ε]. Furthermore,

(4.10) v − δ ≤ uR,δ ≤ v in An
R0,R for all R ≥ R1 and δ ∈ [0, ε].

Fix a pair of numbers δ ∈ [0, ε] and R ≥ R1, and set TR,δ := {(p, uR,δ(p)) :

p ∈ A
n

R0,R}. Note that (4.9) and (4.10) guarantee that TR1,δ ⊂ D, whereas (4.7)
and (4.9) ensure that bTR,δ = γR0

(δ) ∪ γR(0) ⊂ D for all R ≥ R1. Thus, the
Kontinuitätssatz for minimal surfaces (Proposition 2.9) implies that TR,δ ⊂ D for
all R ≥ R1. Further, by Lemma 4.3 we have TR,δ → Ed+δ uniformly on compact

subsets as R → +∞, and hence Ed+δ ⊂ D. Since this holds for arbitrary δ ∈ [0, ε],
we infer that

⋃
t∈[0,d+ε] Et ⊂ D, and hence

⋃
t∈[0,d+ε) Et ⊂ D. This contradicts

(4.8) and thereby proves (4.5). �

5. Null hulls in C
n
and minimal hulls in R

n

The approximate solution of the Riemann-Hilbert problem for null discs, fur-
nished by [2, Lemma 3.3], allows us to extend the main results of the paper [21]
to null hulls in Cn and minimal hulls in Rn, for any n ≥ 3. We now explain these
generalizations. The proofs are similar to those in [21] and are left to the reader.
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We denote by N(D,Ω) the set of all immersed null holomorphic discs D → Cn

with range in a domain Ω ⊂ Cn, and we write

N(D,Ω, z) = {F ∈ N(D,Ω) : F (0) = z} for z ∈ Ω.

The case n = 3 of the next result is [21, Theorem 2.10]; the general case n ≥ 3 is
proved in exactly the same way by using [2, Lemma 3.3] instead of [21, Lemma 2.8].

Theorem 5.1 (Null plurisubharmonic minorant). Let φ : Ω → R ∪ {−∞} be an
upper semicontinuous function on a domain Ω ⊂ Cn (n ≥ 3). Then the function

(5.1) u(z) := inf
{∫ 2π

0

φ(F (eit))
dt

2π
: F ∈ N(D,Ω, z)

}
, z ∈ Ω,

is null plurisubharmonic on Ω or identically −∞. Moreover, u is the supremum of
all null plurisubharmonic functions on Ω which are not greater than φ.

Remark 5.2. The disc functional Pφ in (5.1), which assigns to any holomorphic

disc F : D → Ω the average Pφ(F ) =
∫ 2π

0
φ(F (eit)) dt

2π ∈ R ∪ {−∞}, is called
the Poisson functional associated to the function φ. If we take all holomorphic
discs F : D → Ω with F (0) = z (instead of just null discs) in (5.1), we obtain
the biggest plurisubharmonic function on Ω satisfying u ≤ φ. This fundamental
result of Poletsky [49,50] and Bu and Schachermayer [13] was generalized by Rosay
[52,53] to all complex manifolds Ω (see also Lárusson and Sigurdsson [39,41]), and
by Drinovec Drnovšek and Forstnerič [20, Theorem 1.1] to all locally irreducible
complex space.

Given a domain ω ⊂ Rn, we denote by M(D, ω) the set of all conformal minimal
immersions D → ω. By using Theorem 5.1, along with the connection between null
plurisubharmonic and minimal plurisubharmonic functions (see Lemma 2.14), we
obtain the following result. The case n = 3 is [21, Theorem 4.5].

Theorem 5.3 (Minimal plurisubharmonic minorant). Let ω be a domain in R
n

(n ≥ 3), and let φ : ω → R∪{−∞} be an upper semicontinuous function. Then the
function

(5.2) u(x) := inf
{∫ 2π

0

φ(F (eit))
dt

2π
: F ∈ M(D, ω), F (0) = x

}
, x ∈ ω,

is minimal plurisubharmonic on ω or identically −∞. Moreover, u is the supremum
of the minimal plurisubharmonic functions on ω which are not greater than φ.

Definition 5.4. Let K be a compact set in Cn, n ≥ 3. The null hull of K is the
set

(5.3) K̂N = {z ∈ C
n : v(z) ≤ max

K
v ∀v ∈ NPsh(Cn)}.

Note that K̂N is a special case of a G-convex hull introduced by Harvey and
Lawson in [33, Definition 4.3, p. 2434]. The maximum principle for subharmonic
functions implies that for any bounded null holomorphic curve A ⊂ Cn with bound-

ary bA ⊂ K we have A ⊂ K̂N. Since Psh(Cn) ⊂ NPsh(Cn), we clearly have the
inclusions

(5.4) K ⊂ K̂N ⊂ K̂ ⊂ Co(K).

The polynomial hull K̂ is rarely equal to the convex hull Co(K), and in general we

also have K̂N �= K̂ (see [21, Example 3.2]).
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The following characterization of the null hull agrees with [21, Corollary 3.5] for
n = 3. The proof in [21] holds in any dimension n ≥ 3, the nontrivial direction
being furnished by Theorem 5.1 in this paper. Recall that |I| denotes the Lebesgue
measure of a set I ⊂ R.

Corollary 5.5. Let K be a compact set in C
n (n ≥ 3), and let Ω ⊂ C

n be a bounded
pseudoconvex Runge domain containing K. A point z ∈ Ω belongs to the null hull

K̂N of K if and only if there exists a sequence of null discs Fj ∈ N(D,Ω, z) such
that

(5.5)
∣∣{t ∈ [0, 2π] : dist(Fj(e

it),K) < 1/j}
∣∣ ≥ 2π − 1/j, j = 1, 2, . . . .

Similarly, the following characterization of the minimal hull generalizes [21,
Corollary 4.9] to any dimension n ≥ 3. The nontrivial direction is furnished by
Theorem 5.3.

Corollary 5.6. Let D be a minimally convex domain in R
n (n ≥ 3), let K be

a compact set in D, and let ω � D be a relatively compact domain containing the

minimal hull K̂M,D of K. A point x ∈ ω belongs to K̂M,D if and only if there exists

a sequence of conformal minimal discs Fj : D → ω such that, for every j = 1, 2, . . . ,
we have Fj(0) = x and (5.5).

Remark 5.7. Recall (cf. Remark 1.6) that a smoothly bounded domain D ⊂ Rn is
mean-convex if and only if it is (n − 1)-convex. By the maximum principle (see
Proposition 2.11), mean-convex domains containing a given compact set K ⊂ R

n

are natural barriers for minimal hypersurfaces with boundaries in K. The smallest
such barrier, if it exists, is called the mean-convex hull ofK; clearly it coincides with

the (n− 1)-convex hull K̂n−1 (see Definition 2.5). The main technique for finding
the mean-convex hull is the mean curvature flow of hypersurfaces, introduced by
Brakke [12]. For results on this subject we refer, among others, to the papers
[14, 23, 24, 28, 36, 37, 45, 46, 55] and the monograph by Colding and Minicozzi [15].
Our proof of Corollary 5.6 relies on completely different ideas, but it applies only
to the 2-convex hull (which equals the mean-convex hull only in dimension n = 3).
We indicate the following natural question.

Problem 5.8. LetK be a compact set with smooth boundary in Rn for some n ≥ 3.

Given a point x0 ∈ K̂M, does there exist a conformal minimal disc F : D → Rn

such that F (0) = x0 and F (bD) ⊂ K?

Recall that the Green current on C is defined on any 2-form α = adx ∧ dy by

G(α) = − 1

2π

∫
D

log |· |α = − 1

2π

∫
ζ∈D

log |ζ|· a(ζ)dx ∧ dy.

Clearly, G is a positive current of bidimension (1, 1) and ddcG = σ − δ0, where σ
is the normalized Lebesgue measure on the circle T = bD and δz denotes the point
mass at z. If F : D → C

n is a holomorphic disc, then F∗G is a positive current of
bidimension (1, 1) on Cn satisfying ddc(F∗G) = F∗σ−δF (0). (See Duval and Sibony
[22, Example 4.9].)

Assume now that K is a compact set in Cn, z is a point in the null hull K̂N,
and Fj : D → Cn is a sequence of holomorphic null discs with centers Fj(0) = z,
furnished by Corollary 5.5. By Wold [57] (see also [21, Proof of Theorem 6.2]),
the sequence of Green currents Tj = (Fj)∗G on Cn has a weakly convergent sub-
sequence, and the limit current T satisfies ddcT = μ − δz where μ is a probability
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measure on K. This generalizes the characterization of the null hull of a compact
set in C3 by null positive Green currents, given by [21, Theorem 6.2], to any dimen-
sion n ≥ 3. Similarly, applying the above argument to the sequence of conformal
minimal discs Fj : D → Rn furnished by Corollary 5.6 and using the mass formula
in [21, Lemma 5.1], we see that [21, Theorem 6.4, Corollaries 6.5 and 6.10] hold in
any dimension n ≥ 3, with the same proofs.

Remark 5.9. Recently, Sibony [54] found nonnegative directed currents of bidimen-

sion (1, 1) describing the Γ-hull K̂Γ of a compact set K ⊂ Cn in any directed system
determined by a closed, fiberwise conical subset Γ of the tangent bundle TCn. The

hull K̂Γ is defined by the maximum principle in terms of Γ-plurisubharmonic func-
tions, i.e., functions whose Levi form is nonnegative in directions from Γ. Sibony’s
characterization holds even if there are no Γ-directed holomorphic discs (i.e., discs
whose derivatives lie in Γ); in particular, his Γ-directed current need not be lim-
its of directed Green currents. The null hull falls within this framework; in this
case, the fiber Γz ⊂ TCn ∼= Cn over any point z ∈ Cn is the null quadric (2.12),
Γ-plurisubharmonic functions are null plurisubharmonic functions, and Γ-discs are
null discs. (The classical case of the polynomial hull is due to Duval and Sibony
[22] (see also Wold [57]); in this case Γ = TCn.) It seems an interesting question
to decide in which systems directed by a complex analytic variety Γ ⊂ TCn with

conical fibers is it possible to describe the hull K̂Γ by sequences of Γ-directed holo-
morphic discs Fj : D → Cn whose boundaries converge to K in measure (cf. (5.5)).
For the polynomial hull, this holds by Poletsky [49,50] and Bu-Schachermayer [13].
(For generalizations to complex manifolds, see [40, 41, 52, 53]; for complex spaces,
see [20].) For the null hull, this holds by [21, Theorem 6.2] (for n = 3) and Corollary
5.5 (for n > 3). These seem to be the only cases studied so far.
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[12] Kenneth A. Brakke, The motion of a surface by its mean curvature, Mathematical Notes,
vol. 20, Princeton University Press, Princeton, N.J., 1978. MR485012

[13] Shang Quan Bu and Walter Schachermayer, Approximation of Jensen measures by image
measures under holomorphic functions and applications, Trans. Amer. Math. Soc. 331 (1992),
no. 2, 585–608. MR1035999

[14] Yun Gang Chen, Yoshikazu Giga, and Shun’ichi Goto, Uniqueness and existence of viscosity
solutions of generalized mean curvature flow equations, J. Differential Geom. 33 (1991), no. 3,

749–786. MR1100211
[15] Tobias Holck Colding and William P. Minicozzi II, A course in minimal surfaces, Graduate

Studies in Mathematics, vol. 121, American Mathematical Society, Providence, RI, 2011.
MR2780140

[16] Jean-Pierre Demailly, Cohomology of q-convex spaces in top degrees, Math. Z. 204 (1990),
no. 2, 283–295. MR1055992

[17] Avner Dor, A domain in Cm not containing any proper image of the unit disc, Math. Z.
222 (1996), no. 4, 615–625. MR1406270
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complex spaces, Indiana Univ. Math. J. 61 (2012), no. 4, 1407–1423. MR3085613

[21] Barbara Drinovec Drnovšek and Franc Forstnerič,Minimal hulls of compact sets in R3, Trans.
Amer. Math. Soc. 368 (2016), no. 10, 7477–7506. MR3471098

[22] Julien Duval and Nessim Sibony, Polynomial convexity, rational convexity, and currents,
Duke Math. J. 79 (1995), no. 2, 487–513. MR1344768

[23] Klaus Ecker and Gerhard Huisken, Mean curvature evolution of entire graphs, Ann. of Math.
(2) 130 (1989), no. 3, 453–471. MR1025164

[24] Klaus Ecker and Gerhard Huisken, Interior estimates for hypersurfaces moving by mean
curvature, Invent. Math. 105 (1991), no. 3, 547–569. MR1117150

[25] Leonor Ferrer, Francisco Mart́ın, and William H. Meeks III, Existence of proper minimal

surfaces of arbitrary topological type, Adv. Math. 231 (2012), no. 1, 378–413. MR2935393
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