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Abstract
In this paper, we show that if (X , g) is an oriented four-dimensional Einstein manifold
which is self-dual or anti-self-dual then superminimal surfaces in X of appropriate
spin enjoy the Calabi–Yau property, meaning that every immersed surface of this
type from a bordered Riemann surface can be uniformly approximated by complete
superminimal surfaces with Jordan boundaries. The proof uses the theory of twistor
spaces and the Calabi–Yau property of holomorphic Legendrian curves in complex
contact manifolds.

Keywords Superminimal surface · Einstein manifold · Twistor space · Complex
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1 Introduction

It has been known since the 1980s that four-dimensional self-dual Einstein manifolds
have a rich theory of superminimal surfaces. In the present paper we provide further
evidence by showing that such surfaces enjoy the Calabi–Yau property; see Theo-
rems 1.2 and 5.3. The latter term was introduced in the recent paper by Alarcón et
al. [6, Definition 6.1]. The motivation comes from the classical problem posed by
Calabi in 1965 (see [22, p. 170] and [18, p. 212]) and in a more precise form by
Yau in 2000 (see [61, p. 360] and [62, p. 241]), asking which open Riemann surfaces
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admit complete conformal minimal immersions with bounded images into Euclidean
spaces Rn , n ≥ 3, and what is the possible boundary behavior of such surfaces. For
the history of this subject and some recent developments, see the survey [2] and the
papers [1,3,7].

Superminimal surfaces form an interesting class of minimal surfaces in four-
dimensional Riemannian manifolds. Although this term was coined by Bryant in his
study [15] of such surfaces in the four-sphere S4 and their relationship to holomor-
phic Legendrian curves in CP3, the Penrose twistor space of S4, it soon became clear
through the work of Friedrich [30,31] that this class of minimal surfaces was described
geometrically already by Kommerell in his 1897 dissertation [39] and his 1905 paper
[41], and they were subsequently studied by Eisenhart [26], Borōvka [13,14], Calabi
[16], and Chern [19,20], among others; see Sect. 2. Unfortunately, at least three dif-
ferent definitions are used in the literature. We adopt the original geometric definition
of Kommerell [39] (see also Friedrich [31, Sect. 1]) and explain the role of spin in this
context.

Assume that (X , g) is a Riemannian four-manifold and M ⊂ X is a smoothly
embedded surface with the induced conformal structure. (Our considerations, being
of local nature, will also apply to immersed surfaces.) Then T X |M = T M ⊕ N where
N = N (M) is the orthogonal normal bundle to M . A unit normal vector n ∈ Nx at
a point x ∈ M determines a second fundamental form Sx (n) : Tx M → Tx M , a self-
adjoint linear operator on the tangent space of M . For a fixed tangent vector v ∈ Tx M
we consider the closed curve

Ix (v) = {
Sx (n)v : n ∈ Nx , |n|g = 1

} ⊂ Tx M . (1.1)

Suppose now that M and X are oriented, and coorient the normal bundle N accordingly.

Definition 1.1 A smooth oriented embedded surface M in an oriented Riemannian
four-manifold (X , g) is superminimal of positive (negative) spin if for every point
x ∈ M and unit tangent vector v ∈ Tx M , the curve Ix (v) ⊂ Tx M (1.1) is a circle
centered at 0 and the map n → S(n)v ∈ Ix (v): (n ∈ Nx ) is orientation preserving
(resp. orientation reversing). The last condition is void at points x ∈ M where the
circle Ix (v) reduces to 0 ∈ Tx M . The analogous definition applies to a smoothly
immersed oriented surface f : M → X .

Every superminimal surface is a minimal surface; see Friedrich [31, Proposi-
tion 3] and the discussion in Sect. 2. The converse is not true except in special
cases, see Remark 4.10. The notion of spin, which is only implicitly present in
Friedrich’s discussion, is very important in the Bryant correspondence described in
Theorem 4.6.

The surface M in Definition 1.1 is endowed with the conformal structure which
renders the given immersion M → X conformal. In the sequel we prefer to work with
a fixed conformal structure on M and consider only conformal immersions M → X .
Since M is also oriented, it is a Riemann surface. We denote by SM±(M, X) the
spaces of smooth conformal superminimal immersions of positive and negative spin,
respectively, and set
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4756 F. Forstnerič

SM(M, X) = SM+(M, X) ∪ SM−(M, X). (1.2)

The intersection SM+(M, X) ∩ SM−(M, X) of these two spaces consists of immer-
sions for which all circles Ix (v) (1.1) reduce to points; such surfaces are minimal with
vanishing normal curvature, hence totally geodesic (see [31]).

Recall that a (finite) bordered Riemann surface is a domain of the form M =
R \⋃

i �i , where R is a compact Riemann surface and �i are finitely many compact
pairwise disjoint discs with smooth boundaries b�i , diffeomorphic images of D =
{z ∈ C : |z| ≤ 1}. Its closure M is a compact bordered Riemann surface. The definition
of superminimality clearly applies to smooth conformal immersions M → X and the
notation (1.2) shall be used accordingly.

The following is our first main result; see also Theorem 5.3.

Theorem 1.2 Let (X , g) be an oriented four-dimensional Einstein manifold whose
Weyl tensor W = W+ + W− satisfies W+ = 0 or W− = 0. Given any bordered
Riemann surface M and a conformal superminimal immersion f0 ∈ SM±(M, X) of
class C 3 ( with the respective choice of sign ± ), we can approximate f0 uniformly
on M by continuous maps f : M → X such that f : M → X is a complete
conformal superminimal immersion inSM±(M, X) and f : bM → X is a topological
embedding.

Recall that an immersion f : M → (X , g) is said to be complete if the Riemannian
metric f ∗g induced by the immersion is a complete metric on M ; equivalently, for any
divergent path λ : [0, 1) → M (i.e., such that λ(t) leaves any compact subset of M as
t → 1) the path f ◦ λ : [0, 1) → X has infinite length:

∫ 1
0

∣∣ d( f ◦λ(t))
dt

∣∣
gdt = +∞.

Note that our result is local in the sense that the complete conformal superminimal
immersion stays uniformly close to the given superminimal surface. Hence, if Theo-
rem 1.2 holds for a Riemannian manifold X then it also holds for every open domain
in X .

Recall (see Atiyah et al. [8, p. 427]) that the Weyl tensor W = W+ + W− is
the conformally invariant part of the curvature tensor of a Riemannian four-manifold
(X , g), so it only depends on the conformal class of the metric. The manifold is
called self-dual if W− = 0, and anti-self-dual if W+ = 0. Note that W = 0 if and
only if the metric is conformally flat. A Riemannian manifold (X , g) is called an
Einstein manifold if the Ricci tensor of g is proportional to the metric, Ricg = kg for
some constant k ∈ R. The curvature tensor of g then reduces to the constant scalar
curvature (the trace of the Ricci curvature, hence 4k when dim X = 4) and the Weyl
tensor W (see [8, p. 427]). The Einstein condition is equivalent to the metric being a
solution of the vacuumEinstein field equations with a cosmological constant, although
the signature of the metric can be arbitrary in this setting, thus not being restricted
to the four-dimensional Lorentzian manifolds studied in general relativity. Self-dual
Einstein four-manifolds are important as gravitational instantons in quantum theories
of gravity. A classical reference is the monograph [10] by Besse. The role of these
conditions in Theorem 1.2 will be clarified by Theorems 4.11 and 4.12.
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The Calabi–Yau Property of Superminimal Surfaces 4757

The analogue of Theorem 1.2 also holds for bordered Riemann surfaces with count-
ably many boundary curves; see Theorem 5.3. Every such surface is an open domain

M = R \
∞⋃

i=0
Di (1.3)

in a compact Riemann surface R, where Di ⊂ R are pairwise disjoint smoothly
bounded closed discs. By the uniformisation theorem of He and Schramm [36], every
open Riemann surface of finite genus and having at most countably many ends is
conformally equivalent to a surface of the form (1.3), where Di lift to round discs or
points in the universal covering surface of R. This gives the following corollary to
Theorems 1.2 and 5.3.

Corollary 1.3 Every self-dual or anti-self-dual Einstein four-manifold contains a
complete conformally immersed superminimal surface with Jordan boundary param-
eterized by any given bordered Riemann surface with finitely or countably many
boundary curves.

In particular, every open Riemann surface of finite genus and having at most
countably many ends, none of which are point ends, is conformally equivalent to a
complete conformal superminimal surface in any self-dual or anti-self-dual Einstein
four-manifold.

It is in general impossible to ensure completeness of a minimal surface at a point
end unless (X , g) is complete and the immersion M → X is proper at such end.

The special case of Theorem 1.2 when X is the four-sphere S4 is given by [29,
Corollary 1.10]; see also [5, Theorem 7.5]. Since the spherical metric is conformally
flat, the Weyl tensor vanishes and Theorem 1.2 applies to superminimal surfaces of
both positive and negative spin in S4. The same holds for the hyperbolic 4-space
H4; see Corollary 6.3. While S4 admits plenty of supermininal surfaces of any given
conformal type (see [5, Corollary 7.3]), every minimal surface in H4 is uniformised
by the disc D (see Corollary 6.3).

A natural question at this point is, how many Riemannian four-manifolds (X , g)

are there satisfying the conditions in Theorem 1.2? Among the complete ones with
positive scalar curvature, there are not many. The classical Bonnet–Myers theorem
(see Myers [45] or do Carmo [23, p. 200]) states that if the Ricci curvature of an
n-dimensional complete Riemannian manifold (X , g) is bounded from below by a
positive constant, then it has finite diameter and hence X is compact. Further, a theorem
of Friedrich and Kurke [32] from 1982 says that a compact self-dual Einstein four-
manifold with positive scalar curvature is either isometric to S4 or diffeomorphic
to the complex projective plane CP

2. Superminimal surfaces in S4 and CP
2 with

their natural metrics have been studied extensively; see [12,15,33,34,44]. Hitchin [37]
described in 1974 the topological type all four-dimensional compact self-dual Einstein
manifolds with vanishing scalar curvature. He proved that such a space is either flat
or a K3-surface, an Enriques surface, or the orbit space of an Enriques surface by
an antiholomorphic involution. Conversely, it follows from the solution of the Calabi
conjecture by Yau [59,60] that every K3 surface admits a self-dual Einstein metric
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4758 F. Forstnerič

(W− = 0) with vanishing scalar curvature. On the other hand, there are many self-
dual Einstein manifolds with negative scalar curvature including all real and complex
space forms. In particular, there is an infinite dimensional family of self-dual Einstein
metrics with scalar curvature−1 on the unit ballB ⊂ R

4 having prescribed conformal
structure of a suitable kind on the boundary sphere S3 = bB; see Graham and Lee [35],
Hitchin [38], and Biquard [11]. Another construction of an infinite dimensional family
of self-dual Einstein metrics was given by Donaldson and Fine [24] and Fine [27].
It was shown by Derdzinski [21] that a compact four-dimensional self-dual Kähler
manifold is locally symmetric.

In the remainder of this introduction,weoutline the proof ofTheorem1.2; the details
are provided in Sect. 5. In Sects. 2–4 we provide a sufficiently complete account
of the necessary ingredients from the theory of superminimal surfaces and twistor
spaces to make the paper accessible to a wide audience. Several different definitions
of superminimal surfaces are used in the literature, and hence statement which are
formally the same need not be equivalent. We take care to present a coherent picture
to an uninitiated reader with basic knowledge of complex analysis and Riemannian
geometry.

We shall use three key ingredients. The first two are provided by the twistor the-
ory initiated by Penrose [47] in 1967. One of its main features from mathematical
viewpoint is that it provides harmonic maps from a given Riemann surface M into
a Riemannian four-manifold (X , g) as projections of suitable holomorphic maps
M → Z into the total space of the twistor bundle π : Z → X . Although this
idea is reminiscent of the Enneper-Weierstrass formula for minimal surfaces in flat
Euclidean spaces (see Osserman [46]), it differs from it in certain key aspects. There
are two twistor spaces π± : Z± → X , reflecting the spin (see Sect. 4). Their total
spaces Z± carry natural almost complex structures J± (nonintegrable in general), and
the fibers of π± are holomorphic rational curves in Z±. The Levi–Civita connection
of (X , g) determines a complex horizontal subbundle ξ± ⊂ T Z± projecting by dπ±
isomorphically onto the tangent bundle of X . The key point of twistor theory pertain-
ing to our paper is the Bryant correspondence; see Theorem 4.6. This correspondence,
discovered by Bryant [15]) in the case when X is the four-sphere S4 (whose twistor
spaces Z± are the three-dimensional complex projective space CP

3, see Sect. 6 for
an elementary explanation), shows that superminimal surfaces in X of ± spin are
precisely the projections of holomorphic horizontal curves in Z±, i.e., curves tangent
to the horizontal distribution ξ±.

The second ingredient is provided by a couple of classical integrability results.
According to Atiyah et al. [8, Theorem 4.1], the twistor space (Z±, J±) of a smooth
oriented Riemannian four-manifold (X , g) is an integrable complex manifold if and
only if the conformally invariant Weil tensor W = W+ + W− of g satisfies W+ = 0
or W− = 0, respectively. Assuming that this holds, a result of Salamon [51, Theorem
10.1] (see also Eells and Salamon [25, Theorem 4.2]) says that the horizontal bundle
ξ± is a holomorphic hyperplane subbundle of T Z± if and only if g is an Einstein
metric, and in such case ξ± is a holomorphic contact bundle if and only if the scalar
curvature of g is nonzero.

The third main ingredient is a recent result of Alarcón and the author [1, Theorem
1.3] saying that holomorphic Legendrian immersions from bordered Riemann sur-
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The Calabi–Yau Property of Superminimal Surfaces 4759

faces into any holomorphic contact manifold enjoy the Calabi–Yau property, i.e., the
analogue of Theorem 1.2 holds for such immersions. (See also [5, Theorem 1.2] for the
standard complex contact structure on Euclidean spaces C2n+1, n ≥ 1.) Analogous
results hold for holomorphic immersions into any complex manifold of dimension
> 1, and for conformal minimal immersions into the flat Euclidean space Rn for any
n ≥ 3. We refer to the recent survey [2] for an account of these developments. The
proof of Theorem 1.2 is then completed and generalized to surfaces M with countably
many boundary curves in Sect. 5. In Sect. 6 we take a closer look at the case when X
is the sphere S4 or the hyperbolic space H4.

2 Superminimal Surfaces in Riemannian 4-Manifolds

In this section we recall the notion of the indicatrix of a smooth surface in a smooth
Riemannian four-manifold (X , g) and the geometric definition of a superminimal
surface. We follow the paper by Friedrich [31] from 1997.

Let M ⊂ X be a smoothly embedded surface endowed with the induced metric.
(Since our considerations in this section are local, they also apply to immersions
M → X .) The tangent bundle of X splits along M into the orthogonal direct sum
T X |M = T M ⊕ N where N is the normal bundle of M in X . Given a point p ∈ M
we let

Sym(Tp M) = {
A : Tp M → Tp M : g(Au, v) = g(u, Av) for all u, v ∈ Tp M

}

denote the three-dimensional real vector space of linear symmetric self-maps of Tp M .
Fixing an orthonormal basis of Tp M , we identify Sym(Tp M) ∼= Sym(R2) with the

space of real symmetric 2×2matrices and introduce the isometry Sym(Tp M)
∼=−→ R

3

by

(
a b
b c

)
�−→

(
a + c√

2
,
√
2b,

a − c√
2

)
.

Each unit normal vector n ∈ Np, |n|2 := g(n, n) = 1, determines a second funda-
mental form Sp(n) : Tp M → Tp M which belongs to Sym(Tp M). The unit normal
vectors form a circle in the normal plane Np to M at p, and the curve

Ip = {Sp(n) : n ∈ Np, |n| = 1} ⊂ Sym(Tp M) ∼= R
3 (2.1)

is called the indicatrix of M at p. It was shown by Kommerell [41] that Ip ⊂ R
3 is

either a straight line segment which is symmetric around the origin 0 ∈ R
3 (possibly

reducing to 0) or the intersection of a cylinder over an ellipse and a two plane. If
M is a minimal surface in X then Ip is a symmetric segment, an ellipse, or a circle;
see Kommerell [41] and Eisenhart [26]. For a fixed tangent vector v ∈ Tp M we also
consider the curve

Ip(v) = {
Sp(n)v : n ∈ Np, |n| = 1

} ⊂ Tp M . (2.2)
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4760 F. Forstnerič

Definition 2.1 Asmooth surface M ⊂ X is superminimal if every curve Ip(v) ⊂ Tp M
(p ∈ M, 0 �= v ∈ Tp M) is a circle with center 0 (which may reduce to the origin).
The same definition applies to a conformally immersed surface f : M → X .

Remark 2.2 (A) A calculation in [31, pp. 2–3] shows that the indicatrix Ip (2.1) of a
superminimal surface M ⊂ X at any point p ∈ M is a circle in Sym(Tp M) ∼= R

3 with
center 0, and every superminimal surface is a minimal surface (see [31, Proposition
3]). The converse fails in general, but see Remark 4.10 for some special cases.

(B) The above definition does not require orientability. If M and X are oriented,
then we can introduce superminimal surfaces of positive or negative spin by looking
at the direction of the rotation of the point Sp(n)v ∈ Ip(v) ⊂ Tp M as the unit
normal vector n ∈ Np traces the unit circle in a given direction. This gives the two
spaces SM±(M, X) in Definition 1.1 which get interchanged under the reversal of the
orientation on X .

(C) The class of superminimal surfaces is invariant under isometries of (X , g). ��

Superminimal surfaces have been studied by many authors; see in particular Kom-
merell [41], Eisenhart [26], Borōvka [13,14], Calabi [16], Chern [19,20], Bryant [15],
Friedrich [30,31], Eells and Salamon [25], Gauduchon [33,34], Wood [58], Montiel
and Urbano [44], Bolton and Woodward [12], Shen [54,55], and Baird and Wood [9].
A recent contribution to the theory of superminimal surfaces in S4 was made in [6,
Sect. 7].

3 Almost Hermitian Structures onRRR4 and Quaternions

In this section we recall some basic facts about linear almost Hermitian structures on
R
4 and their representation by quaternionic multiplication. This material is standard

(see e.g. [8,25]), except for Lemma 3.1 which will be used in Sect. 6.
Let 〈·, ·〉 stand for the Euclidean inner product on R

4. We denote by J ±(R4)

the space of almost Hermitian structures on R
4, i.e., linear operators J : R4 → R

4

satisfying the following three conditions:

(a) J 2 = −Id,
(b) 〈J x, J y〉 = 〈x, y〉 for all x, y ∈ R

4, and
(c) letting ω(x, y) = 〈Jx,y〉 denote the fundamental form of J , we have that ω∧ω =

±� where � is the standard volume form on R
4 with its canonical orientation.

Condition (a) lets us identifyR4 withC2 such that J corresponds to the multiplication
by i on C

2; any such linear operator is called a (linear) almost complex structure on
R
4. The second condition means that J is compatible with the inner product on R

4,
hence the word almost Hermitian. The third condition specifies the orientation of J .
Note that

J +(R4) ∪J −(R4) ⊂ SO(4).
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The Calabi–Yau Property of Superminimal Surfaces 4761

Any choice of positively oriented orthonormal basis e = (e1, e2, e3, e4) of R4 deter-
mines a pair of almost Hermitian structures J±e ∈J ±(R4) by

J±e (e1) = e2, J±e (e3) = ±e4. (3.1)

If e′ = (e′1, e′2, e′3, e′4) is another orthonormal basis in the same orientation class, there
is a unique A ∈ SO(4) mapping ei to e′i for i = 1, . . . , 4, and hence

J±e = A−1 ◦ J±e′ ◦ A.

This shows that for any fixed J ∈ J +(R4), conjugation A �→ A−1 ◦ J ◦ A by
orthogonal rotations A ∈ SO(4) acts transitively on J +(R4); the corresponding
property also holds for J −(R4). The stabiliser of this action is the unitary group
U (2), the group of orthogonal rotations preserving the given structure J , andJ ±(R4)

can be identified with the quotient SO(4)/U (2) ∼= S2. Conjugation by an element
A ∈ O(4) of the orthogonal group with det A = −1 interchanges J +(R4) and
J −(R4), and O(4)/U (2) ∼= J +(R4) ∪J −(R4). For instance, the two structures
in (3.1) are interchanged by the orientation reversing map A ∈ O(4) given by Ae1 =
e1, Ae2 = e2, Ae3 = e4, Ae4 = e3. Note however that the structures ±J belong to
the same space J ±(R4).

It is classical that every A ∈ SO(4) is represented by a pair of rotations for angles
α, β ∈ (−π,+π ] in orthogonal cooriented 2-planes 
 ⊕ 
⊥ = R

4. (Such pair of
planes is uniquely determined by A if and only if |α| �= |β|.) The rotation A is said to
be left isoclinic if α = β (it rotates for the same angle in the same direction on both
planes), and right isoclinic if α = −β (it rotates for the same angle but in the opposite
directions). Thus, elements of J +(R4) are precisely the left isoclinic rotations for
the angle π/2, while those in J −(R4) are the right isoclinic rotations for the angle
π/2.

Here is another interpretation of the spaces J ±(R4); see Atiyah et al. [8, Sect.
1] or Eells and Salamon [25, Sect. 2]. Let �2(R4) denote the second exterior power
of R4. For any oriented orthonormal basis e1, . . . , e4 of R4 the vectors ei ∧ e j for
1 ≤ i < j ≤ 4 form an orthonormal basis of �2(R4), so dimR �2(R4) = 6. The
Hodge star endomorphism ∗ : �2(R4) → �2(R4) is defined by α ∧∗β = 〈α, β〉� ∈
�4(R4). We have that ∗2 = 1, and the ±1 eigenspace �2±(R4) of ∗ has an oriented
orthonormal basis

e1 ∧ e2 ± e3 ∧ e4, e1 ∧ e3 ± e4 ∧ e2, e1 ∧ e4 ± e2 ∧ e3. (3.2)

The Euclideanmetric lets us identifyR4 with its dual (R4)∗, which gives the inclusion

�2(R4) ↪→ R
4 ⊗ R

4 ∼= (R4)∗ ⊗ R
4 = End(R4) ∼= GL4(R). (3.3)

Under this identification of �2(R4) with a subset of End(R4), we have that

J ±(R4) = S(�2±(R4)) := the unit sphere of �2±(R4) ∼= R
3. (3.4)
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4762 F. Forstnerič

For example, the vector e = e1∧e2+e3∧e4 ∈ �2+(R4) is sent under the first inclusion
in (3.3) to e1 ⊗ e2 − e2 ⊗ e1 + e3 ⊗ e4 − e4 ⊗ e3 ∈ R

4 ⊗ R
4, and under the second

isomorphism in (3.3) to the almost Hermitian structure given by (3.1):

Je = e∗1 ⊗ e2 − e∗2 ⊗ e1 + e∗3 ⊗ e4 − e∗4 ⊗ e3 ∈J +(R4).

We adopt the following convention regarding the orientations. (This essential point in
the construction of twistor spaces is difficult to find spelled out in the literature.)

Orientation onJ ±(R4). Let e = (e1, e2, e3, e4) be a positively oriented orthonormal
basis of R4, and let the spaces �2±(R4) ∼= R

3 be oriented by the pair of bases (3.2).
We endowJ +(R4) = S(�2+(R4)) with the outward orientation of the unit 2-sphere
in �2+(R4) ∼= R

3, whileJ −(R4) = S(�2−(R4)) is given the inward orientation.

Letting R
4
denote R

4 with the opposite orientation, it is easily checked that we
have orientation preserving isometric isomorphisms

J ±(R4) = S(�2±(R4))
∼=−→ S(�2∓(R

4
)) =J ∓(R

4
).

An oriented 2-plane 
 ⊂ R
4 determines a pair of almost Hermitian structures

J±
 ∈ J ±(R4) which rotate for π/2 in the positive direction on 
 and for ±π/2
on its cooriented orthogonal complement 
⊥. Denoting by G2(R

4) the Grassmann
manifold of oriented 2-planes in R

4, we have that (cf. [25, p. 595])

G2(R
4) ∼= S(�2+(R4))× S(�2−(R4)) =J +(R4)×J −(R4). (3.5)

Almost Hermitian structures on R4 can be represented by quaternionic multiplica-
tion. Let H denote the field of quaternions. An element of H is written uniquely as

q = x1 + x2i+ x3j+ x4k = z1 + z2j, (3.6)

where (x1, x2, x3, x4) ∈ R
4, z1 = x1 + x2i ∈ C, z2 = x3 + x4i ∈ C, and i, j, k are

the quaternionic units satisfying

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

We identify R
4 with H using 1, i, j, k as the standard positively oriented orthonormal

basis. (Some authors write complex coefficients on the right in (3.6); due to noncom-
mutativity this makes for certain differences in the constructions and formulas.) Recall
that

q̄ = x1 − x2i− x3j− x4k, qq̄ = |q|2 =
4∑

i=1
x2i , q−1 = q̄

|q|2 if q �= 0, pq = q̄ p̄.

By H0 we denote the real 3-dimensional subspace of purely imaginary quaternions:

H0 = {q = x2i+ x3j+ x4k : x2, x3, x4 ∈ R} ∼= R
3. (3.7)
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The Calabi–Yau Property of Superminimal Surfaces 4763

We also introduce the spheres of unit quaternions and imaginary unit quaternions:

S3 := {q ∈ H : |q| = 1} ∼= S3, S2 = {q ∈ H0 : |q| = 1} ∼= S2. (3.8)

We take i, j, k as a positive orthonormal basis of H0 and orient the spheres S2 ⊂ H0
and S3 ⊂ H by the respective outward normal vector field. In particular, the vectors
j, k are a positively oriented orthonormal basis of the tangent space TiS2.

Elements of J +(R4) and J −(R4) then correspond to left and right multiplica-
tions, respectively, on H ∼= R

4 by imaginary unit quaternions q ∈ S2. To see this,
note that every J ∈ J +(R4) is uniquely determined by its value q = J (1) on the
first basis vector; this value is orthogonal to 1 and of unit length, hence an element of
the unit sphere S2 ⊂ H0 inside the 3-space of imaginary quaternions (3.8). The pair
1, q spans a 2-plane 
 ⊂ H whose orthogonal complement 
⊥ is contained in the
hyperplane H0. The left multiplication by q on H then amounts to a rotation for π/2
in the positive direction on 
⊥, while the right multiplication by q yields a rotation
for π/2 in the negative direction on 
⊥. The left multiplication by i determines the
standard structure Ji(1) = i, Ji(j) = k.

The following lemma will be used in Sect. 6 to provide an elementary explanation
of the fact thatCP3 is the twistor space of S4. The analogous result holds forJ −(R4)

as seen by using the right multiplication on H by nonzero quaternions.

Lemma 3.1 For every q ∈ H \ {0} the left multiplication by q̄ on H uniquely deter-
mines an almost Hermitian structure Jq ∈ J +(R4) making the following diagram
commute:

R
4 ∼= ��

Ji
��

H
q̄ · ��

i ·
��

H

q̄iq̄−1·
��

∼= �� R4

Jq
��

R
4 ∼= �� H

q̄ · �� H
∼= �� R4

The map H \ {0} → J +(R4) given by q �→ Jq is equivalent to the canonical
projection H \ {0} = C

2∗ → CP
1 under an orientation preserving diffeomorphism

J +(R4) → CP
1.

Proof From qq̄ = |q|2 we see that q̄−1 = q/|q|2 and hence

q̄ iq̄−1 = q̄

|q|2 iq = q−1iq ∈ S3.

For any q1, q2 ∈ H we have that q1q2 = q̄2q̄1 and hence

q̄ iq̄−1 = q−1(−i)q = −q−1 iq,

so q−1iq ∈ S2 is a purely imaginary unit quaternion. It follows that the left product
by q−1iq on H determines an almost Hermitian structure Jq ∈J +(R4).
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Let us consider more closely the map


 : H \ {0} → S2, 
(q) = q−1 iq.

We have that 
(q1) = 
(q2) if and only if

q−11 iq1 = q−12 iq2 ⇐⇒ (q2q−11 )i = i(q2q−11 ) ⇐⇒ q2q−11 ∈ C
∗,

so the fibers of 
 are the punctured complex lines C∗q for q ∈ H \ {0}.
We claim that 
 is a submersion. Since 
 is constant on the lines C∗q, it suffices

to show that 
 : S3 → S2 is a submersion. Fix q ∈ S3. For any q ′ ∈ H we have that

d
q(q ′) = d

dt

∣∣∣
t=0
(q + tq ′) = d

dt

∣∣∣
t=0(q + tq ′) i(q + tq ′) = q̄ ′iq + q̄ iq ′.

In particular,

d
q(jq) = 2q̄ kq, d
q(kq) = −2q̄ jq.

These two vector are clearly R-linearly independent, so d
q : TqS3 → T
(q)S2 has
rank 2 at each point. For q = i we get that 
(i) = i and d
i(j) = 2j, d
i(k) = 2k.
Note that (j, k) is a positively oriented orthonormal basis of both TiS2 and T[1:0]CP1,
the tangent space at the point [1 : 0] to the projective line consisting of complex
lines in H = C

2, with [1 : 0] = C × {0}. It follows that 
 = h ◦ φ where φ :
C
2∗ → CP

1 is the canonical projection and h : CP1 → S2 is an injective orientation
preserving local diffeomorphism, hence an orientation preserving diffeomorphism
onto S2. (Surjectivity is easily seen by an explicit calculation.) Finally, we identify
J +(R4) with S2 acting on R

4 = H by left multiplication; this identification is
orientation preserving as well.

Note that the map 
 : S3 ∼= S3 → S2 ∼= S2 is the Hopf fibration with circle fibers
{eit q : t ∈ R} ∼= S1, q ∈ S3. ��

4 Twistor Bundles and the Bryant Correspondence

In 1967, Penrose [47] introduced a new twistor theory with an immediate goal of
studying representation theory of the 15-parameter Lie group of conformal coordi-
nate transformations on four-dimensional Minkowski space leaving the light-cone
invariant. (The mathematical ideas in Penrose’s paper are in close relation to those
developed in the notes [56] of the seminar conducted by Oswald Veblen and John von
Neumann during 1935–1936.) One of his aims was to offer a possible path to under-
stand quantum gravity; see Penrose and MacCallum [48]. Penrose also promoted the
idea that twistor spaces should be the basic arena for physics from which space-time
itself should emerge.

Mathematically, twistor theory connects four-dimensional Riemannian geometry
to three-dimensional complex analysis. A basic example is the complex projective

123



The Calabi–Yau Property of Superminimal Surfaces 4765

three-space CP3 as the twistor space of S4 with the spherical metric (see Penrose [47,
Sect. VI], Bryant [15], and Sect. 6). Physically it is the space of massless particles
with spin. Twistor theory evolved into a branch of mathematics and theoretical physics
with applications to differential and integral geometry, nonlinear differential equations
and representation theory and in physics to relativity and quantum field theory.

For the theory of twistor spaces, see in particular the papers by Atiyah, Hitchin and
Singer [8], Friedrich [30], Eells and Salamon [25], Gauduchon [33,34], the mono-
graphs by Ward and Wells [57] and Baird and Wood [9], and the recent survey by
Sergeev [53]. Twistor theory also exists for certain Riemannian manifolds of real
dimension 4n for n > 1, in particular for quaternion-Kähler manifolds (see Salamon
[50], LeBrun and Salamon [43], and LeBrun [42]).

Associated to an oriented Riemannian four-manifold (X , g) is a pair of almost
Hermitian fiber bundles with fiber CP1,

Z±(X) :=J ±(T X) = S(�2±(T X))
π±−→ X ,

the positive and the negative twistor bundle of X . The fiber over any point x ∈ X
equals

(π±)−1(x) =J ±(Tx X) = S(�2±(Tx X)) ∼= CP
1,

the space of positive or negative almost Hermitian structures on Tx X ∼= R
4. (The

second equality uses the identification (3.4).) The complex structure onJ ±(Tx X) ∼=
S2 is specified by the choice of orientation in Sect. 3. A local trivialisation of Z± → X
is provided by an oriented orthonormal frame field e(x) = (e1(x), . . . , e4(x)) for T X
on an open set x ∈ U ⊂ X . If e′(x) is another such frame field on U ′ ⊂ X then
the transition map between the associated fiber bundle charts is given by conjugation
with the field of linear maps A(x) ∈ SO(Tx X) ∼= SO(R4) sending e(x) to e′(x) for
x ∈ U ∩U ′.

The Levi-Civita connection associated to the metric g on X induces at any point
z ∈ Z± a decomposition of the tangent space Tz Z± into the direct sum

Tz Z± = T h
z Z± ⊕ T v

z Z± = ξ±z ⊕ T v
z Z±,

where T v
z Z± = Tzπ

−1(π(z)) is the vertical tangent space (the tangent space to the
fiber) and ξ±z = T h

z Z± is the horizontal space. This defines a horizontal subbundle
ξ± ⊂ T Z± such that the differential dπ±

z : ξ±z → Tπ±(z)X is an isomorphism for each
z ∈ Z±. Every path γ (t) in X with γ (0) = x admits a unique horizontal lift λ(t) in
Z± (tangent to ξ±) with any given initial point λ(0) = z ∈ (π±)−1(x) =J ±(Tx X),
obtained as the parallel transport of z with respect to the Levi-Civita connection.
However, lifting a surface in X to a horizontal surface is Z± is in general impossible
due to noninvolutivity of ξ±.

There is a natural almost complex structure J± on Z± determined by the condition
that at each point z ∈ Z , J±z agrees with the standard almost complex structure on the
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vertical space T v
z Z± ∼= TzCP

1, while on the horizontal space ξ±z we have that

dπ±
z ◦ J±z = z ◦ dπ±

z . (4.1)

It follows that ξ± is a J±-complex subbundle of the tangent bundle T Z±. (The struc-
ture J± introduced above is denoted J1 in [8,25]; the second structure J±2 is obtained
by reversing the orientations on the fibers of twistor projections. As shown in [52],
the structure J±2 is never integrable, but is nevertheless interesting in view of [25,
Theorem 5.3].)

Here is a summary of some basic properties of twistor bundles.

Proposition 4.1 (a) Denoting by X the Riemannian manifold X endowed with the
same metric and the opposite orientation, we have that

Z+(X) = Z−(X), Z−(X) = Z+(X)

as Hermitian fiber bundles over X, and also as almost complex manifolds. In
particular, their horizontal bundles and the respective almost complex structures
on them agree.

(b) There are antiholomorphic involutions ι± : Z± → Z± preserving the fibers of
π± : Z± → X± and taking any J ∈J ±(Tx X) to−J ∈J ±(Tx X). (Identifying
the fiber with CP

1, this is the map z �→ −1/z̄ on each fiber.)
(c) An orientation preserving isometry φ : X → X lifts to holomorphic isometries


± : Z± → Z± preserving ξ± such that π± ◦ 
± = φ ◦ π±. Moreover, the
almost complex type of (Z±, J±) only depends on the conformal class of the
metric on X, but the horizontal spaces ξ± depend on the choice of metric in that
class.

(d) An orientation reversing isometry θ : X → X lifts to a holomorphic isometry
� : (Z+(X), J+) → (Z−(X), J−) making the following diagram commute:

Z+(X)
� ��

π+
��

Z−(X)

π−
��

X
θ �� X

(4.2)

An example of (d) is the antipodal map on X = S4, and in this case Z+(S4) ∼=
Z−(S4) ∼= CP

3 (see Bryant [15], Gauduchon [33, Sect. III], and Sect. 6).

Example 4.2 (A) The twistor bundle Z+ of R4 with the Euclidean metric is fiberwise
diffeomorphic to R

4 × CP
1, and its horizontal distribution ξ is involutive with the

leavesR4×{z} for z ∈ CP
1. The almost complex structure J+ on Z+ restricted to the

leaf Lz = R
4 × {z} equals z ∈J +(R4), and (Lz, z) is a complex manifold which is

biholomorphic to C2 under a rotation in SO(4). As a complex manifold, (Z+, J+) is
biholomorphic to the total space of the vector bundle O(1)⊕ O(1) → CP

1, and the
leaves Lz of ξ are the fibers of this projection. See [30, Remark 2, p. 266] for more
details. ��
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Recall from (3.5) that an oriented 2-plane 
 ⊂ Tx X determines a pair of almost
Hermitian structures J±
 ∈J ±(Tx X). Let M be an oriented surface. To any immer-
sion f : M → X we associate the twistor lifts F± : M → Z± with π± ◦ F± = f by
the condition that for any point p ∈ M and x = f (p) ∈ X ,

F±(p) ∈J ±(Tx X) is determined by the oriented 2-plane d f p(Tp M) ⊂ Tx X .

(4.3)

That is, F±(p) rotates for +π/2 in the oriented plane 
 = d f p(Tp M) and for ±π/2
in the cooriented orthogonal plane 
⊥.

Z±

π±
��

M
f ��

F±
����������
X

Here is a more explicit description. Assume for simplicity that M ⊂ X is embedded
and let T X |M = T M⊕N where N is the orthogonal normal bundle of M in X . Locally
near any point p ∈ M there is an oriented orthonormal frame field (e1, e2, e3, e4) for
T X such that, along M , (e1, e2) is an oriented frame for T M while (e3, e4) is a frame
for N . Then, F± is determined by the conditions F±e1 = e2, F±e3 = ±e4.

Remark 4.3 (A) The twistor lifts F± clearly depend on the first order jet of f . Hence,
if the immersion f : M → X is of class C r (r ≥ 1) then F± : M → Z± are of class
C r−1.

(B) If M̃ is theRiemann surface M with the opposite orientation and F̃± : M̃ → Z±
denote the respective twistor lifts of f : M → X , then F̃± = ι± ◦ F± where ι± is the
antiholomorphic involution on Z± in Proposition 4.1 (B). ��

We have the following additional properties of twistor lifts of a conformal immer-
sion. The second statement is the first part of [30, Proposition 3]; note however that
in [30] an immersion f : M → X is tacitly assumed to be conformal.

Lemma 4.4 If I is an almost complex structure on M and f : (M, I ) → X is a
conformal immersion, then F±(p) ∈ J ±(T f (p) X) (p ∈ M) is uniquely determined
by the condition

d f p ◦ Ip = F±(p) ◦ d f p. (4.4)

Furthermore, the horizontal part (dF±
p )h of the differential of F± satisfies

(dF±
p )h ◦ Ip = J±F(p) ◦ (dF±

p )h, p ∈ M . (4.5)

In particular, if the twistor lift F± of a conformal immersion f : M → X is horizontal,
then it is holomorphic as a map from (M, I ) into (Z±, J±).
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Proof The formula (4.4) is an immediate consequence of the definition of F± and the
conformality of f . Let F denote any of the lifts F±. From π ◦ F = f we get that

dπF(p) ◦ dFh
p = dπF(p) ◦ dFp = d f p, p ∈ M, (4.6)

and hence

dπF(p)◦dFh
p ◦ Ip

(4.6)= d f p◦ Ip
(4.4)= F(p)◦d f p

(4.6)= F(p)◦dπF(p)◦dFh
p

(4.1)= dπF(p)◦ J±F(p)◦dFh
p .

Since the vectors under dπF(p) are horizontal, (4.5) follows. ��
We now consider conformal immersions f : M → X which arise as projections to

X of holomorphic immersions F : M → Z±. The following result is [30, Proposition
1].

Lemma 4.5 Let (Z , J ) denote any of the two twistor manifolds (Z±(X), J±). If F :
(M, I ) → (Z , J ) is a holomorphic immersion such that dFp(Tp M) intersects the
vertical tangent space T v

F(p)Z only at 0 for every p ∈ M, then F agrees with the

twistor lift F± (4.3) of its projection f = π ◦ F : M → X.

Proof The conditions on F implies that f is an immersion. Fix a point p ∈ M . Since
F is holomorphic and the horizontal space T h

F(p)Z in J -invariant, (4.5) holds and
hence

d f p ◦ Ip
(4.6)= dπF(p) ◦ dFh

p ◦ Ip
(4.5)= dπF(p) ◦ JF(p) ◦ dFh

p
(4.1)=

F(p) ◦ dπF(p) ◦ dFh
p

(4.6)= F(p) ◦ d f p.

This shows that f is conformal and F is its twistor lift (cf. (4.4)). ��
The following key statement combines the above observationswith [30, Proposition

4]. When X = S4 with the spherical metric, this is due to Bryant [15, Theorems B,
B’]; the general case was proved by Friedrich [30, Proposition 4].

Theorem 4.6 (The Bryant correspondence) Let M be a Riemann surface, and let
(X , g) be an oriented Riemannian four-manifold. The following conditions are pair-
wise equivalent for a smooth conformal immersion f : M → X (with the same choice
of ± in every item).

(a) f is superminimal of ± spin (see Definition 1.1).
(b) f admits a holomorphic horizontal lift M → Z±(X).
(c) The respective twistor lift F± : M → Z±(X) of f (see (4.3)) is horizontal.
(d) We have that ∇F± = 0, where ∇ is the covariant derivative on the vector bundle

f ∗(T X) → M induced by the Levi–Civita connection on X.

123



The Calabi–Yau Property of Superminimal Surfaces 4769

Sketch of proof The equivalence of (b) and (c) follows from Lemma 4.5.
Consider now (a)⇔(c). In [30, Proposition 4], horizontality of the twistor lift F− :

M → Z− (condition (c)) is characterized by a certain geometric property of the
second fundamental forms Sp(n) : Tp M → Tp M of f at p ∈ M in unit normal
directions n ∈ Np. An inspection of the proof shows that this property is equivalent
to f being a superminimal surface of negative spin in the sense of Definition 1.1,
hence to condition (a). Although not stated in [30], the same proof gives the analogous
conclusion for conformal superminimal immersions f : M → X of positive spin with
respect to the twistor lift F+ : M → Z+. The crux of the matter can be seen from
the display on the middle of [30, p. 266] which shows that the rotation of the unit
normal vector n ∈ Np M in a given direction corresponds to the rotation of the point
Sp(n)v ∈ Ip(v) ⊂ Tp M (1.1) in the opposite direction (assuming that the spaces
Tp M and Np M are coorriented). Reversing the orientation on X , F− is replaced by
F+ and the respective curves now rotate in the same direction, so F+ is horizontal if
and only if f is superminimal of positive spin. The direction of rotation is irrelevant
(only) at points p ∈ M where the normal curvature of the immersion f vanishes and
hence the circle Ip(v) reduces to the origin.

Concerning (c)⇔ (d), Friedrich showed in [30, Proposition 5, p. 270] that the
twistor lift F− is horizontal if and only if the immersion f is negatively oriented-
isoclinic. It is immediate from his description that the latter property simply says that
the almost complex structure on the vector bundle f ∗T X = T M ⊕ N adapted to f
(which is precisely the structure F−) is invariant under parallel transport along curves
in M ; equivalently, F− is parallel with respect to the covariant derivative ∇ on f ∗T X
induced by the Levi-Civita connection on X : ∇F− = 0. Reversing the orientation on
X , the analogous conclusion shows that F+ is horizontal if and only if f is positively
oriented-isoclinic if and only if ∇F+ = 0. (See also [33, Proposition 17] and [44,
Proposition 1].) ��

In light of theBryant correspondence, it is a natural questionwhether not necessarily
horizontal holomorphic curves in twistor spaces Z±(X) might yield a larger class or
minimal surfaces in the given Riemannian four-manifold X . In fact, this is not so
as shown by the following result of Friedrich [30, Proposition 3]. (Note that in [30]
an immersion f : M → X is called superminimal if and only if its twistor lift is
horizontal.)

Lemma 4.7 The following are equivalent for a smooth conformal immersion f : M →
X.

(i) The twistor lift F± : M → Z± of f is horizontal. (By Theorem 4.6, this is
equivalent to saying that f is superminimal of ± spin.)

(ii) f is a minimal surface in X and it admits a holomorphic lift f̃ : M → Z±.

Sketch of proof If (i) holds then F± is holomorphic by Lemma 4.4. Conversely, if f
admits a holomorphic lift f̃ then f̃ = F± by Lemma 4.5. Friderich showed in [30,
Proposition 3] that if F− is holomorphic then the vertical derivative (dF−

p )v equals
the mean curvature vector of f at p ∈ M . Since a surface is minimal if and only if
its mean curvature vector vanishes, the equivalence (i)⇔(ii) follows for the − sign.
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It also holds for the + sign since Z+(X) = Z−(X) (cf. Proposition 4.1 (a)) and the
space of minimal surfaces in X does not depend on the choice of orientation of X . ��
Remark 4.8 A conformal immersion M → X whose twistor lifts M → Z±(X) are
both holomorphic parameterizes a totally umbilic surface in X (cf. [25, Proposition
6.1]). Note also that both twistor lifts F± are horizontal precisely when all circles
Ip(v) ⊂ Tp M (2.2) are points, so the normal curvature vanishes and the surface is
totally geodesic. ��
Remark 4.9 A smooth conformal immersion f : M → X may admits several hori-
zontal lifts M → Z±, or no such lift. For example, if X = R

4 with the flat metric then
the horizontal distribution on Z± ∼= R

4 × CP
1 is involutive and each leaf projects

diffeomorphically onto X (see Example 4.2), so f admits a horizontal lift to every leaf;
however, only the twistor lift can be holomorphic in view of Lemma 4.5. The situation
is quite different if the horizontal distribution ξ± = T h Z± is a holomorphic contact
bundle on Z± (which holds if the metric g on X has nonzero scalar curvature). In such
case, any horizontal lift M → Z± is a conformal Legendrian surface (tangential to
the contact bundle ξ±), hence holomorphic or antiholomorphic by [1, Lemma 5.1].
By Lemma 4.5, this lift equals the twistor lift or its antiholomorphic reflection (see
Proposition 4.1 (b)). ��
Remark 4.10 Another characterization of superminimal surfaces is given by the van-
ishing of a certain quartic form which was first studied by Calabi [16] and Chern
[19,20]; see also Bryant [15] and Gauduchon [33, Proposition 7]. This shows that
every minimal immersion S2 → S4 is superminimal; see [15, Theorem C] or [33,
Proposition 25]. The same holds for minimal immersions S2 → CP

2 (see [33, Propo-
sition 28]). ��

We now recall two classical integrability theorems pertaining to twistor spaces. The
first one is due to Atiyah, Hitchin, and Singer [8, Theorem 4.1].

Theorem 4.11 The twistor space (Z±, J±) of a smooth oriented Riemannian four-
manifold (X , g) is an integrable complex manifold if and only if the conformally
invariant Weil tensor W = W+ + W− of (X , g) satisfies W+ = 0 or W− = 0,
respectively.

Let us say that (X , g) is ± self-dual if W± = 0. The next result is due to Salamon
[51, Theorem 10.1]; see also Eells and Salamon [25, Theorem 4.2].

Theorem 4.12 Assume that (X , g) is a ± self-dual Riemannian four-manifold, so
(Z±, J±) is a complex manifold. Then, the horizontal bundle ξ± is a holomorphic
hyperplane subbundle of T Z± if and only if X is an Einstein manifold. Assuming that
this holds, ξ± is a holomorphic contact bundle if and only if the scalar curvature of
X (the trace of the Ricci curvature) is nonzero.

In short, the complex structures J± on twistor spaces Z± depend only on the
conformal class of the metric on X , but the horizontal distribution is defined by a
choice of metric in that conformal class, and it is holomorphic precisely when the
metric is Einstein.
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Example 4.13 (Twistor spaces of a Kähler manifold) A smooth section σ : X →
Z±(X) of the twistor bundle determines an almost Hermitian structure Jσ on T X
given at a point x ∈ X by σ(x) ∈ J ±(Tx X). Conversely, an almost Hermitian
structure J on T X determines a section σJ : X → Z±(X), where the sign depends
on whether J agrees or disagrees with the orientation of X . These structures are not
integrable in general.

Suppose now that (X , g, J ) is an integrable Hermitian manifold endowed with
the natural orientation determined by J . Then, the associated holomorphic section
σJ : X → Z+(X) is horizontal if and only if (X , g, J ) is a Kähler manifold. Indeed,
the Kähler condition is equivalent to J being invariant under the parallel transport
along curves in X , which means that ∇ J = 0. This shows that the horizontal bundle
ξ+ ⊂ T Z+(X) associated to a Kähler manifold X is never a holomorphic contact
bundle. (Note also that Z+ is in general not an integrable complex manifold.) Any
holomorphic or antiholomorphic curve in X is a superminimal surface of positive spin
since σJ provides a horizontal lift to Z+. Another type of superminimal surfaces of
positive spin are the Lagrangian ones, i.e., those for which the image of the tangent
space at any point by the complex structure J is orthogonal to itself. If the holomorphic
sectional curvature of X is nonvanishing then any superminimal surface of positive
spin in X is of one of these three types (see [25]).

On the Kähler manifold R
4 = C

2 with the flat metric, ξ+ is involutive (cf. Exam-
ple 4.2). The twistor space Z+(CP2) of the projective plane is not integrable, and the
superminimal surfaces inCP2 of positive spin are described above. On the other hand,
Z−(CP2) is integrable and can be identified with the projectivised tangent bundle of
CP

2. There is a natural correspondence between superminimal surfaces of negative
spin inCP2 and holomorphic curves inCP2 (see Gauduchon [33, p. 178]). Supermin-
imal surfaces in CP

2 (and in S4) were also studied by Montiel and Urbano [44] and
others. ��

5 Proofs of Theorems 1.2 and 5.3

Proof of Theorem 1.2 Let (X , g) be a Riemannian manifold satisfying the hypotheses
of Theorem 1.2. Let W = W+ + W− denote the Weyl tensor of X (see [8, p. 427]).
Assume without loss of generality that X is self-dual, meaning that W− = 0; the
analogous argument applies if W+ = 0 by reversing the orientation on X (see Propo-
sition 4.1 (a)). Denote byπ : Z = Z−(X) → X the negative twistor space of X and by
ξ ⊂ T Z its horizontal bundle (see Sect. 4). Also, let g̃ denote a metric on Z for which
the differential dπ : T Z → T X maps ξ isometrically onto T X . Such g̃ is obtained
by adding to the horizontal component π∗g a positive multiple λ > 0 of the spherical
metric on CP1. By Theorems 4.11 and 4.12, Z is an integrable complex manifold and
the horizontal bundle ξ is a holomorphic subbundle of the tangent bundle T Z .

Let M be a relatively compact domain with smooth boundary in an ambient Riemann
surface R, and let f0 : M → X be a conformal superminimal immersion of negative
spin, f0 ∈ SM−(M, X), and of class C r for some r ≥ 3 (see Definition 1.1). Let
F0 : M → Z denote the twistor lift of f0 (see (4.3)). By Remark 4.3 the map F0 is of
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class C r−1(M), and by Theorem 4.6 its restriction to M is a horizontal holomorphic
immersion M → Z .

Assume first that the (constant) scalar curvature of X is nonzero, so ξ is a holo-
morphic contact subbundle of T Z . According to [29, Theorem 1.2], the Legendrian
immersion F0 can be approximated in the C r−1(M) topology by holomorphic Leg-
endrian immersions F1 : U → Z from open neighbourhoods U of M in R, and
we may choose F1 to agree with F0 at any given finite set of points A ⊂ M . (We
assumed that r ≥ 3 since [29, Theorem 1.2] applies to Legendrian immersions of
class C 2(M).) Projecting down to X yields a conformal superminimal immersion
f1 = π ◦ F1 : U → X of negative spin satisfying the conclusion of the following
proposition which seems worthwhile recording.

Proposition 5.1 (Mergelyan approximation theorem for superminimal surfaces)
Assume that (X , g) is an Einstein self-dual (W+ = 0 or W− = 0) four-manifold. If M
is a compact domain with smooth boundary in a Riemann surface R and f0 : M → X
is a conformal superminimal immersion in SM±(M, X) (see (1.2)) of class C r for
some r ≥ 3, then f0 can be approximated in the C r−1(M) topology by conformal
superminimal immersions f ∈ SM±(U , X) from open neighbourhoods U of M in R.
Furthermore, f may be chosen to agree with f0 to any given finite order at any given
finite set of points A ⊂ M.

We continue with the proof of Theorem 1.2. By [1, Theorem 1.3] we can approx-
imate the holomorphic Legendrian immersion F1 : U → Z found above, uniformly
on M , by topological embeddings F : M → Z whose restrictions to M are complete
holomorphic Legendrian embeddings. Again, we can choose F tomatch F1 (and hence
F0) at any given finite set of points in M . The proof of the cited theorem uses Dar-
boux neighbourhoods furnished by [1, Theorem 1.1], thereby reducing the problem
to the standard contact structure on C3 for which the mentioned result is given by [5,
Theorem 1.2].

Since the differential of the twistor projection π : Z → X maps the horizontal
bundle ξ ⊂ T Z isometrically onto T X , the projection f := π ◦ F : M → X
is a continuous map whose restriction to M is a complete superminimal immersion
M → X . By the construction, f approximates f0 as closely as desired uniformly on
M , and it can be chosen to agree with f0 to any given finite order at the given finite
set of points in M .

By using also the general position theorem for holomorphic Legendrian immersions
(see [1, Theorem 1.2]) and the transversality argument given (for the special case of
the twistor map CP

3 → S4) in [6, proof of Theorem 7.5], we can arrange that the
boundary f |bM : bM → X is a topological embedding whose image consists of
finitely many Jordan curves. As shown in [3, proof of Theorem 1.1], we can also
arrange that the Jordan curves in f (bM) have Hausdorff dimension one.

It remains to consider the case when the manifold (X , g) has vanishing scalar cur-
vature. By Theorem 4.12 the horizontal distribution ξ on the twistor space Z is then an
involutive holomorphic subbundle of codimension one in T Z , hence defining a holo-
morphic foliation of Z by smooth complex surfaces. The (horizontal, holomorphic)
twistor lift F0 of f0 lies in a leaf of this foliation. It is known (see [2,3]) that com-
plex curves parameterized by bordered Riemann surfaces in any complex manifold of
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The Calabi–Yau Property of Superminimal Surfaces 4773

dimension> 1 enjoy the Calabi–Yau property. Projecting such a surface (contained in
the same leaf of ξ as F0(M)) to X gives an immersed complete superminimal surface,
and we can arrange by a general position argument (see the proof of Theorem 1.2)
that its boundary is topologically embedded. ��

The argument in the above proof gives the following lemma.

Lemma 5.2 (Increasing the intrinsic diameter of a superminimal surface) Let M
and (X , g) be as in Theorem 1.2. Every conformal superminimal immersion f0 ∈
SM±(M, X) of class C 3 can be approximated as closely as desired uniformly on M
by a smooth conformal superminimal immersion f ∈ SM±(M, X) with embedded
boundary f (bM) ⊂ X such that the intrinsic diameter of the Riemannian surface
(M, f ∗g) is arbitrarily big.

By an inductive application of this lemma, we obtain the following generalisation of
Theorem 1.2. Let R be a compact Riemann surface and M = R \⋃∞

i=0 Di be an open
domain of the form (1.3) in R whose complement is a countable union of pairwise
disjoint, smoothly bounded closed discs Di . For every j ∈ Z+weconsider the compact
domain in R given by M j = R\⋃ j

k=0 D̊k .This is a compact borderedRiemann surface

with boundary bM j = ⋃ j
k=0 bDk , and M0 ⊃ M1 ⊃ M2 ⊃ · · · ⊃ ⋂∞

j=1 M j = M .

Theorem 5.3 (Assumptions as above) Assume that (X , g) is an Einstein four-manifold
with the Weyl tensor W = W+ + W−. If W± = 0 then every f j ∈ SM±(M j , X)

( j ∈ Z+) of class C 3 can be approximated as closely as desired uniformly on M
by continuous maps f : M → X such that f : M → X is a complete conformal
superminimal immersion in SM±(M, X) and f (bM) = ⋃

i f (bDi ) is a union of
pairwise disjoint Jordan curves of Hausdorff dimension one.

Proof We outline the main idea and refer for the details to [3, proof of Theorem 5.1]
where the analogous result is proved for conformal minimal surfaces in Euclidean
spaces.

Let f j ∈ SM±(M j , X) be a smooth conformal superminimal immersion. Using
Lemma 5.2 we inductively construct a sequence fi ∈ SM±(Mi , X) (i = j + 1, j +
2, . . .) such that at every step the map fi : Mi → X approximates the previous
map fi−1 : Mi−1 → X uniformly on Mi ⊂ Mi−1 as closely as desired, the intrinsic
diameter of (Mi , f ∗i g) is a big as desired, and the boundary fi (bMi ) ⊂ X is embedded.
(Note that at each step a new disc is taken out and hence an additional boundary curve
appears.) By choosing the approximations to be close enough at every step and the
intrinsic diameters of the Riemannian surfaces (Mi , f ∗i g) growing fast enough, the
sequence fi converges uniformly on M to a limit f = limi→∞ fi : M → X satisfying
the conclusion of the theorem. For the details of this argument in an analogous situation
we refer to [3, Sect. 3]. ��

6 Twistor Spaces of the 4-Sphere and of the Hyperbolic 4-Space

It was shown by Penrose [47, Sect. VI], and more explicitly by Bryant [15, Sect. 1]
that the twistor space of the four-sphere S4 with the spherical metric can be identified
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with the complex projective space CP3 with the Fubini-Study metric (defined by the
homogeneous (1, 1)-formω = ddc log |z|2 onC4∗) such that the horizontal distribution
ξ ⊂ TCP

3 of the twistor projection π : CP3 → S4 is a holomorphic contact bundle
given in homogeneous coordinates [z1 : z2 : z3 : z4] by the homogeneous 1-form

α = z1dz2 − z2dz1 + z3dz4 − z4dz3. (6.1)

(This complex contact structureCP3 is unique up to holomorphic contactomorphisms;
see LeBrun and Salamon [43, Corollary 2.3].) Proofs can also be found in many other
sources, see Eells and Salamon [25, Sect. 9], Gauduchon [33, pp. 170–175], Bolton
and Woodward [12], Baird and Wood [9, Example 7.1.4], among others.

Due to the overall importance of this example we offer here a totally elementary
explanation using only basic facts along with Lemma 3.1. We consider Z+(S4); the
same holds for Z−(S4) by applying (4.2) to the antipodal orientation reversing isom-
etry on S4. In Example 6.2 we also take a look at the twistor space of the hyperbolic
four-space H4.

Example 6.1 [The twistor space of S4] The geometric scheme follows Bryant [15] and
Gauduchon [33, pp. 171–175] and [34]. We identify the quaternionic plane H2 with
C
4 by

H
2  q = (q1, q2) = (z1 + z2j, z3 + z4j) = (z1, z2, z3, z4) = z ∈ C

4, (6.2)

and we identify S4 with the unit sphere in R5 = C⊕ C⊕ R oriented by the outward
vector field. Write H2∗ = H

2 \ {0} and consider the commutative diagram

C
4∗

∼= �� H2∗
φ1 ��

φ

��

CP
3

φ2

����
��
��
��
�

π

��
C
2 ∪ {∞} ∼= �� HP

1 ψ �� S4

where

• φ1 : H2∗ = C
4∗ → CP

3 is the canonical projection with fiber C∗ sending q =
(q1, q2) ∈ H

2∗ to the complex line Cq ∈ CP
3;

• φ2 : CP
3 → HP

1 is the fiber bundle sending a complex line Cq, q ∈ H
2∗,

to the quaternionic line Hq = Cq ⊕ Cjq. Thus, HP
1 is the quaternionic one-

dimensional projective space which we identify with H ∪ {∞} = R
4 ∪ {∞} such

that H2 := {0} × H = H · (0, 1) corresponds to∞. The fiber φ−12 (φ2(q)) is the
linear rational curve CP1 ⊂ CP

3 of complex lines in the quaternionic line Hq;
• φ = φ2 ◦ φ1 : H2∗ → HP

1 sends q ∈ H
2∗ to Hq ∈ HP

1. Restricting φ to the unit
sphere S7 ⊂ H

2∗ gives a Hopf map S7 → S4 with fiber S3;
• ψ : HP

1 ∼= R
4 ∪ {∞} → S4 ⊂ R

5 is the orientation preserving stereographic
projection mapping∞ to the south pole s = (0, 0, 0, 0,−1) ∈ S4;

• ρ := ψ ◦ φ : H2∗ → S4.
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The stereographic projection ψ : R4 ∪ {∞} → S4 ⊂ R
5 with ψ(∞) = s is given by

ψ(x) =
(

2x

1+ |x |2 ,
1− |x |2
1+ |x |2

)
. (6.3)

Using coordinates (6.2) it is elementary to find the following explicit formulas:

φ(q1, q2) = q−11 q2 = 1

|q1|2 q̄1q2

= 1

|z1|2 + |z2|2 (z̄1z3 + z2 z̄4, z̄1z4 − z2 z̄3) , (6.4)

ρ(q1, q2) = 1

|q1|2 + |q2|2
(
2q̄1q2, |q1|2 − |q2|2

)
∈ S4 ⊂ R

5, (6.5)

π([z1 : z2 : z3 : z4]) = 1

|z|2
(
2(z̄1z3 + z2 z̄4), 2(z̄1z4 − z2 z̄3), |q1|2 − |q2|2

)
.

(6.6)

We begin by considering the fiber π−1(n) ⊂ CP
3 over the point n :=

(0, 0, 0, 0, 1) ∈ S4 ⊂ R
5. This fiber is the space of complex lines in H1 := H × {0}

(hence isomorphic to CP
1), and its normal space at every point in the Fubini-Study

metric is H2 = {0} × H. Using (6.2) we have that H1 = {z3 = z4 = 0}, and
the form α (6.1) along H1 equals z1dz2 − z2dz1. It’s kernel is the complex 3-plane
C · (z1, z2)⊕H2, so ξ = ker α ⊂ TCP

3 coincides withH2 at every point of π−1(n).
This shows that ξ is orthogonal to the fiber π−1(n) in the Fubini-Study metric. We
identify the tangent space TnS4 = R

4 × {0} with H and let Ji ∈ J +(TnS4) denote
the almost Hermitian structure Ji(1) = i, Ji(j) = k. Fix a point q ∈ H1 with |q| = 1.
Consider the differential

dρ(q,0) : T(q,0)H
2 = H1 ⊕H2 → TnS4 ∼= H.

We see from (6.5) that the restriction of dρ(q,0) to the horizontal subspace H2 = ξ

equals

H2  q2 �→ 2q̄q2,

so it is an isometry with an appropriate choice of the constant for the metrics. If Jq is
the almost Hermitian structure on Tn(S4) ∼= H furnished by Lemma 3.1, then

dρ(q,0) ◦ Ji = Jq ◦ dρ(q,0) on H2.

This means the restriction of dπ(q,0) to the horizontal subspace H2 = ξ intertwines
Ji with Jq as in the definition of the twistor space (see (4.1)). Hence, π : CP3 → S4

satisfies all properties of the twistor bundle Z+(S4) → S4 along the fiber π−1(n).
To complete the proof, it suffices to show that the situation is the same on every

fiber of the projection π : CP3 → S4. To this end, we must find a group of C-linear
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isometries of C4 ∼= H
2, hence a subgroup of U (4), which commutes with the left

multiplication of H on H
2 and passes down to a transitive group of isometries of S4.

This requirement is fulfilled by the subgroup ofU (4) preserving the quaternionic inner
product on H

2 given by

H
2 ×H

2  (p, q) �−→ pq̄t = p1q̄1 + p2q̄2 ∈ H.

(We consider elements of H2 as row vectors acted upon by right multiplication.)
Writing

p = (z1 + z2j, z3 + z4j) = z, q = (w1 + w2j, w3 + w4j) = w,

a calculation gives

pq̄t = z wt + α0(z, w)j, α0(z, w) = z2w1 − z1w2 + z4w3 − z3w4. (6.7)

Note that α0(z, dz) = α is the contact form (6.1). If J0 ∈ SU (4) denotes the matrix
with

(
0 −1
1 0

)
as the diagonal blocks and zero off-diagonal blocks, then α0(z, w) =

z J0wt . It follows that the group we are looking for is

G = {A ∈ U (4) : AJ0At = J0} = U (4) ∩ Sp2(C),

where Sp2(C) is the complexified symplectic group. Its projectivization PG acts on
CP

3 by holomorphic contact isometries. This shows that CP3 is indeed the twistor
space of S4.

Explicit formulas for the twistor lift of an immersions M → S4 into CP
3 can

be found in [15, Sect. 2], [25, Sect. 9], [12, Proposition 2.1], among others. The
antiholomorphic fiber preserving involution ι : CP3 → CP

3 (cf. Proposition 4.1 (b))
is given by

ι([z1 : z2 : z3 : z4]) = [−z̄2 : z̄1 : −z̄4 : z̄3].

The formula (6.6) immediately shows thatπ◦ι = IdS4 . Identifying S4 withR4∪{∞} =
C
2 ∪ {∞} via the stereographic projection ψ (6.3) and using complex coordinates

w = (w1, w2) ∈ C
2, the spherical metric of constant sectional curvature +1 is given

by

gs = 4|dw|2
(
1+ |w|2)2

, w ∈ C
2,

and (6.4) shows that the twistor projection φ2 = ψ−1 ◦π : CP3 → C
2∪{∞} is given

in homogeneous coordinates [z1 : z2 : z3 : z4] on CP3 by

w1 = z̄1z3 + z2 z̄4
|z1|2 + |z2|2 , w2 = z̄1z4 − z2 z̄3

|z1|2 + |z2|2 , |w|2 = |z3|2 + |z4|2
|z1|2 + |z2|2 . (6.8)
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Example 6.2 (The twistor space of H4) The geometric model of the hyperbolic space
H4 of constant sectional curvature −1 is the hyperquadric

H4 = {x = (x1, . . . , x5) ∈ R
5 : x21 + x22 + x23 + x24 + 1 = x25 , x5 > 0} (6.9)

in the Lorentzian space R4,1, that is, R5 endowed with the Lorenzian inner product

x ◦ y = x1y1 + · · · + x4y4 − x5y5.

(See Ratcliffe [49, Sect. 4.5].) Note that H4 is one of the two connected components
of the the unit ball {x ∈ R

4,1 : x ◦ x = −1} of imaginary radius i = √−1, the other
component being given by the same equation (6.9) with x5 < 0.

Consider the stereographic projection ψ̃ : B = {x ∈ R
4 : |x |2 < 1} ∼=→ H4 given

by

ψ̃(x) =
(

2x1
1− |x |2 , · · · ,

2x4
1− |x |2 ,

1+ |x |2
1− |x |2

)
, x ∈ B. (6.10)

The pullback by ψ̃ of the Lorentzian pseudometric ‖x‖2 = x ◦ x on R
4,1 is the

hyperbolic metric of constant curvature −1 on the ball B:

gh = 4|dx |2
(
1− |x |2)2

, x ∈ B.

The Riemannian manifold (B, gh) is the Poincaré ball model for H4. We see from
(6.8) that the preimage of B by the projection φ2 : CP3 → C

2 ∪ {∞} is the domain

� = φ−12 (B) =
{
[z1 : z2 : z3 : z4] ∈ CP

3 : |z1|2 + |z2|2 > |z3|2 + |z4|2
}

.

(6.11)

Since the hyperbolic metric is conformally flat, � is the twistor space Z+(H4) as a
complex manifold (cf. Theorem 4.11). The twistor metric g̃ on � is obtained from the
hyperbolic metric gh on the base B and the Fubini-Study metric on the fibers CP1.
Explicit formulas for the metric g̃ and the horizontal bundle ξ̃ ⊂ T � can be found
in [31, Sect. 4]. (In the cited paper, the opposite inequality is used in (6.11) which
amounts to interchanging the variables q1, q2 in (6.4), i.e., passing to another affine
coordinate chart of HP

1.) The metric g̃ on � is a complete Kähler metric, and ξ̃ is a
holomorphic contact bundle.

Corollary 6.3 Superminimal surfaces of both positive and negative spin in the hyper-
bolic 4-space H4 satisfy the Calabi–Yau property. Furthermore, the twistor contact
manifold (�, ξ̃ ) of H4 is Kobayashi hyperbolic. The same holds for domains in any
complete Riemannian four-manifold of constant negative sectional curvature (a space-
form).
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For the notion of Kobayashi hyperbolicity of complex contact manifolds, see [28].

Proof The first statement follows directly from Theorems 1.2 and 5.3. Let M be a
Riemann surfaces and f : M → (H4, gh) be a conformal minimal immersion. The
induced metric f ∗gh on M is then a Kähler metric with curvature bounded above
by −1, the curvature of H4 (see [17, Corollary 2.2]). By the Ahlfors lemma (see
[40, Theorem 2.1, p. 3]) it follows that any holomorphic map h : D = {z ∈ C :
|z| < 1} → M from the disc satisfies an upper bound on the derivative at any point
p ∈ D depending only on h(p) ∈ M . Hence, M is Kobayashi hyperbolic and its
universal covering is the disc. Since superminimal surfaces in H4 lift isometrically
to holomorphic Legendrian curves in (�, ξ̃ ), the contact structure ξ̃ is hyperbolic.
(Note that � itself is not Kobayashi hyperbolic since the fibers of φ2 : � → B are
rational curves.) The same argument applies to domains in any space-form X since its
universal metric covering space is H4; see [23, Theorem 4.1]. ��
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