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ABSTRACT. In this paper we give a simple proof of the existence and plenitude
of Runge tubes in C™ (n > 1) and, more generally, in Stein manifolds with the
density property. We show in particular that for any algebraic submanifold
X of codimension at least two in a complex Euclidean space C™, the normal
bundle of X admits a holomorphic embedding onto a Runge domain in C™
which agrees with the inclusion map X < C" on the zero section.

1. INTRODUCTION

It has been an open question for a long time whether it is possible to embed
C* x C as a Runge domain in C2. (Here, C is the complex plane and C* = C)\ {0}.)
Such hypothetical domains have been called Runge cylinders in C2. The question
arose in connection with the classification of Fatou-components for Hénon maps by
E. Bedford and J. Smillie in 1991; see [4]. This problem has recently been solved
in the affirmative by F. Bracci, J. Raissy, and B. Stensgnes [6], who obtained a
Runge embedding of C* x C into C? as the basin of attraction of a (nonpolynomial)
holomorphic automorphism of C? at a parabolic fixed point.

The purpose of this note is to give a very simple proof of the existence of Runge
cylinders and, furthermore, of the existence of an abundance of Runge tube domains
in all Stein manifolds with the density property. Although our proof is completely
different from that given in [6], both proofs depend crucially on the Andersén-
Lempert theory (see [I4, Chapter 4]).

Recall (see D. Varolin [21122] or [14] Definition 4.10.1]) that a complex manifold
Y has the density property if every holomorphic vector field on Y is a uniform
limit on compacts of finite sums of C-complete holomorphic vector fields on Y.
In particular, Euclidean spaces C" of dimension n > 1 have the density property
according to E. Andersén and L. Lempert [I].

Our first main result is the following.

Theorem 1.1. Let X and Y be Stein manifolds with dim X < dimY, and assume
that Y has the density property. Suppose that 8 : X — Y is a holomorphic em-
bedding with O(Y)-convex image (this holds in particular if 0 is proper), and let
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E — X denote the normal bundle associated to 6. Then, 6 can be approximated
uniformly on compacts in X by holomorphic embeddings of E into Y whose images
are Runge domains in'Y .

Recall that a locally closed subset Z of a complex manifold Y is said to be
O(Y)-convez if for every compact set K C Z, its O(Y)-convex hull

(1.1) Kowy={yeY:|f(y) < sup|f| VS € O(Y)}

is compact and contained in Z.

To get a Runge embedding of C* x C into C? from Theorem [[I one embeds
X = C* onto the curve {zw = 1} C C? and notes that any holomorphic vector
bundle over C* (and in fact over any open Riemann surface) is trivial by Oka’s
theorem [19]. (See also [14} Section 5.2].)

There is a big list of Stein manifolds, and in particular of affine algebraic mani-
folds, which are known to have the density property; see the list of examples in [2],
as well as the recent surveys of Kaliman and Kutzschebauch [I8] and of the first
named author [I4] Section 4.10]. The authors together with R. Andrist and T. Rit-
ter proved in [2L3] that every Stein manifold X embeds properly holomorphically
into any Stein manifold Y with the density property satisfying dim Y > 2dim X +1.
Every open Riemann surface X embeds properly holomorphically into C3, and a
plenitude of them embed properly into C?; see [13] and [14, Sections 9.10-9.11] for
a discussion of this topic. By Theorem [[.J] every such embedding can be approx-
imated by a Runge embedding of the normal bundle of X into Y. This provides
a huge variety of nontrivial Runge tubes in any Stein manifold with the density
property. In particular, we have the following corollary to Theorem [I.1]

Corollary 1.2 (Runge tubes over open Riemann surfaces). If X is an open Rie-
mann surface which admits a proper holomorphic embedding into C?, then X x C
admits a Runge embedding into C2. For every open Riemann surface X and every
k>2, X x CF admits a Runge embedding into CF+1 and into any Stein manifold
Y*+L with the density property.

Remark 1.3. The Runge embeddings F — Y of the normal bundle in Theorem
[Tl need not agree with the given embedding 6 : X < Y on the zero section of
E (which we identify with X). Indeed, it is known that for every pair of integers
1 < k < n there exists a proper holomorphic embedding # : X = CF — Y = C"
whose complement is (n — k)-hyperbolic in the sense of Eisenman; in particular,
there are no nondegenerate holomorphic maps C"~* — C" \ §(C*) (see Buzzard
and Fornaess [7] for the case k = 1,n = 2 and Borell and Kutzschebauch [5] and
Forstneri¢ [IT], Corollary 5.3] for the general case). Since the normal bundle of the
embedding 6 is the trivial bundle E = C" = C* x C"~* — C* and the complement
of C¥ x {0}"~% in C" is clearly not (n — k)-hyperbolic, 6 does not extend to a
holomorphic embedding £ = C" — C". |

However, we can ensure this additional interpolation condition for algebraic em-
beddings of codimension at least 2 into C™. Here is the precise result.

Theorem 1.4. Let X be a Stein manifold and let 8: X — C™ be a proper holo-
morphic embedding onto an algebraic submanifold 0(X) C C*. Ifn > dim X + 2,

then 0 extends to a holomorphic Runge embedding 6: E Y of the normal bundle
of 0.
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According to Docquier and Grauert [9] (see also [I4] Theorem 3.3.3]), every
proper holomorphic embedding #: X < Y of a Stein manifold X into a complex
manifold Y extends to an embedding of a neighborhood of the zero section in the
normal bundle of §. Theorem [[.4] says that one can in fact embed the entire normal
bundle as a Runge domain in C”.

The proof of Theorem [[.4lis similar to that of Theorem [Tl It uses the result of
Kaliman and Kutzschebauch [I7, Theorem 6] that the Lie algebra of all algebraic
vector fields on C” vanishing on an algebraic submanifold of codimension at least
two enjoys the algebraic density property. It follows that flows of such vector fields
can be approximated by automorphisms of C” fixing the submanifold pointwise.

Corollary 1.5. If X is an affine algebraic curve, then every proper algebraic embed-
ding 0: X < C""1 (n > 2) extends to a holomorphic embedding 6 : X x C* — C"+1
onto a Runge domain in C"+1.

Remark 1.6. Note that holomorphic Runge embeddings of the normal bundle, fur-
nished by Theorem [[.4land Corollary [[L5] can never be algebraic. Indeed, if E — X
is the algebraic normal bundle of an algebraic submanifold X C C" and F': E — C"
is an algebraic embedding, then Q = F(E) C C" is a Zariski open set in C" and
its complement A = C™ \ Q is a Zariski closed set, i.e., an algebraic subvariety of
C™ (see Chevalley [8]). Since Q2 is a Stein domain, A must be of pure codimension
one, and hence A = {f = 0} for some entire function f € O(C™). Clearly, the func-
tion 1/f € O() cannot be approximated uniformly on compacts in Q by entire
functions, and hence the domain Q = F(E) is not Runge in C".

We conclude this introduction by pointing out the following open problem related
to Theorem [[I] and Corollary

Problem 1.7. Is there a Runge embedding of the (trivial) normal bundle F =
H x C = C* x C of the hyperbola H = {(z,w) € C? : zw = 1} extending the
inclusion map H «— C2?

The method of proof breaks down at the point where one would need to know
that the Lie algebra of holomorphic vector fields vanishing on H has the density
property. To decide about this is a notoriously hard problem well known and open
for decades, as is the problem about the density property of (C*)™ for n > 1.

2. Proor oF THEOREMS [I.1] AND [1.4]

We begin by recalling some basic facts from the theory of Stein manifolds (see
e.g. Gunning and Rossi [15] or Hérmander [16]) and explaining the setup.

A domain D in a complex manifold Y is said to be Runge in Y if the set of
restrictions {f|p : f € O(Y)} is a dense subset of O(D). If both D and Y are
Stein, this holds if and only if for every compact subset K C D we have that
IA(@(D) = IA{o(y). In particular, a domain in a Stein manifold Y which is exhausted
by compact O(Y)-convex sets is Runge in Y.

A holomorphic embedding #: X — Y of a complex manifold X into a complex
manifold Y is said to be Runge if the image Z = 6(X) C Y is an O(Y)-convex
subset of Y i.e., it is exhausted by compact O(Y')-convex subsets. If X and Y are
Stein manifolds, then every proper holomorphic embedding X < Y is Runge.

Assume that 7: E — X is a holomorphic vector bundle over a Stein manifold X.
The total space FE is then also a Stein manifold. We shall write elements of E in the
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form e = (z,v) where 7(e) = z, identifying X with the zero section {(z,0) : € X'}
of E. For any t € C there is a holomorphic fibre-preserving map

(2.1) Y E— E, Ye(x,v) = (z,tv).

Clearly, ¢ is a holomorphic automorphism of E for every t € C* = C\ {0}.
A subset Z C E is called radial if ,(Z) C Z holds for every t € [0, 1].
The following lemma provides the induction step in the proof of Theorem 11

Lemma 2.1. Assume that X is a Stein manifold, E — X is a holomorphic vector
bundle, K C L are compact radial O(E)-convexr subsets of E, Q C E is an open
set containing X U K, Y is a Stein manifold with the density property such that
dimY =dim E, and 0 : Q <= Y is a holomorphic embedding such that 0|x: X — Y
is a Runge embedding and 0(K) is O(Y)-convex. Then, 6 can be approzimated as
closely as desired uniformly on K by a holomorphic embedding 0: QoY of a
domain Q C E with X UL C Q such that 0~|X: X — Y is a Runge embedding and
the sets O(L) and O(K) are O(Y)-conver.

If, in addition to the hypotheses above, Y = C"™ with n > dim X +2 and 0(X) C
C™ is a closed algebraic submanifold of C™, then the approximating embedding 6
Q < C" can be chosen to agree with 6 on X.

The conditions in the lemma imply that £ — X is the normal bundle of the
embedding 0|x: X — Y.

Proof. We identify X with the zero section of E.

Choose a compact O(X)-convex subset Xy C X such that 7#(L) C X,. Since
the embedding 0|x: X — Y is Runge, the image Yy = 0(Xy) C 6(X) is O(Y)-
convex. Pick a compact O(Y)-convex neighborhood N C 6(£2) of Yy (such exists
since an O(Y)-convex set has a basis of compact O(Y)-convex neighborhoods).
Thus, N = 6(Ny) for a compact set Ny C Q with Xo C No.

Let ¢ be defined by (21)). Since w(L) C X and Ny is a neighborhood of
Xo in E, we can choose ¢ > 0 small enough such that (L) C Np. Since L is
O(E)-convex and 9. € Aut(E), the set (L) is O(E)-convex, and hence a fortiori
O(Ny)-convex. Since §: Q@ — 6(2) is a biholomorphism, it follows that the set
O(e(L)) is O(N)-convex and hence also O(Y)-convex (since N is O(Y)-convex).

Consider the isotopy of injective holomorphic maps o, for ¢ € [e, 1], defined on
an open neighborhood of §(K) in Y by the condition

(22) 90’1/175:0'1509, te [6, 1]
Note that the following hold:
(a) oy is the identity map, and
(b) for every t € [¢, 1] the compact set o (6(K)) C Y is O(Y)-convex.
Condition (b) holds because ¢, (K) C K is clearly O(E)-convex, so the set o(6(K))
=0(¢(K)) is O(8(K))-convex and hence O(Y")-convex (since §(K) is O(Y)-convex).
By the Andersén-Lempert-Forstneri¢-Rosay-Varolin theorem (see [12, Theorem
2.1] for Y = C™ and [I4] Theorem 4.10.5] for the general case), the map o, can be
approximated uniformly on a neighborhood of §(K') by holomorphic automorphisms
¢ € Aut(Y).
Since 9. (L U X) = (L) UX C Q by the choice of €, there is an open neigh-
borhood © C E of L U X such that 1.(Q) C Q. We claim that the holomorphic
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embedding
(2.3) f:=¢ 'obotp:Q — Y

satisfies the lemma provided that ¢ is chosen close enough to o, on a fixed neigh-
borhood of 8(K). Indeed, since the sets 0(¢.(L)) and (¢ (K)) are O(Y)-convex
and ¢ is an automorphism of Y, the sets §(L) and A(K) are also O(Y)-convex.
Furthermore, 9~|X = ¢ 1of|x: X < Y is a Runge embedding since §|x is. Finally,
on the set K we have in view of (Z2)) that

=¢ tohoth.=¢ ‘oo, 00.

Since the map ¢! oo, is close to the identity on #(K) by the choice of ¢, it follows
that 6 is close to @ on K. This proves the first part of the lemma.

Assume now that ¥ = C™ and that §(X) = A C C" is a closed algebraic sub-
manifold, where n > dim A + 2. By Kaliman and Kutzschebauch [I7, Theorem 6],
the Lie algebra of algebraic vector fields on C™ vanishing on A enjoys the algebraic
density property. (This means that every algebraic vector field on C™ vanishing on
A can be expressed by sums and commutators of complete algebraic vector fields
on C™ vanishing on A. Indeed, one may use shear vector fields vanishing on A.)
This implies (see [14, Proposition 4.10.4]) that the flow of any algebraic vector field
vanishing on A can be approximated on each compact polynomially convex subset
by holomorphic automorphisms of C” fixing A pointwise.

Note that, up to a change of the ¢-parameter, the isotopy ¢, (21 is the flow of
a holomorphic vector field ¥V on F, tangent to the fibres of the projection £ — X
and vanishing on the zero section X C E. Hence, the isotopy o; defined by (2.2)
is also the flow of a holomorphic vector field W on a neighborhood of (K) in C”
that vanishes on the algebraic submanifold A = 6(X) C C". (Indeed, W = 0.(V)
is the push-forward of V by the embedding 6.) By Serre’s Theorems A and B [20]
we can approximate W as closely as desired on a neighborhood of the compact
polynomially convex set (K) by an algebraic vector field vanishing on A. By what
has been said above, this shows that the map o. can be approximated uniformly
on a neighborhood of §(K') by holomorphic automorphisms ¢ € Aut(C™) satisfying
¢(z) = z for all z € §(X). The proof is now completed just as before. In particular,
we see from (Z3) that the embedding 0 agrees with 6 on X. O

Proof of Theorem [IL1l Pick an exhaustion K; C Ky C -+ C U;’;l K; = E by
compact radial O(E)-convex sets. In fact, we may choose each K of the form

Kj={(z,v) € E:pi(x) <j and |vly, <j},

where ¢ is a strongly plurisubharmonic exhaustion function on X and ¢ is a
suitably chosen hermitian metric on E. Let : X — Y be a holomorphic Runge
embedding. By a theorem of Docquier and Grauert (see [14, Theorem 3.3.3]) there
is a neighborhood Qy C FE of the zero section X C F such that 6 extends to a
holomorphic embedding 6y : Qy — Y. Set Ky = &. By applying Lemma 2]
inductively, we find a sequence of open neighborhoods €}; C E of K; U X and
holomorphic embeddings §;: ; < Y satisfying the following conditions for every
jeN:

(a) the compact sets §;(K;) and 6;(K;_1) are O(Y)-convex,

(b) the embedding 6,|x: X — Y is Runge, and

(c) 6, approximates 6;_; as closely as desired on K;_;.
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If the approximations are close enough, the sequence §; converges uniformly on
compacts in £ to a holomorphic embedding 6: E — Y. Since O(Y)-convexity
of a compact set in a Stein manifold Y is a stable property for compact strongly
pseudoconvex domains (see [10]) and every compact O(Y)-convex set can be ap-
proximated from the outside by such domains, it follows that the image of each set
K remains O(Y)-convex in the limit provided that all approximations were close
enough. Hence, 6(E) is a Runge domain in Y. O

Proof of Theorem [L4. We follow the proof of Theorem [[LTI1 By the second part
of Lemma 211 the sequence of embeddings 6;: Q; < C" can now be chosen such
that, in addition to the above, we have that 6;|x = 6,_1|x holds for all j € N.
This ensures that the limit embedding 6 = lim; ,0;: F — C" also satisfies
Olx =0|x- O

REFERENCES

[1] Erik Andersén and Lészlé Lempert, On the group of holomorphic automorphisms of C™,
Invent. Math. 110 (1992), no. 2, 371-388, DOI 10.1007/BF01231337. MR 1185588

[2] Rafael Andrist, Franc Forstneri¢, Tyson Ritter, and Erlend Forneess Wold, Proper holomor-
phic embeddings into Stein manifolds with the density property, J. Anal. Math. 130 (2016),
135-150, DOI 10.1007/s11854-016-0031-y. MR3574650

[3] Rafael B. Andrist and Erlend Fornaess Wold, Riemann surfaces in Stein manifolds with the
density property (English, with English and French summaries), Ann. Inst. Fourier (Grenoble)
64 (2014), no. 2, 681-697. MR3330919

[4] Eric Bedford and John Smillie, Polynomial diffeomorphisms of C2. II. Stable manifolds and
recurrence, J. Amer. Math. Soc. 4 (1991), no. 4, 657-679, DOI 10.2307,/2939284. MR 1115786

[5] Stefan Borell and Frank Kutzschebauch, Non-equivalent embeddings into complex Euclidean
spaces, Internat. J. Math. 17 (2006), no. 9, 1033-1046, DOI 10.1142/S0129167X06003795.
MR2274009

[6] Filippo Bracci, Jasmin Raissy, and Berit Stensgnes, Automorphisms of C* with an invari-
ant non-recurrent attracting Fatou component biholomorphic to C x ((C*)kfl, arXiv e-prints
(2017), https://arxiv.org/abs/1703.08423, J. Eur. Math. Soc., to appear.

[7] Gregery T. Buzzard and John Erik Fornzess, An embedding of C in C2 with hyperbolic
complement, Math. Ann. 306 (1996), no. 3, 539-546, DOI 10.1007/BF01445264. MR1415077

[8] Claude Chevalley, Fondements de la géométrie algébrique (French), Secrétariat
Mathématique, Paris, 1958. MR0108486

[9] Ferdinand Docquier and Hans Grauert, Levisches Problem und Rungescher Satz fir Teil-
gebiete Steinscher Mannigfaltigkeiten (German), Math. Ann. 140 (1960), 94-123, DOI
10.1007/BF01360084. MR0148939

[10] Franc Forstneri¢, Stability of polynomial convezity of totally real sets, Proc. Amer. Math.
Soc. 96 (1986), no. 3, 489-494, DOI 10.2307/2046601. MR822446

[11] Franc Forstneric, Interpolation by holomorphic automorphisms and embeddings in C™,
J. Geom. Anal. 9 (1999), no. 1, 93-117, DOI 10.1007/BF02923090. MR1760722

[12] Franc Forstneric and Jean-Pierre Rosay, Erratum: “Approzimation of biholomor-
phic mappings by automorphisms of C™” [Invent. Math. 112 (1993), no. 2, 323-
349; MR1218106(94f:32032)], Invent. Math. 118 (1994), no. 3, 573-574, DOI
10.1007/BF01231544. MR1296357,

[13] Franc Forstneri¢ and Erlend Fornaess Wold, Embeddings of infinitely connected planar
domains into C2, Anal. PDE 6 (2013), no. 2, 499-514, DOI 10.2140/apde.2013.6.499.
MR3071396

[14] Franc Forstneri¢, Stein manifolds and holomorphic mappings, The homotopy principle in
complex analysis, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge.
A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas.
3rd Series. A Series of Modern Surveys in Mathematics], vol. 56, Springer, Cham, 2017.
MR3700709

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.


https://www.ams.org/mathscinet-getitem?mr=1185588
https://www.ams.org/mathscinet-getitem?mr=3574650
https://www.ams.org/mathscinet-getitem?mr=3330919
https://www.ams.org/mathscinet-getitem?mr=1115786
https://www.ams.org/mathscinet-getitem?mr=2274009
https://arxiv.org/abs/1703.08423
https://www.ams.org/mathscinet-getitem?mr=1415077
https://www.ams.org/mathscinet-getitem?mr=0108486
https://www.ams.org/mathscinet-getitem?mr=0148939
https://www.ams.org/mathscinet-getitem?mr=822446
https://www.ams.org/mathscinet-getitem?mr=1760722
https://www.ams.org/mathscinet-getitem?mr=1213106(94f:32032)
https://www.ams.org/mathscinet-getitem?mr=1296357
https://www.ams.org/mathscinet-getitem?mr=3071396
https://www.ams.org/mathscinet-getitem?mr=3700709

RUNGE TUBES IN STEIN MANIFOLDS WITH THE DENSITY PROPERTY 575

[15] Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, reprint
of the 1965 original, AMS Chelsea Publishing, Providence, RI, 2009. MR2568219

[16] Lars Hormander, An introduction to complex analysis in several variables, 3rd ed., North-
Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990.
MR1045639

[17] Shulim Kaliman and Frank Kutzschebauch, Criteria for the density property of complex man-
ifolds, Invent. Math. 172 (2008), no. 1, 71-87, DOI 10.1007/s00222-007-0094-6. MR2385667

[18] Shulim Kaliman and Frank Kutzschebauch, On the density and the volume density property,
Complex analysis and geometry, Springer Proc. Math. Stat., vol. 144, Springer, Tokyo, 2015,
pp. 175-186, DOI 10.1007/978-4-431-55744-9_12. MR3446755

[19] Kiyoshi Oka, Sur les fonctions analytiques de plusieurs variables. I11. Deuziéme probléme de
Cousin., J. Sci. Hiroshima Univ., Ser. A 9 (1939), 7-19 (French).

[20] Jean-Pierre Serre, Faisceauz algébriques cohérents (French), Ann. of Math. (2) 61 (1955),
197-278, DOI 10.2307/1969915. MR0068874

[21] Dror Varolin, The density property for complex manifolds and geometric structures. II, In-
ternat. J. Math. 11 (2000), no. 6, 837-847, DOI 10.1142/S0129167X00000404. MR1785520

[22] Dror Varolin, The density property for complex manifolds and geometric structures, J. Geom.
Anal. 11 (2001), no. 1, 135-160, DOI 10.1007/BF02921959. MR1829353

FacuLTy OF MATHEMATICS AND PHYSICS, UNIVERSITY OF LJUBLJANA, JADRANSKA 19, SI-1000
LJUBLJANA, SLOVENIA—AND—INSTITUTE OF MATHEMATICS, PHYSICS AND MECHANICS, JADRAN-
SKA 19, SI-1000 LJUBLJANA, SLOVENIA

Email address: franc.forstneric@fmf.uni-1j.si

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OSLO, PosTBOKS 1053 BLINDERN, NO-0316
OsLO, NORWAY
Email address: erlendfw@math.uio.no

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.


https://www.ams.org/mathscinet-getitem?mr=2568219
https://www.ams.org/mathscinet-getitem?mr=1045639
https://www.ams.org/mathscinet-getitem?mr=2385667
https://www.ams.org/mathscinet-getitem?mr=3446755
https://www.ams.org/mathscinet-getitem?mr=0068874
https://www.ams.org/mathscinet-getitem?mr=1785520
https://www.ams.org/mathscinet-getitem?mr=1829353

	1. Introduction
	2. Proof of Theorems 1.1 and 1.4
	References

