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The Calabi–Yau problem for Riemann surfaces
with finite genus and countably many ends

Antonio Alarcón and Franc Forstnerič

Abstract. In this paper, we show that if R is a compact Riemann surface
and M = R \ ⋃

i Di is a domain in R whose complement is a union of
countably many pairwise disjoint smoothly bounded closed discs, Di, then
there is a complete conformal minimal immersion X : M → R

3, extending
to a continuous map X : M → R

3, such that X(bM) =
⋃

i X(bDi) is a
union of pairwise disjoint Jordan curves. In particular, M is the complex
structure of a complete bounded minimal surface in R

3. This extends a
recent result for finite bordered Riemann surfaces.

1. Introduction

A classical problem in the theory of minimal surfaces in Euclidean spaces is the
conformal Calabi–Yau problem, asking which open Riemann surfaces, M , admit a
complete conformal minimal immersion X : M → Rn (n ≥ 3) with bounded image.
(Recall that a continuous map X : M → Rn is said to be complete if the image
of any divergent curve in M has infinite Euclidean length. If X is an immersion,
this is equivalent to asking that the Riemannian metric X∗(ds2) on M , induced
by the Euclidean metric ds2 on Rn via X, is a complete metric.) This problem
originates in a conjecture of E. Calabi from 1965 that such immersions do not exist
(see Kobayashi and Eells [24], p. 170, and Chern [17], p. 212). Groundbreaking
counterexamples to Calabi’s conjecture were given by Jorge and Xavier [23] in 1980
(a complete immersed minimal disc in R3 with a bounded coordinate function),
Nadirashvili [28] in 1996 (a complete bounded immersed minimal disc in R3),
and many others. In particular, there are examples in the literature of complete
bounded minimal surfaces in R

3 with any topological type (see Ferrer, Mart́ın,
and Meeks [19]). The related asymptotic Calabi–Yau problem (see S.-T. Yau [39],
p. 360) asks about the asymptotic behaviour of such surfaces near their ends. We
refer to the recent papers [3], [8] for the history and literature on these problems.

The first main result of this paper is the following.
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Theorem 1.1. Let R be a compact Riemann surface. If M = R \ ⋃∞
i=0 Di is a

domain in R whose complement is a countable union of pairwise disjoint, smoothly
bounded closed discs Di (diffeomorphic images of D = {z ∈ C : |z| ≤ 1}), then M
is the complex structure of a complete bounded minimal surface in R

3.

More precisely, for any n ≥ 3 there exists a continuous map X : M → Rn

such that X : M → Rn is a complete conformal minimal immersion and such that
X(bM) =

⋃
i X(bDi) is the union of pairwise disjoint Jordan curves. If n = 4,

then X : M → R
4 can be chosen an immersion with simple double points, and if

n ≥ 5, then X : M → Rn can be chosen an embedding.

The analogous result holds if R is a nonorientable compact conformal surface.

The discs Di in the theorem are assumed to have boundaries of class C r for
some r > 1, possibly noninteger. The Jordan curves X(bDi) ⊂ Rn are everywhere
nonrectifiable, but we show that X can be chosen such that they have Hausdorff
dimension one.

The analogue of Theorem 1.1 when M is the complement of finitely many pair-
wise disjoint discs in a compact Riemann surface was obtained in [3], Theorem 1.1;
this result also follows by a simplification of the proof of Theorem 1.1. Such M is
a bordered Riemann surface whose boundary, bM , consists of finitely many Jordan
curves. The surfaces in Theorem 1.1 still have finite genus, but they may have
countably many ends.

Theorem 1.1 is proved in Section 3 by an inductive application of Lemma 4.1
in [3] (see Lemma 2.4) which shows how to increase the intrinsic diameter of a
conformal minimal immersion M → R

n from a compact bordered Riemann surface
by an arbitrarily big amount, while at the same time keeping the map uniformly
close to the given one. Lemma 2.2 provides an estimate of the intrinsic radius of
the image surface from below during the inductive process.

The proof of Theorem 1.1 gives several additions. In particular, the complete
conformal minimal immersion X : M → Rn can be chosen to have vanishing flux.
Alternatively, a minor modification of the proof enables us to prescribe the flux
of X on any given finite family of classes in the first homology group H1(M,Z);
however, we do not know whether X can be chosen with arbitrarily prescribed flux
map. On the other hand, if we do not insist on controlling the flux of X, then we
can choose any conformal minimal immersion X0 : R \D0 → Rn (n ≥ 3) and find
for any given number ε > 0 a map X as in the theorem which is uniformly ε-close
to X0 on M .

We wish to emphasize that the class of domains in Theorem 1.1 contains the
conformal classes of all Riemann surfaces of finite genus with at most countably
many ends, none of which are point ends. Indeed, the uniformization theorem of
Z.-X. He and O. Schramm (Theorem 0.2 in [22]) says that every open Riemann
surface, M ′, with finite genus and at most countably many ends is conformally
equivalent to a circle domain in a compact Riemann surface R, i.e., a domain of
the form

(1.1) M = R \
⋃
i

Di
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whose complement is the union of at most countably many connected compo-
nents Di each of which is either a closed geometric disc or a point. Here, a geomet-
ric disc in a Riemann surface R is a topological disc whose lifts in the universal
cover R̃ of R (which is the disc, the Euclidean plane, or the Riemann sphere)

are round discs in M̃ . The ends Di of M which are points are called point ends,
while the others are called disc ends. An annular end is a disc end which does
not contain any limit points of other ends. A puncture end, or simply a puncture,
is an end which is conformally isomorphic to the punctured disc; it corresponds
to an isolated boundary point of a domain of the form (1.1). The type of an end
is independent of a particular representation of a given open Riemann surface as
a circle domain, and hence the above notions are well defined for open Riemann
surfaces in this class. The He–Schramm theorem includes as a special case open
Riemann surfaces of finite topological type (i.e., with finitely generated first ho-
mology group H1(M,Z)) and says that every such is conformally equivalent to a
domain in a compact Riemann surface whose complement consists of finitely many
closed geometric discs and points. (This was known earlier, see e.g. the paper [33]
by E. L. Stout.)

In light of these results, Theorem 1.1 gives the following immediate corollary.
The second statement follows from the fact that a bounded harmonic function
extends harmonically across an isolated point, and hence a bounded complete
conformal minimal surface does not have any punctures.

Corollary 1.2. Every open Riemann surface of finite genus and at most count-
ably ends, none of which are point ends, is the conformal structure of a complete
bounded immersed minimal surface in R

3, and of a complete bounded embedded
minimal surface in R

5.

An open Riemann surface of finite topological type admits a bounded complete
conformal minimal immersion into Rn for some (and hence for any) integer n ≥ 3
if and only if it has no point ends.

On the other hand, Colding and Minicozzi proved (Corollary 0.13 in [18]) that
a complete embedded minimal surface of finite topology in R3 is necessarily proper
in R

3, hence unbounded; this was extended to surfaces of finite genus and countably
many ends by Meeks, Pérez, and Ros [26], Theorem 1.3. Hence, Corollary 1.2
exposes a major dichotomy between the immersed and the embedded conformal
Calabi–Yau problem in dimension 3.

Remark 1.3. We recall the following classical results on the boundary regularity
of conformal maps. These show that we are free to precompose conformal minimal
immersions M → R

n from a compact bordered Riemann surface, M = M ∪ bM ,
by conformal isomorphisms M ′ → M , provided that both bordered Riemann sur-
faces M and M ′ have boundaries of class C r for some r > 1; this does not affect the
boundary regularity of the maps. Indeed, any conformal isomorphism φ : M → M ′

between two such surfaces extends to a homeomorphism φ : M → M ′ of their clo-
sures by the seminal theorem of Carathéodory [16] from 1913. Furthermore, if the
boundaries bM and bM ′ are smooth (of class C ∞), then the extension φ : M → M ′
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is a smooth diffeomorphism by Painlevé’s theorem from 1887 [31], [32]. Improve-
ments of these results were made by many authors. In particular, it was shown by
Warschawski [34] in 1935 that if bM is of class C k,α for some k ∈ Z+ = {0, 1, 2, . . .}
and 0 < α < 1, then φ is of the same class C k,α on M . See Goluzin [21] for more in-
formation. For the corresponding boundary regularity results for minimal surfaces,
see Nitsche [29], [30]. �

The situation for Riemann surfaces more general than those in Theorem 1.1 is
not understood yet, and we mention the following open problems in this direction.

Problem 1.4. (A) Let M be a domain of the form M = R \ K in a compact
Riemann surface R, where K is a nonempty compact subset of R. Assume that M
admits a nonconstant bounded harmonic function h : M → R which does not extend
to a bounded harmonic function in any bigger domain in R. Does M admit a
bounded complete conformal minimal immersion into R3?

(B) Is there an example of a complete bounded minimal surface in R3 whose
underlying complex structure is C \K, where K is a Cantor set in C?

Recall (see [23], [4], [5], [6]) that every nonconstant bounded harmonic function
h : M → (a, b) ⊂ R on an open Riemann surface M is a component function of a
complete conformal minimal immersion X = (X1, X2, h) : M → R3 whose range
is therefore contained in the slab {x = (x1, x2, x3) ∈ R

3 : a < x3 < b}. Note
also that the complement of a compact set K ⊂ C of positive capacity admits
nonconstant bounded holomorphic (hence harmonic) functions. This shows that
the above questions are very natural.

A particular case of problem (A) concerns surfaces with point ends on which
disc ends cluster. We wish to thank Antonio Ros for having asked whether any-
thing could be said about the conformal Calabi–Yau problem in this case (private
communication on May 17, 2019). This seems a difficult problem, and the answer
may depend on how the disc ends approach the set of point ends. In Section 3 we
prove the following positive result under the assumption that the compact set of
point ends is at infinite distance from the interior of M .

Theorem 1.5. Let R be a compact Riemann surface, and let M be a domain in R
of the form

(1.2) M = R \ (D ∪ E),

where E is a compact set in R and D =
⋃∞

i=0 Di is the union of a countable family
of pairwise disjoint closed geometric discs Di ⊂ R \ E. Fix a point p0 ∈ M and

set Mi = R \⋃i
j=0 Dj for every i ∈ N. If

(1.3) lim
i→∞

distMi
(p0, E) = +∞,

then there exists a continuous map X : M → R3 such that X|M : M → R3 is a
complete conformal minimal immersion and X|bD : bD =

⋃∞
i=0 bDi → R

3 is a
topological embedding. In particular, M is the complex structure of a complete
bounded minimal surface in R3. The analogous result holds if R is nonorientable.
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The distance distMi
(p0, E) is measured with respect to a Riemannian metric d

on the ambient surface R. In particular, the set E may consist of point ends of M ,
and it may even be a Cantor set. Our proof fails for point ends which are at finite
distance from an interior point, and it remains an open problem to decide what
can happen in such case.

We give an example of a domain in CP
1 satisfying the requirements in Theo-

rem 1.5 that is inspired by the labyrinth constructed by Jorge and Xavier in [23].

Example 1.6. Let 0 < a < b < 1 be a pair of numbers and let λ > 0. Choose
finitely many numbers a < s0 < s1 < · · · < sk < b. For each j = 1, . . . , k, let

δj =
sj − sj−1

3
> 0

and

Kj = {z ∈ C : sj−1 + δj ≤ |z| ≤ sj − δj , | arg((−1)jz)| ≥ δj},
where arg(·) is the principal branch of the argument with values in (−π, π]. Up to
a slight enlargement of each Kj , we can assume that they are smoothly bounded
closed discs, still being pairwise disjoint. Let T denote the unit circle in C. Setting
K =

⋃k
j=1Kj , it turns out that distD\K(aT, bT) > λ provided the integer k ≥ 1

is chosen sufficiently large. Assume that this is so and denote the resulting set K
by Ka,b,λ.

Now, choose a decreasing sequence 1 > b1 > a1 > b2 > a2 > · · · with
limi→∞ ai = 0. Set R = CP

1, D0 = CP
1 \ D, and denote by D1, D2, . . . the

components of
⋃∞

j=1 Kaj ,bj ,1, ordered so that |zi| > |zj | for all zi ∈ Di and zj ∈ Dj

for any pair of indices i < j. It is clear that the domain M = R \ (D ∪ E) with

E = {0} satisfies condition (1.3) for Mi = R \⋃i
j=0 Dj and any point p0 ∈ M . �

The idea in the previous example can also be used to show the following.

Proposition 1.7. Let E be a proper compact subset of a compact Riemann sur-
face R. Then there is a sequence of closed, smoothly bounded, pairwise disjoint
discs Di ⊂ R \E (i ∈ Z+) such that M = R \ (⋃∞

i=0 Di ∪E
)
is a domain satisfy-

ing condition (1.3). Hence, the domain M is the complex structure of a complete
bounded minimal surface in R3.

Proof. Choose a point p0 ∈ R \E and a Morse exhaustion function ρ : R \E → R

with ρ(p0) < 0. There are sequences 0 < a1 < b1 < a2 < b2 < · · · converging
to +∞ such that ρ has no critical values in [aj , bj ] for every j ∈ N. It follows that
the set Aj = {p ∈ M : aj ≤ ρ(p) ≤ bj} is a union of finitely many pairwise disjoint
annuli for each j. By placing sufficiently many closed pairwise disjoint geometric
discs in the interior of each connected component of Aj , similarly to what has been
done in the above example, we make the length of every path crossing Aj longer
than 1. (The length is measured with respect to any given Riemannian metric
on R.) Doing this for every j ∈ N yields a countable sequence of pairwise disjoint
closed discs Di ⊂ R \ (E ∪ {p0}) such that the length of any path from p0 to E
which avoids all the discs Di is infinite and (1.3) holds. �
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The techniques developed in [7], [3] ,[11] furnish an analogue of Lemma 2.4 for
immersed holomorphic curves in Cn (n ≥ 2), holomorphic null curves in Cn for
n ≥ 3, and holomorphic Legendrian curves in C2n+1 for n ≥ 1. Recall that null
curves are holomorphic immersions Z = (Z1, . . . , Zn) : M → C

n from an open Rie-
mann surfaceM satisfying the nullity condition (dZ1)

2 + (dZ2)
2 + · · ·+ (dZn)

2=0.
Every holomorphic curve in Cn is also a minimal surface by Wirtinger’s theo-
rem [37], while the real and the imaginary part of a holomorphic null curve in Cn

are conformal minimal surfaces in R
n. By following the proof of Theorem 1.1

and using the analogues of Lemma 2.4 for the appropriate classes of holomorphic
curves, one obtains the following result.

Theorem 1.8. Let M be an open Riemann surface as in Theorem 1.1. Then, for
any n ≥ 2 there exists a continuous map Z : M → Cn such that Z : M → Cn is a
complete holomorphic immersion and Z(bM) =

⋃
i Z(bDi) is the union of pairwise

disjoint Jordan curves Z(bDi). If n ≥ 3, then Z can be chosen an embedding and
such that Z|M : M → C

n is a complete holomorphic null embedding, or (if n is
odd ) a complete holomorphic Legendrian embedding.

The analogue of Theorem 1.5 also holds for these classes of maps, and the
questions in Problem 1.4 make sense for holomorphic (null, Legendrian) curves.

Theorem 1.8 contributes to the body of results concerning Yang’s problem [38]
from 1977, asking about the existence and boundary behaviour of bounded com-
plete complex submanifolds of complex Euclidean spaces. For recent developments
on this subject, see the papers [2], [9], [13], [14], [15], [20], and the authors’ sur-
vey [8].

2. Preliminaries

Given a compact smooth manifold M with nonempty boundary bM and an interior
point p0 ∈ M̊ = M\bM , we denote by C = C (M,p0) the set of paths γ : [0, 1] → M
with γ(0) = p0 and γ(1) ∈ bM . (The word path always stands for a continuous
path. In fact, we shall mainly use piecewise C 1 paths.) Given a continuous map
X : M → Rn, we define

distX(p0, bM) = inf
{
length(X ◦ γ) : γ ∈ C

} ∈ [0,+∞],

where length(λ) denotes the Euclidean length of a path λ : [0, 1] → Rn, i.e., the
supremum of the sums

∑m
i=1 |λ(ti) − λ(ti−1)| over all subdivisions 0 = t0 < t1 <

. . . < tm = 1 of the interval [0, 1]. The same definition applies to a compact do-
main M with countably many boundary components. The number distX(p0, bM)
is called the intrinsic diameter of M with respect to the map X and the point p0.
A change of the base point changes the intrinsic diameter by a constant.

Assume now that X : M → Rn is a smooth immersion and let g = X∗ds2 be
the induced Riemannian metric on M . Given a piecewise C 1 path γ : [0, 1] → M ,
we have that

length(X ◦ γ) = lengthg(γ) =

∫ 1

0

‖γ̇(t)‖g dt.



On the conformal Calabi–Yau problem 1405

It is well known and easily seen that distX(p0, bM) = distg(p0, bM) is the infimum
of the lengths of piecewise C 1 paths in the family C (M,p0). Indeed, we can replace
any path γ in M by a piecewise smooth path which is not longer than γ by taking
a suitably fine subdivision 0 = t0 < t1 < . . . < tm = 1 of [0, 1] and replacing each
segment Ci = {γ(t) : ti−1 ≤ t ≤ ti} by the geodesic arc connecting the points
γ(ti−1) and γ(ti).

We shall consider two bigger classes Cd = Cd(M,p0) ⊂ Cqd = Cqd(M,p0) of

piecewise C 1 paths in M with the given initial point p0 ∈ M̊ . The first one,
Cd(M,p0), consists of divergent paths γ : [0, 1) → M with γ(0) = p0, i.e., such that
γ(t) leaves any compact subset of M̊ as t approaches 1. (However, the limit of γ(t)
as t → 1 need not exist.) The class Cqd(M,p0) consists of paths γ : [0, 1) → M
such that γ(0) = p0 and γ has a cluster point on bM , i.e., there is a sequence

(2.1) 0 < t1 < t2 < · · · < 1 with lim
j→∞

tj = 1 and lim
j→∞

γ(tj) = p ∈ bM.

We call such path quasidivergent.

The following lemma shows that we get the same intrinsic diameter by using
paths in the bigger family Cqd, and hence also by using paths in Cd.

Lemma 2.1. Let g be a Riemannian metric on a compact C 1 manifold M with
boundary bM , and let p0 ∈ M̊ . For every path γ ∈ Cqd(M,p0) we have that
lengthg(γ) ≥ distg(p0, bM).

Proof. Fix ε > 0. Let U ⊂ M be a neighbourhood of bM such that every point
q ∈ U can be connected to a point p ∈ bM by an arc of length less than ε. Given
γ ∈ Cqd(M,p0), there is t0 ∈ [0, 1) such that γ(t0) ∈ U . Choose an arc C ⊂ U with
lengthg(C) < ε connecting γ(t0) to a point p ∈ bM . Let λ : [0, 1] → M be a path
such that λ(t) = γ(t) for t ∈ [0, t0], and λ(t) for t ∈ [t0, 1] is a parametrization
of C with λ(1) = p. Then,

distg(p0, bM) ≤ lengthg(λ) < lengthg(γ) + ε.

Letting ε → 0 we obtain lengthg(γ) ≥ distg(p0, bM). �

The following lemma will enable us to control the intrinsic radius of a conformal
minimal immersion from below in the proofs of Theorems 1.1 and 1.5.

Lemma 2.2. Let M be a compact connected C 1 manifold with boundary bM �= ∅,
and let X : M → Rn be a C 1 immersion. Given a point p0 ∈ M̊ and a number
η > 0, there exists a number ε > 0 such that, for every continuous map Y : M → R

n

with ‖X − Y ‖C 0(M) := max{|X(p)− Y (p)| : p ∈ M} < ε, we have that

inf
{
length(Y ◦ γ) : γ ∈ Cqd(M,p0)

} ≥ distX(p0, bM)− η.

Proof. This obviously holds if Y is uniformly C 1-close to X on M̊ since small C 1

perturbations only change lengths of curves by a small amount. Furthermore,
any C 1 structure on a manifold is equivalent to a C ∞ structure by a theorem of
H. Whitney (Lemma 24 in [36]). Hence, we may assume that M is a compact

domain with C 1 boundary in a smooth manifold M̃ and X is a smooth immersion
X : M̃→Rn; the latter statement uses an approximation theorem of Whitney [35].
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Let N → M̃ denote the normal bundle of the immersion X : M̃ → Rn, so
dimN = n. We identify M̃ with the zero section of N . By the tubular neigh-
bourhood theorem, X extends to a smooth immersion F : N → Rn which agrees
with X on the zero section M̃ of N . Then, g = F ∗(ds2) is a smooth Rieman-

nian metric on N whose restriction to M̃ is the metric X∗(ds2), and the map
F : (N, g) → (Rn, ds2) is a local isometry. Let distg denote the distance function
on N induced by the Riemannian metric g.

We claim that there is a neighbourhood U ⊂ N of M such that

(2.2) distg,U (p0, bM) > distg,M (p0, bM)− η/2 = distX(p0, bM)− η/2,

where distg,U (p0, bM) is the distance from p0 to bM over all paths in U and η > 0 is

as in the lemma. Here is an elementary proof. After shrinking N and M̃ around M
if necessary, there is a smooth retraction ρ : N → M̃ such that the kernel ker(dρx) of

its differential at any point x ∈ M̃ is the g-orthogonal complement of TxM̃ in TxN .
Since dρx equals the identity on TxM̃ , it follows that dρx has g-norm 1. Hence, for
any r > 1 there is a neighbourhood U ⊂ N of M such that dρx : TxN → Tρ(x)N
has g-norm less than r for every point x ∈ U . For every path γ : [0, 1] → U we
then have lengthg(ρ◦γ) ≤ r · lengthg(γ). Choosing γ to be a path in U connecting
γ(0) = p0 to a point γ(1) ∈ bM , we obtain

distg,M (p0, bM) ≤ lengthg(ρ ◦ γ) ≤ r · lengthg(γ).
(The first inequality holds even if ρ ◦ γ is not contained in M since it then
crosses bM at some time t0 ∈ (0, 1), and the length of this shorter path is still
≥ distg,M (p0, bM).) Taking the infimum over all such paths γ gives

distg,M (p0, bM) ≤ r · distg,U (p0, bM).

If r is chosen close enough to 1, then (2.2) holds, thereby proving the claim.

Since F : N → F (N) ⊂ Rn is a local isometry and M is compact, there is a
number ε0 > 0 such that for every point p ∈ M , the closed ball

(2.3) Bg(p, ε0) := {q ∈ N : distg(p, q) ≤ ε0}
is contained in U and F maps Bg(p, ε0) isometrically onto the closed Euclidean ball
B(X(p), ε0) ⊂ Rn. By decreasing ε0 if necessary, we may assume that 0 < ε0 < η/2.

Given a continuous map Y : M → Rn satisfying

max
p∈M

|Y (p)−X(p)| < ε ≤ ε0,

the above implies that there is a unique continuous map Ỹ : M → U such that

(2.4) Y = F ◦ Ỹ and distg(p, Ỹ (p)) = |X(p)− Y (p)| < ε for all p ∈ M.

Let γ ∈ Ccd be a quasidivergent path in M with γ(0) = p0. Fix a number ε
with 0 < ε < ε0/2. There is a boundary point p ∈ bM and t0 ∈ (0, 1) such that

(2.5) distg(γ(t0), p) < ε.
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By (2.4) we have that Y ◦ γ = F ◦ γ̃, where the path γ̃ = Ỹ ◦ γ : [0, 1] → U satisfies

(2.6) distg(γ(t), γ̃(t)) < ε for all t ∈ [0, 1).

Since F : (N, g) → (Rn, ds2) is a local isometry, we also have that

(2.7) lengthg(γ̃) = length(F ◦ γ̃) = length(Y ◦ γ).
By (2.5), (2.6), and the triangle inequality, the point γ̃(t0) = Ỹ (γ(t0)) satisfies

distg(γ̃(t0), p) ≤ distg(γ̃(t0), γ(t0)) + distg(γ(t0), p) < ε+ ε ≤ ε0 < η/2.

By adding to the path γ̃ : [0, t0] → N an arc in the ball Bg(p, ε) (2.3) of g-length
< η/2 connecting the point γ̃(t0) to p ∈ bM , we obtain a path λ : [0, 1] → U
connecting λ(0) = p0 to λ(1) = p ∈ bM such that

lengthg(λ) < lengthg(γ̃) + η/2.

We obviously have lengthg(λ) ≥ distg,U (p0, bM). Together with (2.2) we obtain

lengthg(γ̃) > lengthg(λ)− η/2 ≥ distg,U (p0, bM)− η/2 > distX(p0, bM)− η.

In view of (2.7), it follows that length(Y ◦ γ) > distX(p0, bM)− η. �

The proof of Lemma 2.2 also applies to the distance from an interior point
p0 ∈ M̊ to any given nonempty compact subset E of M . The following result to
this effect will be used in the proof of Theorem 1.5.

Lemma 2.3. Let M be a compact connected C 1 manifold (either closed or with
boundary), and let X : M → Rn be a C 1 immersion. Given a nonempty compact
set E ⊂ M , a point p0 ∈ M \ E, and a number η > 0, there is a number ε > 0
such that, for every continuous map Y : M → Rn with ‖X − Y ‖C 0(M) < ε and for
every path γ : [0, 1) → M \ E with γ(0) = p0 such that γ(t) has a limit point in E
as t → 1, we have length(Y ◦ γ) ≥ distX(p0, E)− η.

The following lemma (see Lemma 4.1 in [3]) is the main ingredient in the proof
of Theorem 1.1. It enables one to make the intrinsic diameter of an immersed
conformal minimal surface arbitrarily big by a C 0 small deformation.

Lemma 2.4. Let M be a compact bordered Riemann surface, and let X : M → Rn

(n ≥ 3) be a conformal minimal immersion of class C 1(M). Given a point p0 ∈
M̊ = M \ bM , an integer d ∈ Z+, and numbers ε > 0 (small ) and μ > 0 (big),
there is a continuous map Y : M → Rn whose restriction to M̊ is a conformal
minimal immersion such that the following conditions hold.

(i) |Y (p)−X(p)| < ε for all p ∈ M .

(ii) distY (p0, bM) > μ.

(iii) Y |bM : bM → Rn is injective.

(iv) FluxY = FluxX .

Condition (iii) follows from a general position theorem; see Theorem 4.5 in [3].
The analogous result holds if M is a nonorientable compact bordered conformal
surface; see Section 6.3 in [12], and in particular Lemma 6.7 in the cited paper.
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3. Proof of Theorems 1.1 and 1.5

Proof of Theorem 1.1. Assume that R is a compact Riemann surface and M is a
domain in R of the form

(3.1) M = R \
∞⋃
i=0

Di,

where {Di}i∈Z+
is a countable family of closed, pairwise disjoint, smoothly boun-

ded discs in R. We shall construct a continuous map X : M → Rn satisfying the
conclusion of the theorem and such that the Jordan curves X(bDi), i ∈ Z+, have
Hausdorff dimension one. Moreover, we shall ensure that the complete conformal
minimal immersion X : M → R

n has vanishing flux.
For every i = 0, 1, 2, . . ., we let

(3.2) Mi = R \
i⋃

k=0

D̊k.

This is a compact bordered Riemann surface with boundary bMi =
⋃i

k=0 bDk, and

M0 ⊃ M1 ⊃ M2 ⊃ · · · ⊃
∞⋂
i=1

Mi = M.

By Theorem 4.5 (a) in [3], there exists a conformal minimal immersion X0 : M0 →
Rn of class C 1(M0) with vanishing flux such that X0|bM0

: bM0 → Rn is injective.
Choose a Riemannian distance function d on R, a point p0 ∈ M , and a pair of
numbers ε0 > 0 and τ0 ∈ N = {1, 2, 3, . . .}. An inductive application of Lemmas 2.2
and 2.4 furnishes a sequence of conformal minimal immersions Xi : Mi → R

n

of class C 1(Mi), numbers εi > 0, and integers τi > i satisfying the following
conditions for every i ∈ N.

(ai) distXi
(p0, bMi) > i.

(bi) Xi : bMi → Rn is injective.

(ci) supp∈Mi
|Xi(p)−Xi−1(p)| < εi−1.

(di) For every continuous map Y : Mi → Rn with ‖Y −Xi‖C (Mi) < 2εi we have

inf
{
length(Y ◦ γ) : γ ∈ Cqd(Mi, p0)

}
> distXi

(p0, bMi)− 1 > i− 1.

(ei) We have 0 < εi <
1
2 min

{
εi−1, δi, τ

−i
i

}
, where

δi :=
1

i2
inf

{
|Xi(p)−Xi(q)| : p, q ∈ bMi, d(p, q) >

1

i

}
> 0.

(fi) We have τi > τi−1, and for each k ∈ {0, . . . , i} there is a set Ai,k ⊂ Xi(bDk)
consisting of τ i+1

i points such that

max
{
dist(p,Ai,k) : p ∈ Xi(bDk)

}
< 1/τ ii ,

where dist(p,Ai,k) = min{|p− q| : q ∈ Ai,k} is the Euclidean distance in Rn.

(gi) Xi has vanishing flux.
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Let us explain the induction step. Assume that for some i ∈ N we have maps
X0, . . . , Xi−1 and numbers ε0, . . . , εi−1 and τ0, . . . , τi−1 satisfying these conditions
for the respective values of the index. (This holds for i = 1 by using X0, ε0, and τ0,
and the above conditions are void except for (a0), (b0), and (g0); the second part
of (f0) also holds true if we choose τ0 ∈ N sufficiently large.) Lemma 2.4 applied to
Xi−1|Mi

furnishes a conformal minimal immersion Xi : Mi → Rn satisfying (ai),
(bi), (ci), and (gi); note that Xi−1|Mi

is flux vanishing since so is Xi−1 by (gi−1).
Pick τi ∈ N so large that condition (fi) is satisfied; it suffices to choose

τi > τi−1 +
i∑

k=0

length(Xi(bDk)).

Pick a number εi > 0 satisfying condition (ei); such exists since Xi|bMi
is injective

by (bi). Finally, decreasing εi > 0 if necessary we may assume that condition (di)
holds as well in view of Lemma 2.2. The induction may proceed.

Conditions (ci) and (ei) imply that the sequence Xi converges uniformly on M ,
where M was given in (3.1), to a continuous map X = limi→∞ : M → Rn whose
restriction to M is a conformal minimal immersion X : M → R

n, provided that
each εi > 0 is chosen sufficiently small. More precisely, for every p ∈ M we have

(3.3) |X(p)−Xi(p)| ≤
∞∑
k=i

|Xk+1(p)−Xk(p)| <
∞∑
k=i

εk < 2εi.

We can extend X from M to a continuous map X : Mi → R
n such that the above

inequality holds for all p ∈ Mi.
Conditions (ai) and 0 < εi < εi−1/2 (see (ei)) ensure that X : M → Rn is

complete. Indeed, consider any divergent path γ : [0, 1) → M with γ(0) = p0.
There is an increasing sequence 0 < t1 < t2 < · · · < 1 with limj→∞ tj = 1 such
that limj→∞ γ(tj) = p ∈ bM (cf. (2.1)). Then, p ∈ bDi0 for some i0 ∈ Z+, and
hence p ∈ bMi for all i ≥ i0. It follows that γ is a quasidivergent path in the
bordered Riemann surface Mi for any i ≥ i0. (See Section 2 for this notion.)
Conditions (ai), (di), and (3.3) imply for any i ≥ i0 that

length(X(γ)) > distXi
(p0, bMi)− 1 > i− 1.

Letting i → +∞ shows that length(X(γ)) = +∞.
Conditions (bi), (ci), and (ei) imply that the limit map X : M → Rn is in-

jective on bM =
⋃

i∈Z+
bDi (see the proof of Theorem 1.1 in [3] for the details),

whereas (gi) ensures that X has vanishing flux.
Finally, in order to see that all Jordan curves X(bDk) (k ∈ Z+) have Hausdorff

dimension one, pick such a k. By (3.3), (ei), and (fi), we have for each i > k that

(3.4) max{dist(p,Ai,k) : p ∈ X(bDk)} < 2/τ ii .

Since Ai,k consists of precisely τ i+1
i points and τ i+1

i (2/τ ii )
1+1/i = 21+1/i ≤ 4 for

every integer i > k, (3.4) implies that the Hausdorff measure H1(X(bDk)) is finite,
and hence the Hausdorff dimension of X(bDk) is at most one (cf. Lemma 2.2 in [25]
or Section 4.1 in [1]; see [27] for an introduction to the Hausdorff measure). On the
other hand, X(bDk) is homeomorphic to the circle T = {z ∈ C : |z| = 1} and hence
its Hausdorff dimension is at least one, so it is one.
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Furthermore, by using the general position argument for minimal surfaces at
every step of the proof (see Theorem 4.1 in [10]), we can ensure that the limit
map X : M → Rn is an immersion with simple double points if n = 4, and is an
embedding if n ≥ 5. See the proof of Theorem 1.1 in [3] for the details.

This completes the proof of Theorem 1.1. The same proof applies in the nonori-
entable case if we replace Lemma 2.4 by Lemma 6.7 in [12]. �

Proof of Theorem 1.5. For every i = 0, 1, 2, . . ., let Mi = R \ ⋃i
k=0 D̊k be the

compact domain (3.2) in R. Choose a conformal minimal immersionX0 : M0 → R3.
Then, the given metric on R is comparable on M0 to the metric g0 = (X0)

∗(ds2)
induced by X0, and hence condition (1.3) holds for the latter metric as well. We
shall use the same argument at every step when changing the metric.

By (1.3), there is i1 ∈ N such that distMi1
,g0(p0, E) > 1. Choose a conformal

minimal immersion X1 : Mi1 → R
3 which approximates X0 uniformly on Mi1 and

satisfies the conditions

distMi1
,X1

(p0, bMi1) > 1 and distMi1
,X1

(p0, E) > 1.

The first condition is achieved by Lemma 2.4, while the second holds by Lemma 2.3
provided the approximation is close enough. The metric g1 = (X1)

∗(ds2) is com-
parable on Mi1 with g0. Hence, by (1.3) there is an integer i2 > i1 such that
distMi2

,g1(p0, E) > 2. The same argument as before gives a conformal minimal

immersion X2 : Mi2 → R3 approximating X1 uniformly on Mi2 and satisfying

distMi2
,X2

(p0, bDi2) > 2 and distMi2
,X2

(p0, E) > 2.

Continuing inductively we get sequences of integers i1 < i2 < · · · and conformal
minimal immersions Xk : Mik → R3 (k ∈ N) satisfying

(3.5) distMik
,Xk

(p0, bMik) > k and distMik
,Xk

(p0, E) > k.

Assuming as we may that Xk approximates Xk−1 sufficiently closely uniformly
on Mik for every k ∈ N, we can ensure as in the proof of Theorem 1.1 that
the sequence Xk converges uniformly on the compact set M ′ =

⋂∞
i=0 M i to a

continuous limit map X : M ′ → R3 whose restriction to the interior of M ′ is
a complete conformal minimal immersion, and such that X|M : M → Rn satisfies
the conclusion of the theorem. (Here, M = M̊ ′\E is given by (1.2).) In particular,
the distance from any point of M to the boundary bM =

⋃
i bCi∪ bE in the metric

X∗(ds2) is infinite by (3.5) and Lemma 2.3. �
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ery bordered Riemann surface is a complete conformal minimal surface bounded by
Jordan curves. Proc. Lond. Math. Soc. (3) 111 (2015), no. 4, 851–886.



On the conformal Calabi–Yau problem 1411

[4] Alarcón, A. and Fernández, I.: Complete minimal surfaces in R
3 with a pre-

scribed coordinate function. Differential Geom. Appl. 29 (suppl. 1) (2011), S9–S15.
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