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Abstract. In this paper we expose the impact of the fundamental discov-
ery, made by Erik Andersén and László Lempert in 1992, that the group generated
by shears is dense in the group of holomorphic automorphisms of a complex Eu-
clidean space of dimension n > 1. In three decades since its publication, their
groundbreaking work led to the discovery of several new phenomena and to ma-
jor new results in complex analysis and geometry involving Stein manifolds and
affine algebraic manifolds with many automorphisms. The aim of this survey is
to present the focal points of these developments, with a view towards the future.

1. Introduction

Complex Euclidean spaces Cn (n ∈ N = {1, 2, 3, . . .}) are the most ba-
sic and important objects in analytic and algebraic geometry. It is natu-
ral to try understanding holomorphic automorphisms (symmetries) of C

n

and their role in applications. If n = 1, these are precisely the affine lin-
ear maps z �→ az + b with a ∈ C

∗ = C \ {0} and b ∈ C. However, for n > 1
the group Aut(Cn) of holomorphic automorphisms of Cn is huge. The affine
group Aff(Cn), generated by the general linear group GLn(C) together with
translations, acts transitively on C

n. Writing complex coordinates on Cn as
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z = (z′, zn) with z′ = (z1, . . . , zn−1) ∈ Cn−1, we have automorphisms of the
form

(1.1) Φ(z) = Φ(z′, zn) = (z′, ef(z
′)zn + g(z′)), z ∈ C

n,

where f and g are entire functions of n− 1 variables. Such maps and
their GLn(C)-conjugates are called shears. Maps (1.1) with f = 0 and their
SLn(C)-conjugates are additive shears; they have complex Jacobian deter-
minant identically equal to 1. Maps (1.1) with g = 0 and their GLn(C)-
conjugates are multiplicative shears. Shears generate the shear group S(n),
an infinite dimensional subgroup of Aut(Cn) when n > 1. Likewise, ad-
ditive shears generate a subgroup S1(n) of the group Aut1(C

n) of holo-
morphic automorphisms with Jacobian one. By composing shears, one ob-
tains many interesting automorphisms. For example, composing a shear
in two variables and the switch map δ(z1, z2) = (z2, z1) yields Hénon maps
H(z1, z2) =

(
ef(z1)z2 + g(z1), z1

)
whose dynamical properties have been stud-

ied intensively.
In 1990, Erik Andersén [12] made a fundamental discovery that for every

n > 1 the group S1(n) generated by additive shears is dense in Aut1(C
n) but

not equal to it. This was extended by Andersén and László Lempert [14]
in 1992 to the pair of groups S(n) ⊂ Aut(Cn). A year later, Forstnerič and
Rosay [87] recast the proof of their approximation theorem [14, Theorem
1.3] in terms of complete holomorphic vector fields, showing that the main
technical lemma from [12,14] amounts to the following statement:

(∗) Every polynomial holomorphic vector field V on C
n for n > 1 is

a finite sum of complete polynomial vector fields V1, . . . , VN whose flows
consist of shears. If V has divergence zero then each Vj can be chosen to
have divergence zero, and we only get additive shears.

The flow of a complete holomorphic vector field is a one-parameter group
of holomorphic automorphisms; conversely, the infinitesimal generator of a
one-parameter group of automorphisms is a complete holomorphic vector
field. Since the flow of the sum V = V1 +V2 + · · ·+ VN can be approximated
by compositions of flows of vector fields V1, . . . , VN , it follows that the flow
of any holomorphic vector field on C

n can be approximated by compositions
of shears. This implies that the shear group S(n) is dense in the auto-
morphism group Aut(Cn). Forstnerič and Rosay gave the following more
general and useful version of this approximation result; see [87, Theorem 1.1
and Erratum], as well as [73, Theorem 1.1].

Theorem 1.1. Assume that Ω is a domain in Cn, n > 1, and Φt : Ω
→ C

n (t ∈ [0, 1]) is a continuous isotopy of injective holomorphic maps such
that Φ0 is the identity map on Ω and the domain Ωt = Φt(Ω) is Runge in C

n

for every t ∈ [0, 1]. Then, Φ1 can be approximated uniformly on compacts
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in Ω by elements of the shear group S(n). If in addition the domain Ω is
pseudoconvex, Hn−1(Ω,C) = 0, and Φt has Jacobian one for every t ∈ [0, 1],
then Φ1 can be approximated by elements of the shear group S1(n).

Recall that a domain Ω in Cn is called Runge if polynomials are dense in
the space O(Ω) of holomorphic functions. The domain Ω in the first part of
Theorem 1.1 need not be pseudoconvex; however, the Runge property is es-
sential. It is easily seen that if Φ: Ω → Ω′ is a biholomorphic map between
domains in Cn which is a limit of automorphisms of Cn, then Ω is Runge if
and only if Ω′ is Runge. The condition Hn−1(Ω,C) = 0 and pseudoconvex-
ity of Ω guarantee that holomorphic vector fields with vanishing divergence
on Ω can be approximated by holomorphic vector fields of the same type
defined on C

n. (The point is that, on a Stein manifold, the de Rham co-
homology can be computed by means of holomorphic differential forms.) A
complete proof of Theorem 1.1 is also available in [80, Theorem 4.9.2].

The next important step was made by Dror Varolin in his dissertation
(University of Wisconsin-Madison, 1997) and in the papers [172–174]. His
vantage point is the observation that the flow of a holomorphic vector field
on a complex manifold X , which is a Lie combination of complete holomor-
phic vector fields, is a limit of holomorphic automorphisms of X . Mimicking
(∗), Varolin introduced the following notion.

Definition 1.2. A complex manifoldX has the density property if every
holomorphic vector field on X can be approximated uniformly on compacts
by Lie combinations of complete holomorphic vector fields on X .

Varolin [174] introduced the notion of density property for any Lie alge-
bra of holomorphic vector fields (an algebraic structure on X), asking that it
be densely generated by the complete vector fields which it contains; see Def-
inition 2.1. An important example is the Lie algebra of holomorphic vector
fields having zero divergence with respect to a holomorphic volume form ω
on X , that is, a nowhere vanishing holomorphic section of the canonical
bundle KX = ∧nT ∗X with n = dimX (the top exterior power of the cotan-
gent bundle of X). The density property for this Lie algebra is called the
volume density property of (X,ω). The standard volume form on C

n with
coordinates z = (z1, . . . , zn) is dz1 ∧ dz2 ∧ · · · ∧ dzn.

The density property of X is equivalent to the ostensibly weaker con-
dition that every holomorphic vector field on X can be approximated uni-
formly on compacts by sums of complete holomorphic vector fields on X ;
however, commutators come handy in calculations. Thus, the Andersén–
Lempert observation (∗) says that Cn for n > 1 enjoys the density property.
By mimicking the proof in the case X = Cn, one easily obtains the following
analogue of Theorem 1.1; see [80, Theorem 4.10.5].

Theorem 1.3. Let X be a Stein manifold with the density property. If

Φt : Ω
∼=→ Ωt = Φt(Ω) ⊂ X (t ∈ [0, 1]) is a continuous isotopy of biholomor-
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phic maps between Stein Runge domains in X with Φ0 = IdΩ, then Φ1 can
be approximated uniformly on compacts in Ω by holomorphic automorphisms
of X .

The assumption that the domains Ωt are Runge and Stein is used to
approximate holomorphic vector fields on Ωt by holomorphic vector fields
on X . If X = Cn or, more generally, if X is holomorphically parallelizable,
this reduces to approximation of functions, and hence it suffices to assume
that Ωt is Runge in X for each t ∈ [0, 1].

Remark 1.4. In this paper, a holomorphic vector field V on a complex
manifold X is said to be complete it is complete in complex time, i.e., its
flow is a complex 1-parameter group of holomorphic automorphisms of X .
One could also consider the density property for holomorphic vector fields
which are complete in real time. However, it turns out that every Stein
manifold X with this real density property also has the density property as
defined above. Indeed, working with R-complete holomorphic vector fields,
the proof of Theorem 1.3 holds without any changes. Therefore, we can
find a Fatou–Bieberbach domain in X around each point x ∈ X , arising by
contracting a small coordinate ball around x and approximating this map
by an automorphism of X with an attracting fixed point at x. The basin
of attraction is biholomorphic to C

n with n = dimX (see Theorem 4.2). It
follows that the manifold X has the Liouville property, i.e., every negative
plurisubharmonic function on X is constant. On a Stein manifold with the
Liouville property, every holomorphic vector field which is complete in real
time is also complete in complex time, see [75, Corollary 2.2].

Here is another useful version of Theorems 1.1 and 1.3 for isotopies of
compact holomorphically convex sets; see [87, Theorem 2.1] or [80, Theorem
4.12.1] for the case X = C

n, n > 1. The proof in the general case is the
same.

Theorem 1.5. Let X be a Stein manifold with the density property.
Assume that K is a compact holomorphically convex (i.e., O(X)-convex) set
in X , Ω ⊂ X is an open set containing K, and Φt : Ω → X (t ∈ [0, 1]) is a
continuous isotopy of injective holomorphic maps such that Φ0 = IdΩ and the
set Kt = Φt(K) is holomorphically convex in X for every t ∈ [0,1]. Then we
can approximate Φ1 uniformly on K by holomorphic automorphisms of X .

There is an easy reduction to Theorem 1.3 since a compact holomorphi-
cally convex set admits a basis of Stein Runge neighbourhoods in X . In both
version of this result, one can approximate the entire isotopy {Φt}t∈[0,1] by
isotopies of automorphisms of X .

Several further additions to Theorems 1.1 and 1.3 are possible. The
following parametric version of Theorem 1.1 was proved by Kutzschebauch
[123, Theorem 2.3].
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Theorem 1.6. Let Ω be an open set in Cn = Ck ×Cm with m > 1. For
every t ∈ [0, 1] let Φt : Ω → Cn be a continuous family of injective holomor-
phic map of the form

(1.2) Φt(z,w) =
(
z, ϕt(z,w)

)
, z ∈ C

k, w ∈ C
m

with Φ0 = IdΩ. If the domain Φt(Ω) is Runge in Cn for every t ∈ [0, 1], then
Φ1 can be approximated uniformly on compacts in Ω by holomorphic auto-
morphisms of the form (1.2).

It is elementary to include interpolation at finitely many points in these
approximation theorems. There are considerably more general interpolation
results for automorphisms on algebraic subvarieties of Cn, which we describe
in Sections 2 and 3. In particular, any jet of a local biholomorphism at a
point is the jet of an automorphism; see Theorem 3.2 and its parametric
version, Theorem 3.3. These results are useful in the construction of holo-
morphic automorphisms with interesting dynamical properties.

Theorem 1.1 was extended by Kutzschebauch and Wold [131] (2018) to
include Carleman approximation on sets of the form K ∪R

s ⊂ Cn, where Rs

is an affine totally real subspace of Cn for s < n. Under certain technical
assumptions on the isotopy of such sets in C

n (they must be polynomially
convex, totally real on R

s \K, and nearly fixed near infinity on Rs), it is
possible to approximate the isotopy in the Carleman sense by isotopies of
holomorphic automorphisms of Cn.

Theorems 1.1 and 1.3 and their generalisations mentioned in the sequel
form the backbone of what is now called the Andersén–Lempert theory.

After the initial work of Varolin, the subject of Stein manifolds with
the density (or volume density) property was developed by Kaliman and
Kutzschebauch with collaborators; see Section 2 for an overview. They also
introduced and studied the algebraic (volume) density property on affine
complex manifolds, the algebraic analogues of Stein manifolds. A closely re-
lated notion is holomorphically flexibility in the sense of Arzhantsev et al.
[27], asking that complete holomorphic vector fields generate the tangent
space of the manifold at every point. This field became known as elliptic
complex geometry. Most complex Lie groups and homogeneous manifolds
have the density property. In the two decades since their introduction, Stein
manifolds with the density property came to play a major role in complex
geometry. Every such manifold is an Oka manifold (see Section 8); how-
ever, the former class of manifolds allows many additional and more precise
results concerning holomorphic maps from Stein manifolds. On Stein mani-
folds with the density property one can find automorphisms with given jets
at finitely many points, and also at some discrete set of points; see Section 3.

Sections 4–10 contain a survey of applications of Andersén–Lempert
theory.
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A fascinating phenomenon in complex analysis is the existence for any
n > 1 of proper subdomains Ω � C

n which are biholomorphic to Cn; see Sec-
tion 4. Such a domain is called a Fatou–Bieberbach domain. An injective
holomorphic map Φ: Cn → Cn whose image Ω = Φ(Cn) is a proper sub-
domain of C

n (and its inverse Φ−1 : Ω → Cn) is called a Fatou–Bieberbach
map. The first explicit example was given by Bieberbach [34] in 1933, fol-
lowing earlier examples by Fatou [63] (1922) of non-degenerate (but non-
injective) entire maps C

2 → C
2 with non-dense images. (See also Bochner

and Martin [38, Sect. III.1].) These examples arose as limits of holomor-
phic automorphisms of C

n, and hence they are Runge in Cn. In particu-
lar, if p ∈ C

n is an attracting fixed point of a holomorphic automorphism
F ∈ Aut(Cn) and we denote by F k the k-th iterate of F , the basin of attrac-
tion {z ∈ C

n : limk→∞F k(z) = p} is either Cn or a Runge Fatou–Bieberbach
domain (see Theorem 4.2). Many further examples of Fatou–Bieberbach
maps with interesting properties arose as limits of sequences of automor-
phisms which are not iterates of a fixed automorphism. Theorems 1.1 and
1.3 gave rise to several new constructions of Fatou–Bieberbach domains. An
interesting application of the Andersén–Lempert theory was the discovery by
Wold [181] (2008) of Fatou–Bieberbach domains in C

n for any n > 1 which
fail to be Runge, and hence the corresponding Fatou–Bieberbach maps are
not limits of automorphisms of Cn.

In Section 5 we describe constructions of highly twisted proper holo-
morphic embeddings F : Ck ↪→ Cn for 1 ≤ k < n such that the complements
C
n \ F (Ck) of their images are (n− k)-hyperbolic in the sense of Eisenman

(see Theorem 5.3). In particular, Ck embeds as a closed complex hypersur-
face Σ ⊂ C

k+1 such that Ck+1 \Σ is Kobayashi hyperbolic. This comple-
ments the well-known fact that most affine algebraic hypersurfaces in C

n of
sufficiently big degree are hyperbolic and have hyperbolic complements. This
led to the discovery by Derksen and Kutzschebauch [53] of nonlinearizable
periodic holomorphic automorphisms of Cn for any n ≥ 4; see Theorem 5.4.

Another classical subject where the Andersén–Lempert theory generated
major progress is the Forster–Bell–Narasimhan Conjecture [33,72], asking
whether every open Riemann surface embeds properly as a smooth com-
plex curve in the Euclidean plane C

2. The most advanced known results
on this subject use constructions of Fatou–Bieberbach domains with the aid
of Theorem 1.1. We discuss this topic in Section 6; a more comprehensive
presentation can be found in [80, Sections 9.10–9.11].

Wold’s construction in [182] of non-Runge Fatou–Bieberbach domains
led to the construction of uncountably many pairwise non-biholomorphic
and non-Stein long C

n’s, i.e., complex manifolds which are increasing unions
of biholomorphic copies of Cn; see Wold [182] and Boc Thaler and Forstnerič
[37]. Many interesting question concerning these long C

n’s remain open, and
we refer to Section 7 for a discussion of this topic.
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In Section 8 we discuss the impact of the Andersén–Lempert theory on
Oka theory. Every Stein manifold X with the density or volume density
property is an Oka manifold (Theorem 8.1), which means that holomorphic
maps S → X from any Stein manifold S satisfy all forms of the h-principle
(see [80, Theorem 5.4.4]). Furthermore, if K ⊂ X is a compact O(X)-convex
subset then X \K is an Oka manifold (Theorem 8.3). The same holds for
complements of certain closed unbounded O(X)-convex subsets. However,
on a Stein manifold X the density property is a much stronger condition
than the Oka property, implying finer results on the existence of holomorphic
maps S → X which do not hold for every Oka manifold X . For example, a
Stein manifold X with the density property contains every Stein manifold of
dimension k with 2k+1 ≤ dimX as a properly embedded complex subman-
ifold (immersed if 2k = dimX), and one can prescribe the homotopy class
of the embedding. Furthermore, Stein manifolds with the density property
contain big Stein Runge domains which are total spaces of normal bundles
of certain embedded complex submanifolds. For example, C∗ ×C embeds as
a Runge domain in C

2, although not in any obvious way.
In Section 9 we survey recent results concerning the problem of Paul

Yang from 1977, asking whether there are bounded (metrically) complete
complex submanifolds of Cn. (This is holomorphic analogue of the Calabi–
Yau problem concerning minimal surfaces in R

n for n ≥ 3; see [8, Chapter 7]
for the latter.) It has been discovered fairly recently that the ball of Cn and,
more generally, any pseudoconvex Runge domain in C

n can be foliated by
complete complex submanifolds of any codimension and with partial control
of the topology of the leaves. The methods of Andersén–Lempert theory
play a major role in these constructions.

In Section 10 we discuss an application of the Andersén–Lempert method
in the smooth world. A long standing problem in 3-dimensional topology
asked whether the fundamental group of any homology 3-sphere different
from the 3-sphere S3 admits an irreducible representation into SL2(C), i.e.,
a 2-dimensional irreducible representation. The affirmative answer given by
Rafael Zentner [187] in 2018 is a case where shears play a role in the real
setting.

We conclude by discussing the recognition problem in complex analysis
in Section 11. The question is how to decide whether a given Stein man-
ifold, which is contractible and simply connected at infinity, is a complex
Euclidean space. To be such, it must have many holomorphic automor-
phisms. Hence, it is natural to ask whether every Stein manifold with the
density property which is diffeomorphic to R

2n is also biholomorphic to Cn

(see Problem 11.2). This question, asked by Tóth and Varolin [170] in 2000,
remains unsolved. We also discuss other related problems such as the can-
cellation problem.
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2. Stein manifolds with density properties

We denote by VFhol(X) the Lie algebra of global holomorphic vector
fields on a complex manifold X . In [174] Varolin introduced the following
notion.

Definition 2.1. A Lie subalgebra g of the Lie algebra VFhol(X) has
the density property if the Lie algebra generated by complete fields in g is
dense in g in the compact-open topology.

2.1. Density property. The case that g = VFhol(X) corresponds
to X having the density property (see Definition 1.2). The importance
of this property for Stein manifolds lies in Theorem 1.3 from the introduc-
tion. On the other hand, for compact complex manifolds this property is of
no interest since every holomorphic vector field is complete, and furthermore
there need not exist any nonzero holomorphic vector fields.

Establishing the density property can be rather tricky. After the ini-
tial work of Andersén and Lempert [14] which established this property for
Euclidean spaces C

n of any dimension n ≥ 2, Varolin [173,174] gave a list
of further examples, and in his joint work with Tóth [170] established the
density property for semi-simple complex Lie groups and their quotients
by reductive subgroups. Later, Kaliman and Kutzschebauch [109] found a
strong criterion based on the notion of compatible pairs of vector fields; see
Definitions 2.3 and 2.5. Their criterion was initially developed for affine al-
gebraic manifolds. For such manifolds, the algebraic density property was
already introduced by Varolin as follows.

Definition 2.2. An affine algebraic manifold X has the algebraic den-
sity property if the Lie algebra of algebraic vector fields on X is generated
by complete algebraic vector fields.

Varolin remarked that this condition implies the holomorphic density
property. Indeed, the Oka–Weil theorem says that polynomial functions are
dense in the space of holomorphic functions; by an application of Theo-
rems A and B the same holds for sections of any coherent algebraic sheaf, in
particular, for holomorphic vector fields on an affine algebraic manifold.

Definition 2.3. Complete algebraic vector fields ν and μ on an affine
algebraic manifold X form a compatible pair if the following two conditions
hold:

(1) the linear span of the product of the kernels ker ν · kerμ contains a
nontrivial ideal I ⊂ C[X], and

(2) there is a function h ∈ C[X] with h ∈ kerμ and ν(h) ∈ ker ν \ {0}.
If only condition (1) is satisfied, we call (ν, μ) a semi-compatible pair.

The biggest ideal I with this property is called the ideal of the pair (ν, μ).
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The following powerful criterion was found by Kaliman and Kutzschebauch
in [109].

Theorem 2.4. Let X be an affine algebraic manifold on which the group
of algebraic automorphisms Autalg(X) acts transitively. If there are com-
patible pairs (νi, μi) and a point p ∈ X such that the vectors μi(p) form a
generating set for TpX , then X has the algebraic density property.

Here we call a subset {v1, . . . vk} ⊂ TpX a generating set if the union
of orbits of these vectors under the isotropy group (Autalg)p(X) spans the
tangent space TpX .

The corresponding notion of a compatible pair, and the analogous theo-
rem for general (not necessarily algebraic) Stein manifolds was given by the
same authors in [113].

Definition 2.5. A pair (ν, μ) of complete holomorphic vector fields on
a Stein manifold X is a compatible pair if the following conditions hold:

(1) the closure of the linear span of the product of the kernels ker ν ·kerμ
contains a nontrivial ideal I ⊂ O(X), and

(2) there is a function h ∈ O(X) with h ∈ kerμ and ν(h) ∈ ker ν \ {0}.
The biggest ideal I with this property is called the ideal of the pair (ν,μ).

If only condition (1) is satisfied, we call the pair semi-compatible.

The following is an analogue of Theorem 2.4 for Stein manifolds.

Theorem 2.6. Let X be a Stein manifold on which the group of holomor-
phic automorphisms Aut(X) act transitively. If there are compatible pairs
(νi, μi) such that there is a point p ∈ X where the vectors μi(p) form a gen-
erating set for TpX , then X has the density property.

This generalisation of the algebraic case is crucial in proving that the
Koras–Russell threefold has the density property, see (5) in the list below.
Indeed, algebraic automorphisms do not act transitively on that threefold,
whereas holomorphic automorphisms do act transitively.

Before we come to the complete list of examples of Stein manifolds known
to have the density property, we would like to show the power of this crite-
rion in some examples.

Example 2.7. On Cn, n ≥ 2, with coordinates z = (z1, z2, . . . , zn) the
pair of vector fields

(
∂
∂z1
, ∂
∂z2

)
is compatible, with the function z1 and the

ideal I = O(Cn) satisfying the conditions in Definition 2.5. Since we can
permute coordinates,

{
∂
∂z2

}
is a generating set for each tangent space. Thus,

C
n has the density property.

Analysis Mathematica
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Example 2.8. Denote an element of the special linear group X =
SL2(C) by

A =

(
a1 a2
b1 b2

)
.

The pair of vector fields on X given by

δ1 = b1
∂

∂a1
+ b2

∂

∂a2
, δ2 = a1

∂

∂b1
+ a2

∂

∂b2

is compatible, with the ideal I = O(X) and the function h = a1. Observe
that the time-t map of the field δ1 is adding t-times the first row to the
second row, and vice versa for the field δ2. Hence these fields are tangent
to SL2(C). Since the adjoint representation of SL2(C) is irreducible, δ2 is
a generating set at the identity. Thus, SL2(C) has density property. The
proof of the density property for SLn(C) and GLn(C), n ≥ 3, goes the same
way.

A list of examples of Stein manifolds known to have the den-
sity property: (1) A homogeneous space X = G/H , where G is a linear
complex algebraic group and H is a closed algebraic subgroup such that X
is affine and the connected component of X is different from C and from
(C∗)n, n ≥ 1, has the (algebraic) density property.

It is known that if the subgroup H is reductive then the space X = G/H
is always affine, but there is no known group-theoretic characterisation of G
which would say when is X affine.

The above result has a long history and includes all previously known ex-
amples from works of Andersén–Lempert, Varolin, Tóth–Varolin, Kaliman–
Kutzschebauch, and Donzelli–Dvorsky–Kaliman. The final result was ob-
tained by Kaliman and Kutzschebauch in [115]. The manifolds C and C

∗
clearly do not have density property; however, the following problem is well
known and seems notoriously difficult.

Problem 2.9. Does (C∗)n for n ≥ 2 have the density property?

It is conjectured that the answer is negative. More precisely, one expects
that all holomorphic automorphisms of (C∗)n, n ≥ 2, respect the volume
form

∧n
i=1

dzi
zi

up to a sign.

(2) The manifolds X given as a submanifold of C
n+2 with coordinates

u ∈ C, v ∈ C, z ∈ C
n by the equation uv = p(z), where the zero fibre of the

polynomial p ∈ C[Cn] is smooth and reduced (otherwise X is not smooth),
have (algebraic) density property; see [110].

Before formulating the next result, recall that Gizatullin surfaces are by
definition the normal affine surfaces on which the algebraic automorphism
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group acts with an open orbit whose complement is a finite set of points. By
the classical result of Gizatullin [94], they are characterized by admitting a
completion with a simple normal crossing chain of rational curves at infin-
ity. Every Gizatullin surface admits a C-fibration with at most one singular
fibre which however is not always reduced. Since the only affine algebraic 2-
manifolds admitting semi-compatible pairs are C×C and C× C

∗ [111], the
criterion from Theorem 2.4 is not applicable for surfaces, which makes the
proof of the following result more cumbersome.

(3) Smooth Gizatullin surfaces which admit a C-fibration with at most
one singular and reduced fibre have the density property (Andrist [16]).
These surfaces are also called generalised Danielewski surfaces. Special cases
of this result were proved before in [21,56,110].

(4) The only known non-algebraic examples of Stein manifolds with the
density property are, firstly, the holomorphic analogues of (2), namely, com-
plex submanifolds X of C

n+2 with coordinates u ∈ C, v ∈ C, z ∈ Cn given
by an equation uv = f(z), where the zero fibre of the holomorphic func-
tion f ∈ O(Cn) is smooth and reduced (otherwise X is not smooth); see
[110]. Secondly, in the special case of (3) when the Gizatullin surface can be
completed by four rational curves, the Stein manifolds given by the same al-
gebraic equations (but using holomorphic functions as in the above example
uv = f(z)) have the density property [21].

(5) Certain hypersurfaces in C
n+3 with coordinates z = (z0, z1, . . . , zn)

∈ C
n+1, x ∈ C, y ∈ C, given by the polynomial equation x2y = a(z) + xb(z)

where degz0 a ≤ 2, degz0 b ≤ 1 and not both degrees are zero, have the den-
sity property. (The exact conditions on a and b ensuring transitivity of the
holomorphic automorphism group are rather technical.) This family includes
the Koras–Russell threefold given in C

4 by the equation

(2.1) x+ x2y + s2 + t3 = 0.

This result of Leuenberger [133] is interesting in connection with the recog-
nition problem for affine spaces; see Section 11.

(6) The Calogero–Moser spaces Cn, n ∈ N, have the algebraic density
property according to a recent result of Andrist [17]. The space Cn describes
the phase space of a Calogero–Moser system, an n-particle system in classical
physics with a certain Hamiltonian.

2.2. Volume density property. The volume density property was
the very first known density property (before the terminology was intro-
duced), which was discovered on Euclidean spaces C

n by Andersén [12] in
1990. (This was the first paper on the subject and a precursor to Andersén’s
joint work with Lempert [14].) We consider a holomorphic volume form ω
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on X , i.e., a nowhere vanishing holomorphic section of the canonical bun-
dle KX = ∧nT ∗X , n = dimX . (Note that KX , being a line bundle over X ,
must be topologically trivial for such a form to exist, and on a Stein mani-
fold this necessary condition is also sufficient by the Oka–Grauert principle
[80, Theorem 5.3.1].) The Lie algebra g from Definition 2.1 is now the Lie
algebra VFω(X) of volume preserving holomorphic vector fields θ, i.e., such
that the Lie derivative of ω along θ vanishes, Lθ(ω) = 0. Let ιξω denote
the interior product of ω and a vector field ξ ∈ VFhol(X). Since dω = 0,
Cartan’s formula for the Lie derivative gives

(2.2) Lθ(ω) = d(ιθω) = divω(θ)ω.

The function divω(θ) is called the divergence of θ with respect to ω. Hence,
VFω(X) is the algebra of holomorphic vector fields on X with vanishing
divergence, divω(θ) = 0.

Since volume preserving vector fields do not form an O-module, the proof
that the algebraic volume density property implies the holomorphic volume
density property (see Kaliman and Kutzschebauch [111]) is not straightfor-
ward. For the same reason, the version of Theorem 1.1 of Forstnerič and
Rosay [87] for holomorphic automorphisms of C

n with Jacobian one (pre-
serving the standard holomorphic volume form dz1 ∧ · · · ∧ dzn) requires the
additional cohomological assumption Hn−1(Ω,C) = 0 on the domain Ω of
the isotopy.

The list of Stein manifolds known to enjoy the (algebraic) volume density
property was rather short before an efficient criterion was established by
Kaliman and Kutzschebauch in [114]. We only state the holomorphic version
from [113]; the algebraic version is similar as in Theorem 2.4. Let X be a
Stein manifold of dimension n with a holomorphic volume form ω. Denote
by Zn−1(X) the space of closed holomorphic differential (n− 1)-forms on X .
The formula (2.2) shows that the map

(2.3) Θ : VFω(X)
∼=→ Zn−1(X), ξ → ιξω

is an isomorphism. By Lieωhol(X) we denote the Lie subalgebra of VFω(X)
generated by complete holomorphic ω-volume preserving vector fields on X .

Theorem 2.10. Let X be a Stein manifold with a holomorphic volume
form ω. Assume that there are pairs of divergence-free semi-compatible vec-
tor fields (ξj, ηj) with ideals Ij satisfying the following two conditions.

(A) For every x ∈ X the set
{
Ij(x)ξj(x) ∧ ηj(x)

}k
j=1

generates ∧2TxX .

(B) The image of Θ
(
Lieωhol(X)

) ⊂ Zn−1(X) under the de Rham homo-

morphism Φn−1 : Zn−1(X) → Hn−1(X,C) equals Hn−1(X,C).

Then Θ
(
Lieωhol(X)

)
= Zn−1(X) and therefore Lieωhol(X) = VFω(X), i.e., the

manifold (X,ω) has the volume density property.
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A highly nontrivial fact proved by Kaliman and Kutzschebauch [113,
Theorem 8] using this criterion is that the product of two Stein manifolds
(X1, ω1) and (X2, ω2) with the volume density property again has the volume
density property for ω = ω1 ∧ ω2.

The list of examples of Stein manifolds known to have the vol-
ume density property: (1) A homogeneous space X = G/H , where G is
a linear algebraic group and H is a closed algebraic subgroup such that X is
affine and admits a G-invariant volume form (which is necessarily algebraic)
has the (algebraic) volume density property (Kaliman and Kutzschebauch
[115]). This includes earlier results of Varolin [174] and Andersén [13] for
the tori (C∗)n.

(2) The affine submanifolds X in C
n+2 with coordinates u ∈ C, v ∈ C,

z ∈ C
n, given by the equation uv = p(z) where p ∈ C[Cn] is a polynomial

whose zero fibre is smooth and reduced (to ensure that X is not smooth),
have (algebraic) volume density property with respect to the unique alge-
braic volume form on them (Kaliman and Kutzschebauch [111]). Uniqueness
(up to a multiplicative constant) follows from simple connectedness of the
manifolds.

(3) The first, and up to now the only known non-algebraic examples
are certain holomorphic analogues of (2). Namely, for a nonconstant holo-
morphic function f on C

n, n ≥ 1, with X0 = f−1(0) reduced and smooth,

and such that the reduced cohomology H̃n−2(X0) vanishes if n ≥ 2, the hy-
persurface X ⊂ Cn+2 defined by uv = f(z1, . . . , zn) has the volume density
property with respect to a certain volume form (Ramos–Peon [150]).

(4) Certain hypersurfacesX in C
n+3 with coordinates z = (z0, z1, . . . , zn)

∈ Cn+1, x ∈ C, y ∈ C given by the equation x2y = a(z)+xb(z), where degz0 a≤ 2, degz0 b ≤ 1 and not both degrees are zero, have volume density property

for the volume form ω = dx
x2 ∧ dz0 ∧ dz1 ∧ · · · ∧ dzn (Leuenberger [133]). This

family includes the Koras–Russell threefold (2.1). Again, the conditions en-
suring transitivity of the group Autω(X) are rather technical.

(5) The smooth fibres of the Gromov–Vaserstein fibration given by equa-
tions pn(z1, . . . , zn) = a, where the polynomials pn ∈ C[Cn] are defined in-
ductively by

pn+1 = zn+1pn + pn−1, p0 = 1, p1(z1) = z1,

have the volume density property for the unique algebraic volume form on
them (De Vito [52]). Uniqueness of the algebraic volume form (up to a
constant) again follows from simple connectedness of the manifolds.

2.3. Relative density properties. The next results concern density
properties for Lie algebras of holomorphic vector fields vanishing on subvari-
eties Y ⊂ X . It makes sense to consider such properties on a Stein space X
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when the subvariety Y contains the singular locus Xsing of X . By using the
same idea as in the proof of Theorem 1.1, this density property naturally
leads to theorems on approximation of isotopies of injective holomorphic
maps Ω → X on Runge domains Ω ⊂ X , fixing Y ∩ Ω, by holomorphic au-
tomorphisms of X fixing Y .

The following definitions were introduced in [126]. Let X be an affine
algebraic variety, Y ⊆ X be an algebraic subvariety containing Xsing, and
let I = I(Y ) ⊆ C[X] denote the ideal of Y . Let VFalg(X,Y ) be the C[X]-
module of vector fields vanishing on Y :

VFalg(X,Y ) =
{
∂ ∈ VFalg(X) : ∂(C[X]) ⊆ I

}
.

Let Liealg(X,Y ) denote the Lie algebra generated by complete vector fields
in VFalg(X,Y ).

Definition 2.11. (Assumptions and notation as above.)

(a)X has the strong algebraic density property relative to Y if VFalg(X,Y )
= Liealg(X,Y ).

(b) X has the algebraic density property relative to Y if there exists an
integer � ≥ 0 such that I�VFalg(X,Y ) ⊆ Liealg(X,Y ).

Note that condition (b) with � = 0 is equivalent to condition (a). We say
that X has the (strong) algebraic density property if these conditions hold
for Y = Xsing.

Except for the fact that we consider not necessarily smooth varieties,
the strong algebraic density property (� = 0) is a version of Varolin’s Def-
inition 2.1 of the density property for the Lie subalgebra g of vector fields
vanishing on Y . On the other hand, for � > 0 our property in (b) is slightly
weaker than Varolin’s definition since we generate the Lie subalgebra of vec-
tor fields vanishing on Y of order at least � using complete vector fields
vanishing on Y of possibly lower order than �. Still, this version of the alge-
braic density property has the same remarkable consequences as in Varolin’s
version of the algebraic density property for the group of holomorphic au-
tomorphisms of X fixing the subvariety Y . In particular, the following
analogue of Theorem 1.1 with interpolation on a subvariety holds.

Theorem 2.12. Let X be an affine algebraic variety and Y ⊂ X be a
closed algebraic subvariety containing Xsing. Assume that Ω ⊂ X is a Stein
Runge domain and Φt : Ω → X (t ∈ [0,1]) is an isotopy of injective holomor-
phic maps as in Theorem 1.1. If condition (b) in Definition 2.11 holds for
an integer � ≥ 0 and the map Φt agrees with the identity to order � on Y ∩Ω
for every t ∈ [0,1], then Φ1 can be approximated uniformly on compacts in Ω
by holomorphic automorphisms of X fixing Y pointwise.

This result is often used to move a compact O(X)-convex subset ofX \ Y
around by automorphisms of X fixing Y . When X = C

n with n ≥ 2, this
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method can be used to find Fatou–Bieberbach domains containing Y and
omitting a certain compact set (see Section 4). Alternatively, approximat-
ing a contraction on a closed ball B ⊂ C

n \ Y and fixing Y gives a Fatou–
Bieberbach domain in C

n \ Y containing B, thereby generalising Corol-
lary 4.5. (See [80, Corollary 4.12.2] and Theorem 4.7 in Section 4). In
fact, this holds whenever Y is an algebraic subvariety of Cn of codimension
at least two or, more generally, a tame subvariety of C

n of codimension at
least two; see [80, Definition 4.11.3 and Theorem 4.12.1].

Here are the main examples when the relative density property is known
to hold.

(1) The Euclidean space C
n for n ≥ 2 has the relative algebraic density

property with respect to any algebraic subvariety Y ⊂ C
n of codimension at

least 2. If moreover the dimension of the Zariski tangent space TyY at every
point of Y is at most n− 1, then C

n has the strong algebraic density prop-
erty with respect to Y [109, Theorems 4 and 6]; this holds in particular if Y
is without singularities. Hence, Theorem 2.12 holds for any such subvariety
Y ⊂ C

n.

(2) Recall that a locally nilpotent derivation on an affine algebraic
manifold is a complete algebraic vector field which generates an algebraic
subgroup (isomorphic to C with +) of the algebraic automorphism group
Autalg(X). An affine algebraic manifold X is flexible in the sense of Arzhan-
tsev et al. [27] if locally nilpotent derivations span the tangent space at
every point of X . Kaliman proved in [107, Theorem 2.15 and Remark 2.16]
that if X is a flexible affine algebraic manifold with a compatible pair of lo-
cally nilpotent derivations, then X has the density property relative to any
algebraic subvariety Y of codimension at least 2. Again, it follows that The-
orem 2.12 holds for any such subvariety Y ⊂ X (cf. [107, Theorem 2.17]).
This vastly generalizes the first part of (1), while Example 2.8 shows that
SLn(C) has the density property relative to any algebraic subvariety of codi-
mension at least 2.

(3) If X is a normal affine toric variety of dimension n ≥ 2 and Y is a
T ∼= (C∗)n-invariant closed subvariety of X containing Xsing, then X has the
algebraic density property relative to Y if and only if X \ Y �= T [126, The-
orem 3.7]. Affine toric surfaces with the strong algebraic density property
were classified by Kutzschebauch, Leuenberger, and Liendo [126, Corollary
5.5]. In the same paper, they gave an upper bound for the vanishing order
� in Definition 2.11. This includes the results of Varolin [174] for Y a linear
subspace of X = C

n.

2.4. Fibred density properties. Let π : X → B be a holomorphic
map between complex manifolds. We say that X has the fibred density
property with respect to π if the Lie algebra g of holomorphic vector fields

Analysis Mathematica



F. FORSTNERIČ and F. KUTZSCHEBAUCH

θ tangent to the fibres of π, i.e. fulfilling the condition dπ(θ) = 0, has the
density property; see Definition 2.1.

The simplest case is a trivial fibration W ×X →W, (w, x) → w, where
X is a Stein manifold with the density property and the parameter space W
is a Stein manifold. For this case the fibred density property is easy to prove
[123,129]. The implication for the corresponding group of holomorphic au-
tomorphisms (in a simple situation of a projection C

k × Cm → Ck) is given
by Theorem 1.6 from the introduction.

The next case where the fibred density property is known is much more
complicated. To formulate it, we need to recall the classical invariant-
theoretic quotient of the action of SLn(C) on its Lie algebra sln(C) of com-
plex n× n matrices by conjugation (the adjoint representation). Denote
by σ1, . . . , σn : Cn → C the elementary symmetric polynomials in n complex
variables. Let Eig : Mat

(
n× n; C

) → C
n assign to each matrix a vector of

its eigenvalues. Denote by π1 := σ1 ◦Eig, . . . , πn := σn ◦Eig the elementary
symmetric polynomials in the eigenvalues. By symmetrizing we avoid ambi-
guities caused by the order of eigenvalues in the definition of Eig and obtain
a polynomial map (π1, . . . , πn) such that χA(λ) = λn+

∑n
j=1(−1)jπj(A)λ

n−j

is the characteristic polynomial of the matrix A.
Since traceA = 0 for A ∈ sln, the map π1, the sum of the eigenvalues, is

the zero map.
Consider the fibration π := (π2, . . . , πn): sln → Cn−1. A generic fibre, i.e.

a fibre above a base point with no multiple eigenvalues, consists of exactly one
equivalence class of similar matrices, so it is a homogeneous space of SLn(C)
and hence smooth. A fibre above a base point with multiple eigenvalues de-
composes into several strata of SLn(C) orbits, the largest one being the orbit
of a matrix with the largest possible Jordan blocks. The structure of these
fibres is well-studied in classical invariant theory, see e.g. Kraft [119]. The fi-
bration π is the invariant theoretic quotient sln(C)//SLn(C), i.e., the algebra
of SLn(C)-invariant polynomial/holomorphic functions on sln(C) is exactly
the pull-back of the algebra π∗(O(Cn−1)) of holomorphic functions on Cn−1.
The proof that π has relative density property (Andrist and Kutzschebauch
[20]) uses a special family of complete holomorphic vector fields in this al-
gebra, derived from certain one-parameter subgroups of SLn(C) exactly as
the shears (1.1) on Cn are derived from the shear vector fields ∂

∂zi
. In the

same paper, the authors applied this density property to provide a set of
generators for a dense subgroup of the automorphism group of the spectral
ball.

2.5. Symplectic density property. Let X be a complex mani-
fold of dimension 2n with a holomorphic symplectic form ω, a closed
holomorphic 2-form whose highest exterior power ωn is nowhere vanish-
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ing. The standard holomorphic symplectic form on C2n with coordinates
z1, . . . , zn, w1, . . . , wn is

(2.4) ω =
n∑

i=1

dzi ∧ dwi.

A symplectic form on a complex surface is the same thing as a holomorphic
volume form.

Let Ω be a domain in a complex symplectic manifold (X,ω). A holo-
morphic map f : Ω → X is called symplectic if f∗ω = ω. Assume that
Φt : Ω → X is a smooth isotopy of injective symplectic holomorphic maps
with the infinitesimal generator Vt ∈ VF(Ωt), t ∈ [0, 1]. Differentiating the
identity ω = Φ∗

t (ω) on t and taking into account the Cartan formula LV ω =
d(ιV ω) + ιV dω = d(ιV ω) for the Lie derivative gives

0 =
d

dt
Φ∗
t (ω) = Φ∗

t (LVt
ω) = Φ∗

t (d(ιVt
ω)),

which holds if and only if d(ιVt
ω) = 0 for all t ∈ [0,1]. A holomorphic vector

field V satisfying d(ιV ω) = 0 is called symplectic. This shows that flows of
symplectic holomorphic maps are generated by symplectic vector fields, and
vice versa. A vector field V is called Hamiltonian if ιV ω is an exact 1-form,
and a holomorphic function H ∈ O(X) satisfying dH = ιV ω is the Hamil-
tonian of V . Conversely, every holomorphic function H on X determines
a Hamiltonian vector field VH by the above equation. On C2n with coordi-
nates (z,w) and the symplectic form (2.4), every symplectic vector field is
Hamiltonian of the form

VH =
n∑

i=1

∂H

∂wj

∂

∂zj
− ∂H

∂zj

∂

∂wj
, H ∈ O(C2n).

The alternating bilinear form on C
2n defined by

(2.5) ω̃(u, v) =
n∑

j=1

ujvn+j − un+jvj , u, v ∈ C
2n

is the standard linear symplectic form on C
2n. The corresponding differential

form is ω (2.4).
The following algebraic density property was proved by Forstnerič [75,

Proposition 5.2] in 1996. This was the first known density property follow-
ing the original ones of Andersén and Lempert, and it predates the formal
introduction of this notion.
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Proposition 2.13. Let ω be the symplectic form (2.4) on C2n, and let
ω̃ be given by (2.5). The Lie algebra of polynomial Hamiltonian vector fields
on (C2n, ω) is generated by the complete Hamiltonian vector fields of the form

(2.6) V (x) = f(ω̃(x, v))
2n∑

i=1

vj
∂

∂xj
, x ∈ C

2n, v ∈ C
2n, f ∈ C[C2n].

The polynomial vector field (2.6) generates the flow

(2.7) Φt(x) = x+ tf(ω(x, v))v, t ∈ C, x ∈ C
2n

consisting of symplectic polynomial shear automorphisms of (C2n, ω). The
proof of Theorem 1.1 gives the following result (see [74, Proposition 2.3 and
Remark] and [75, Theorem 5.1]).

Theorem 2.14. Assume that Ω is a pseudoconvex domain in C2n,
n ∈ N, with H1(Ω,C) = 0. If Φt : Ω → C2n (t ∈ [0, 1]) is a C 1 isotopy of
injective symplectic holomorphic maps (with respect to the symplectic form
(2.4)) such that Φ0 is the identity map on Ω and the domain Ωt = Φt(Ω) is
Runge in C2n for every t ∈ [0, 1], then Φ1 can be approximated uniformly on
compacts in Ω by compositions of symplectic shears (2.7). In particular, the
group generated by symplectic shears (2.7) is dense in the group Autω(C

2n)
of symplectic holomorphic automorphisms of (C2n, ω).

The condition H1(Ω,C) = 0 and pseudoconvexity of Ω ensure that every
symplectic holomorphic vector field on Ωt is Hamiltonian, and hence by the
Runge condition on Ωt it can be approximated uniformly on compacts in Ωt

by polynomial Hamiltonian vector fields on C2n. (Like in the second part
of Theorem 1.1, pseudoconvexity is used in order to know that de Rham
cohomology can be computed by means of holomorphic differential forms.)

Of all density properties presented in this section, this symplectic density
property is the only one that has not been developed yet for more general
Stein symplectic manifolds, and no effective criteria are known (except on
Stein surfaces where a symplectic form is just a holomorphic volume form).
The problem in mimicking the criteria of Kaliman and Kutzschebauch for
density or volume density properties lies in finding a module structure to
apply the theory of coherent analytic sheaves, in particular, Theorems A
and B. A complete symplectic vector field remains complete when multi-
plied with a function in its kernel; however, it stays symplectic only if it is
multiplied by a function f(H) of the Hamiltonian H of the vector field. For
example, the symplectic density property would be much more interesting
for the Calogero–Moser spaces than the density property proved by Andrist
in [17].

Since the holomorphic cotangent bundle of a complex manifold carries
a natural holomorphic symplectic structure, it seems reasonable to propose
the following problem.
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Problem 2.15. Does the cotangent bundle of a Stein manifold with the
density property enjoy the symplectic density property?

3. Automorphisms with given jets

The Andersén–Lempert theory is about Stein manifolds with large au-
tomorphism groups. One aspect of this phenomenon is demonstrated by the
approximation theorems mentioned in the introduction and the interpola-
tion theorems discussed in Section 2. One can go further and ask which
jets of locally biholomorphic maps at a closed discrete set of points are
jets of an automorphism. The following result for finitely many points was
proved by Andersén and Lempert [14, Proposition 6.3] and Forstnerič (see
[76, Proposition 2.1] and [80, Proposition 4.15.3]). The analogous result
on Stein manifolds with the density property is due to Varolin [173]. For
symplectic holomorphic automorphisms of C2n, see Løw et al. [134].

Proposition 3.1. Let m,n,N ∈ N, with n > 1. Assume that

(a) K is a compact polynomially convex set in Cn,

(b) {aj}sj=1 is a finite set of points in K,

(c) p and q are points in Cn \K, and

(d) P : Cn → Cn is a polynomial of order m with nondegenerate linear
part and P (0) = 0.

Given ε > 0, there exists Φ ∈ Aut(Cn) satisfying the following conditions:

(i) Φ(p) = q and Φ(z) = q + P (z − p) +O(|z − p|m+1) as z → p,

(ii) Φ(z) = z +O(|z − aj |N ) as z → aj for each j = 1, 2, . . . , s, and

(iii) |Φ(z)− z|+ |Φ−1(z)− z| < ε for each z ∈ K.

If in addition we have JP (z) = 1 +O(|z|m) as z → 0 then there exists a
polynomial automorphism Φ with JΦ ≡ 1 satisfying conditions (i)–(iii).

These results have proved very useful in the construction of holomorphic
automorphisms with interesting dynamical properties.

An inductive application of Proposition 3.1 leads to the following
Mittag-Leffler interpolation theorem for automorphisms of Cn (Buzzard and
Forstnerič [45, Theorem 1.1]). Recall that a discrete sequence aj without
repetition in C

n is said to be tame if there is an automorphism Φ ∈ Aut(Cn)
such that Φ(aj) = (j, 0, . . . , 0) ∈ C× {0}n−1 for all j ∈ N. This notion was
introduced and studied by Rosay and Rudin in [155]. (See also [80, Section
4.6].)

Theorem 3.2. Assume that n > 1, aj and bj (j ∈ N) are tame discrete
sequences in Cn without repetitions, and Pj : C

n → Cn is a polynomial map
with nondegenerate linear part and Pj(0) = 0 for each j ∈ N. Then there
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exists an automorphism F of Cn such that for every j = 1, 2, . . . we have
F (aj) = bj and

F (z) = bj + Pj(z − aj) +O(|z − aj |mj+1), z → aj .

If in addition every JPj(z) = 1 +O(|z|mj ) for every j and the sequences aj
and bj are very tame, then there exists F ∈ Aut1(C

n) with these properties.

Points in a tame sequence can be permuted by automorphisms, and hence
we can speak of tame (closed) discrete sets. Rosay and Rudin [155] gave sev-
eral criteria for tameness, and they constructed nontame and even rigid dis-
crete sets A in C

n for any n > 1, i.e., such that no nontrivial automorphism
of Cn fixes A. There also exist discrete sets whose complements are volume
hyperbolic, meaning in particular that every entire map C

n → C
n \A has

rank < n at all points. (See also [80, Secs. 4.6–4.7].) An interesting use of
such sets is shown in Sect. 5.

The notion of a tame sequence was generalised to Stein manifolds with
the density property in a couple of distinct ways by Andrist and Ugolini [22]
and Winkelmann [176].

The following parametric version of Proposition 3.1, due to Ramos–Peon
and Ugolini [151], generalises earlier results of Kutzschebauch and Ramos–
Peon [129] and Ugolini [171]. It concerns interpolation of jets by holomor-
phic automorphisms at finitely many points of a Stein manifold X with the
density property, where the jets and the interpolating automorphisms of X
depend holomorphically on a parameter in another Stein manifold W .

Theorem 3.3. Let W and X be Stein manifolds and suppose that X has
the density property. Let k ≥ 0 and N ≥ 1 be integers, and let x1, . . . , xN be
distinct points in X . Let Y denote the space of N -tuples γ = (γ1, · · · , γN )
of k-jets at x1, . . . , xN , respectively, with nondegenerate linear parts and
distinct values at x1, . . . , xN . Given a null-homotopic holomorphic map
γ = (γ1, · · · , γN ) : W → Y , there exists a null-homotopic holomorphic map
F : W → Aut(X) such that the k-jet of F (w) ∈ Aut(X) at xi is γ(w)i for
i = 1, . . . ,N and all w ∈W .

4. Fatou–Bieberbach domains

A domain Ω � Cn which is biholomorphic to Cn is called a Fatou–
Bieberbach domain. A biholomorphic map F : Cn → Ω onto such a domain
(and its inverse F−1) is called a Fatou–Bieberbach map. Every injective poly-
nomial map Cn → Cn is an automorphisms with a polynomial inverse (see
Rudin [157]), so there are no algebraic Fatou–Bieberbach maps.

All early constructions of Fatou–Bieberbach domains relied upon the
theory of normal forms of local biholomorphisms at an attractive or a re-
pelling fixed point. The following result has a complex genesis as explained
in the sequel.
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Theorem 4.1. Let F : U → F (U) be a biholomorphism on an open
neighbourhood U ⊂ Cn of the origin such that F (0) = 0 and the eigenval-
ues λi of the differential dF0 satisfy

(4.1) 1 > |λ1| ≥ |λ2| ≥ · · · ≥ |λn| > 0.

After shrinking U around the origin, there is a biholomorphism ψ : U → ψ(U)
⊂ Cn with ψ(0) = 0 such that G = ψ ◦F ◦ψ−1 is a polynomial automorphism
of Cn of the form

(4.2) G(z) = Az + (0, g2(z), . . . , gn(z)), z ∈ C
n,

where A is a lower-triangular matrix with the eigenvalues λi, and every com-
ponent gj(z) is a polynomial in the variables z1, . . . , zj−1 containing no con-
stant or linear terms.

In fact, choosing k ∈ N such that |λ1|k < |λn|, G may be chosen a poly-
nomial map of degree k such that every monomial zm1

1 zm2

2 · · · zmn
n (m1 +

m2 + · · · +mn ≥ 2) in a component gj(z) of G (4.2) is resonant : λj =
λm1

1 λm2

2 · · · λmn
n . Since the eigenvalues satisfy (4.1), it follows that mj =

· · · = mn = 0 and hence G is lower-triangular.
The first complete proof of Theorem 4.1 was given by Rosay and Rudin

[155, Appendix]; see also [80, Sect. 4.3]. The result was claimed by Reich
[152,153] in 1969, and it was used by Dixon and Esterle [54] in 1986. How-
ever, a gap in the proof of convergence of the normalization maps in [153]
(even on the formal level) was pointed out by Rosay and Rudin [155, p. 49].
In the special case when the matrix A of the differential dF0 is diagonalisable
and there are no resonances between the eigenvalues, we can conjugate F
locally near 0 to the linear map z �→ Az with A = diag(λ1, . . . , λn). In the
special case when all eigenvalues agree, this was proved by Poincaré [147] in
1890. Poincaré indicated that this leads to the existence of injective holomor-
phic maps C

n → Cn with non-dense image (since there are automorphisms
with several attracting fixed points), although he did not provide a specific
example. The formal normal form in the general case was developed by Leau
[132] in 1987, who also obtained analytic solution under an extra technical
hypothesis. Further work was done by Picard [145,146] in the period 1900–
1905. Much later, Sternberg [165] (1957) solved the normalization problem
for smooth local diffeomorphisms of Rn at an attracting fixed point. His re-
mark (see bottom of page 816 in his paper), that [165, proof of Theorem 2]
also applies in the real analytic case, does not seem supported by any details
in his paper.

Suppose now thatX is a complex manifold of dimension n and F : X→X
is an injective holomorphic map with an attracting fixed point at p ∈ X . De-
note by F k the k-iterate of F for k ∈ N. The domain

(4.3) ΩF,p =
{
x ∈ X : lim

k→+∞
F k(x) = p

}
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is called the basin of F at p. Note that ΩF,p is the increasing union of
preimages (F k)−1(V ) for k ∈ N, where V ⊂ F (Cn) is any neighbourhood
of p. By taking V to be connected, we see that ΩF,p is connected. By
Theorem 4.1 there are a neighbourhood U ⊂ X of p, with F (U) ⊂ U , and
a local chart ψ : U → ψ(U) ⊂ C

n with ψ(p) = 0 such that G = ψ ◦ F ◦ ψ−1

is a lower-triangular polynomial map of the form (4.2). Clearly, such G
is an automorphism of C

n with a globally attracting fixed point at 0, so
ΩG,0 = Cn. Then, Gk = ψ ◦ F k ◦ ψ−1 for each k ∈ N, which is equivalent to
ψ = G−k ◦ ψ ◦ F k. As k → ∞, this defines a biholomorphic map Ψ: ΩF,p

→ ΩG,0 = Cn, and hence shows the following.

Theorem 4.2. If X is a complex manifold and F : X → X is an in-
jective holomorphic map with an attracting fixed point p ∈ X , then the basin
(4.3) is biholomorphic to Cn, n = dimX .

When n > 1, the basin of an automorphism F ∈ Aut(Cn) need not be
all of C

n. In fact, F may have several (even countably many) attracting
fixed points, and their basins are pairwise disjoint Fatou–Bieberbach do-
mains in C

n.
Before proceeding, we mention that fixed points p ∈ C

n of automor-
phisms F ∈ Aut(Cn) which are hyperbolic, in the sense that the eigenval-
ues λi of dFp satisfy |λi| �= 1, have also been studied. In favorable cases,
F can again be linearized at p. In general there may be infinitely many res-
onances, which makes the study of the normal form much more involved.
There is an outstanding conjecture of Bedford that for a hyperbolic fixed
point p of F ∈ Aut(Cn), the stable and the unstable manifolds are biholo-
morphic to Euclidean spaces of appropriate dimensions. For a survey of this
topic see Abbondandolo et al. [1].

Using the idea behind Theorem 4.2, Fatou [62] constructed in 1922 bira-
tional self-maps of C2 whose images are not dense in C2. It was Bieberbach
[34] who in 1933 found the first known example of an injective holomorphic
map C

2 → C2 with Jacobian one and non-dense image Ω which is Runge
in C

2. Bieberbach’s example is also described by Stehlé in [162] (1972), who
used it to find a properly embedded holomorphic disc in C

2. (The point is
that if a complex line Λ ⊂ C

2 intersects a Runge domain Ω but is not con-
tained in it, then any connected component of Λ ∩ Ω is Runge in Λ, hence
biholomorphic to the disc D.) See also the monograph by Bochner and Mar-
tin [38, Sect. III.1] (1948). In 1971, Kodaira [118] gave an example of an
injective holomorphic map C

2 → C2 with constant Jacobian omitting a com-
plex line of C2. In 1983, Nishimura [141] gave such an example F : C2 → C2

which omits a neighbourhood U of a complex line. In [142], Nishimura in-
vestigated the shape of U for some specific F , and he proved that there is no
injective holomorphic map from C

2 into itself with constant Jacobian whose
image omits the union E of two complex lines in C

2 and a neighbourhood of
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a point of E. This partially answers the (still open) question whether there
is an injective holomorphic map from C

2 into itself omitting two complex
lines:

Problem 4.3. Is there a Fatou–Bieberbach domain in C
∗ × C∗?

The following result concerning basins of polynomial automorphisms
of C

2 was proved by Bedford and Smillie [29] in 1991. Note that such
an automorphism has constant Jacobian determinant which is smaller than
one in absolute value.

Theorem 4.4. A polynomial basin Ω ⊂ C2 intersects each algebraic
curve V ⊂ C2 in a nonempty set with compact closure Ω ∩ V . On the other
hand, the closure Ω does not contain any closed one dimensional complex
subvarieties of C2.

In 1986, Dixon and Esterle [54] introduced a more general method for
constructing Fatou–Bieberbach domains. The underlying idea is that for
certain pairs of pairwise disjoint compact sets K,L ⊂ C

n with polynomially
convex union K ∪L one can find holomorphic automorphisms Φ ∈ Aut(Cn)
which are close to the identity map on one of the sets, say K, and they push
the second set L far away. If K and L are convex, this is easily achieved
by a shear, a fact which was also explored by Rosay and Rudin in [155]. In
the more general case when K is polynomially convex and L is starshaped
(or holomorphically contractible), the same can be done by applying The-
orem 1.1 (we squeeze L within itself almost to a point, slide it far away
from K, and approximate the final map by an automorphism). An induc-
tive application of this construction yields a sequence Φj ∈ Aut(Cn) (j ∈ N)
such that the sequence of compositions Fj = Φj ◦ Φj−1 ◦ · · · ◦ Φ1 converges
on a neighbourhood of K and diverges to infinity on L as j → ∞. If in
addition the Φj ’s approximate the identity map sufficiently closely on an
increasing sequence of compacts exhausting C

n, then the domain of conver-
gence Ω of the sequence Fj is a Fatou–Bieberbach domain, and the limit
F = limj→∞ Fj : Ω → Cn is a biholomorphic map of Ω onto Cn such that

K ⊂ Ω ⊂ C
n \ L.

A similar argument yields a Fatou–Bieberbach domain Ω′ ⊂ Cn with L ⊂ Ω′
⊂ Cn \K. See Forstnerič and Ritter [86, Proposition 9] or [80, Proposition
4.4.4] for a precise statement. Taking L to be a finite set gives the following
corollary.

Corollary 4.5. Given a compact polynomially convex set K ⊂ Cn,
n > 1, and a finite set L ⊂ Cn \K there is a Fatou–Bieberbach domain Ω
satisfying K ⊂ Ω ⊂ C

n \ L.
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This result was used by Forstnerič [77] in his construction of holomorphic
functions without critical points on any Stein manifold. More generally, The-
orem 4.7 below is used in his proof of the basic h-principle for holomorphic
submersions X → C

q from any Stein manifold with dimX > q ≥ 1, given in
the same paper.

This push-out method of Dixon and Esterle also became known as random
iteration, since we are not iterating an automorphism but composing with a
new one at every step. It was used even before the Andersén–Lempert the-
ory, or without using it, to provide examples of Fatou–Bieberbach domains
with interesting properties and to solve various problems. We refer to the
papers by Rosay and Rudin [155], Fornæss and Sibony [68], Globevnik and
Stensønes [99], Globevnik [95,96], Stensønes [164], Fornæss and Stensønes
[70], among others. Globevnik and Stensønes [99] used random iterations of
shears in coordinate directions to show that every planar domain bounded
by finitely many Jordan curves admits a proper holomorphic embedding
into C

2. This was a major advance on the open problem asking which
open Riemann surfaces admit a proper holomorphic embedding as a closed
complex curve in C

2 (see Section 6). Random iterations of shears were
also used by Stensønes [164] (1997) in her construction of Fatou–Bieberbach
domains having C∞ smooth boundaries. Note that a smoothly bounded
Fatou–Bieberbach domain in C

2 has Levi-flat boundary foliated by complex
curves. Related results of Globevnik [95,96] give Fatou–Bierbach domains
with C 1 boundaries and with additional geometric control on their location.
Whether there exist Fatou–Bieberbach domains with real analytic bound-
aries remains an open problem.

A result similar to the one of Globevnik [96] was used by Buzzard and
Hubbard [46, Lemma 3.1] to show the following [46, Theorem 4.1].

Theorem 4.6. For every algebraic subvariety A of codimension at least
two in Cn, n ≥ 2, there exists a Fatou–Bieberbach domain Ω ⊂ Cn such that
Ω ∩A = ∅.

With the exception of Corollary 4.5, the results mentioned so far were
obtained by elementary constructions using shears. The Andersén–Lempert
theory provides much more general construction methods. For example, we
have the following result.

Theorem 4.7. Let A be an algebraic subvariety of Cn, n ≥ 2, of codi-
mension at least 2. Given a compact, polynomially convex and holomor-
phically contractible set K ⊂ Cn \A, there is a Fatou–Bieberbach domain
Ω ⊂ Cn with K ⊂ Ω and Ω ∩A = ∅.

Here is a sketch of proof. By the assumption there are a neighbourhood
U ⊂ C

n \A of K and an isotopy of biholomorphic maps φt : U → Cn \A
(t ∈ [0, 1]) such that φt(K) ⊂ K for all t and φ1(K) lies in an arbitrarily
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small closed ball B around a point p ∈ K. Clearly, the sets Kt = φt(K) are
polynomially convex. Let Ω′ ⊂ Cn \A be a Fatou–Bieberbach domain such
that Ω′ ∩ A = ∅ (see Theorem 4.6). If B is small enough, we can slide it
into Ω′ by an isotopy of translations which keep the image of B in Cn \A.
Applying Theorem 2.12 to the combined isotopy provides an automorphism
Φ of C

n fixing A such that Φ(K) ⊂ Ω′. Then, Ω = Φ−1(Ω′) is a Fatou–
Bieberbach domain satisfying the conclusion of Theorem 4.7.

Starting from 2005, one of the main contributors of developments on
Fatou–Bieberbach domains and their applications has been Wold with col-
laborators. In his first paper [177], Wold showed the following results.

(1) For anym ∈ N∪{∞} there existm pairwise disjoint Fatou–Bieberbach
domains Ωi such that any point p ∈ Cn \⋃m

i=1Ωi lies in the boundary of ev-
ery Ωi.

(2) If {Li}i∈N is a collection of affine subspaces of Cn (n > 1), then there
exists a Fatou–Bieberbach domain Ω such that for every i, Ω ∩ Li is con-
nected and Li \ Ω �= ∅.

(3) If {Vi}i∈N is a collection of closed proper complex subvarieties of Cn

(n > 1) then there exists a Fatou–Bieberbach domain Ω containing
⋃

i Vi.

An exciting development was the following result of Wold [181] from
2008.

Theorem 4.8. For any n > 1 there exists a non-Runge Fatou–Bieberbach
domain in C

n.

Note that such domains cannot be limits of automorphisms of Cn. The
idea behind the construction is the following. Start with a Fatou–Bieberbach
domain Ω contained in C

∗ ×C. By Stolzenberg [166] there is a compact set
K =M1 ∪M2 ⊂ C∗ × C, consisting of a pair of disjoint closed totally real
discs M1 and M2, such that K is O(C∗ ×C)-convex but its polynomial hull

K̂ contains the origin of C2. Since the Stein domain C∗ ×C has the density
property, Theorem 1.3 can be used to find a holomorphic automorphisms Φ
of C

∗ × C such that Φ(K) ⊂ Ω. (It suffices to construct an isotopy which
shrinks each of the discs M1,M2 almost to a point and then slide the new
small discs into Ω within C

∗ × C such that the isotopy consists of O(C∗
×C)-convex sets.) Therefore, Ω′ = Φ−1(Ω) ⊂ C∗ ×C is a Fatou–Bieberbach

domain containing K but not its polynomial hull K̂. It follows that Ω′ is
not Runge in C

2, although it is Runge in C∗ × C.
An interesting application of this result was Wold’s construction [182] in

2010 of the first known example of a non-Stein long C
2. We describe these

developments in Section 7.
In 2010, Baader, Kutzschebauch and Wold [28] used Fatou–Bieberbach

domains to construct the first known example of a knotted properly embed-
ded holomorphic disc in C

2. Their result was motivated by the problem,
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raised by Kirby, whether proper holomorphic embeddings of C or the unit
disc into C2 can be topologically knotted. While the first problem remains
open, the second one was solved in the affirmative in [28]. The proof uses
well-behaved Fatou–Bieberbach domains in C

2 constructed by Globevnik in
[96], containing small perturbations of the bidisc, and the existence of knot-
ted holomorphic discs in the bidisc. It is unknown whether the disc admits
an unknotted proper holomorphic embedding into C

2.
In 1998 Globevnik [96] constructed Fatou–Bieberbach domains in Cn

whose closures intersect the complex line C× {0}n−1 in closed connected
and simply connected domains which are arbitrarily small perturbations of
the closed unit disc. In 2012, Wold [183] found a Fatou–Bieberbach domain
in C

2 whose intersection with C× {0} contains the unit disc as a connected
component, thereby answering a question of Rosay and Rudin [155].

In 2015, Forstnerič and Wold [90] constructed Fatou–Bieberbach do-
mains in C

n, n > 1, which contain a given compact set K and avoid a totally
real affine subspace L ⊂ Cn with dimRL < n such thatK ∪L is polynomially
convex. This was used in [90] to show that Cn \ L has certain Oka proper-
ties. Due to a recent result of Kusakabe it is now clear that such domains
are Oka manifolds for n ≥ 4, as follows easily from Theorem 8.4.

A recent development is the following result of Forstnerič and Wold [91,
Theorem 1.1] from 2020. An interesting application is given by Theorem 8.3.

Theorem 4.9. Let K be a compact polynomially convex set in Cn for
some n > 1, L be a compact polynomially convex set in CN for some N ∈ N,
and f : U → C

n be a holomorphic map from an open neighbourhood U ⊂ C
N

of L such that f(z) ∈ Cn \K for all z ∈ L. Then there are an open neigh-
bourhood V ⊂ U of L and a holomorphic map F : V ×Cn → Cn such that for
every z ∈ V , F (z, 0) = f(z) and the map F (z, · ) : Cn → Cn \K is injective.

It follows that Ωz := {F (z, ζ) : ζ ∈ Cn} is a Fatou–Bieberbach domain in
Cn \K with centre F (z, 0) = f(z) and depending holomorphically on z ∈ V .

The proof uses Andersén–Lempert theory with parameters. It also ap-
plies to variable fibres Kz ⊂ Cn (z ∈ L) with polynomially convex graph (see
[91, Remark 2.2]). For a convex parameter space L ⊂ CN the analogous re-
sult holds if we replace Cn by an arbitrary Stein manifold having the density
property (see [91, Theorem 3.1]).

So far we have focused on Fatou–Bierbach domains in Euclidean spaces
C
n, n ≥ 2. However, such domains abound in any Stein manifold with the

density property as was already observed by Varolin [173,174]. As an exam-
ple, we mention the following recent result of Kaliman [107, Corollary 2.18]
which generalizes Theorem 4.7. Recall that an affine manifold X is flexible
in the sense of Arzhantsev et al. [27] if locally nilpotent derivations on X
span the tangent space at every point (see Example (2) in Subsection 2.3).

Theorem 4.10. Let X be a complex affine flexible manifold and Y be
a closed algebraic subvariety of X of codimension at least 2. Suppose that
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X admits a pair of compatible vector fields (see Definition 2.5). Then, every
point x ∈ X has a neighbourhood Ω ⊂ X \ Y which is biholomorphic to C

n

with n = dimX .

5. Twisted complex lines in Cn and nonlinearizable
automorphisms

It is well known that a generic affine algebraic hypersurface A ⊂ C
n of

sufficiently large degree is (Kobayashi) hyperbolic and has hyperbolic com-
plement Cn \A (see Brotbek [41]). Such A is necessarily topologically com-
plicated. On the other hand, proper polynomial embeddings F : Ck ↪→ Ck+1

are believed to have non-hyperbolic complements Ck+1 \ F (Ck). In particu-
lar, it was shown by Suzuki [169] (1974) and Abhyankar and Moh [2] (1975)
that for every polynomial embedding F : C ↪→ C

2 there is a polynomial au-
tomorphism Φ of C2 such that Φ ◦F (C) = C×{0}. It is therefore of interest
to know that there are proper holomorphic embeddings whose complements
are hyperbolic; see Theorem 5.3.

On the way to this result, we begin with the following application of
Theorem 1.1 due to Forstnerič, Globevnik, and Rosay [83].

Theorem 5.1. For every closed discrete set B ⊂ C2 there is a properly
embedded complex line F : C ↪→ C2 such that B ⊂ F (C).

The analogous result holds for embedding C ↪→ Cn, n ≥ 3. This was
proved in a more precise form (with interpolation on a pair of discrete
sets) by Rosay and Rudin [156, Theorem I] in 1993. However, their re-
sult for n ≥ 3 is a very special case of the theorem, due to Acquistapace,
Broglia, and Tognoli [3] (1975), that for any Stein manifold X of dimension
m ≥ 1, integer n ≥ 2m+1, and proper holomorphic embedding φ : X ′ ↪→ Cn

of a closed complex subvariety X ′ of X there is a proper holomorphic em-
bedding F : X ↪→ C

n with F |X′ = φ. (See also [80, Theorem 9.5.5].) The
Rosay–Rudin theorem mentioned above amounts to the special case with X ′
a closed discrete subset of X = C. However, for n = 2 the methods in both
mentioned papers only provide immersions C → C

2 with the desired prop-
erty (cf. [156, Theorem II]). In this lowest dimensional case, and in the proof
of the more general result in Theorem 5.3 for n ≤ 2k, the use of Andersén–
Lempert theory is essential.

The main idea behind the proof of Theorem 5.1 is to inductively twist
a properly embedded complex line C ↪→ C

2 such that it contains more and
more points of the discrete set B = {b1, b2, . . .}, and the sequence of embed-
dings converges to a proper holomorphic embedding. In the inductive step
we are given a proper holomorphic embedding Fk : C ↪→ C2 such that Fk(C)
contains the first k points b1, . . . , bk ∈ B but it does not contain the remain-
ing points of B (the latter condition is easily arranged by a general position
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argument). Choose a disc Δ ⊂ C with {b1, . . . , bk} ⊂ Fk(Δ) and a compact
ball L ⊂ C

2 such that

Fk(bΔ) ∪ {bk+1, bk+2, · · · } ⊂ C
2 \ L.

The union K := L∪Fk(Δ) is then a compact polynomially convex set in C2.
Theorem 1.1 furnishes an automorphism Φk ∈ Aut(C2) which is close to
the identity map on K, it fixes the points b1, . . . , bk, and such that
bk+1 ∈ Φk ◦ Fk(C). This gives the next embedding Fk+1 = Φk ◦Fk : C ↪→ C2.
An inductive application of this technique gives a sequence of embeddings
such that F = limk→∞ Fk : C ↪→ C2 is an embedding satisfying the conclu-
sion of the theorem. The same proof applies for any n ≥ 2.

A related result of Buzzard and Forstnerič in [44] (1997) yields Carleman
approximation with interpolation on R ⊂ C of proper holomorphic embed-
dings C ↪→ C

n for any n > 1.
Rosay and Rudin proved in [155] that for every n > 1 there exist discrete

sets B ⊂ C
n which cannot be mapped into an affine line by any holomorphic

automorphism of Cn; such sets are called non-tame. Applying Theorem 5.1
(and its generalisation to any n > 1 mentioned above) with such a set B
gives the following corollary.

Corollary 5.2. For every n > 1 there is a properly embedded complex
line F : C ↪→ Cn such that no holomorphic automorphism of Cn maps F (C)
onto an affine complex line. In other words, F (C) is not straightenable by
automorphisms of Cn.

This is in strong contrast with the result of Suzuki [169] (1974) and Ab-
hyankar and Moh [2] (1975) that every polynomial holomorphic embedding
C ↪→ C

2 is straightenable by a polynomial automorphism of C2. We refer to
[80, Sect. 4.18] for a survey of further results on this subject. This is an ex-
ample where the answer to a certain problem in the holomorphic category
differs from the answer in the algebro-geometric category.

A stronger result in the same spirit was obtained by Buzzard and Fornæss
[43], who constructed a proper holomorphic embedding F : C ↪→ C

2 such that
C
2 \ F (C) is Kobayashi hyperbolic. Since the complement of an affine line

in C
2 is biholomorphic to C∗ × C and hence is not hyperbolic, their result

also implies Corollary 5.2. To prove it, they constructed properly embedded
complex lines C ↪→ C

2 which contain arbitrarily small deformations of a well-
chosen discrete family of closed affine discs in C

2 with Kobayashi hyperbolic
complement. If the approximations are close enough then the complement
of the embedded line is also hyperbolic. Their proof uses the same general
idea as the proof of Theorem 5.1, but the technical details are more involved.
This line of results was developed further by Forstnerič [76] and Borell and
Kutzschebauch [39] who proved the following.
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Theorem 5.3. For every pair of integers 1 ≤ k < n there is a proper
holomorphic embedding F : Ck ↪→ Cn such that Cn \F (Ck) is (n− k)-hyper-
bolic in the sense of Eisenman. In particular, any entire map C

p →
Cn \ F (Ck) (p ∈ N) has rank less than n− k at each point.

The theorem of Buzzard and Fornæss [42] corresponds to the case k = 1,
n = 2.

As an application of Theorem 5.1, Derksen and Kutzschebauch [53]
showed the following result which answered a long-standing open question.

Theorem 5.4. For every integer n ≥ 2 there exists a nonlinearizable pe-
riodic holomorphic automorphism of period n on C2+n. In particular, there
is a nonlinearizable holomorphic involution on C4.

An outline of their proof can also be found in [80, Sect. 4.19]. The
problem regarding the existence of nonlinearizable periodic automorphisms
remains open on C

2 and C
3. A recent survey of the linearization problem

for holomorphic automorphisms is available in [124].

6. Embedding open Riemann surfaces in C
2

It has been known since mid-1950s that every Stein manifold X of di-
mension n embeds as a closed complex submanifold in a Euclidean space
C
2n+1. We refer to [80, Sect. 2.4] or [81, Sect. 2] for a discussion and refer-

ences to the early works on the subject. The smallest possible value of N for
any n > 1 was found by Eliashberg and Gromov [61] and Schürmann [159]
who showed that every Stein manifold X of dimension n ≥ 1 immerses prop-
erly holomorphically in C

M with M =
[
3n+1

2

]
, and if n > 1 then X embeds

properly holomorphically in CN with N =
[
3n
2

]
+ 1. Their proof relies on

an application of the Oka principle for sections of holomorphic fibre bundles
with Oka fibres over a Stein manifold. A complete exposition can also be
found in [80, Sections 9.3–9.4].

The proof of this embedding theorem breaks down in the lowest dimen-
sional case n = 1 (i.e., X is an open Riemann surface) and N = 2. The
following Forster–Bell–Narasimhan Conjecture [33,72] is one of the oldest
open problems in complex analysis.

Problem 6.1. Does every open Riemann surface embed properly holo-
morphically in C

2?

A history of the rather sporadic progress on this problem can be found in
[80, Sect. 9.10]. We mention in particular that Globevnik and Stensønes [99]
proved in 1995 that every finitely connected domain in C without isolated
boundary points embeds properly holomorphically into C2. Their proof uses
Fatou–Bieberbach domains, constructed as domains of convergence of ran-
dom sequences of shears in coordinate directions. Further progress using

Analysis Mathematica
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the same techniques was made by Černe and Globevnik [49] and Černe and
Forstnerič [48].

A new method based on Andersén–Lempert theory was introduced into
the subject a decade later by Wold [178–180]. Assume that M is a compact
bordered Riemann surface (every such is conformally equivalent to a domain
in a compact Riemann surface obtained by removing finitely many pairwise
disjoint discs [168, Theorem 8.1]) and F : M ↪→ C2 is a smooth embedding
which is holomorphic on M . We wish to show that this embedding can be
modified so that the boundary curves diverge to infinity while the interior
M \ bM becomes embedded in C

2 as a closed complex curve. The main idea
introduced by Wold is the following. Write bM =

⋃m
i=1 Ci where each Ci is

a smooth closed curve. Assume in addition that each Ci contains a point
pi such that the affine complex line in C2 through the point F (pi) = (ai, bi)
∈ C

2 in the second coordinate direction intersects F (M) only at F (pi). Such
point pi is said to be exposed by the map F . We apply to F a rational shear
of the form

G(z1, z2) =

(
z1, z2 +

m∑

i=1

ci
z1 − ai

)

for a suitable choice of the numbers ci ∈ C∗. Each point F (pi) is sent to
infinity, G has no other poles on F (M), and the surface

Σ = (G ◦ F )(M \ {p1, . . . , pm}) ⊂ C
2

is holomorphically embedded with smooth properly embedded boundary
curves Λi = (G ◦ F )(Ci \ {pi}) (i = 1, . . . ,m) diffeomorphic to R. By us-
ing Theorem 1.1 and results of Stolzenberg [167] it is then possible to find
a sequence of holomorphic automorphisms Φj ∈ Aut(C2) converging on the

interior
◦
Σ = Σ \⋃m

i=1 Λi of Σ while the boundary curves Λi diverge to in-
finity. If things are done right then the domain of convergence of the se-

quence Φj is a Fatou–Bieberbach domain Ω ⊂ C2 such that
◦
Σ ⊂ Ω ∼= C2 and

bΣ =
⋃m

i=1Λi ⊂ bΩ. This embeds the interior M \ bM of M properly into
Ω ∼= C

2.
In Wold’s joint paper with Forstnerič [88] (2009), this construction was

coupled with a newly developed technique of exposing boundary points of
bordered Riemann surfaces. This led to the following result (see [88, Theo-
rem 1.1 and Corollary 1.2]).

Theorem 6.2. Assume that M is a compact bordered Riemann surface
with C r boundary (r > 1). Every C 1 embedding M ↪→ C2 that is holomor-

phic in
◦
M =M \ bM can be approximated uniformly on compacts in

◦
M by

proper holomorphic embeddings
◦
M ↪→ C

2.
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This shows that, for bordered Riemann surfaces, the main part of Prob-
lem 6.1 is to find a holomorphic embedding of the closed surface (including
the boundary) in C

2.
In the same year 2009, Kutzschebauch, Løw and Wold [127] provided ex-

amples of open Riemann surfacesM which embed properly holomorphically
in C

2 with interpolation, meaning that for every pair of discrete sequences
aj ∈M and bj ∈ C2 without repetition there is a proper holomorphic em-
bedding F :M ↪→ C

2 with F (aj) = bj for all j = 1, 2, . . . .
It is natural to ask whether an analogue of Theorem 6.2 also holds for

Riemann surfaces with infinitely many boundary curves. After some initial
developments by Majcen [135,136], a fairly general result was obtained by
Forstnerič and Wold [89, Theorem 5.1] for domains in CP

1 with at most
countably many boundary components. By He and Schramm [103], such a
domain is conformally equivalent to a circled domain Ω ⊂ CP

1, i.e. such that
every connected component of CP1 \Ω is a round disc or a point (puncture).

Theorem 6.3. Let Ω be a circled domain in CP
1. If all but finitely

many punctures in CP
1 \Ω are limit points of discs in CP

1 \Ω, then Ω em-
beds properly holomorphically in C2.

The proof of this result in [89] uses technical ingredients from the previ-
ous papers, but it relies on a considerably more delicate induction scheme.
The problem is that the boundary components of bΩ may cluster on one an-
other. The main new point is that at every step of the induction process one
exposes and opens up a new Jordan curve in bΩ as described above, while
at the same time pushing a carefully selected finite group of curves close to
it towards infinity. The details are considerable. Essentially the same proof
gives the analogous result for circled domains in elliptic curves (tori).

The problem of embedding Riemann surfaces with punctures properly
into C

2 is even more delicate, and no general techniques have been developed
yet. Recently, Kutzschebauch and Poloni [128] (2020) showed in particular
that if K is a countable closed subset of the Riemann sphere CP

1 with at
most two accumulation points then the complement CP1 \K admits a proper
holomorphic embedding into C

2. They proved the analogous result for com-
plements of certain closed countable sets in complex tori and in hyperelliptic
Riemann surfaces.

7. Complex manifolds exhausted by Euclidean spaces

A complex manifold X of dimension n is called a long Cn if it is the union
of an increasing sequence of domains X1 ⊂ X2 ⊂ X3 ⊂ · · · ⊂ ⋃∞

j=1Xj = X
such that each Xj is biholomorphic to Cn. By the Riemann mapping theo-
rem, every long C is biholomorphic to C. The first known example of a long
C
n for any n > 1 which is not holomorphically convex, and hence not Stein,
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was found by Wold [182] in 2010. In his example, every pair Xk ⊂ Xk+1

in the exhaustion corresponds to a non-Runge Fatou–Bieberbach domain
in C

n (see Theorem 4.8) such that, for some compact subset K ⊂ X1, the
O(Xk+1)-hull of K is not contained in Xk for any k ∈ N. It follows that the
O(X)-hull of K is not compact, hence X is not Stein.

Subsequently, Forstnerič [79] showed that for n > 1 and any pair of dis-
joint countable sets A,B ⊂ C there is a holomorphic submersion F : Z → C

from an (n+ 1)-dimensional complex manifold Z such that

(a) every fibre Zz = F−1(z) (z ∈ C) is a long Cn,

(b) the fibre Zz is non-Stein for every z ∈ A, and

(c) Zz is biholomorphic to C
n for every z ∈ B.

By choosing A and B to be everywhere dense in C, one gets a submersion
onto C such that the type of the fibre jumps near every point of C from C

n

to a non-Stein long Cn.
The questions whether there exist long C

2’s without nonconstant holo-
morphic functions, or non-biholomorphic non-Stein long C

2’s, were answered
affirmatively by Boc Thaler and Forstnerič [37] in 2016. One of their results
is the following.

Theorem 7.1. For every n > 1 there exists a long Cn without any non-
constant holomorphic or plurisubharmonic functions.

To prove this result, they used Wold’s construction of a non-Runge
Fatou–Bieberbach domain [182], but applied it inductively in a consider-
ably more intricate manner.

Theorem 7.1 gives an essentially optimal counterexample to the classi-
cal union problem for Stein manifolds, asking whether an increasing union
of Stein manifolds is always Stein. For domains in C

n this question was
raised by Behnke and Thullen [32] in 1934, and an affirmative answer was
given by Behnke and Stein [31] in 1939. Some progress on the general ques-
tion was made by Stein [163] and Docquier and Grauert [55]. The first
counterexample to the union problem in any dimension n ≥ 3 was found
by Fornæss [65] in 1976. He constructed an increasing union of balls that
is not holomorphically convex, hence not Stein. His proof is based on an

example of a biholomorphic map Φ: Ω
∼=→ Φ(Ω) ⊂ C3 from a bounded neigh-

bourhood Ω ⊂ C
3 of any compact set K ⊂ C3 with nonempty interior such

that the polynomial hull of Φ(K) is not contained in Φ(Ω). (An example
of this phenomenon was discovered by Wermer [175] already in 1959.) In
1977, Fornæss and Stout constructed a three-dimensional increasing union
of polydiscs without any nonconstant holomorphic function [71]. Increasing
unions of hyperbolic Stein manifolds were studied further by Fornæss and
Sibony [67] and Fornæss [66]. For the connection with Bedford’s conjecture
we refer to the survey by Abbondandolo et al. [1]. In dimension n = 2 the
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first counterexample to the union problem was the aforementioned example
of Wold [182] of a non-Stein long C

2.
To answer the second question concerning the existence of non-biholo-

morphic non-Stein long C
n’s, Boc Thaler and Forstnerič introduced in [37]

new biholomorphic invariants of a complex manifold X , the stable core and
the strongly stable core, which allow one to distinguish some long C

n’s from
one another.

The stable core of X is the set of all points x ∈ X which admit a com-
pact neighbourhood K such that, for some (and hence for any) increasing
sequence of compact sets K1 ⊂ K2 ⊂ · · · ⊂ ⋃∞

j=1Kj = X with K ⊂ K1 and

Kj ⊂
◦
Kj+1 for all j, the increasing sequence of hulls K̂O(Kj) stabilizes at

some j = j0 ∈ N. (Such K is said to have the stable hull property). Hence,
the stable core is an open subset of X . A compact set K in X is called the
strongly stable core of X if K has the stable hull property but any com-

pact set L ⊂ X with
◦
L \K �= ∅ fails to have the stable hull property. In

a Stein manifold or a compact manifold, the stable core is the entire man-
ifold, and a Stein manifold does not have a strongly stable core. However,
these invariants are often nontrivial in complex manifolds obtained as in-
creasing unions of domains which fail to form Runge pairs. Boc Thaler and
Forstnerič proved the following result [37, Theorem 1.2].

Theorem 7.2. To every compact, strongly pseudoconvex and polyno-
mially convex domain B ⊂ Cn, n > 1, we can associate a complex man-
ifold X(B), which is a long C

n containing a biholomorphic copy of B
as its strongly stable core, such that every biholomorphic map Φ: X(B)
→ X(C) between two such manifolds takes B onto C. In particular, for
every Φ ∈ Aut(X(B)) the restriction Φ|B is a holomorphic automorphism
of B.

It follows that if X(B) is biholomorphic to X(C) then B is biholomor-
phic to C. The construction likely gives many non-equivalent long C

n’s
associated to the same domain B.

The manifold X(B) is an increasing union X1 ⊂ X2 ⊂ · · · ⊂ ⋃∞
i=1Xi=X

of domains Xi
∼= C

n such that B ⊂ X1, B̂O(Xi) = B for every i ∈ N, but for

any compact neighbourhood K of a point p ∈ X \B the hull K̂O(Xi+1) is
not contained in Xi for large i ∈ N. Every inclusion Xi ↪→ Xi+1 is given by
a Fatou–Bieberbach map φi : C

n ↪→ C
n such that φi(C

n) is not Runge (like
in Wold’s example [181]), and the O(Xi+1)-hull of the image of K in Xi

intersects Xi+1 \Xi. Thus, the increasing sequence of hulls K̂O(Xi) does not
stabilize.

It was shown by Poincaré in 1907 [148] that most pairs of smooth strongly
pseudoconvex hypersurfaces in C

n are not biholomorphic to each other.
A complete set of countably many local holomorphic invariants of such hyper-
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surfaces is provided by the Chern–Moser normal form [51]. Hence, Theorem
7.2 implies the following.

Corollary 7.3. For every n > 1 there exist uncountably many non-
equivalent long Cn’s such that none of them has any holomorphic automor-
phisms different from the identity map.

The following challenging problems remain open.

Problem 7.4. (a) Which open subsets U ⊂ Cn are the stable core of a
long Cn?

(b) Is there a long Cn which is Stein but not biholomorphic to Cn?

(c) Is there a non-Stein long C
2 with a nonconstant holomorphic func-

tion?

(d) Is there a long C
2 without any nonconstant meromorphic functions?

Question (d) is motivated by the observation that some meromorphic
functions survive in the construction leading to Theorems 7.1 and 7.2.

8. Stein manifolds with the density property and Oka manifolds

In this section we discuss the role that Stein manifolds with the density
property play in the theory of Oka manifolds, in holomorphic embedding
problems, and in complex dynamics.

8.1. Stein manifolds with the density property are Oka. Re-
call (see [80, Section 5.4]) that a complex manifold X is said to be an Oka
manifold if every holomorphic map U → X from a neighbourhood of any
given compact convex set K ⊂ Cn, n ∈ N, can be approximated uniformly
on K by entire maps Cn → X . This convex approximation property (CAP)
is one of several equivalent characterisations of Oka manifolds. Recall that
holomorphic maps S → X from any Stein manifold S to an Oka manifold
X satisfy all forms of the h-principle; see [80, Theorem 5.4.4] for a precise
statement.

Another more recent characterisation of Oka manifolds is due to Kusak-
abe [122]. Consider the following condition on a complex manifold X :

(∗) For any compact convex set L ⊂ C
m (m ∈ N), open set U ⊂ Cm con-

taining L, and holomorphic map f : U → X there are an open set V with
L ⊂ V ⊂ U and a holomorphic map F : V × C

n → X for some n ≥ dimX
such that F (· , 0) = f |V and

∂

∂t

∣
∣
∣
t=0

F (z, t) : Cn → Tf(z)X is surjective for every z ∈ V.

Here, t = (t1, . . . , tn) ∈ Cn. Such F is called a dominating holomorphic spray
over f |V .
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This is a restricted version of condition Ell1 introduced by Gromov [101,
p. 72]; see also [102]. In [122, Theorem 1.3], Kusakabe used the technique of
gluing sprays from [80, Sect. 5.9] to show that this condition implies CAP,
so a complex manifold satisfying (∗) is an Oka manifold. Conversely, every
Oka manifold satisfies condition Ell1 by [80, Corollary 8.8.7].

A holomorphic map F : X×C
n →X satisfying condition (∗) with V = X

and f = IdX is a dominating spray on X . A complex manifold X which ad-
mits a dominating spray is called elliptic. This terminology was introduced
by Gromov [102], who proved that every elliptic manifold is an Oka mani-
fold; the details can be found in [85] and [80, Chapter 5]. Conversely, every
Stein Oka manifold is elliptic; see [102, 3.2.A] or [80, Proposition 5.6.15].

Suppose now that X is a Stein manifold with the density property. It
is easily seen that complete holomorphic vector fields on X span the tan-
gent space TxX at every point, so X is holomorphically flexible in the sense
of Arzhantsev et al. [26,27]. It follows that for any compact subset K of X
there exist finitely many complete holomorphic vector fields which gener-
ate TX over K. Denoting their flows by φ1, . . . , φn, we obtain a spray
F : X × C

n → X of the form

(8.1) F (x, t1, . . . , tn) = φ1t1 ◦φ2t2 ◦ · · · ◦φntn(x), x ∈ X, tj ∈ C, j = 1, . . . , n

which is dominating at every point of K. This means that X is weakly
elliptic, and hence an Oka manifold [78, Corollary 5.5.12]. With some more
work, one can show that finitely many complete holomorphic vector fields
span the tangent bundle of X at every point, and hence X admits a globally
dominating spray of the form (8.1); see [110, Theorem 4] or [80, Proposition
5.6.22 (b)]. Let us record this and a few related results.

Theorem 8.1. (a) Every Stein manifold with the density property is an
Oka manifold.

(b) Every Stein manifold with the volume density property is an Oka man-
ifold.

(c) Every complex manifold with the density property whose tangent bun-
dle is pointwise spanned by globally defined holomorphic vector fields is an
Oka manifold.

The argument leading to statement (a) was given above (see also [78,
Theorem 5.5.18]). Part (b) follows from [112, Lemma 4.1], which says that
on a Stein manifold with the volume density property there are finitely many
complete divergence-free holomorphic vector fields which span the tangent
space at each point, so the manifold is elliptic. The main point is to use the
isomorphism (2.3) between holomorphic vector fields with vanishing diver-
gence and closed holomorphic (n− 1)-forms, where n is the dimension of the
manifold, and the fact that Cartan’s Theorem A provides many exact (hence
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closed) holomorphic (n− 1)-forms. Part (c), which does not use Steinness, is
obtained by noting that the two conditions ensure that the tangent bundle
TX is spanned over any compact subset of X by finitely many C-complete
holomorphic vector fields, so X is weakly elliptic and hence Oka.

Remark 8.2. Theorem 8.1(c) corresponds to [80, Proposition 5.6.23].
In the latter source the hypothesis that the tangent bundle TX is spanned
by globally defined holomorphic vector fields is accidentally missing, but is
tacitly used in the proof.

The connection between Stein manifolds with the density property and
Oka manifolds goes way beyond what has been said so far. As shown in
[91], Theorem 4.9 together with the characterisation of Oka manifolds by
Condition Ell1 (see (∗) above) easily implies the following result of Kusakabe
[121, Theorem 1.2 and Corollary 1.3] from 2020.

Theorem 8.3. Let X be a Stein manifold with the density property. For
every compact O(X)-convex subset K of X the complement X \K is an Oka
manifold. In particular, the complement of any compact polynomially convex
set in Cn, n > 1, is an Oka manifold.

For X = Cn the proof goes as follows. Given a holomorphic map
f : V → C

n \K as in (∗) on a neighbourhood of a compact convex set
L ⊂ C

m, Theorem 4.9 gives a dominating spray F : V × Cn → Cn \K such
that for every z ∈ V , F (z, · ) : Cn → Cn \K is a Fatou–Bieberbach map and
F (z, 0) = f(z). Thus, Cn \K satisfies Condition Ell1, and hence is Oka by
Kusakabe’s theorem [122]. The general case follows from [91, Theorem 3.1].

Kusakabe also proved that complements of certain unbounded closed
polynomially convex sets E ⊂ C

n are Oka. (A closed set is polynomially
convex if it is exhausted by an increasing sequence of compact polynomially
convex sets.) The following is [121, Theorem 1.6].

Theorem 8.4. Let E be a closed polynomially convex set in Cn, n ≥ 2,
such that

(8.2) E ⊂ {
(z,w) ∈ C

n−2 × C
2 : |w| ≤ C(1 + |z|)}

for some C > 0. Then Cn \ E is an Oka manifold.

To prove this result, Kusakabe first showed that the restricted coordinate
projection π : Cn \E → Cn−2, π(z,w) = z, has the Oka property for liftings;
see [80, Corollary 5.5.11] for this notion. In particular, any holomorphic
map f : V → C

n \ E from a Stein manifold V (again, it suffices to consider
convex domains in Euclidean spaces) is the core of a fibre-dominating spray
F : V ×C

m → C
n \E with F (· ,0) = f and π ◦F (z, t) = π ◦f(z) for all z ∈ V

and t ∈ C
m. By (8.2) the same holds for linear projections π′ : Cn → C

n−2
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with kernels close to kerπ = {0}n−2×C2. This gives sprays over f with val-
ues in C

n \E which are fibre-dominating in directions spanning the tangent
space to C

n at any point. By [122, Corollary 4.1] it follows that C
n \ E is

Oka. (The argument amounts to composing such sprays to obtains a domi-
nating spray over f and then applying [122, Theorem 1.3].)

Kusakabe also proved the following result (see [121, Theorem 4.2]), which
is an interesting and powerful application of the fibred density property dis-
cussed in Subsection 2.4.

Theorem 8.5. Let π : Y → B be a holomorphic submersion between re-
duced complex spaces. Assume that E is a closed subset of Y such that
every point b ∈ B admits an open neighbourhood U ⊂ B satisfying the fol-
lowing conditions:

(i) YU := π−1(U) is a Stein space,

(ii) EU := E ∩ π−1(U) is holomorphically convex in YU , and

(iii) the projection π : YU \EU → U enjoys the fibred density property (see
Subsection 2.4).

Then the restriction π : Y \ E → B enjoys the Oka property for lifings.

We also mention the result of Forstnerič and Lárusson [84] which says
that the holomorphic automorphism group Aut(Cn) for n ≥ 2 enjoys most
Oka properties for holomorphic maps X → Aut(Cn) from Stein manifolds.
Although Aut(Cn) does not carry the structure of an (infinite dimen-
sional) complex manifold, it is natural to consider a map f : X → Aut(Cn)
holomorphic if the associated evaluation map F : X × C

n → Cn, given by
F (x, z) = f(x)(z) (x ∈ X, z ∈ Cn), is holomorphic. It is an open problem
whether the same is true for the automorphism group of every Stein mani-
fold with the density property in place of C

n. In fact, it seems that this is
not known for any other example besides Cn.

8.2. Embedding Stein manifolds in Stein manifolds with the
density property. We consider the problem of embedding Stein mani-
folds into model complex manifolds. The ideal class of models would be
Oka manifolds. The following result (see [80, Corollary 8.9.3]) is obtained
by combining the main result of Oka theory [80, Theorem 5.4.4] with the jet
transversality theorem for holomorphic maps from Stein manifolds to Oka
manifolds [80, Theorem 8.9.1].

Theorem 8.6. Let X be a Stein manifold and Y be an Oka manifold.
If dimY ≥ 2 dimX , then every continuous map X → Y is homotopic to a
holomorphic immersion with simple double points. If dimY ≥ 2 dimX + 1
then the immersion can be chosen injective.

On the other hand, there are Oka manifolds which do not admit any
proper holomorphic images of even the simplest manifolds such as the disc;
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see [58, Example 1.3] which involves certain punctured tori of dimension > 1
(these are Oka). Stein manifolds with the density property are much better
in this respect, as demonstrated by the following result.

Theorem 8.7. Let X and Y be Stein manifolds, and assume that Y
has the density property or the volume density property. Then, the following
hold.

(a) If 2 dimX + 1 ≤ dimY then any continuous map f : X → Y is ho-
motopic to a proper holomorphic embedding F : X ↪→ Y . If in addition f is
holomorphic on a neighborhood of a compact O(X)-convex set K ⊂ X and X ′
is a closed complex subvariety of X such that the restriction f |X′ : X ′ ↪→ Y
is a proper holomorphic embedding, then F can be chosen to agree with f
on X ′ and to approximate f uniformly on K.

(b) If 2 dimX = dim Y then any continuous map X → Y is homotopic
to a proper holomorphic immersion X → Y with simple double points, with
additions as in part (a) concerning approximation and interpolation.

Part (a) was proved by Andrist, Forstnerič, Ritter, and Wold [18] in
2016. (The special case for Riemann surfaces was obtained beforehand by
Andrist and Wold [23].) Part (b) is due to Forstnerič [82] (2019). The proofs
strongly depend on the Andersén–Lempert theory. Using Theorem 1.3, one
inductively constructs a sequence of continuous mapsX → Y which are holo-
morphic embeddings (or immersions) on larger and larger domains in X such
that the sequence converges uniformly on compacts to a proper holomorphic
embedding or immersion X → Y . The assumption that Y has the (volume)
density property is crucial in this proof.

Theorem 8.7 is classical when Y is a Euclidean space CN [35,140,154]. In
this case, the optimal embedding dimension is N =

[
3 dimX

2

]
+1 if dimX > 1

according to Eliashberg and Gromov [61] and Schürmann [159] (see also Sec-
tion 6). It is not known whether the embedding or immersion dimension in
Theorem 8.7 can be lowered for more general Stein manifolds with the den-
sity property as targets. Another problem is the following.

Problem 8.8. Does Theorem 8.7 hold for every Oka Stein manifold Y ?

The following is a corollary to Theorem 8.7 (b) and the fact that the space
(C∗)n with coordinates z = (z1, . . . , zn) enjoys the volume density property
with respect to the volume form ω = dz1∧···∧dzn

z1···zn . (See [174] or [80, Theorem

4.10.9(c)].)

Corollary 8.9. Every Stein manifold X of complex dimension n ≥ 1
admits a proper holomorphic immersion to (C∗)2n and a proper plurihar-
monic map to R2n.

This provides a counterexample in any dimension to the conjecture of
Schoen and Yau [158] that the unit disc D does not admit any proper har-
monic maps to R

2. We refer to [81, Subsect. 3.3] and [8, Sect. 3.10] for
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the discussion of this topic, also in the context of minimal surfaces, and for
references to the earlier counterexamples for the disc X = D.

8.3. Open Runge embeddings. It was a long-standing problem
whether C

∗ × C embeds as a Runge domain in C2; such hypothetical do-
mains were called Runge cylinders in C

2. This question arose in connection
with the classification of Fatou components for Hénon maps by Bedford and
Smillie [30] in 1991. In 2021, Bracci, Raissy and Stensønes [40] obtained a
Runge embedding C

∗ × C ↪→ C2 as the basin of a non-polynomial holomor-
phic automorphism of C2 at a parabolic fixed point. In 2020, Forstnerič
and Wold [92] showed that Runge tubes are abundant in Stein manifolds
with the density property. Although their proof is completely different from
the one in [40], both use Andersén–Lempert theory. Their first result [92,
Theorem 1.1] is the following.

Theorem 8.10. Let X and Y be Stein manifolds with dimX < dim Y ,
and assume that Y has the density property. Suppose that θ : X ↪→ Y is a
holomorphic embedding with O(Y )-convex image (this holds in particular if
θ is proper), and let E → X denote the holomorphic normal bundle asso-
ciated to θ. Then, θ can be approximated uniformly on compacts in X by
holomorphic embeddings of E into Y whose images are Runge domains in Y .

To get a Runge embedding of C∗×C into C2, it suffices to embedX = C∗
onto the curve {zw = 1} ⊂ C2 and note that any holomorphic vector bundle
over C∗ (indeed, over any open Riemann surface) is trivial by Oka’s theorem
[143]. (See also [80, Sect. 5.2].) This argument gives the following corollary
to Theorem 8.10.

Corollary 8.11 (Runge tubes over open Riemann surfaces). If X is
an open Riemann surface which admits a proper holomorphic embedding into
C
2, then X × C is biholomorphic to a Runge domain in C

2. For every open
Riemann surface X and k ≥ 2, X×Ck admits a Runge embedding into Ck+1,
and into any Stein manifold Y k+1 with the density property.

The Runge embedding E ↪→ Y of the normal bundle in Theorem 8.10
need not agree with the given embedding θ : X ↪→ Y on the zero section X
of E; this is impossible in general due to Theorem 5.3. However, we can
ensure this condition for algebraic embeddings of codimension at least 2
into C

n; see [92, Theorem 1.4 and Corollary 1.5].

Theorem 8.12. Let X be a Stein manifold and θ : X ↪→ C
n be a

proper holomorphic embedding onto an algebraic submanifold of Cn. If
n≥ dimX+2 then θ extends to a holomorphic Runge embedding E ↪→ Cn of
the total space of the normal bundle of θ. In particular, every proper alge-
braic embedding X ↪→ Cn (n ≥ 3) of an affine algebraic curve extends to a
holomorphic Runge embedding X × C

n−1 ↪→ C
n.
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The proof of Theorem 8.12 uses the result of Kaliman and Kutzschebauch
[109, Theorems 4 and 6] that the Lie algebra Liealg(C

n, Y ) of algebraic vec-
tor fields on C

n vanishing on an algebraic submanifold Y ⊂ Cn of dimension
dimY ≤ n− 2 enjoys the strong algebraic density property (see Example (1)
in Subsection 2.3).

8.4. Holomorphic dynamics on Stein manifolds with the den-
sity property. Holomorphic dynamics is a lively field of complex analysis.
So far, dynamical phenomena have mainly been studied on complex Eu-
clidean spaces, which have an abundance of holomorphic endomorphisms
and automorphisms. It is natural to ask to what extent can these results
be extended to Stein manifolds with the density property, and how does the
possibly nontrivial topology of the manifold impact the global behaviour of
maps under consideration.

The first steps in this emerging field were made recently by Arosio and
Lárusson. In [24] they proved that automorphisms with chaotic behaviour
are generic among volume preserving automorphisms of a Stein manifold X
having the density property for an exact volume form. For X = C

n, n ≥ 2,
with the standard volume form this was proved by Fornæss and Sibony [69],
and the authors follow their approach. They also showed that a generic
volume preserving automorphism has a hyperbolic fixed point whose sta-
ble manifold is dense in X , generalizing a result of Peters, Vivas, and Wold
on C

n [144]. In their second paper [25], they proved closing lemmas for
automorphisms of a Stein manifold with the density property and for en-
domorphisms of an Oka Stein manifold. In the former case they needed to
impose a new tameness condition. It follows that hyperbolic periodic points
are dense in the tame non-wandering set of a generic automorphism of a
Stein manifold with the density property and in the non-wandering set of a
generic endomorphism of an Oka Stein manifold.

9. Complete complex submanifolds

In 1977, Paul Yang asked [184,185] whether there exist bounded com-
plete immersed or embedded complex submanifolds in complex Euclidean
spaces. Here, an immersion X → C

n is said to be complete if the image of
any divergent path γ : [0, 1) → X (i.e., one that leaves every compact subset
of X as t→ 1) has infinite Euclidean length. Equivalently, the Riemannian
metric on X induced by the immersion is a complete metric. Yang’s prob-
lem is an analogue of the Calabi–Yau problem for minimal surfaces in R

n.
We refer to [8, Chapter 7] for background and a discussion of recent results
on this subject.

The first such examples were constructed by Jones in 1979 [106] (a com-
plete immersed holomorphic disc in the ball B2 of C

2, and an embedded
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one in the ball of C3). Much later, Alarcón and Forstnerič proved in [5]
(2013) that every finite bordered Riemann surface admits a complete proper
holomorphic immersion in B

2 and embedding in B3. For further and more
recent developments on this subject we refer to the papers [4,7,9–11,57,97].
In particular, the following is a compilation of results by Globevnik [97,98],
Alarcón, Globevnik and López [10], Alarcón [4, Corollary 1.2], and Alarcón
and Forstnerič [7].

Theorem 9.1. For every pair of integers 1 ≤ q < n there exists a holo-
morphic submersion f : Bn → Cq whose fibres are complete complex subman-
ifolds of Bn. In particular, the ball Bn can be foliated by complete properly
embedded holomorphic discs.

The techniques used in the last three mentioned papers rely on An-
dersén–Lempert theory, and they provide some additional information on
topology of the leaves. The main idea is to place in B

n a polynomially con-
vex labyrinth consisting of countably many pairwise disjoint compact sets
(the authors used closed balls in affine hyperplanes) such that any divergent
curve in B

n avoiding all but finitely many pieces of the labyrinth has infinite
length. One then uses holomorphic automorphisms of Cn to successively
twist a given holomorphic foliation on C

n such that the resulting sequence
of foliations converges in Bn to a foliation each of whose leaves avoids all but
finitely many pieces of the labyrinth, so it is complete.

On the other hand, Globevnik’s technique in [97,98] relies on a different
idea, based on the construction of holomorphic functions on the ball which
grow sufficiently fast on pieces of a suitable labyrinth. This technique does
not allow any control of the topology of the leaves.

The methods in the cited papers, together with the construction of suit-
able labyrinths by Charpentier and Kosiński [50] (2020), show that the same
result holds in all pseudoconvex Runge domains in C

n, n > 1. Globevnik ex-
tended his original construction of complete complex submanifolds of Bn [97]
to this more general setting in [98] (2016), but in his case (for constructing
fast growing holomorphic functions) less precise labyrinths suffice.

In a related direction, Alarcón and Forstnerič constructed in [6] a com-
plete injective holomorphic immersion C → C

2 whose image is dense in C2.
The analogous result was obtained for any closed complex submanifold
X ⊂ C

n (n > 1) in place of C.

10. An application in 3-dimensional topology

It is well-known that diffeomorphism groups of smooth or real analytic
manifolds of positive dimension are huge, in particular infinite dimensional.
Complete vector fields on such manifolds can be constructed using cutoff
functions and approximation in the strong Whitney topology (to obtain real
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analytic ones). It seems therefore not very interesting to study real shears
on R

n or, say, multiplicative shears on a torus.
However, there are situations where real shears gain importance for some

specific reason. In this section we describe a recent example of this type. It
concerns the affirmative answer, given by Rafael Zentner [187] in 2018, to the
long standing problem in 3-dimensional topology asking whether the funda-
mental group of any homology 3-sphere different from the 3-sphere S3 admits
an irreducible representation into SL2(C), i.e. a 2-dimensional irreducible
representation. Here, a homology 3-sphere is a compact 3-manifold X whose
homology groups are those of S3. Its fundamental group is nontrivial un-
less X is S3 itself.

Let us explain the main points in Zentner’s analysis. There are three
types of homology 3-spheres, and the one type where the answer was not
known are those homology 3-spheres which admit a degree 1-map to a splic-
ing of two nontrivial knots in S3. Since a degree 1-map is π1-surjective, it
remained to find the answer for those homology 3-spheres which arise by
the following construction, called splicing. Take a pair of knots K1, K2

in S3. Remove the tubular neighborhood N(Ki) of the knot from S3, i.e.
set Xi := S3 \N(Ki), and glue these two manifolds along the boundaries
of N(Ki) (each isomorphic to a 2-dimensional torus) so that the longitude
of one torus is glued onto the meridian of the other torus. The resulting
manifold is a homology 3-sphere, called the splicing YK1,K2

of the knots K1

and K2.
In order to produce an irreducible representation of the fundamental

group π1(YK1,K2
) into SL2(C), it was important to prove that for any two

nontrivial knots K1 and K2 the images of their representation varieties in
the representation variety R(T 2) of the boundary torus T 2 (the place where
we glued) intersect and thus yields a representation of π1(YK1,K2

). This is
the place where the real version of the Andersén–Lempert theory comes into
play.

The representation variety, i.e. the space of SU(2)-representations of the
fundamental group of a two-dimensional torus T 2 modulo conjugation,

R(T 2) = Hom(Z2, SU(2))/SU(2)

is homeomorphic to the pillowcase, a 2-dimensional sphere. In fact, if we
denote generators of π1(T

2) ∼= Z2 by m and l, then for a representation ρ
we may suppose that

ρ(m) =

[
eiα 0
0 e−iα

]
and ρ(l) =

[
eiβ 0
0 e−iβ

]
,

and hence we can associate to ρ a pair (α,β) ∈ [0,2π]× [0,2π], which we also
can think of as being a point on the two-dimensional torus T 2 = R

2/2πZ2.

Analysis Mathematica



THE FIRST THIRTY YEARS OF ANDERSÉN–LEMPERT THEORY

Fig. 10.1: The gluing pattern for obtaining the pillowcase from a rectangle, and the image
of the representation variety R(K) of the trefoil knot in the pillowcase

However, it is easily seen that a representation to which we associate
(2π − α, 2π − β) is conjugate to ρ. This is the only ambiguity, as the trace
of an element in SU(2) determines its conjugacy class. Therefore R(T 2) is
isomorphic to the quotient of the torus T 2 by the hyperelliptic involution
τ : (α, β) �→ (−α,−β). This has four fixed points, and its quotient

R(T 2) = T/τ

is homeomorphic to the 2-sphere. It can also be seen as the quotient of the
fundamental domain [0, π]× [0, 2π] for τ by identifications on the boundary
as indicated in Figure 10.1.

All abelian representations map to the red line ‘at the bottom’.
As explained above, one has to understand the image (under the map

induced by restriction) of the representation variety R(K) of the knot com-
plement S3 \K in the representation variety of the boundary torus R(T 2)
(the pillowcase). As an example, in Figure 10.1 the image of R(K) for K
being the trefoil knot is drawn in red.

Using results of Kronheimer and Mrowka, for any nontrivial knot K the
existence of points in the image of R(K) lying on the straight line ‘on the top’
of the pillowcase can be deduced, as well as on any holonomy perturbation
of this top line.

The simplest class of holonomy perturbations are shearing maps on the
torus,

Φf : R2/2πZ2 → R
2/2πZ2, (x, y) �→ (x, y + f(x))

for some odd 2π-periodic function f . Of course one can also change the roles
of x and y. The following version of Theorem 1.1 for a real torus is due to
Zentner [187, Theorem 3.3].
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Theorem 10.1. Let ψ : T → T be an area-preserving map of the n-
dimensional torus T for n ≥ 2, which is volume preservingly isotopic to the
identity, and let ε > 0 be given. Then there is a finite composition of shear-
ing maps φ : T → T which is ε-close to ψ. Moreover, the whole isotopy can
be realized ε-close to an isotopy through finitely many shearing isotopies.

This result, or rather an equivariant version of it with respect to the in-
volution, was the crucial ingredient to prove the existence of points in the
image of R(K) in the pillowcase R(T 2) on any path connecting the left and
right upper corners. (Namely, using Theorem 10.1 and the Moser trick, any
path can be approximated arbitrarily well by the straight line on the top of
the pillowcase moved by holonomy perturbations; here, shears. A closedness
argument gives the desired conclusion.) This latter fact can in turn be used
to show that the images of the representation varieties of the two nontrivial
knots in the pillowcase always intersect. Indeed, the image of the represen-
tation variety of K1 has to wrap around the pillowcase in one direction (its
image undern the lift to the torus contains a path in the homology class of
the longitude), while the image of the representation variety of K2 has to
wrap around the pillowcase in the other direction (its image under the lift
to the torus contains a path in the homology class of the meridian). Thus,
these images meet, thereby yielding a nontrivial representation of YK1,K2

.

11. The recognition problem for complex Euclidean spaces

The complex affine spaces Cn are the most natural and basic objects in
algebraic and complex analytic geometries, comparable to the role played
by the real Euclidean spaces for topological or differentiable manifolds. One
of the most famous achievements of geometric topology for open real mani-
folds is the complete solution of the Open Poincaré Conjecture, namely, the
characterisation of Euclidean spaces among open topological manifolds as
the unique ones which are simultaneously contractible and simply connected
at infinity. This conjecture was established by Stallings for PL-manifolds
of dimension n ≥ 5, Freedman in the case n = 4, and finally Perelman in
dimension n = 3.

Nothing even remotely close to this exists in the complex algebraic or
holomorphic case, with the exception of the work of Ramanujam [149] on
affine algebraic surfaces (see below). Indeed, even extremely simple affine
algebraic manifolds, such as the Koras–Russell cubic threefold KR in C

4

defined by the polynomial equation x+ x2y+ s2 + t3 = 0 (see (2.1)), are not
fully understood in this context.

In his landmark paper [149] (1971), Ramanujam proved that a smooth
contractible affine algebraic surface is isomorphic to C

2 if it is simply con-
nected at infinity. At the same time, he constructed many examples of
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smooth contractible affine algebraic surface with non-trivial fundamental
group at infinity, thereby opening the way for the construction of higher di-
mensional algebraic or analytic varieties which were later on verified, thanks
to the cancellation theorems due to Iitaka–Fujita in the algebraic case and
Zaidenberg in the holomorphic one, to be diffeomorphic to Euclidean spaces,
while neither algebraically nor holomorphically isomorphic to C

n. In the
holomorphic case, even dimension 2 remains a mystery. These types of va-
rieties, nowadays called exotic affine spaces, are challenging objects.

These examples show that additional properties must be imposed on
a variety which is diffeomorphic to R

2n in order to be biholomorphic or
algebraically isomorphic to C

n. A natural attempt is to use symmetries.
Affine spaces are homogeneous under the action of algebraic or holomorphic
one-parameter flows. Recall that vector fields generating algebraic flows are
called locally nilpotent derivations, LND’s for short. A seminal breakthrough
of Makar–Limanov [137] in 1996 was to realize that the Koras–Russell cubic
KR has some rigidity with respect to such algebraic flows. He introduced
an invariant, now called the Makar-Limanov invariant, which measures the
richness of algebraic flows and the homogeneity of a variety under the action
of the group which they generate. Makar–Limanov and Kaliman developed
in [116] sophisticated algebraic techniques to compute this invariant for spe-
cial classes of affine varieties containing the Koras–Russell cubic. Refine-
ments of these techniques by Dubouloz, Moser, Jauslin and Poloni enabled
the construction of pairs of exotic affine 3-folds failing the Zariski Cancella-
tion Problem (see Problem 11.1), the construction of holomorphically trivial
deformations of pairwise non-isomorphic algebraic exotic affine 3-folds [59],
and a full description of the group of algebraic automorphisms of the Koras-
Russell cubic KR [60,139]. The latter group is infinite dimensional like the
group Autalg(C

3), but it acts on KR with precisely four orbits, in contrast
to the transitivity of the action of Autalg(C

3) on C3.
In general, a characterisation of affine spaces is considered very useful if

it can be used to solve the following Zariski Cancellation Problem.

Problem 11.1. Assuming thatX is an affine algebraic variety such that
X × C

k is isomorphic to Cn+k for some k ∈ N, is X is isomorphic to the
affine space C

n? The same question for X a Stein manifold and the word
isomorphic replaced by biholomorphic.

For n = 1 the affirmative answer is not difficult, while for n = 2 it is a
deep result due to Fujita [93] and Miyanishi and Sugie [138]. The case n ≥ 3
is completely open. In the holomorphic case dimension n = 1 is easy, and
the problem is open in higher dimensions.

Since the density property of a Stein manifold is a precise way of saying
that the group of its automorphisms is big, the following problem of Tóth
and Varolin [170] is very natural.
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Problem 11.2. Is every Stein manifold with the density property which
is diffeomorphic to R

2n also biholomorphic to Cn?

This question remains unsolved. An affirmative answer would yield (fol-
lowing Derksen and Kutzschebauch [53]) a nonlinearizable holomorphic ac-
tion of C

∗ on C
3, and we would know that holomorphic C

∗-actions on C
n

are linearizable if and only if n ≤ 2. As it stands, the case n = 3 is un-
solved, and it can only be solved with a good characterisation of C

3 in
hand. Incidentally, the linearization problem was the main motivation of
Makar–Limanov for introducing his invariant. The most spectacular use of
the Makar–Limanov invariant was the proof by Kaliman et al. [108] that ev-
ery algebraic C∗-actions on C3 is linearizable. This invariant was the crucial
tool in proving that all potential counterexamples to linearization (like the
Koras–Russell 3-fold) are non-isomorphic to C

3.
It is still unknown whether an affine algebraic variety which is biholo-

morphic to C
n is also algebraically isomorphic to Cn. This is known as

Zaidenberg’s problem [186]. If Problem 11.2 of Tóth and Varolin has an af-
firmative answer, then the Koras–Russell cubic KR is a counterexample to
Zaidenberg’s problem. Indeed, Leuenberger [133] showed that KR has the
density property (see Example (5) in Subsec. 2.1), and it is known to be
diffeomorphic to R

6.
One can naturally generalise the cancellation problem as follows.

Problem 11.3. Let X and Y be affine algebraic manifolds such that
X × C is algebraically isomorphic to Y ×C. Does it follow that X is isomor-
phic to Y ? The analogous problem for Stein manifolds and biholomorphisms.

Here the answer is negative in general, and additional conditions must
be imposed. For example, Danielewski found that for a polynomial p with
simple roots the affine surfaces Dn := {(x, y, z) ∈ C

3 : xny = p(x)} satisfy
Dn ×C ∼= Dm ×C (unpublished preprint, 1989). Later, Fieseler [64] showed
that Dn and Dm for n �= m are not even homeomorphic by examining their
fundamental group at infinity. This gives counterexamples to both the holo-
morphic and the algebraic cancellation. Cancellation also fails in the dif-
ferentiable category. Counterexamples include some nice smooth complex
algebraic varieties. Take for example a surface of Ramanujam which is con-
tractible but not simply connected at infinity. The surface

S :=
{
(x, y, z) ∈ C

3 :
(xz + 1)3 − (yz + 1)2 − z

z
= 0

}

is such an example. It is not homeomorphic to R4, but S ×C is contractible
and simply connected at infinity. This is easily seen from the definition of
the fundamental group at infinity; however, we remark that in general for
a smooth affine algebraic variety of dimension n ≥ 3, contractibility implies
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simple connectedness at infinity [186]. Thus, S × R2 is diffeomorphic to R6.
By Miyanishi–Sugie [138] it follows that S×C is not algebraically isomorphic
to C

3. It remains unknown whether S × C is biholomorphic to C3.
The affine modification M of C4 with divisor D := C3 × {0} ⊂ C4 along

the center C := S ⊂ C
3 × {0} is another interesting example. It is given by

one equation in C5:

M =
{
(x, y, z, u, v) ∈ C

5 : uv =
(xz + 1)3 − (yz + 1)2 − z

z

}
.

The manifold M is known to be diffeomorphic to R8 by works of Kaliman
and Zaidenberg [117] and Kaliman and Kutzschebauch [109]. If M is iso-
morphic to C

4, we have an algebraic C4 in C5 which is not algebraically
straightenable since the defining polynomial for M has singular fibres. No
such examples are known. Except for the classical case of Abhyankar–Moh–
Suzuki of lines in the plane (see the discussion after Corollary 5.2), it is
unknown whether a smooth algebraic hypersurface in C

n+1 which is isomor-
phic to Cn is algebraically straightenable. If M is not isomorphic to C4 but
is biholomorphic to C4, it provides a counterexample to Zaidenberg’s prob-
lem. Finally, if M is not biholomorphic to C4 then it is a counterexample
to Problem 11.2 of Tóth and Varolin. It is still unknown whether M is iso-
morphic or biholomorphic to C

4, which shows how difficult these questions
are.

Let us finally mention some characterisations of affine spaces. Unfortu-
nately, they are not useful for solving any of the problems we have formu-
lated.

It is classically known in both categories that the algebra of regular or
holomorphic functions, respectively, determines the underlying space. For
the affine algebraic case this holds by definition (the space is the spectrum
of the algebra of regular functions), and for reduced and irreducible Stein
spaces it is a classical result attributed to Remmert in his habilitation the-
sis; see Grauert and Remmert [100, Theorem 6, p. 184]. If one considers
only the ring structure of the space of holomorphic functions, one must also
impose the condition that the ring homomorphism maps i =

√−1 to itself
(and not to −i); see the appendix of the paper [105] which was published
by Heisuke Hironaka under the pseudonym Hei Iss’sa. This result is known
as Bers’s Theorem after Lipman Bers who first proved it for open Riemann
surfaces. The fact that the C-algebra of meromorphic functions determines
the underlying Stein space is known as Iss’sa’s Theorem [105]. In the same
paper it is shown that a field isomorphism of the spaces of meromorphic
functions has to map i to i in order to induce a biholomorphism (and not an
antibiholomorphism) between the Stein spaces.

In the algebraic setting, there are no applicable characterisations other
than those by Miyanishi–Sugie and Ramanujam mentioned above. A recent
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result of Cantat, Regeta and Xie [47] states that if X is a reduced connected
affine algebraic variety whose automorphism group Autalg(X) is isomorphic
to Autalg(C

n) as an abstract group, then X is isomorphic to Cn. Under
the stronger assumption that the automorphism groups are isomorphic as
ind-groups (a notion introduced by Shafarevich in [160,161]), this conclu-
sion was obtained earlier by Kraft [120]. Another result of Andrist and
Kraft [19] says that if the semigroups of self-maps End(X) and End(Cn) are
isomorphic then, up to an automorphism of the base field C, X is isomor-
phic to Cn. (The result in [19] is proved over an algebraically closed field
of arbitrary characteristic. The algebraic case over the complex numbers is
already implicitly contained in [15].) In the holomorphic category, Andrist
proved in [15] that if the semigroup of self-maps End(X) of a complex space
is abstractly isomorphic to the semigroup End(Cn) then X is biholomorphic
or antibiholomorphic to Cn. The difference in the results over the com-
plex numbers is that, in the holomorphic case, the field automorphisms are
continuous.

A result of Isaev and Kruzhilin [104], which compares to Kraft’s result
with the ind-group structure, says that if the automorphism group of a com-
plex manifold X of dimension n is isomorphic as a topological group to
Aut(Cn) then X is biholomorphic to Cn. The isomorphism of topological
groups implies by classical results that there is a real analytic action of the
unitary affine group R2n � Un on X by holomorphic automorphisms, and
classifying manifolds with such isometries is not too difficult.

Another criterion comes from the work of Kutzschebauch, Lárusson and
Schwarz [125]. As in the previous result, it assumes some group action
on X . If a Stein manifold X carries the action of a reductive group G so
that the categorical quotient is stratified biholomorphic to the quotient of a
large linear action of G on Cn, then X is biholomorphic to Cn, and there is
a biholomorphism linearizing the action. The same is true without the as-
sumption of largeness for finite groups, as well as groups G having connected
component C∗ [130] or G = SL2(C) [125].

A characterisation in the holomorphic case which is clearly worth to be
explored further is due to Boc Thaler [36, Theorem IV.15].

Theorem 11.4. Let X be a Stein manifold with the density property.
Then X is biholomorphic to C

n if and only if X can be exhausted by Runge
images of the ball.
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[75] F. Forstnerič, Actions of (R,+) and (C,+) on complex manifolds, Math. Z., 223

(1996), 123–153.
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[82] F. Forstnerič, Proper holomorphic immersions into Stein manifolds with the density
property, J. Anal. Math., 139 (2019), 585–596.
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F. FORSTNERIČ and F. KUTZSCHEBAUCH

[122] Y. Kusakabe, Elliptic characterization and localization of Oka manifolds, Indiana
Univ. Math. J., 70 (2021), 1039–1054.

[123] F. Kutzschebauch, Andersén-Lempert-theory with parameters: a representation the-
oretic point of view, J. Algebra Appl., 4 (2005), 325–340.

[124] F. Kutzschebauch, Manifolds with infinite dimensional group of holomorphic auto-
morphisms and the linearization problem, in: Handbook of Group Actions. V,
Adv. Lect. Math. (ALM), vol. 48, Int. Press (Somerville, MA, 2020), pp. 257–
300.

[125] F. Kutzschebauch, F. Lárusson and G. W. Schwarz, Sufficient conditions for holo-
morphic linearisation, Transform. Groups, 22 (2017), 475–485.

[126] F. Kutzschebauch, M. Leuenberger and A. Liendo, The algebraic density property
for affine toric varieties, J. Pure Appl. Algebra, 219 (2015), 3685–3700.

[127] F. Kutzschebauch, E. Lø w and E. F. s. Wold, Embedding some Riemann surfaces
into C

2 with interpolation, Math. Z., 262 (2009), 603–611.
[128] F. Kutzschebauch and P.-M. Poloni, Embedding Riemann surfaces with isolated

punctures into the complex plane, Proc. Amer. Math. Soc., 148 (2020), 4831–
4835.

[129] F. Kutzschebauch and A. Ramos-Peon, An Oka principle for a parametric infinite
transitivity property, J. Geom. Anal., 27 (2017), 2018–2043.

[130] F. Kutzschebauch and G. W. Schwarz, A characterization of linearizability for holo-
morphic C

∗-actions, Internat. Math. Res. Notices (2021).
[131] F. Kutzschebauch and E. F. Wold, Carleman approximation by holomorphic auto-

morphisms of Cn, J. Reine Angew. Math., 738 (2018), 131–148.
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algébriques, C. R. Acad. Sci., Paris, 139 (1905), 5–9.
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