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Abstract
We show that the open unit ballBn ofC

n (n > 1) admits a nonsingular holomorphic foliation
by complete properly embedded holomorphic discs.

Keywords Riemann surface · Holomorphic disc · Foliation · Complete Riemannian
manifold
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1 Introduction

An open connected submanifold M of a Euclidean space is said to be complete if every diver-
gent path in M has infinite Euclidean length; equivalently, if the restriction of the Euclidean
metric ds2 to M is a complete Riemannian metric on M . Recall that a path γ : [0, 1) → M
is called divergent if γ (t) leaves any compact subset of M as t → 1.

For n > 1, we denote by B
n the open unit ball of C

n . In this paper, we prove the following
result.

Theorem 1 For any integer n > 1 there exists a nonsingular holomorphic foliation F of B
n

all of whose leaves are complete properly embedded holomorphic discs in B
n.

Theorem 1 seems to be the first result which provides control of the topology of all leaves
in a nonsingular holomorphic foliation of the ball by complete leaves; in our examples, all
leaves are the simplest possible ones, namely, discs. Our proof easily adapts to show that we
can ensure completeness of leaves in any given Riemannian metric on the ball, and not only
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franc.forstneric@fmf.uni-lj.si

1 Departamento de Geometría y Topología e Instituto de Matemáticas (IEMath-GR), Universidad de
Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain

2 Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana,
Slovenia

3 Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s00209-019-02430-6&domain=pdf


170 A. Alarcón, F. Forstnerič

the Euclidean metric. We do not know whether a comparable result holds for leaves with
prescribed but nontrivial topology. See also Remark 1 for a generalization of Theorem 1 to
bounded pseudoconvex Runge domains in C

n for n > 1.
Before proceeding, we place our result in the context of what is known.
The question whether there exist bounded (relatively compact) complete complex sub-

manifolds of C
n for n > 1 was raised by Yang [19] in 1977. The first examples were found

in 1979 by Jones [17] who showed that the disc D = {z ∈ C : |z| < 1} admits a complete
bounded holomorphic immersion into C

2, embedding into C
3, and proper embedding into

the ball of C
4. Interest in this subject has recently been revived due to new construction

methods. It was shown that there are complete properly immersed holomorphic curves in
B
2, and embedded ones in B

3, with any given topology [8], and also those with the complex
structure of any given bordered Riemann surface [2,3]. A related result in higher dimension
was obtained by Drinovec Drnovšek [11]. Parallel developments were made in minimal sur-
face theory where the corresponding circle of questions is known as theCalabi–Yau problem;
see the survey [5] and the paper [4].

It is a considerably more challenging task to construct complete properly embedded holo-
morphic curves in B

2 and, more generally, complete complex hypersurfaces in B
n for n > 1.

The first examples for n = 2 were given by Alarcón and López in [9].
In a pair of landmark papers [15,16] in 2015–2016, Globevnik constructed for any pair

of integers 1 ≤ k < n a complete k-dimensional complex submanifold of B
n and, more

generally, of any pseudoconvex Runge domain inC
n . For k = n−1 his construction provides

a possibly singular holomorphic foliation of the ball Bn by complete complex hypersurfaces,
most of which are smooth. Subsequently, Alarcón [1] introduced to this subject Forstnerič’s
techniques from [12], concerning noncritical holomorphic functions, and showed that every
smooth complex hypersurface in the ball B

n is a leaf of a nonsingular holomorphic foliation
ofB

n by hypersurfaces such that all except perhaps the initial one are complete. An analogous
result was established for foliations of any codimension. This provides both a converse to,
and an extension of the aforementioned theorem of Globevnik.

Foliations in [1,15,16] are given by level sets of suitable holomorphic functions on B
n (or,

more generally, of submersions B
n → C

q with 1 ≤ q < n), so the topology of their leaves
is not controlled. The same can be said about the examples in [9]. By a different technique,
using holomorphic automorphisms of C

n , Alarcón, Globevnik, and López obtained in [7]
complete closed complex hypersurfaces in the ball B

n (n > 1) with certain restrictions on
the topology of the examples, and with any given topology when n = 2 [6]. It follows in
particular that the disc D can be embedded as a complete proper holomorphic curve in B

2.
However, their results do not apply to foliations.

Our proof of Theorem 1 follows a similar approach as the one in [7], but with an addition
which enables us to control the topology and completeness of all leaves in a foliation. By
using holomorphic automorphisms we successively twist a holomorphic foliation of C

n by
complex lines in order to make bigger and bigger parts of the foliation avoid pieces of a
suitable labyrinth � in B

n . The labyrinth is a closed set in B
n exhausted by an increasing

sequence K j = ⋃ j
i=1 �i ( j ∈ N)of compact polynomially convex sets,where�i is contained

in a spherical shell Bi+1\Bi between two concentric balls in B
n and consists of finitely many

pairwise disjoint closed round balls in suitably chosen affine real hyperplanes. The main
property of the labyrinth is that any divergent curve in B

n which avoids the set
⋃∞

k=i �k for
some i ∈ N has infinite length. Such labyrinths have been constructed in [7,15]. Note that
each connected component of the intersection of B

n with a properly embedded complex line
L ⊂ C

n is Runge in L and hence simply connected; since it is also bounded, it is a properly
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A foliation of the ball by complete holomorphic discs 171

embedded disc in B
n . Our construction therefore yields a sequence of foliations {Fi }i∈N of

B
n by discs such that all leaves of Fi intersecting a compact subset Bi ⊂ B

n have intrinsic
diameter bigger than a certain number ki , with ki → +∞ and Bi increasing toB

n as i → ∞.
In the limit foliation F , all leaves are discs with infinite intrinsic diameter, hence complete.

2 The construction

Fix an integer n > 1. Denote by Aut(Cn) the group of holomorphic automorphisms of
C

n . We shall need the following result concerning moving compact convex sets in C
n by

holomorphic automorphisms; see [13, Theorem 2.3] or [14, Corollary 4.12.4, p. 158] for
more general statements.

Lemma 1 Let K0, K1, . . . , Km be pairwise disjoint compact convex sets in C
n and let � j ∈

Aut(Cn) ( j = 0, 1, . . . , m) be such that the images K ′
j = � j (K j ) are pairwise disjoint. If

the sets K = ⋃m
j=0 K j and K ′ = ⋃m

j=0 K ′
j are polynomially convex, then for any δ > 0

there exists � ∈ Aut(Cn) such that

|�(z) − � j (z)| < δ for all z ∈ K j , j = 0, 1, . . . , m. (2.1)

The following lemma provides the induction step in the proof of Theorem 1.

Lemma 2 Let B be a compact convex set contained in the ball B
n ⊂ C

n, and let � =⋃m
j=1 � j ⊂ B

n\B be a union of finitely many, pairwise disjoint, compact convex sets � j

such that the set B ∪ � is polynomially convex. If � ∈ Aut(Cn), then for any numbers r > 0
and ε > 0 there exists � ∈ Aut(Cn) such that

(a) �(�(rD × C
n−1)) ∩ � = ∅, and

(b) |�(z) − z| < ε for all z ∈ B.

Proof Let K0 be a compact convex neighbourhood of B, and for each j = 1, . . . , m let K j be
a compact convex neighbourhood of � j such that the sets K0, . . . , Km are pairwise disjoint
and their union K = ⋃m

j=0 K j is polynomially convex. (We refer to Stout [18] for general
results on polynomial convexity.)

Let �0 = Id ∈ Aut(Cn) be the identity automorphism. For j = 1, . . . , m we choose
automorphisms � j ∈ Aut(Cn) such that the compact sets K ′

j := � j (K j ) ( j = 0, 1, . . . , m)

are pairwise disjoint, we have that

K ′
j ∩ �(rD × C

n−1) = ∅ for j = 1, . . . , m, (2.2)

and the union
⋃m

j=0 K ′
j is polynomially convex. Clearly, such � j exist: noting that K ′

0 =
K0, we may squeeze each convex set K j ( j = 1, . . . , m) by a dilation into a very small
neighbourhood of an interior point of itself and then translate their images into sufficiently
small pairwise disjoint balls around some points in the complement of K0 ∪ �(rD × C

n−1).
(We refer to [14, proof of Corollary 4.12.4] for the details.)

Now, Lemma 1 furnishes for every δ > 0 an automorphism� ∈ Aut(Cn) satisfying (2.1).
Let � = �−1. If δ > 0 is small enough then condition (b) holds, and we have �(� j ) ⊂ K ′

j
and hence � j ⊂ �(K ′

j ) for every j = 1, . . . , m, which yields (a). Indeed, if �(�(z)) ∈ � j

for some z ∈ rD × C
n−1 then �(z) ∈ K ′

j which contradicts (2.2). 
�
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172 A. Alarcón, F. Forstnerič

Proof of Theorem 1 Fix an integer n > 1. We exhaust the unit ball Bn ⊂ C
n by an increasing

sequence of closed balls

B1 ⊂ B2 ⊂ · · · ⊂
∞⋃

i=1

Bi = B
n (2.3)

centered at the origin such that each Bi is contained in the interior of the next ball Bi+1.
Denote by ρi the radius of Bi , so we have 0 < ρ1 < ρ2 < · · · < 1 with limi→∞ ρi = 1.

In each spherical shell B̊i+1\Bi (i ∈ N) we choose a compact set �i = ⋃mi
j=1 �i, j

consisting of finitely many, pairwise disjoint, compact convex sets �i, j and satisfying the
following conditions.

(A) The set Bi ∪ �i is polynomially convex for every i ∈ N.
(B) Every divergent path in B

n avoiding �i = ⋃∞
k=i �k for some i ∈ N has infinite length.

Labyrinths with these properties have been constructed in [7,15]. In [7] the connected com-
ponents �i, j of � are balls in suitably chosen affine real hyperplanes in C

n .
We now describe the induction leading to the proof of Theorem 1.
Recall that D = {z ∈ C : |z| < 1}. Let P = D

n−1 ⊂ C
n−1 denote the unit (n − 1)-

dimensional polydisc. By rP for r > 0 we denote the polydisc with polyradius r . Choose a
number ε0 > 0 and set r0 = 0, B0 = �0 = ∅. Let �0 = φ0 = Id ∈ Aut(Cn) be the identity
map.

We shall inductively find sequences ri > 0, εi > 0, and φi ∈ Aut(Cn) such that, setting
�i = φi ◦ · · · ◦ φ1, the following conditions hold for every i ∈ N.

(ai ) ri > ri−1 + 1 and Bi ⊂ �i−1(ri P × C).
(bi ) |φi (z) − z| < εi for all z ∈ Bi .
(ci ) �i (r j P × C) ∩ � j = ∅ for j = 1, . . . , i .
(di ) 0 < εi < min{εi−1/2, ρi+1 − ρi }.
(ei ) For every holomorphic map θ : Bi → C

n satisfying |θ(z) − z| < εi for all z ∈ Bi we
have that θ(�i−1(r j P × C)) ∩ � j = ∅ for j = 1, . . . , i − 1.

Assume inductively that for some i ∈ N we have already found these objects for all indices
up to i − 1; this trivially holds for i = 1.

Choose a number ri satisfying (ai ). Next, choose εi > 0 so small that (di ) and (ei ) are
satisfied. When i = 1, condition (e1) is vacuous, while for i > 1 it can be satisfied by (ci−1);
note that for j < i the set� j is contained in the interior of Bi , and the set�i−1(r j P×C)∩ Bi

is compact and disjoint from � j .
By property (A) of the labyrinth, we may apply Lemma 2 with � = �i−1 and obtain an

automorphism φi ∈ Aut(Cn) (called� in the lemma) satisfying the approximation condition
(bi ) and such that the automorphism �i := φi ◦ �i−1 ∈ Aut(Cn) satisfies (ci ). (The lemma
directly ensures that �i satisfies condition (ci ) for j = i ; it then also satisfies the same
condition for indices j = 1, . . . , i − 1 in view of the condition (ei ) on the number εi .) Thus,
the induction may proceed.

In view of (2.3) and conditions (bi ) and (di ), we see from [14, Proposition 4.4.1] that the
sequence �i ∈ Aut(Cn) converges uniformly on compacts in the domain

� =
∞⋃

i=1

�−1
i (Bi ) ⊂ C

n

to a biholomorphic map � = limi→∞ �i : � → B
n . Moreover, �−1

i (Bi ) for i = 1, 2, . . .
is an increasing sequence of compact polynomially convex sets exhausting �. It follows that
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A foliation of the ball by complete holomorphic discs 173

� is a pseudoconvex Runge domain in C
n . Conditions (bi ) and (di ) also show that for any

z ∈ Bi and k > i we have

|�k ◦ �−1
i (z) − z| = |φk ◦ · · · ◦ φi+1(z) − z| <

k∑

j=i+1

ε j < εi .

Passing to the limit as k → ∞ gives

|� ◦ �−1
i (z) − z| < εi , z ∈ Bi . (2.4)

Writing � = (� ◦ �−1
i ) ◦ �i = θ ◦ �i , we see from (2.4) and (ei+1) that

�
(
(ri P × C) ∩ �

) ∩ �i = ∅, i = 1, 2, . . . . (2.5)

Write z = (z′, zn) ∈ C
n where z′ = (z1, . . . , zn−1). Let G be the foliation of � by the

connected components of the sets ({z′ = c} × C) ∩ � for c ∈ C
n−1, and let F = �(G ) be

the image foliation of B
n . Since � is pseudoconvex and Runge in C

n , the leaves of G are
discs or complex lines which are proper in �; hence the analogous condition holds for the
leaves of F in B

n . Since B
n is bounded, all leaves of F (and hence of G ) are discs.

It remains to show that all leaves of F are complete. Let F ∈ F . Fix a point w =
(w′, wn) ∈ G := �−1(F). Note that G is a disc in the line L = {(w′, ζ ) : ζ ∈ C}. Choose
i0 ∈ N so large that w ∈ ri0P × C and �(w) ∈ Bi0 . Clearly these conditions persist if we
increase i0. Since �i → � uniformly on compacts in � as i → ∞, we can increase i0 if
necessary so that we also have �i0−1(w) ∈ Bi0 . Since L = {w′} × C ⊂ ri0P × C by the
choice of i0, we see from (2.5) that F ∩ �i ⊂ �(L ∩ �) ∩ �i = ∅ for all i ≥ i0, and hence
F ∩ �i0 = ∅. Since F is proper in B

n and in view of the property (B) of the labyrinth, it
follows that F is complete. 
�
Remark 1 Combining the proof of Theorem 1 with results of Ł. Kosiński and S. Charpentier
[10], one can easily see that Theorem 1 holds in an arbitrary bounded (or hyperbolic) pseudo-
convex Runge domain D inC

n for n > 1. Indeed, it is shown in [10] that every pseudoconvex
Runge domain D ⊂ C

n , endowed with a Riemannian metric g, contains a closed polyno-
mially convex set �, every connected component of which is a holomorphically contractible
(for example, convex) compact set, such that any divergent path in D avoiding all but finitely
many connected components of � has infinite length in the metric g; this answers a question
that the authors posed in a preliminar version of the present paper. Our proof of Theorem 1
applies to any labyrinthwith these properties. Note also that each connected component of the
intersection of a closed embedded complex line in C

n with a pseudoconvex Runge domain
D is simply connected, hence a disc or C. If D is hyperbolic, it does not contain any complex
lines, and hence all leaves of the foliation on D, obtained by the proof of Theorem 1, are
complete properly embedded discs.
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