The Journal of Geometric Analysis (2021) 31:4754-4780
https://doi.org/10.1007/s12220-020-00455-6

®

Check for
updates

The Calabi-Yau Property of Superminimal Surfaces
in Self-Dual Einstein Four-Manifolds

Franc Forstneri¢'2

Received: 15 April 2020 / Published online: 2 July 2020
© Mathematica Josephina, Inc. 2020

Abstract

In this paper, we show that if (X, g) is an oriented four-dimensional Einstein manifold
which is self-dual or anti-self-dual then superminimal surfaces in X of appropriate
spin enjoy the Calabi—Yau property, meaning that every immersed surface of this
type from a bordered Riemann surface can be uniformly approximated by complete
superminimal surfaces with Jordan boundaries. The proof uses the theory of twistor
spaces and the Calabi—Yau property of holomorphic Legendrian curves in complex
contact manifolds.
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1 Introduction

It has been known since the 1980s that four-dimensional self-dual Einstein manifolds
have a rich theory of superminimal surfaces. In the present paper we provide further
evidence by showing that such surfaces enjoy the Calabi—Yau property; see Theo-
rems 1.2 and 5.3. The latter term was introduced in the recent paper by Alarcén et
al. [6, Definition 6.1]. The motivation comes from the classical problem posed by
Calabi in 1965 (see [22, p. 170] and [18, p. 212]) and in a more precise form by
Yau in 2000 (see [61, p. 360] and [62, p. 241]), asking which open Riemann surfaces
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admit complete conformal minimal immersions with bounded images into Euclidean
spaces R”, n > 3, and what is the possible boundary behavior of such surfaces. For
the history of this subject and some recent developments, see the survey [2] and the
papers [1,3,7].

Superminimal surfaces form an interesting class of minimal surfaces in four-
dimensional Riemannian manifolds. Although this term was coined by Bryant in his
study [15] of such surfaces in the four-sphere S* and their relationship to holomor-
phic Legendrian curves in (CIP’3, the Penrose twistor space of S%. it soon became clear
through the work of Friedrich [30,31] that this class of minimal surfaces was described
geometrically already by Kommerell in his 1897 dissertation [39] and his 1905 paper
[41], and they were subsequently studied by Eisenhart [26], Bordovka [13,14], Calabi
[16], and Chern [19,20], among others; see Sect. 2. Unfortunately, at least three dif-
ferent definitions are used in the literature. We adopt the original geometric definition
of Kommerell [39] (see also Friedrich [31, Sect. 1]) and explain the role of spin in this
context.

Assume that (X, g) is a Riemannian four-manifold and M C X is a smoothly
embedded surface with the induced conformal structure. (Our considerations, being
of local nature, will also apply to immersed surfaces.) Then T X |3y = TM @ N where
N = N(M) is the orthogonal normal bundle to M. A unit normal vector n € Ny at
apoint x € M determines a second fundamental form Sy (n) : Ty M — T M, a self-
adjoint linear operator on the tangent space of M. For a fixed tangent vector v € T, M
we consider the closed curve

L(v) = [Sc(mv:n e Ny, Inlg =1} C Tu M. (1.1)

Suppose now that M and X are oriented, and coorient the normal bundle N accordingly.

Definition 1.1 A smooth oriented embedded surface M in an oriented Riemannian
four-manifold (X, g) is superminimal of positive (negative) spin if for every point
X € M and unit tangent vector v € Ty M, the curve I, (v) C TyM (1.1) is a circle
centered at 0 and the map n — S(n)v € I, (v): (n € N,) is orientation preserving
(resp. orientation reversing). The last condition is void at points x € M where the
circle I (v) reduces to 0 € TyM. The analogous definition applies to a smoothly
immersed oriented surface f : M — X.

Every superminimal surface is a minimal surface; see Friedrich [31, Proposi-
tion 3] and the discussion in Sect. 2. The converse is not true except in special
cases, see Remark 4.10. The notion of spin, which is only implicitly present in
Friedrich’s discussion, is very important in the Bryant correspondence described in
Theorem 4.6.

The surface M in Definition 1.1 is endowed with the conformal structure which
renders the given immersion M — X conformal. In the sequel we prefer to work with
a fixed conformal structure on M and consider only conformal immersions M — X.
Since M is also oriented, it is a Riemann surface. We denote by SMi(M , X) the
spaces of smooth conformal superminimal immersions of positive and negative spin,
respectively, and set
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4756 F. Forstneric

SM(M, X) = SMT(M, X) USM™ (M, X). (1.2)

The intersection SM™ (M, X) N SM™ (M, X) of these two spaces consists of immer-
sions for which all circles I, (v) (1.1) reduce to points; such surfaces are minimal with
vanishing normal curvature, hence totally geodesic (see [31]).

Recall that a (finite) bordered Riemann surface is a domain of the form M =
R\ |U; Ai, where R is a compact Riemann surface and A; are finitely many compact
pairwise disjoint discs with smooth boundaries bA;, diffeomorphic images of D =
{z € C: |z| < 1}.Its closure M is acompact bordered Riemann surface. The definition
of superminimality clearly applies to smooth conformal immersions M — X and the
notation (1.2) shall be used accordingly.

The following is our first main result; see also Theorem 5.3.

Theorem 1.2 Let (X, g) be an oriented four-dimensional Einstein manifold whose
Weyl tensor W = W+ + W~ satisfies W& = 0 or W~ = 0. Given any bordered
Riemann surface M and a conformal superminimal immersion fo € SMT (M, X) of
class €3 ( with the respective choice of sign %), we can approximate fy uniformly
on M by continuous maps f : M — X such that f : M — X is a complete
conformal superminimal immersionin SM* (M, X) and f : bM — X isatopological
embedding.

Recall that an immersion f : M — (X, g) is said to be complete if the Riemannian
metric f*g induced by the immersion is a complete metric on M; equivalently, for any
divergent path A : [0, 1) — M (i.e., such that A(¢) leaves any compact subset of M as
t — D the path £ 04 : [0, 1) — X has infinite length: i 2L dr = +o0,

Note that our result is local in the sense that the complete conformal superminimal
immersion stays uniformly close to the given superminimal surface. Hence, if Theo-
rem 1.2 holds for a Riemannian manifold X then it also holds for every open domain
in X.

Recall (see Atiyah et al. [8, p. 427]) that the Weyl tensor W = W+ + W~ is
the conformally invariant part of the curvature tensor of a Riemannian four-manifold
(X, g), so it only depends on the conformal class of the metric. The manifold is
called self-dual if W~ = 0, and anti-self-dual if W = 0. Note that W = 0 if and
only if the metric is conformally flat. A Riemannian manifold (X, g) is called an
Einstein manifold if the Ricci tensor of g is proportional to the metric, Ric, = kg for
some constant k € R. The curvature tensor of g then reduces to the constant scalar
curvature (the trace of the Ricci curvature, hence 4k when dim X = 4) and the Weyl
tensor W (see [8, p. 427]). The Einstein condition is equivalent to the metric being a
solution of the vacuum Einstein field equations with a cosmological constant, although
the signature of the metric can be arbitrary in this setting, thus not being restricted
to the four-dimensional Lorentzian manifolds studied in general relativity. Self-dual
Einstein four-manifolds are important as gravitational instantons in quantum theories
of gravity. A classical reference is the monograph [10] by Besse. The role of these
conditions in Theorem 1.2 will be clarified by Theorems 4.11 and 4.12.
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The analogue of Theorem 1.2 also holds for bordered Riemann surfaces with count-
ably many boundary curves; see Theorem 5.3. Every such surface is an open domain

M =R\ J D (1.3)

i=0

in a compact Riemann surface R, where D; C R are pairwise disjoint smoothly
bounded closed discs. By the uniformisation theorem of He and Schramm [36], every
open Riemann surface of finite genus and having at most countably many ends is
conformally equivalent to a surface of the form (1.3), where D; lift to round discs or
points in the universal covering surface of R. This gives the following corollary to
Theorems 1.2 and 5.3.

Corollary 1.3 Every self-dual or anti-self-dual Einstein four-manifold contains a
complete conformally immersed superminimal surface with Jordan boundary param-
eterized by any given bordered Riemann surface with finitely or countably many
boundary curves.

In particular, every open Riemann surface of finite genus and having at most
countably many ends, none of which are point ends, is conformally equivalent to a
complete conformal superminimal surface in any self-dual or anti-self-dual Einstein
Sfour-manifold.

It is in general impossible to ensure completeness of a minimal surface at a point
end unless (X, g) is complete and the immersion M — X is proper at such end.

The special case of Theorem 1.2 when X is the four-sphere S* is given by [29,
Corollary 1.10]; see also [5, Theorem 7.5]. Since the spherical metric is conformally
flat, the Weyl tensor vanishes and Theorem 1.2 applies to superminimal surfaces of
both positive and negative spin in $*. The same holds for the hyperbolic 4-space
H*; see Corollary 6.3. While $* admits plenty of supermininal surfaces of any given
conformal type (see [5, Corollary 7.3]), every minimal surface in H* is uniformised
by the disc D (see Corollary 6.3).

A natural question at this point is, how many Riemannian four-manifolds (X, g)
are there satisfying the conditions in Theorem 1.2? Among the complete ones with
positive scalar curvature, there are not many. The classical Bonnet-Myers theorem
(see Myers [45] or do Carmo [23, p. 200]) states that if the Ricci curvature of an
n-dimensional complete Riemannian manifold (X, g) is bounded from below by a
positive constant, then it has finite diameter and hence X is compact. Further, a theorem
of Friedrich and Kurke [32] from 1982 says that a compact self-dual Einstein four-
manifold with positive scalar curvature is either isometric to S* or diffeomorphic
to the complex projective plane CP?. Superminimal surfaces in $* and CP? with
their natural metrics have been studied extensively; see [12,15,33,34,44]. Hitchin [37]
described in 1974 the topological type all four-dimensional compact self-dual Einstein
manifolds with vanishing scalar curvature. He proved that such a space is either flat
or a K3-surface, an Enriques surface, or the orbit space of an Enriques surface by
an antiholomorphic involution. Conversely, it follows from the solution of the Calabi
conjecture by Yau [59,60] that every K3 surface admits a self-dual Einstein metric
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(W~ = 0) with vanishing scalar curvature. On the other hand, there are many self-
dual Einstein manifolds with negative scalar curvature including all real and complex
space forms. In particular, there is an infinite dimensional family of self-dual Einstein
metrics with scalar curvature — 1 on the unit ball B ¢ R* having prescribed conformal
structure of a suitable kind on the boundary sphere S 3 = bB; see Graham and Lee [35],
Hitchin [38], and Biquard [11]. Another construction of an infinite dimensional family
of self-dual Einstein metrics was given by Donaldson and Fine [24] and Fine [27].
It was shown by Derdzinski [21] that a compact four-dimensional self-dual Kihler
manifold is locally symmetric.

In the remainder of this introduction, we outline the proof of Theorem 1.2; the details
are provided in Sect. 5. In Sects. 24 we provide a sufficiently complete account
of the necessary ingredients from the theory of superminimal surfaces and twistor
spaces to make the paper accessible to a wide audience. Several different definitions
of superminimal surfaces are used in the literature, and hence statement which are
formally the same need not be equivalent. We take care to present a coherent picture
to an uninitiated reader with basic knowledge of complex analysis and Riemannian
geometry.

We shall use three key ingredients. The first two are provided by the twistor the-
ory initiated by Penrose [47] in 1967. One of its main features from mathematical
viewpoint is that it provides harmonic maps from a given Riemann surface M into
a Riemannian four-manifold (X, g) as projections of suitable holomorphic maps
M — Z into the total space of the twistor bundle # : Z — X. Although this
idea is reminiscent of the Enneper-Weierstrass formula for minimal surfaces in flat
Euclidean spaces (see Osserman [46]), it differs from it in certain key aspects. There
are two twistor spaces 7+ : Z¥ — X, reflecting the spin (see Sect. 4). Their total
spaces Z¥ carry natural almost complex structures J* (nonintegrable in general), and
the fibers of 7* are holomorphic rational curves in Z*. The Levi-Civita connection
of (X, g) determines a complex horizontal subbundle £* C T Z* projecting by dr®
isomorphically onto the tangent bundle of X. The key point of twistor theory pertain-
ing to our paper is the Bryant correspondence; see Theorem 4.6. This correspondence,
discovered by Bryant [15]) in the case when X is the four-sphere S* (whose twistor
spaces Z* are the three-dimensional complex projective space CP?, see Sect. 6 for
an elementary explanation), shows that superminimal surfaces in X of & spin are
precisely the projections of holomorphic horizontal curves in Z¥, i.e., curves tangent
to the horizontal distribution £*.

The second ingredient is provided by a couple of classical integrability results.
According to Atiyah et al. [8, Theorem 4.1], the twistor space (Z*, J¥) of a smooth
oriented Riemannian four-manifold (X, g) is an integrable complex manifold if and
only if the conformally invariant Weil tensor W = W + W~ of g satisfies W+ =0
or W~ = 0, respectively. Assuming that this holds, a result of Salamon [51, Theorem
10.1] (see also Eells and Salamon [25, Theorem 4.2]) says that the horizontal bundle
&% is a holomorphic hyperplane subbundle of 7Z* if and only if g is an Einstein
metric, and in such case £% is a holomorphic contact bundle if and only if the scalar
curvature of g is nonzero.

The third main ingredient is a recent result of Alarcén and the author [1, Theorem
1.3] saying that holomorphic Legendrian immersions from bordered Riemann sur-
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faces into any holomorphic contact manifold enjoy the Calabi—Yau property, i.e., the
analogue of Theorem 1.2 holds for such immersions. (See also [5, Theorem 1.2] for the
standard complex contact structure on Euclidean spaces C***! n > 1.) Analogous
results hold for holomorphic immersions into any complex manifold of dimension
> 1, and for conformal minimal immersions into the flat Euclidean space R” for any
n > 3. We refer to the recent survey [2] for an account of these developments. The
proof of Theorem 1.2 is then completed and generalized to surfaces M with countably
many boundary curves in Sect. 5. In Sect. 6 we take a closer look at the case when X
is the sphere S* or the hyperbolic space H*.

2 Superminimal Surfaces in Riemannian 4-Manifolds

In this section we recall the notion of the indicatrix of a smooth surface in a smooth
Riemannian four-manifold (X, g) and the geometric definition of a superminimal
surface. We follow the paper by Friedrich [31] from 1997.

Let M C X be a smoothly embedded surface endowed with the induced metric.
(Since our considerations in this section are local, they also apply to immersions
M — X.) The tangent bundle of X splits along M into the orthogonal direct sum
TX|y =TM @ N where N is the normal bundle of M in X. Given a point p € M
we let

Sym(TyM) = {A: TyM — T,M : g(Au,v) = g(u, Av) forall u,v € T,M}

denote the three-dimensional real vector space of linear symmetric self-maps of 7, M.
Fixing an orthonormal basis of 7, M, we identify Sym(T,M) = Sym(R?) with the

space of real symmetric 2 x 2 matrices and introduce the isometry Sym(7, M) ER3

by
ab a—+c a—c
— , \/Eb, .
(b C) ( V2 V2 )
Each unit normal vector n € Np, [n|*> := g(n,n) = 1, determines a second funda-

mental form S,(n) : T,M — T,M which belongs to Sym(T, M). The unit normal
vectors form a circle in the normal plane N, to M at p, and the curve

I, ={S,(n) :n € Np, |n| =1} C Sym(T, M) = R? 2.1

is called the indicatrix of M at p. It was shown by Kommerell [41] that /,, C R3 is
either a straight line segment which is symmetric around the origin 0 € R3 (possibly
reducing to 0) or the intersection of a cylinder over an ellipse and a two plane. If
M is a minimal surface in X then [, is a symmetric segment, an ellipse, or a circle;
see Kommerell [41] and Eisenhart [26]. For a fixed tangent vector v € T, M we also
consider the curve

I,(v) ={Sy(mv:neN,, n|=1} CT,M. (2.2)
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4760 F. Forstneric

Definition 2.1 A smooth surface M C X is superminimal if every curve I,,(v) C T,M
(p e M, 0#v e T,M)is a circle with center 0 (which may reduce to the origin).
The same definition applies to a conformally immersed surface f : M — X.

Remark 2.2 (A) A calculation in [31, pp. 2-3] shows that the indicatrix I, (2.1) of a
superminimal surface M C X atany point p € M is acirclein Sym(7T,M) = R3 with
center 0, and every superminimal surface is a minimal surface (see [31, Proposition
3]). The converse fails in general, but see Remark 4.10 for some special cases.

(B) The above definition does not require orientability. If M and X are oriented,
then we can introduce superminimal surfaces of positive or negative spin by looking
at the direction of the rotation of the point S,(n)v € I,(v) C T,M as the unit
normal vector n € N, traces the unit circle in a given direction. This gives the two
spaces SM* (M, X) in Definition 1.1 which get interchanged under the reversal of the
orientation on X.

(C) The class of superminimal surfaces is invariant under isometries of (X, g). O

Superminimal surfaces have been studied by many authors; see in particular Kom-
merell [41], Eisenhart [26], Borovka [13,14], Calabi [16], Chern [19,20], Bryant [15],
Friedrich [30,31], Eells and Salamon [25], Gauduchon [33,34], Wood [58], Montiel
and Urbano [44], Bolton and Woodward [12], Shen [54,55], and Baird and Wood [9].
A recent contribution to the theory of superminimal surfaces in S* was made in [6,
Sect. 7].

3 Almost Hermitian Structures on R? and Quaternions

In this section we recall some basic facts about linear almost Hermitian structures on
R* and their representation by quaternionic multiplication. This material is standard
(see e.g. [8,25]), except for Lemma 3.1 which will be used in Sect. 6.

Let (-, -) stand for the Euclidean inner product on R*. We denote by B R
the space of almost Hermitian structures on R4, i.e., linear operators J : R* — R4
satisfying the following three conditions:

(a) J? = —Id,

(b) (Jx,Jy) = (x,y) forall x, y € R* and

(c) letting w(x, y) = (Jy,y) denote the fundamental form of J, we have that w A w =
+ where € is the standard volume form on R* with its canonical orientation.

Condition (a) lets us identify R* with C? such that J corresponds to the multiplication
by i on C?; any such linear operator is called a (linear) almost complex structure on
R*. The second condition means that J is compatible with the inner product on R*,
hence the word almost Hermitian. The third condition specifies the orientation of J.
Note that

ITRYHYU £ RY C SO@).
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Any choice of positively oriented orthonormal basis e = (ey, €2, €3, e4) of R* deter-
mines a pair of almost Hermitian structures J;* € _# = (R*) by

JFe)) =ex Jf(e3) = tey. 3.1

If e = (e}, €}, €}, €}) is another orthonormal basis in the same orientation class, there
is aunique A € SO(4) mapping ¢; to e} fori =1, ..., 4, and hence

JEF=A"0UT0A.
This shows that for any fixed J € j*(R“), conjugation A > A~' o J o A by
orthogonal rotations A € SO(4) acts transitively on ¢ T(RY); the corresponding
property also holds for _# ~(R*). The stabiliser of this action is the unitary group
U (2), the group of orthogonal rotations preserving the given structure J, and _# £(RY
can be identified with the quotient SO (4)/U (2) = §>. Conjugation by an element
A € O(4) of the orthogonal group with det A = —1 interchanges ¢ *(R*) and
J~RY,and 04)/UQ) = 7T RY U _Z~(RY). For instance, the two structures
in (3.1) are interchanged by the orientation reversing map A € O(4) given by Ae; =
e1, Aey = ey, Aez = eq, Aes = e3. Note however that the structures £=J belong to
the same space ¢ ERY.

It is classical that every A € SO (4) is represented by a pair of rotations for angles
o, B € (—m, 4] in orthogonal cooriented 2-planes £ @ £+ = R*. (Such pair of
planes is uniquely determined by A if and only if || # | 8].) The rotation A is said to
be left isoclinic if o« = B (it rotates for the same angle in the same direction on both
planes), and right isoclinic if « = — B (it rotates for the same angle but in the opposite
directions). Thus, elements of _# +(R*) are precisely the left isoclinic rotations for
the angle 7 /2, while those in _# ~ (R*) are the right isoclinic rotations for the angle
/2.

Here is another interpretation of the spaces ¢ £(R%); see Atiyah et al. [8, Sect.
1] or Eells and Salamon [25, Sect. 2]. Let AZ(R4) denote the second exterior power
of R*. For any oriented orthonormal basis ey, ..., es of R* the vectors ¢; A e;j for
1 <i < j < 4 form an orthonormal basis of A2(R4), so dimp A2(R4) = 6. The
Hodge star endomorphism * : A2(R*) — AZ(R*)is defined by @ A %8 = (o, B)Q €
A*(R*). We have that #* = 1, and the +1 eigenspace Ai(R“) of % has an oriented
orthonormal basis

eitNeytezsNes, etNestesNer, el NegterAes. (3.2)
The Euclidean metric lets us identify R* with its dual (R*)*, which gives the inclusion
A*(RY — R* @ R* = (RYH* @ R* = End(R*) = GL4(R). (3.3)

Under this identification of AZ(R*) with a subset of End(R?*), we have that
IERY) = S(AL(RY)) := the unit sphere of AZ(R*) = R, (3.4)
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4762 F. Forstneric

For example, the vectore = ej Aex+e3Aeq € AEL (R4) is sent under the first inclusion
in(33toe;Qer—er®e) +e3@es —es ® e3 € R* @ R, and under the second
isomorphism in (3.3) to the almost Hermitian structure given by (3.1):

Jo=el®er—e; Qe +e3Qes—e; Qez € /+(R4).

We adopt the following convention regarding the orientations. (This essential point in
the construction of twistor spaces is difficult to find spelled out in the literature.)

Orientationon ¢ i(R“) Lete = (e1, €3, €3, e4) be apositively oriented orthonormal
basis of R*, and let the spaces AL(R*) = R’ be oriented by the pair of bases (3.2).
We endow 7 TRH=S (A (R4)) with the outward orientation of the unit 2-sphere
in Af_(R“) Z R3, while B2 (R“) = S(A2 (RY) is given the inward orientation.

Letting R denote R* with the opposite orientation, it is easily checked that we
have orientation preserving isometric isomorphisms

= —4 —4
JERY) =S(ALRY) = S(AZR)) = FF®R).

An oriented 2-plane ¥ C R* determines a pair of almost Hermitian structures
JEdE e 7 *(R*) which rotate for /2 in the positive direction on ¥ and for +m/2
on its cooriented orthogonal complement 1. Denoting by G»(R*) the Grassmann
manifold of oriented 2-planes in R*, we have that (cf. [25, p. 595])

G2(RY) = S(AZ(RY) x S(AZRY) = #TRY x 7~ (RY. (3.5)

Almost Hermitian structures on R* can be represented by quaternionic multiplica-
tion. Let H denote the field of quaternions. An element of H is written uniquely as

q = x1 + x21i 4 x3) + x4 = z1 + 22j, (3.6)

where (x1, x2,x3,x4) € R*, z1 = x1 +x2i € C, z0 = x3 + x4i € C, and i, j, £ are
the quaternionic units satisfying

2 2 EZ

2=j =—1, fj=—ji=t je=—t=i E=—it=].

We identify R* with H using 1, i, j, € as the standard positively oriented orthonormal
basis. (Some authors write complex coefficients on the right in (3.6); due to noncom-

mutativity this makes for certain differences in the constructions and formulas.) Recall
that

g =x1—xi—x3j—xt qG=Iq’ Zx,, B q| sifqg #0, pg=qp.

By Hy we denote the real 3-dimensional subspace of purely imaginary quaternions:
Ho ={g = x2i +x3) + x2€: xp, x3, x4 e R} = R3. 3.7
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The Calabi-Yau Property of Superminimal Surfaces 4763

We also introduce the spheres of unit quaternions and imaginary unit quaternions:
SP={geH:|g=1}=8, S ={geHy:|lqgl=1}=5> (3.8)

We take i, j, £ as a positive orthonormal basis of Hy and orient the spheres S 2 c H
and S* C H by the respective outward normal vector field. In particular, the vectors
i, € are a positively oriented orthonormal basis of the tangent space T} S?.

Elements of ¢ +(R4) and ¢ ~(R*) then correspond to left and right multiplica-
tions, respectively, on H = R* by imaginary unit quaternions ¢ € S2. To see this,
note that every J € ¢ +(R%) is uniquely determined by its value ¢ = J(1) on the
first basis vector; this value is orthogonal to 1 and of unit length, hence an element of
the unit sphere S? C H inside the 3-space of imaginary quaternions (3.8). The pair
1, ¢ spans a 2-plane ¥ C H whose orthogonal complement % is contained in the
hyperplane Hy. The left multiplication by ¢ on H then amounts to a rotation for /2
in the positive direction on X, while the right multiplication by ¢ yields a rotation
for /2 in the negative direction on 1. The left multiplication by i determines the
standard structure Ji(1) =1, Ji(G) = L.

The following lemma will be used in Sect. 6 to provide an elementary explanation
of the fact that CIP3 is the twistor space of $*. The analogous result holds for I~ R
as seen by using the right multiplication on H by nonzero quaternions.

Lemma 3.1 For every g € H \ {0} the left multiplication by q on H uniquely deter-
mines an almost Hermitian structure J, € ¢ +(RY) making the following diagram
commute:

~

112
S

e H R4
Jil ii lqiql. i«]q
R = >H-—L>H——>R*

The map H \ {0} — /+(R4) given by q +— J, is equivalent to the canonical
projection H \ {0} = (Ci — CP! under an orientation preserving diffeomorphism

JItRY — CPL

1

Proof From qg = |q|? we see that §~! = ¢/|g|* and hence

Gig~! = Iq%iq — g lig e S°.

For any ¢q1, g> € H we have that g1g2 = g2¢1 and hence

I =g (~)g = —q7"ig,

qiq

so ¢ lig € S? is a purely imaginary unit quaternion. It follows that the left product
by ¢~ 'ig on H determines an almost Hermitian structure Jye 7 T(RY.
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4764 F. Forstneri¢

Let us consider more closely the map
®:H\ {0} > S, d(g) =q 'ig.
We have that ®(q1) = ®(g2) if and only if
;i = q; iy = (97 Ni=ilqq;) < q2q;' € C,

so the fibers of ® are the punctured complex lines C*¢ for ¢ € H \ {0}.
We claim that @ is a submersion. Since @ is constant on the lines C*g, it suffices
to show that ® : S* — S? is a submersion. Fix ¢ € S>. For any ¢’ € H we have that

d d}, ———
dd,(¢)=—| @ tq") = — tq')i tq") =q'iq + qiq’.
o@)=q| _(Plt+ig)= 1| (¢+19)iq+1q)=qiq+qiq
In particular,
d®,Ggq) =2qtq, dd,(tq) = —-2qjq.

These two vector are clearly R-linearly independent, so d®, : T,;S 35 Te (q)Sz has
rank 2 at each point. For ¢ = i we get that ®(i) = i and d®;(j) = 2j, dP;(¥) = 2¢.
Note that (j, £) is a positively oriented orthonormal basis of both 7;S 2 and T11:01 CP',
the tangent space at the point [1 : O] to the projective line consisting of complex
lines in H = C2, with [1 : 0] = C x {0}. It follows that ® = & o ¢ where ¢ :
C2 — CP! is the canonical projection and # : CP! — S? is an injective orientation
preserving local diffeomorphism, hence an orientation preserving diffeomorphism
onto S%. (Surjectivity is easily seen by an explicit calculation.) Finally, we identify
I +(R*) with S? acting on R* = H by left multiplication; this identification is
orientation preserving as well.

Note that the map ® : §° = S* — S? = §? is the Hopf fibration with circle fibers
(ellg:teR} =S, g eS°. o

4 Twistor Bundles and the Bryant Correspondence

In 1967, Penrose [47] introduced a new twistor theory with an immediate goal of
studying representation theory of the 15-parameter Lie group of conformal coordi-
nate transformations on four-dimensional Minkowski space leaving the light-cone
invariant. (The mathematical ideas in Penrose’s paper are in close relation to those
developed in the notes [56] of the seminar conducted by Oswald Veblen and John von
Neumann during 1935-1936.) One of his aims was to offer a possible path to under-
stand quantum gravity; see Penrose and MacCallum [48]. Penrose also promoted the
idea that twistor spaces should be the basic arena for physics from which space-time
itself should emerge.

Mathematically, twistor theory connects four-dimensional Riemannian geometry
to three-dimensional complex analysis. A basic example is the complex projective
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three-space CIP3 as the twistor space of S* with the spherical metric (see Penrose [47,
Sect. VI], Bryant [15], and Sect. 6). Physically it is the space of massless particles
with spin. Twistor theory evolved into a branch of mathematics and theoretical physics
with applications to differential and integral geometry, nonlinear differential equations
and representation theory and in physics to relativity and quantum field theory.

For the theory of twistor spaces, see in particular the papers by Atiyah, Hitchin and
Singer [8], Friedrich [30], Eells and Salamon [25], Gauduchon [33,34], the mono-
graphs by Ward and Wells [57] and Baird and Wood [9], and the recent survey by
Sergeev [53]. Twistor theory also exists for certain Riemannian manifolds of real
dimension 4n for n > 1, in particular for quaternion-Kihler manifolds (see Salamon
[50], LeBrun and Salamon [43], and LeBrun [42]).

Associated to an oriented Riemannian four-manifold (X, g) is a pair of almost
Hermitian fiber bundles with fiber CP!,

ZE(X) = _FETX) = S(AL(TX)) K X,

the positive and the negative twistor bundle of X. The fiber over any point x € X
equals

@5 ) = _FETX) = S(AL(T: X)) = CP!,

the space of positive or negative almost Hermitian structures on T, X = R*. (The
second equality uses the identification (3.4).) The complex structure on ¢ T X) =
S? is specified by the choice of orientation in Sect. 3. A local trivialisation of Z+ — X
is provided by an oriented orthonormal frame field e(x) = (e1(x), ..., ea(x)) for T X
on an open set x € U C X. If ¢/(x) is another such frame field on U’ C X then
the transition map between the associated fiber bundle charts is given by conjugation
with the field of linear maps A(x) € SO(T, X) = SO(R% sending e(x) to ¢'(x) for
xeUnU.

The Levi-Civita connection associated to the metric g on X induces at any point
z € Z* a decomposition of the tangent space 7, Z into the direct sum

L.zt =T'z* o172 * =t 0T 2%,

where TZ”ZjE = T,m~'(7(z)) is the vertical tangent space (the tangent space to the
fiber) and szi = TZhZﬂE is the horizontal space. This defines a horizontal subbundle
&% ¢ T Z* such that the differential dnzfE : ézi — T+ X isanisomorphism for each
z € Z*. Every path y(r) in X with y(0) = x admits a unique horizontal lift A(¢) in
Z* (tangent to £%) with any given initial point 1(0) = z € ()" (x) = ji(TxX),
obtained as the parallel transport of z with respect to the Levi-Civita connection.
However, lifting a surface in X to a horizontal surface is Z* is in general impossible
due to noninvolutivity of &*.

There is a natural almost complex structure J* on Z* determined by the condition
that at each point z € Z, JZjE agrees with the standard almost complex structure on the
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vertical space 7' Z + = T,CP', while on the horizontal space Szi we have that
dnfoJE =zodn?. 4.1

It follows that £* is a J*-complex subbundle of the tangent bundle 7' Z*. (The struc-
ture J* introduced above is denoted J; in [8,25]; the second structure J2i is obtained
by reversing the orientations on the fibers of twistor projections. As shown in [52],
the structure J2i is never integrable, but is nevertheless interesting in view of [25,
Theorem 5.3].)

Here is a summary of some basic properties of twistor bundles.

Proposition 4.1 (a) Denoting by X the Riemannian manifold X endowed with the
same metric and the opposite orientation, we have that

ZtX)=2"(X), Z(X)=Z"(X)

as Hermitian fiber bundles over X, and also as almost complex manifolds. In
particular, their horizontal bundles and the respective almost complex structures
on them agree.

(b) There are antiholomorphic involutions 1 : Z¥ — Z% preserving the fibers of
n*t 7+ — X*andtakingany J € /i(TXX) to—J € /i(TxX).(Identifying
the fiber with CP', this is the map z — —1/Z on each fiber.)

(c) An orientation preserving isometry ¢ : X — X lifts to holomorphic isometries
o* . 7zt — Z% preserving £ such that 7F o ®* = ¢ o nF. Moreover, the
almost complex type of (Z*, JF) only depends on the conformal class of the
metric on X, but the horizontal spaces £+ depend on the choice of metric in that
class.

(d) An orientation reversing isometry 6 : X — X lifts to a holomorphic isometry
O:(ZT(X),J") — (Z~(X), J7) making the following diagram commute:

7+ (X) —25 727 (x) 4.2)

,,+i l”_

x—% . x

An example of (d) is the antipodal map on X = §*, and in this case Z1(§%) =
Z(§H = CP? (see Bryant [15], Gauduchon [33, Sect. III], and Sect. 6).

Example 4.2 (A) The twistor bundle Z* of R* with the Euclidean metric is fiberwise
diffeomorphic to R* x CP', and its horizontal distribution & is involutive with the
leaves R* x {z} for z € CP'. The almost complex structure J ¥ on Z restricted to the
leaf L, = R* x {z} equals z € /+(R4), and (L., z) is a complex manifold which is
biholomorphic to C? under a rotation in SO (4). As a complex manifold, (Z*, JT) is
biholomorphic to the total space of the vector bundle &'(1) ® (1) — CP!, and the
leaves L of & are the fibers of this projection. See [30, Remark 2, p. 266] for more
details. O
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Recall from (3.5) that an oriented 2-plane ¥ C 7y X determines a pair of almost
Hermitian structures J% e J =T X ). Let M be an oriented surface. To any immer-
sion f : M — X we associate the twistor lifts F* : M — Z* withm* o F* = f by
the condition that for any point p € M and x = f(p) € X,

Fi(p) € /i(TxX) is determined by the oriented 2-plane d f), (T, M) C T\ X.
4.3)

That is, F*(p) rotates for 47 /2 in the oriented plane ¥ = d f; »(TpM) and for £7/2
in the cooriented orthogonal plane .

Z:I:

o

M —X

Here is a more explicit description. Assume for simplicity that M C X is embedded
andletT X |y = TM @& N where N is the orthogonal normal bundle of M in X. Locally
near any point p € M there is an oriented orthonormal frame field (eq, e, €3, ea) for
T X such that, along M, (e1, e2) is an oriented frame for 7 M while (e3, e4) is a frame
for N. Then, F* is determined by the conditions F' o) = ey, Fres = tey.

Remark 4.3 (A) The twistor lifts F* clearly depend on the first order jet of f. Hence,
if the immersion f : M — X is of class € (r > 1) then F* : M — Z* are of class
¢ L.

(B)If M is the Riemann surface M with the opposite orientation and Ff:M — z*
denote the respective twistor lifts of f : M — X, then F £ — % o FE where (T is the
antiholomorphic involution on Z* in Proposition 4.1 (B). O

We have the following additional properties of twistor lifts of a conformal immer-
sion. The second statement is the first part of [30, Proposition 3]; note however that
in [30] an immersion f : M — X is tacitly assumed to be conformal.

Lemma4.4 If I is an almost complex structure on M and f : (M,I) — X is a

conformal immersion, then F* (p) € /i(Tf(p)X) (p € M) is uniquely determined
by the condition

dfyol, = FE(p)odf,. (4.4)
Furthermore, the horizontal part (dF pi)h of the differential of F* satisfies

AFH" o1, = I3,

F © AFH", peM. 4.5)

In particular, if the twistor lift F* of a conformal immersion f : M — X is horizontal,
then it is holomorphic as a map from (M, I) into (Z*, J%).
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Proof The formula (4.4) is an immediate consequence of the definition of F * and the
conformality of f. Let F denote any of the lifts F*. From 7 o F = f we get that

drp(py 0 dF) = dmp(p) 0 dFp =df,, peM, (4.6)

and hence

(4.6) (4.4) (4.6)
dmppyodFpol, "= dfyol, = F(p)odf, = F(p)odmp(podF)

4.1)
= d?TF(p)O]Fi(p)odF};.

Since the vectors under dmrr(p) are horizontal, (4.5) follows. O

We now consider conformal immersions f : M — X which arise as projections to
X of holomorphic immersions F : M — Z*. The following result is [30, Proposition
1].

Lemma 4.5 Let (Z, J) denote any of the two twistor manifolds (Z*(X), J*). If F -
(M, 1) — (Z,J) is a holomorphic immersion such that dF,(T,M) intersects the
vertical tangent space Tg(p)Z only at O for every p € M, then F agrees with the

wistor lift F* (4.3) of its projection f =mw o F : M — X.

Proof The conditions on F implies that f is an immersion. Fix a point p € M. Since
F is holomorphic and the horizontal space T” Z in J-invariant, (4.5) holds and

F(p)
hence
4.6 4.5 4.1
dfp olp :) drpp) o dF,/} ol (:) drppy o Jr(p) © dF;l (:)
(4.6)
F(p)odmp(p odF) "= F(p)odf,.
This shows that f is conformal and F is its twistor lift (cf. (4.4)). ]

The following key statement combines the above observations with [30, Proposition
4]. When X = S* with the spherical metric, this is due to Bryant [15, Theorems B,
B’]; the general case was proved by Friedrich [30, Proposition 4].

Theorem 4.6 (The Bryant correspondence) Let M be a Riemann surface, and let
(X, g) be an oriented Riemannian four-manifold. The following conditions are pair-
wise equivalent for a smooth conformal immersion f : M — X (with the same choice
of £ in every item).

(a) f is superminimal of £ spin (see Definition 1.1).

(b) f admits a holomorphic horizontal lift M — ZE(X).

(c) The respective twistor lift FE: M —> Z*(X) of f (see (4.3)) is horizontal.

(d) We have that VF* = 0, where V is the covariant derivative on the vector bundle
f*(TX) — M induced by the Levi—Civita connection on X.
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Sketch of proof The equivalence of (b) and (c) follows from Lemma 4.5.

Consider now (a)<>(c). In [30, Proposition 4], horizontality of the twistor lift '~ :
M — Z~ (condition (c)) is characterized by a certain geometric property of the
second fundamental forms S,(n) : T,M — T,M of f at p € M in unit normal
directions n € Np. An inspection of the proof shows that this property is equivalent
to f being a superminimal surface of negative spin in the sense of Definition 1.1,
hence to condition (a). Although not stated in [30], the same proof gives the analogous
conclusion for conformal superminimal immersions f : M — X of positive spin with
respect to the twistor lift F™ : M — Z™. The crux of the matter can be seen from
the display on the middle of [30, p. 266] which shows that the rotation of the unit
normal vector n € N, M in a given direction corresponds to the rotation of the point
Sp,(m)v € Ip(v) C T,M (1.1) in the opposite direction (assuming that the spaces
T,M and N, M are coorriented). Reversing the orientation on X, F~ is replaced by
F™ and the respective curves now rotate in the same direction, so F is horizontal if
and only if f is superminimal of positive spin. The direction of rotation is irrelevant
(only) at points p € M where the normal curvature of the immersion f vanishes and
hence the circle /,(v) reduces to the origin.

Concerning (c) < (d), Friedrich showed in [30, Proposition 5, p. 270] that the
twistor lift F~ is horizontal if and only if the immersion f is negatively oriented-
isoclinic. It is immediate from his description that the latter property simply says that
the almost complex structure on the vector bundle f*TX = TM & N adapted to f
(which is precisely the structure F ™) is invariant under parallel transport along curves
in M; equivalently, F~ is parallel with respect to the covariant derivative V on f*T X
induced by the Levi-Civita connection on X: VF~ = (. Reversing the orientation on
X, the analogous conclusion shows that F™ is horizontal if and only if f is positively
oriented-isoclinic if and only if VF T = 0. (See also [33, Proposition 17] and [44,
Proposition 1].) O

Inlight of the Bryant correspondence, it is a natural question whether not necessarily
horizontal holomorphic curves in twistor spaces Z*(X) might yield a larger class or
minimal surfaces in the given Riemannian four-manifold X. In fact, this is not so
as shown by the following result of Friedrich [30, Proposition 3]. (Note that in [30]
an immersion f : M — X is called superminimal if and only if its twistor lift is
horizontal.)

Lemma 4.7 The following are equivalent for a smooth conformal immersion f : M —
X.

(i) The twistor lift F* : M — Z¥* of f is horizontal. (By Theorem 4.6, this is
equivalent to saying that f is superminimal of & spin.) ~
(i) f is a minimal surface in X and it admits a holomorphic lift f : M — Z*.

Sketch of proof If (i) holds then F¥ is holomorphic by Lemma 4.4. Conversely, if f
admits a holomorphic lift f then f = F* by Lemma 4.5. Friderich showed in [30,
Proposition 3] that if £~ is holomorphic then the vertical derivative (dF,)" equals
the mean curvature vector of f at p € M. Since a surface is minimal if and only if
its mean curvature vector vanishes, the equivalence (i)<>(ii) follows for the — sign.
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It also holds for the + sign since Z*(X) = Z~(X) (cf. Proposition 4.1 (a)) and the
space of minimal surfaces in X does not depend on the choice of orientation of X. O

Remark 4.8 A conformal immersion M — X whose twistor lifts M — Z*(X) are
both holomorphic parameterizes a totally umbilic surface in X (cf. [25, Proposition
6.1]). Note also that both twistor lifts F* are horizontal precisely when all circles
I,(v) C T,M (2.2) are points, so the normal curvature vanishes and the surface is
totally geodesic. O

Remark 4.9 A smooth conformal immersion f : M — X may admits several hori-
zontal lifts M — Z=, or no such lift. For example, if X = R* with the flat metric then
the horizontal distribution on Z* = R* x CP! is involutive and each leaf projects
diffeomorphically onto X (see Example 4.2), so f admits a horizontal lift to every leaf;
however, only the twistor lift can be holomorphic in view of Lemma 4.5. The situation
is quite different if the horizontal distribution £* = T"Z% is a holomorphic contact
bundle on Z* (which holds if the metric g on X has nonzero scalar curvature). In such
case, any horizontal lift M — Z% is a conformal Legendrian surface (tangential to
the contact bundle £%), hence holomorphic or antiholomorphic by [1, Lemma 5.1].
By Lemma 4.5, this lift equals the twistor lift or its antiholomorphic reflection (see
Proposition 4.1 (b)). O

Remark 4.10 Another characterization of superminimal surfaces is given by the van-
ishing of a certain quartic form which was first studied by Calabi [16] and Chern
[19,20]; see also Bryant [15] and Gauduchon [33, Proposition 7]. This shows that
every minimal immersion $2 — Stis superminimal; see [15, Theorem C] or [33,
Proposition 25]. The same holds for minimal immersions S 2 5 CP? (see [33, Propo-
sition 28]). O

We now recall two classical integrability theorems pertaining to twistor spaces. The
first one is due to Atiyah, Hitchin, and Singer [8, Theorem 4.1].

Theorem 4.11 The twistor space (Z*, JT) of a smooth oriented Riemannian four-
manifold (X, g) is an integrable complex manifold if and only if the conformally
invariant Weil tensor W = W1 + W~ of (X, g) satisfies W& = 0 or W~ = 0,
respectively.

Let us say that (X, g) is = self-dual if W* = 0. The next result is due to Salamon
[51, Theorem 10.1]; see also Eells and Salamon [25, Theorem 4.2].

Theorem 4.12 Assume that (X, g) is a £ self-dual Riemannian four-manifold, so
(Z*, J%) is a complex manifold. Then, the horizontal bundle £* is a holomorphic
hyperplane subbundle of T Z* if and only if X is an Einstein manifold. Assuming that
this holds, £* is a holomorphic contact bundle if and only if the scalar curvature of
X (the trace of the Ricci curvature) is nonzero.

In short, the complex structures J& on twistor spaces Z* depend only on the
conformal class of the metric on X, but the horizontal distribution is defined by a
choice of metric in that conformal class, and it is holomorphic precisely when the
metric is Einstein.
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Example 4.13 (Twistor spaces of a Kdihler manifold) A smooth section o : X —
ZE(X ) of the twistor bundle determines an almost Hermitian structure J, on T X
given at a point x € X by o(x) € ¢ +(T,X). Conversely, an almost Hermitian
structure J on T X determines a section o7 : X — Z*(X), where the sign depends
on whether J agrees or disagrees with the orientation of X. These structures are not
integrable in general.

Suppose now that (X, g, J) is an integrable Hermitian manifold endowed with
the natural orientation determined by J. Then, the associated holomorphic section
oy : X — ZT(X) is horizontal if and only if (X, g, J) is a Kihler manifold. Indeed,
the Kihler condition is equivalent to J being invariant under the parallel transport
along curves in X, which means that VJ = 0. This shows that the horizontal bundle
&t C TZ7(X) associated to a Kihler manifold X is never a holomorphic contact
bundle. (Note also that Z* is in general not an integrable complex manifold.) Any
holomorphic or antiholomorphic curve in X is a superminimal surface of positive spin
since o provides a horizontal lift to ZT. Another type of superminimal surfaces of
positive spin are the Lagrangian ones, i.e., those for which the image of the tangent
space at any point by the complex structure J is orthogonal to itself. If the holomorphic
sectional curvature of X is nonvanishing then any superminimal surface of positive
spin in X is of one of these three types (see [25]).

On the Kihler manifold R* = C? with the flat metric, £ is involutive (cf. Exam-
ple 4.2). The twistor space Z+(CP?) of the projective plane is not integrable, and the
superminimal surfaces in CIP? of positive spin are described above. On the other hand,
Z~(CP?) is integrable and can be identified with the projectivised tangent bundle of
CP?. There is a natural correspondence between superminimal surfaces of negative
spin in CP? and holomorphic curves in CP? (see Gauduchon [33, p. 178]). Supermin-
imal surfaces in CP? (and in $*) were also studied by Montiel and Urbano [44] and
others. O

5 Proofs of Theorems 1.2 and 5.3

Proof of Theorem 1.2 Let (X, g) be a Riemannian manifold satisfying the hypotheses
of Theorem 1.2. Let W = WT + W~ denote the Weyl tensor of X (see [8, p. 427]).
Assume without loss of generality that X is self-dual, meaning that W~ = 0; the
analogous argument applies if W+ = 0 by reversing the orientation on X (see Propo-
sition4.1 (a)). Denote by 7 : Z = Z7 (X) — X the negative twistor space of X and by
& C T Z its horizontal bundle (see Sect. 4). Also, let g denote a metric on Z for which
the differential dwr : TZ — T X maps & isometrically onto 7' X. Such g is obtained
by adding to the horizontal component 7 *g a positive multiple & > 0 of the spherical
metric on CP'. By Theorems 4.11 and 4.12, Z is an integrable complex manifold and
the horizontal bundle £ is a holomorphic subbundle of the tangent bundle 7 Z.

Let M be a relatively compact domain with smooth boundary in an ambient Riemann
surface R, and let fy : M — X be a conformal superminimal immersion of negative
spin, fo € SM™(M, X), and of class €” for some r > 3 (see Definition 1.1). Let
Fo : M — Z denote the twistor lift of fo (see (4.3)). By Remark 4.3 the map Fp is of
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class €"~1 (M), and by Theorem 4.6 its restriction to M is a horizontal holomorphic
immersion M — Z.

Assume first that the (constant) scalar curvature of X is nonzero, so & is a holo-
morphic contact subbundle of TZ. According to [29, Theorem 1.2], the Legendrian
immersion F can be approximated in the 4 ~! (M) topology by holomorphic Leg-
endrian immersions F; : U — Z from open neighbourhoods U of M in R, and
we may choose Fj to agree with Fj at any given finite set of points A C M. (We
assumed that r > 3 since [29, Theorem 1.2] applies to Legendrian immersions of
class €2(M).) Projecting down to X yields a conformal superminimal immersion
fi = mo Fy : U — X of negative spin satisfying the conclusion of the following
proposition which seems worthwhile recording.

Proposition 5.1 (Mergelyan approximation theorem for superminimal surfaces)
Assume that (X, g) is an Einstein self-dual (Wt = 0 or W~ = 0) four-manifold. If M
is a compact domain with smooth boundary in a Riemann surface R and fo : M — X
is a conformal superminimal immersion in SM*(M, X) (see (1.2)) of class " for
some r > 3, then fo can be approximated in the €~ (M) topology by conformal
superminimal immersions f € SM* (U, X) from open neighbourhoods U of M in R.
Furthermore, f may be chosen to agree with fo to any given finite order at any given
finite set of points A C M.

We continue with the proof of Theorem 1.2. By [1, Theorem 1.3] we can approx-
imate the holomorphic Legendrian immersion F; : U — Z found above, uniformly
on M, by topological embeddings F : M — Z whose restrictions to M are complete
holomorphic Legendrian embeddings. Again, we can choose F to match F; (and hence
Fp) at any given finite set of points in M. The proof of the cited theorem uses Dar-
boux neighbourhoods furnished by [1, Theorem 1.1], thereby reducing the problem
to the standard contact structure on C> for which the mentioned result is given by [5,
Theorem 1.2].

Since the differential of the twistor projection 7 : Z — X maps the horizontal
bundle & C TZ isometrically onto 7X, the projection f := 1o F : M — X
is a continuous map whose restriction to M is a complete superminimal immersion
M — X. By the construction, f approximates fj as closely as desired uniformly on
M, and it can be chosen to agree with f; to any given finite order at the given finite
set of points in M.

By using also the general position theorem for holomorphic Legendrian immersions
(see [1, Theorem 1.2]) and the transversality argument given (for the special case of
the twistor map CP?> — $%) in [6, proof of Theorem 7.5], we can arrange that the
boundary f|py : bM — X is a topological embedding whose image consists of
finitely many Jordan curves. As shown in [3, proof of Theorem 1.1], we can also
arrange that the Jordan curves in f (bM) have Hausdorff dimension one.

It remains to consider the case when the manifold (X, g) has vanishing scalar cur-
vature. By Theorem 4.12 the horizontal distribution & on the twistor space Z is then an
involutive holomorphic subbundle of codimension one in 7' Z, hence defining a holo-
morphic foliation of Z by smooth complex surfaces. The (horizontal, holomorphic)
twistor lift Fy of fy lies in a leaf of this foliation. It is known (see [2,3]) that com-
plex curves parameterized by bordered Riemann surfaces in any complex manifold of
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dimension > 1 enjoy the Calabi—Yau property. Projecting such a surface (contained in

the same leaf of & as F(M)) to X gives an immersed complete superminimal surface,

and we can arrange by a general position argument (see the proof of Theorem 1.2)

that its boundary is topologically embedded. O
The argument in the above proof gives the following lemma.

Lemma 5.2 (Increasing the intrinsic diameter of a superminimal surface) Let M
and (X, g) be as in Theorem 1.2. Every conformal superminimal immersion fy €
SM* (M, X) of class € can be approximated as closely as desired uniformly on M
by a smooth conformal superminimal immersion f € SM* (M, X) with embedded
boundary f(bM) C X such that the intrinsic diameter of the Riemannian surface
(M, f*g) is arbitrarily big.

By an inductive application of this lemma, we obtain the following generalisation of
Theorem 1.2. Let R be a compact Riemann surface and M = R\ |J7, D; be an open
domain of the form (1.3) in R whose complement is a countable union of pairwise
disjoint, smoothly bounded closed discs D;. Forevery j € Z, we consider the compact
domainin R givenby M; = R\Ui:o Dy. Thisisa compact bordered Riemann surface

with boundary bM; = \J{_ybDy.and Mo > My D My > -+ > (32 Mj = M.

Theorem 5.3 (Assumptions as above) Assume that (X, g) is an Einstein four-manifold
with the Weyl tensor W = Wt + W= If W& = 0 then every fi € SMi(Mj, X)
(j € Zy) of class €3 can be approximated as closely as desired uniformly on M
by continuous maps f : M — X such that f : M — X is a complete conformal
superminimal immersion in SM*(M, X) and f(bM) = \U; f(bD;) is a union of
pairwise disjoint Jordan curves of Hausdorff dimension one.

Proof We outline the main idea and refer for the details to [3, proof of Theorem 5.1]
where the analogous result is proved for conformal minimal surfaces in Euclidean
spaces.

Let f; € SM*(M;, X) be a smooth conformal superminimal immersion. Using
Lemma 5.2 we inductively construct a sequence f; € SME(M;, X) (i = j+ 1, j +
2,...) such that at every step the map f; : M; — X approximates the previous
map fi—1 : Mj_; — X uniformly on M; C M;_; as closely as desired, the intrinsic
diameter of (M;, f;*g)isabigas desired, and the boundary f; (bM;) C X isembedded.
(Note that at each step a new disc is taken out and hence an additional boundary curve
appears.) By choosing the approximations to be close enough at every step and the
intrinsic diameters of the Riemannian surfaces (M;, f*g) growing fast enough, the
sequence f; converges uniformly on M to alimit f = lim; o f; : M — X satisfying
the conclusion of the theorem. For the details of this argument in an analogous situation
we refer to [3, Sect. 3]. O

6 Twistor Spaces of the 4-Sphere and of the Hyperbolic 4-Space

It was shown by Penrose [47, Sect. VI], and more explicitly by Bryant [15, Sect. 1]
that the twistor space of the four-sphere S* with the spherical metric can be identified
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with the complex projective space CP* with the Fubini-Study metric (defined by the
homogeneous (1, 1)-formw = dd° log |z|> on (Ci) such that the horizontal distribution
£ C TCP? of the twistor projection 77 : CP3 — $% is a holomorphic contact bundle
given in homogeneous coordinates [z1 : 22 : 23 : z4] by the homogeneous 1-form

o = z21dz2 — z2d71 + 23dza — 24dz3. 6.1)

(This complex contact structure CPP? is unique up to holomorphic contactomorphisms;
see LeBrun and Salamon [43, Corollary 2.3].) Proofs can also be found in many other
sources, see Eells and Salamon [25, Sect. 9], Gauduchon [33, pp. 170-175], Bolton
and Woodward [12], Baird and Wood [9, Example 7.1.4], among others.

Due to the overall importance of this example we offer here a totally elementary
explanation using only basic facts along with Lemma 3.1. We consider Z*(5%); the
same holds for Z~(S%) by applying (4.2) to the antipodal orientation reversing isom-
etry on S*. In Example 6.2 we also take a look at the twistor space of the hyperbolic
four-space H*.

Example 6.1 [The twistor space of S*] The geometric scheme follows Bryant [15] and
Gauduchon [33, pp. 171-175] and [34]. We identify the quaternionic plane H? with
C* by

H? 5 g = (q1.92) = (21 + 22}, 23 + 24)) = (21,22, 23.24) =2 € C*,  (6.2)

and we identify S* with the unit sphere in R> = C @ C @ R oriented by the outward
vector field. Write Hi = H? \ {0} and consider the commutative diagram

~

H —%> cP?

| 27

C2 U {00} ——> HP! > §4

(C4

where

o ¢ H2 =C — CP? is the canonical projection with fiber C* sending g =
(g1, q2) € Hi to the complex line Cq € C]P’3;

e ¢ : CP? — HP! is the fiber bundle sending a complex line Cq, g € H2,
to the quaternionic line Hg = Cq & Cjq. Thus, HP! is the quaternionic one-
dimensional projective space which we identify with H U {oo} = R* U {oo} such
that H, := {0} x H = H - (0, 1) corresponds to co. The fiber ¢{1(¢2(q)) is the
linear rational curve CP' ¢ CP? of complex lines in the quaternionic line Hg;

e p=¢ro¢;: Hﬁ — HP! sends q € Hi to Hg € HP!. Restricting ¢ to the unit
sphere §7 C Hi gives a Hopf map S7 — $* with fiber S°;

e ¥ : HP' = R* U {00} — S§* C R’ is the orientation preserving stereographic
projection mapping oo to the south pole s = (0,0, 0,0, —1) € §%;

° p:=wo¢:Hi—>S4.
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The stereographic projection ¥ : R* U {oo} — §* ¢ R> with 1 (00) = s is given by

B 2x 11— |x? 63
W)_(1+|x|2’1+|x|2)' ©3

Using coordinates (6.2) it is elementary to find the following explicit formulas:

_ 1 _
o1, q2) = q o= —aan

lg11?
= ———— (2123 + 2224, 2124 — 2223) » (6.4)
2112 + |z212
1 _
P14 = —— (20 i~ 1) € Y RS, (6.5)
lg11° + |g2]

1 _ - - -
n(lz1:22:23 1 24]) = —5 (2(2123 +2224), 22124 — 2223), lqu1 > — |QZ|2) :

|z]
(6.6)

We begin by considering the fiber 7~ '(n) < CP? over the point n :=
(0,0,0,0,1) € $* c R>. This fiber is the space of complex lines in Hj := H x {0}
(hence isomorphic to CP), and its normal space at every point in the Fubini-Study
metric is Hy = {0} x H. Using (6.2) we have that H; = {z3 = z4 = 0}, and
the form « (6.1) along H; equals z1dza — zadzy. It’s kernel is the complex 3-plane
C - (z1,22) ®Hy, s0 & = kera C TCP? coincides with H, at every point of 7~ (n).
This shows that £ is orthogonal to the fiber 7 ~!(n) in the Fubini-Study metric. We
identify the tangent space Ty, % = R* x {0} with H and let J; € 7 (T S*) denote
the almost Hermitian structure Ji(1) =i, J;i(j) = . Fix a point ¢ € H; with |g| = 1.
Consider the differential

dp.0) : Tig.oH? = Hy @ Hy — T,8* = H.

We see from (6.5) that the restriction of dp(,0) to the horizontal subspace H, = &
equals

H> > ¢o — 2gq>,

so it is an isometry with an appropriate choice of the constant for the metrics. If J; is
the almost Hermitian structure on Ty (S*) = H furnished by Lemma 3.1, then

dp(q,()) [¢] Ji = Jq o dp(q,()) on Hz.

This means the restriction of dm(,,0) to the horizontal subspace H = & intertwines
Ji with J; as in the definition of the twistor space (see (4.1)). Hence, 7 : CcP? - §*
satisfies all properties of the twistor bundle Z+(S*) — $* along the fiber 7! (n).
To complete the proof, it suffices to show that the situation is the same on every
fiber of the projection 7 : CP? — $*. To this end, we must find a group of C-linear
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isometries of C* = H?2, hence a subgroup of U (4), which commutes with the left
multiplication of H on H? and passes down to a transitive group of isometries of S*.
This requirement is fulfilled by the subgroup of U (4) preserving the quaternionic inner
product on H? given by

H? x H? 5 (p,q) +—> pq' = p1gy + p2g> € H.

(We consider elements of H? as row vectors acted upon by right multiplication.)
Writing

p=(@1+z22.23+z4) =z, q¢= w1+ wj, w3z + wsj) =w,
a calculation gives
pq =720 +ap(z, w)i, ooz, w) = 22w — z1wa + zaw3 — z3wa.  (6.7)

Note that oo (z, dz) = « is the contact form (6.1). If Jy € SU(4) denotes the matrix
with ((1) _01) as the diagonal blocks and zero off-diagonal blocks, then ag(z, w) =
zJow". It follows that the group we are looking for is

G={AcU®@) :AJA" = Jy} = U4) N Sp(C),

where Sp2(C) is the complexified symplectic group. Its projectivization P G acts on
CP? by holomorphic contact isometries. This shows that CP? is indeed the twistor
space of S*.

Explicit formulas for the twistor lift of an immersions M — S§* into CPP? can
be found in [15, Sect. 2], [25, Sect. 9], [12, Proposition 2.1], among others. The
antiholomorphic fiber preserving involution ¢ : CP? — CP3 (cf. Proposition 4.1 (b))
is given by

(z1:z22:23:24]) =[—22:21: —24 1 23]

The formula (6.6) immediately shows that 7w ot = Idgs. Identifying §* with R*U{occ} =
C? U {00} via the stereographic projection ¥ (6.3) and using complex coordinates
w = (wy, wy) € C2, the spherical metric of constant sectional curvature +1 is given
by

4ldw|?

= wec?,
(1+wp?)’

N

and (6.4) shows that the twistor projection ¢ = ¥ ' o7 : CP? — C2U {o0} is given
in homogeneous coordinates [z] : z2 : z3 : z4] on Ccp? by

2123 + 2224 7124 — 2223 2 lzal? + Jzal?

=——, W=—m, |w=—""——7. (68
2112 + |z21? 2112 + |z212 12112 + |z21?

wi
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Example 6.2 (The twistor space of H*) The geometric model of the hyperbolic space
H* of constant sectional curvature —1 is the hyperquadric

H* = {x = (x1,...,x5) e R’ :x12+x22+x32+x£+ 1 :x52, xs >0} (6.9)
in the Lorentzian space R*!, that is, R> endowed with the Lorenzian inner product
Xoy=X1y1+ -+ X4y4 — X5)5.
(See Ratcliffe [49, Sect. 4.5].) Note that H 4 is one of the two connected components
of the the unit ball {x € R*! : x o x = —1} of imaginary radius i = /—1, the other

component being given by the same equation (6.9) with x5 < 0.

Consider the stereographic projection ¢ : B = {x € R* : |x|> < 1} = w given
by

2 2 1 2
all X 14 ) x €B. (6.10)

Ve = (1 — R T T P
The pullback by 1/7 of the Lorentzian pseudometric ||x[|> = x o x on R*! is the
hyperbolic metric of constant curvature —1 on the ball B:

2
ghzﬂlz’ x € B.
(1= IxP?)

The Riemannian manifold (B, g;,) is the Poincaré ball model for H 4. We see from
(6.8) that the preimage of B by the projection ¢ : CP3 — C2 U {00} is the domain

Q=¢;'B) = |[Z1 122324l € CPP |2y P+ 2ol > |23 + |Z4|2} .
6.11)

Since the hyperbolic metric is conformally flat, Q is the twistor space Zt(H?) as a
complex manifold (cf. Theorem 4.11). The twistor metric g on €2 is obtained from the
hyperbolic metric g; on the base B and the Fubini-Study metric on the fibers CP!.
Explicit formulas for the metric g and the horizontal bundle £ C T2 can be found
in [31, Sect. 4]. (In the cited paper, the opposite inequality is used in (6.11) which
amounts to interchanging the variables g1, g> in (6.4), i.e., passing to another affine
coordinate chart of HP'.) The metric g on €2 is a complete Kihler metric, and Eisa
holomorphic contact bundle.

Corollary 6.3 Superminimal surfaces of both positive and negative spin in the hyper-
bolic 4-space H* satisfy the Calabi—Yau property. Furthermore, the twistor contact
manifold (2, &) of H* is Kobayashi hyperbolic. The same holds for domains in any
complete Riemannian four-manifold of constant negative sectional curvature (a space-

form).
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For the notion of Kobayashi hyperbolicity of complex contact manifolds, see [28].

Proof The first statement follows directly from Theorems 1.2 and 5.3. Let M be a
Riemann surfaces and f : M — (H*, gj,) be a conformal minimal immersion. The
induced metric f*g;, on M is then a Kihler metric with curvature bounded above
by —1, the curvature of H* (see [17, Corollary 2.2]). By the Ahlfors lemma (see
[40, Theorem 2.1, p. 3]) it follows that any holomorphic map 4 : D = {z € C :
|z] < 1} — M from the disc satisfies an upper bound on the derivative at any point
p € D depending only on h(p) € M. Hence, M is Kobayashi hyperbolic and its
universal covering is the disc. Since superminimal surfaces in H* lift isometrically
to holomorphic Legendrian curves in (2, &), the contact structure £ is hyperbolic.
(Note that 2 itself is not Kobayashi hyperbolic since the fibers of ¢» : @ — B are
rational curves.) The same argument applies to domains in any space-form X since its
universal metric covering space is H 4. see [23, Theorem 4.1]. O
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