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In this paper we introduce and investigate a new notion of flexibility for domains in 
Euclidean spaces Rn for n ≥ 3 in terms of minimal surfaces which they contain. A 
domain Ω in Rn is said to be flexible if every conformal minimal immersion U → Ω
from a Runge domain U in an open conformal surface M can be approximated 
uniformly on compacts, with interpolation on any given finite set, by conformal 
minimal immersion M → Ω. Together with hyperbolicity phenomena considered 
in recent works, this extends the dichotomy between flexibility and rigidity from 
complex analysis to minimal surface theory.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article 
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1. Introduction

A natural question in the theory of minimal surfaces in Euclidean spaces Rn for n ≥ 3 is how the 
geometry of a domain Ω ⊂ Rn influences the conformal properties of minimal surfaces which it contains; 
see the survey [34]. While every domain contains many conformal minimal surfaces parameterized by the 
disc D = {z ∈ C : |z| < 1}, any bounded domain and many unbounded domains do not admit any such 
surfaces parameterized by C.

A complex manifold which does not admit any nonconstant holomorphic maps from C is called Brody 
hyperbolic [11]. The closely related Kobayashi hyperbolicity was introduced by S. Kobayashi [30] in 1967. 
Analogous notions have recently been studied for minimal surfaces in Rn; see [15,19,20]. Every domain Ω
in Rn for n ≥ 3 carries a Finsler pseudometric, gΩ, defined like the Kobayashi pseudometric but using 
conformal minimal (equivalently, conformal harmonic) discs; see [20]. This minimal metric is the largest 
pseudometric on the tangent bundle TΩ = Ω × Rn such that every conformal harmonic map D → Ω is 
metric-decreasing when D is endowed with the Poincaré metric. The domain Ω is said to be hyperbolic if 
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gΩ induces a distance function dΩ on Ω, and complete hyperbolic if (Ω, dΩ) is a complete metric space. We 
refer to [15] for basic properties and results on hyperbolic domains.

In this paper we study domains having the opposite property, which we now describe.
Recall that a conformal surface is a topological surface with an atlas whose transition maps are conformal 

diffeomorphisms between plane domains, hence holomorphic or antiholomorphic. Every topological surface 
admits a conformal structure [4, Sect. 1.8]. An orientable conformal surface is a Riemann surface, and a 
nonorientable conformal surface carries a two-sheeted conformal covering M̃ → M by a Riemann surface 
M̃ . A compact set K in a conformal surface M is said to be Runge if M \ K has no relatively compact 
connected components. A C 2 map f : M → Rn which is conformal except at branch points parameterizes 
a minimal surface in Rn if and only if f is harmonic; [4, Theorem 2.3.1 and Remark 2.3.7].

Definition 1.1. A connected open domain Ω in Rn for n ≥ 3 is flexible (for immersed minimal surfaces) if 
for any open conformal surface M , compact Runge set K ⊂ M , finite set A ⊂ K, and conformal harmonic 
immersion f : U → Ω from an open neighbourhood U of K there is for every ε > 0 and m ∈ N a 
conformal harmonic immersion f̃ : M → Ω which agrees with f to order m at every point of A and satisfies 
supp∈K |f̃(p) − f(p)| < ε. An open set Ω ⊂ Rn is flexible if every connected component of Ω is such.

Similarly we introduce the notion of flexibility for branched minimal surfaces; see Remark 1.10. Flexibility 
is inspired by the notion of an Oka manifold; see Remark 1.11. Note that if Ω1 ⊂ Ω2 ⊂ · · · is an increasing 
sequence of flexible domains in Rn then their union Ω =

⋃∞
i=1 Ωi is clearly flexible as well. It is known 

that the Euclidean space Rn is flexible and the resulting conformal minimal immersions M → Rn may be 
chosen proper; see [4, Theorem 3.10.3] for the orientable case and [3, Theorem 4.4] for the nonorientable 
one. The proofs of these results show that flexibility implies the following ostensibly stronger property with 
jet interpolation on closed discrete sets in a conformal surface.

Proposition 1.2. Assume that Ω ⊂ Rn is a flexible domain. Given an open set U in an open conformal 
surface M , a compact set K ⊂ U which is Runge in M , a closed discrete set A = {ak}k∈N in M contained 
in U , and a conformal harmonic immersion f : U → Ω, there is for every ε > 0 and mk ∈ N (k ∈ N) a 
conformal minimal immersion f̃ : M → Ω which agrees with f to order mk at ak ∈ A for every k ∈ N and 
satisfies supp∈K |f(p) − f̃(p)| < ε.

On the other hand, no hyperbolic domain is flexible. Furthermore, the halfspace Hn = {(x1, x2, . . . , xn) ∈
Rn : xn > 0} is not flexible since every harmonic map C → Hn has constant last component by Liouville’s 
theorem. The only properly immersed minimal surfaces in R3 contained in a halfspace are flat planes (see 
Hoffman and Meeks [29]).

Our first result gives a geometric sufficient condition for flexibility; it is proved in Sect. 3.

Theorem 1.3. Let Ω be a connected domain in Rn (n ≥ 3) satisfying the following conditions:

(a) For every point p ∈ Ω there is an affine 2-plane Λ ⊂ Rn with p ∈ Λ and a number δ > 0 such that the 
Euclidean δ-tube around Λ is contained in Ω, and

(b) for some Λ as above, given a ball B ⊂ Rn centred at 0 there is a point q ∈ Λ such that q + B ⊂ Ω.

Then Ω is flexible. Furthermore, if K is a compact Runge set with piecewise C 1 boundary in an open 
conformal surface M and f : K → Rn is a conformal minimal immersion of class C 1(K) with f(bK) ⊂ Ω, 
then f can be approximated in C 1(K) by conformal minimal immersions f̃ : M → Rn satisfying f̃(M \K) ⊂
Ω.
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Remark 1.4. The conditions in the theorem can equivalently be stated as follows. For every point p ∈ Ω
there are Euclidean coordinates x = (x′, x′′) on Rn = Rn−2 ×R2 centred at p = {x = 0} and satisfying the 
following two conditions:

(a) there is a δ > 0 such that {(x′, x′′) ∈ Rn : |x′| < δ} ⊂ Ω, and
(b) given a ball B ⊂ Rn centred at x = 0 there is v = (0′, v′′) ∈ Rn such that v + B ⊂ Ω.

Here, |x| denotes the Euclidean norm of x ∈ Rn, and any Euclidean coordinates x̃ on Rn are related to 
the reference ones by x̃ = R(x) = Ox + v, where R is an element of the affine orthogonal group AO(n)
generated by the orthogonal group O(n) together with translations.

We have the following precise result on flexibility of domains with convex complements.

Corollary 1.5. Let C be a proper closed convex subset of Rn for n ≥ 3. Then, Ω = Rn \ C is flexible if and 
only C is not a halfspace or a slab (a domain between two parallel hyperplanes).

Proof. Let H ⊂ Rn be an affine subspace of maximal dimension k ∈ {0, 1, . . . , n − 1} contained in C, and 
set m = n − k ∈ {1, . . . , n}. Then, in Euclidean coordinates on Rn in which H = {0}m × Rk we have that 
C = C ′×Rk, where C ′ is a closed convex set in Rm which does not contain any affine line. If k = n −1 then 
m = 1. Since a closed convex set in R is an interval or a halfline, C is a slab or a halfspace, so its complement 
is not flexible. Assume now that k ≤ n − 2, so m ≥ 2. Fix a point p = (p′, p′′) ∈ Ω = (Rm \C ′) ×Rk and let 
us verify that the hypotheses of Theorem 1.3 hold. By translation invariance of C in the Rk direction we 
may assume that p′′ = 0. Since C ′ does not contain any affine line, there is a hyperplane p′ ∈ Σ ⊂ Rm such 
that any hyperplane Σ′ ⊂ Rm through p′ and close enough to Σ avoids C ′ (see [7, Theorem 1.3.11] and [23, 
proof of Theorem 6.1]). If m ≥ 3 then any affine 2-plane Λ ⊂ Σ with p′ ∈ Λ clearly satisfies the conditions 
in Theorem 1.3. (Condition (b) holds by placing the centre of the ball at any point of Λ far enough from 
p = (p′, 0′′).) If m = 2 then Σ is a line, and the product Λ = Σ × L with any line L ⊂ {0}m × Rk satisfies 
the desired conditions by placing the centre of the ball at any point of Σ far enough from p. �

The next observation only holds for n = 3 as shown by Example 1.9.

Corollary 1.6. If C is a closed connected set in R3 whose complement Ω = R3 \ C satisfies the conditions 
in Theorem 1.3, then C is convex.

Proof. Condition (a) in Theorem 1.3 implies that any point in Ω can be separated from C = R3 \ Ω by a 
hyperplane. Since C is connected, it lies in one of the halfspaces determined by this hyperplane. This shows 
that C is an intersection of halfspaces and hence is convex. �

Note however that there are closed non-convex (disconnected) sets in R3 whose complement satisfies the 
conditions in Theorem 1.3. In particular, any compact set of zero Hausdorff length is such.

Remark 1.7. If C is a closed convex set in R3 with nonempty interior C̊ = C \ bC which is not R3, a 
halfspace, or a slab, then C̊ does not contain any affine 2-plane. By [15, Theorem 1.4] it follows that C̊ is 
hyperbolic (for minimal surfaces). Thus, the boundary bC is a hypersurface dividing R3 into the union of a 
flexible connected domain Ω = R3\C and a hyperbolic domain C̊. An example is the graph x3 = f(x1, x2) of 
a nonlinear convex function f : R2 → R. By considering the family of hypersurfaces Σc = {x3 = cf(x1, x2)}
for c ∈ R we obtain a family of splittings of R3 into a flexible and a hyperbolic domain such that the 
character of the two sides gets reversed when c passes the value c = 0, at which point we have a pair of 
halfspaces that are neither flexible nor hyperbolic. A similar phenomenon in the complex world, splitting Cn
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for n > 1 by a convex graphing hypersurface into an Oka domain and an unbounded Kobayashi hyperbolic 
domain, was described by Forstnerič and Wold in [23].

Example 1.8. If Γ ⊂ R2 is an open cone with vertex (0, 0) and angle φ > π, then the wedge

W =
{
(x1, x2, x3) ∈ R3 : (x2, x3) ∈ Γ

}
(1.1)

is flexible by Corollary 1.5. In this case, the conditions in Theorem 1.3 can be seen directly as follows. If �1
and �2 are the lines in R2 supporting the two sides of the cone Γ, then at each point p ∈ W the translate 
of one of these lines, together with the translate of the x1-axis (the edge of the wedge W ), span an affine 
2-plane Λ ⊂ W satisfying conditions (a) and (b).

Minimal surfaces in wedges were studied in many papers; see [6,25–28,32,33], among others. Alarcón and 
López showed in [6] that every open Riemann surface, M , admits a proper conformal minimal immersion in 
R3 with the image contained in a wedge W of the form (1.1) with Γ ⊂ R2 an open cone with vertex (0, 0)
and angle φ > π. Their construction also gives the approximation statement in Theorem 1.3. Indeed, the 
conditions in Theorem 1.3 conceptualize the construction method introduced in [6].

On the other hand, in dimensions n ≥ 4 there are flexible domains with non-convex complements satis-
fying conditions in Theorem 1.3. Here are some simple examples.

Example 1.9. Let Ω be the domain in R4 with coordinates x = (x1, x2, x3, x4) given by

x4 > −a1x
2
1 − a2x

2
2 + a3x

2
3

for some constants a1 ≥ 0, a2 > 0, and a3 ∈ R. Then, Ω satisfies the conditions in Theorem 1.3. Indeed, 
for every c ∈ R the slice Ωc = Ω ∩ {x3 = c} is concave and is strongly concave in the x2-direction, so it is 
a union of tubes around affine 2-planes. Given an affine 2-plane Λ ⊂ Ωc and a ball 0 ∈ B ⊂ R4, we have 
p + B ⊂ Ω for any point p = (p1, p2, p3, p4) ∈ Λ with sufficiently big p2 component. If a3 > 0 then Ω is 
convex in the x3-direction.

Another family of examples is wedges W ⊂ Rn, n ≥ 4, given by

x4 > −a2|x2| + a3|x3| for some a2 > 0 and a3 ∈ R.

Every slice W ∩ {x3 = const} is a concave wedge as in Example 1.8 whose edge is the x1-axis. Clearly, W
satisfies the conditions in Theorem 1.3. If a3 > 0 then the wedge W is convex in the x3-direction.

Remark 1.10 (Flexible domains for branched minimal surfaces). The definition of flexibility (see Defini-
tion 1.1) carries over to the bigger class of conformal harmonic maps with branch points. The recently 
introduced hyperbolicity theory for minimal surfaces also uses this class of maps; see [15,19,20]. A noncon-
stant map in this class has isolated branch points and is conformal at all immersion points (see [4, Remark 
2.3.7]). The approximation and interpolation techniques for conformal harmonic immersions, developed in 
[4], also hold for branched conformal harmonic maps with only minor adjustments of proofs. In particular, 
domains Ω ⊂ Rn which are shown in this paper to be flexible for conformal harmonic immersions are also 
flexible for branched conformal harmonic maps.

Remark 1.11. The flexibility property in Definition 1.1 is inspired by the notion of an Oka manifold — 
a complex manifold Ω having the analogous properties for holomorphic maps M → Ω from an arbitrary 
Stein manifold M ; see [18, Sect. 5.4]. In the terminology used in Oka theory, this is the Oka property with 
approximation and interpolation. The statements of our results are simpler than those in Oka theory since 
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there are no topological obstructions: an open connected surface M is homotopy equivalent to a wedge 
of circles, so every continuous map from a compact set K in M to a connected domain Ω extends to a 
continuous map M → Ω. One can formulate the corresponding parametric flexibility properties, in which 
case topological obstructions may appear. The topological structure of the space of conformal minimal 
immersions M → Rn from a given open Riemann surface M was investigated in [5,21]. Additional constraints 
appear for immersions into a given domain Ω ⊂ Rn. We do not investigate the parametric case in the present 
paper.

Holomorphic curves in Cn for n ≥ 2 are also conformal minimal surfaces, possibly with branch points, 
and an analogue of Theorem 1.3 holds for them, with a similar proof. However, holomorphic curves in Cn

constitute a very small subset of the space of conformal harmonic maps, with more available techniques 
for their construction. It is therefore not surprising that conditions in Theorem 1.3 can be weakened. In 
the following result, a holomorphic coordinate system on Cn may be related to a reference system by 
any biholomorphism of Cn, and balls in condition (b) are replaced by balls in hyperplanes. The notion of 
flexibility is the same as in Definition 1.1 but pertaining to holomorphic maps from open Riemann surfaces. 
This coincides with the basic Oka property for complex curves; cf. [18, Theorem 5.4.4].

Theorem 1.12. Assume that Ω is a connected domain in Cn for n ≥ 2 such that for every point p ∈ Ω there 
are holomorphic coordinates z = (z′, zn) on Cn = Cn−1 × C centred at p = {z = 0} and satisfying the 
following two conditions:

(a) there is a constant δ > 0 such that {(z′, zn) ∈ Cn : |z′| < δ} ⊂ Ω, and
(b) given r > 0 there is vn ∈ C such that {(z′, vn) : |z′| < r} ⊂ Ω.

Then, Ω is flexible for holomorphic maps M → Ω from any open Riemann surface M . Furthermore, if K
is a compact Runge set in M with piecewise C 1 boundary and f : K → Cn is a continuous map which 
is holomorphic on K̊ with f(bK) ⊂ Ω, then f can be approximated uniformly on K by holomorphic maps 
f̃ : M → Cn satisfying f̃(M \ K̊) ⊂ Ω.

Theorem 1.12 is proved in Section 3.
We also have the following analogue of Corollary 1.5 for holomorphic curves.

Corollary 1.13. Let C be a closed convex set in Cn for n ≥ 2. Then the domain Ω = Cn \ C is flexible for 
holomorphic curves if and only if C is not C-affinely equivalent to a product C = C ′ × Cn−1, where C ′ is 
a closed convex set in C which is not a point.

Proof. By the argument in the proof of Corollary 1.5 there is an integer k ∈ {0, 1, . . . , n − 1} such that C is 
C-affinely equivalent to a domain C ′×Ck ⊂ Cn, where C ′ is a closed convex set in Cm with m = n −k ≥ 1
which does not contain any affine complex line.

If m = 1 and C ′ is a point then C is a complex hyperplane whose complement is flexible (and even Oka). 
If on the other hand C ′ is not a point then C \C ′ is Kobayashi hyperbolic by Picard’s theorem, and hence 
Ω = Cn \ C = (C \ C ′) × Cn−1 fails to be flexible since every holomorphic map C → Ω has constant first 
component.

Assume now that m ≥ 2. It suffices to prove that Cm \C ′ is flexible. By the proof of Corollary 1.5 we find 
a splitting Cm = R2m = Rs×Rl where l+s = 2m, Rl is a totally real subspace of Cm, and C ′ = E×Rl for 
some closed convex set E ⊂ Rs which does not contain any affine real line. Fix a point p ∈ Rs \ E. By [7, 
Theorem 1.3.11] there is an affine real hyperplane p ∈ Σ0 ⊂ Rs such that every hyperplane p ∈ Σ ⊂ Rs close 
enough to Σ0 avoids E. Denote by Σc ⊂ Cm the unique affine complex hyperplane contained in the real 
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hyperplane Σ ×Rl ⊂ Cm and passing through p. Since the intersection of all hyperplanes Σ as above equals 
p, the intersection of the associated complex hyperplanes Σc is contained in {p} × Rl. Since this subspace 
is totally real, the said intersection is trivial. In particular, there are hyperplanes Σ1 and Σ2 in this family 
such that Σc

1 �= Σc
2. Pick an affine complex line p ∈ L ⊂ Σc

2 which is transverse to Σc
1. It is elementary to 

verify that L satisfies the conditions in Theorem 1.12 (where it corresponds to the complex line z′ = 0). By 
translation invariance of C ′ in the Rl direction the same argument applies for every point p ∈ Cm \C ′. �
Remark 1.14. The above proof of Corollary 1.13 also shows that a closed convex set in Cm which does not 
contain an affine complex line is contained in the intersections of m halfspaces determined by C-linearly 
independent vectors (see [14, Lemma 3] and [10, Proposition 3.5]).

It is shown in [23] that under mild geometric assumptions on a closed unbounded convex set in Cn its 
complement is an Oka domain, a much stronger property.

We now describe a class of flexible domains for minimal surfaces which do not necessarily satisfy the 
hypotheses of Theorem 1.3. Recall [4, Sect. 8.1] that a real function τ of class C 2 on a domain D ⊂ Rn is 
said to be p-plurisubharmonic for some p ∈ {1, . . . , n} if at every point x ∈ D the Hessian Hessτ (x) has 
eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn satisfying λ1 + · · · + λp ≥ 0; the function τ is strongly p-plurisubharmonic
if strong inequality holds at every point x ∈ D. This is equivalent to the condition that the restriction 
of τ to every minimal p-dimensional submanifold is a (strongly) subharmonic function. A compact set 
L ⊂ Rn is said to be p-convex in Rn if and only if there is a p-plurisubharmonic exhaustion function 
τ : Rn → R+ = [0, +∞) with L = τ−1(0) such that τ is strongly p-plurisubharmonic on Rn \ L (see [4, 
Definition 8.1.9 and Proposition 8.1.12]). A set L which is p-convex is also q-convex for any p < q ≤ n. 
A 1-plurisubharmonic function is a convex function, and a 1-convex set is a geometrically convex set. A 
2-plurisubharmonic function is also called minimal plurisubharmonic, and a 2-convex set is called minimally 
convex.

Theorem 1.15. If L is a compact p-convex set in Rn for n ≥ 3 and 1 ≤ p ≤ max{2, n − 2}, then the domain 
Ω = Rn \ L is flexible (see Definition 1.1). Furthermore, if K is a compact Runge set with piecewise C 1

boundary in an open conformal surface M and f : K → Rn is a conformal minimal immersion of class 
C 1(K) with f(bK) ⊂ Ω, then f can be approximated in C 1(K) by proper conformal minimal immersions 
f̃ : M → Rn with f̃(M \K) ⊂ Ω.

Theorem 1.15 is proved in Section 4. Besides Theorem 1.3, we use the Riemann–Hilbert modification 
technique for minimal surfaces developed in the papers [1–3] and presented with more details in [4, Chap-
ter 6].

There are many challenging open problems in this newly emerging area of minimal surface theory. The 
following seem to be among the most interesting ones.

Problem 1.16. Let Ω ⊂ R3 be a connected domain whose boundary Σ = bΩ is a minimal surface. Note that 
every such domain is minimally convex (see [4, Corollary 8.1.15]).

(a) Does Ω admit any conformal minimal immersions C → Ω?
(b) If the answer to (a) is affirmative, is Ω flexible?
(c) If the answer to (a) is negative, is Ω (complete) hyperbolic?

If Ω is a halfspace then the answer to (a) is affirmative but the domain is neither flexible nor hyperbolic. 
By [8, Theorem 1.1] and [19, Corollary 2.3] the answer to problem (a) is negative if the minimal surface 
Σ = bΩ is nonflat and of bounded Gaussian curvature; in such case the domain Ω does not contain any 
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parabolic minimal surfaces. The problem seems entirely open if Σ has unbounded curvature. Problem (c) is 
open for all domains in R3 whose boundary is a nonflat minimal surface.

2. Preliminaries

In this section we recall the prerequisites and tools which will be used in the proofs. We refer to the 
monograph [4] for the details. We shall focus on the orientable case when the source surface is a Riemann 
surface. The corresponding techniques for nonorientable conformal minimal surfaces are developed in [3]. 
By using those methods, the proofs that we provide for the orientable case easily carry over to nonorientable 
surfaces.

The complex hypersurface in Cn for n ≥ 3, given by

A =
{
z = (z1, z2, . . . , zn) ∈ Cn : z2

1 + z2
2 + · · · + z2

n = 0
}
, (2.1)

is called the null quadric. An immersion f = (f1, . . . , fn) : M → Rn from an open Riemann surface is confor-
mal minimal (equivalently, conformal harmonic) if and only if the (1, 0)-differential ∂f = (∂f1, . . . , ∂fn) (the 
C-linear part of the differential df) is holomorphic and satisfies the nullity condition 

∑n
i=1(∂fi)2 = 0; see 

[4, Theorem 2.3.1]. Equivalently, fixing a nowhere vanishing holomorphic 1-form θ on M (see [18, Theorem 
5.3.1]), the map

h = 2∂f/θ : M → Cn \ {0} (2.2)

is holomorphic and assume values in the punctured null quadric A∗ = A \ {0}. Conversely, given a holo-
morphic map h : M → A∗ such that the Cn-valued holomorphic (1, 0)-form hθ has vanishing real periods 
on closed curves in M , we get a conformal minimal immersion f : M → Rn by the Enneper–Weierstrass 
formula

f(p) = f(p0) +
p∫

p0


(hθ) for p ∈ M,

where p0 ∈ M is a fixed reference point (see [4, Theorem 2.3.4]). We may also allow minimal surfaces to have 
branch points, corresponding to zeros of ∂f which form a closed discrete set in M . In such case, a harmonic 
map f is said to be conformal if it is conformal at all immersion points; equivalently, the holomorphic map 
h = 2∂f/θ in (2.2) assumes values in A. Although the results mentioned in the sequel are formulated for 
immersed minimal surfaces, their proofs carry over to minimal surfaces with branch points.

Definition 2.1 (Definition 1.12.9 in [4]). Let M be a smooth surface. An admissible set in M is a compact 
set of the form S = K ∪ E, where K � M is a finite union of pairwise disjoint compact domains with 
piecewise C 1 boundaries and E = S \ K̊ is a union of finitely many pairwise disjoint smooth Jordan arcs 
and closed Jordan curves meeting K only at their endpoints (if at all) such that their intersections with the 
boundary bK of K are transverse.

Denote by A r(S, Cn) the space of maps S → Cn of class C r which are holomorphic in the interior S̊ of 
a compact set S ⊂ M . The following is [4, Definition 3.1.2].

Definition 2.2. Let S = K∪E be an admissible set in a Riemann surface M , and let θ be a nowhere vanishing 
holomorphic 1-form on a neighbourhood of S in M . A generalized conformal minimal immersion S → Rn of 
class C r, with n ≥ 3 and r ≥ 1, is a pair (f, hθ), where f : S → Rn is a C r map whose restriction to S̊ = K̊

is a conformal minimal immersion and the map h ∈ A r−1(S, A∗) satisfies the following two conditions:
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(a) hθ = 2∂f holds on K, and
(b) for every smooth path α in M parameterizing a connected component of E = S \K we have that 


(α∗(hθ)) = α∗(df) = d(f ◦ α).

With a slight abuse of language we call the map f itself a generalized conformal minimal immersion. The 
complex 1-form hθ along E gives additional information — it determines a conformal frame field containing 
the tangent vector field to the path f ◦ α.

Lemma 2.3. Let S = K ∪E be an admissible set in a Riemann surface M , and let θ be a nowhere vanishing 
holomorphic 1-form on a neighbourhood of S. Let f : S → Rn for n ≥ 3 be a continuous map such that 
f |K : K → Rn is a conformal minimal immersion of class C r, r ≥ 1. Then there is a generalized conformal 
minimal immersion (f̃ , hθ) from S to Rn such that

(a) f̃ = f on K, and
(b) f̃ approximates f uniformly on E as closely as desired.

Proof. We explain the proof in the case when E is a smooth embedded arc in M with the endpoints 
E ∩K = {p, q} ∈ bK. The case when E is attached to K with one endpoint (or not at all) is similar, and 
the general case amounts to a finite application of these special cases.

Let Ω ⊂ Rn be a connected open neighbourhood of f(E). Choose a smooth uniformizing parameter 
t ∈ [0, 1] on the arc E, with t = 0 corresponding to p and t = 1 corresponding to q. Set h = 2∂f/θ : K → A∗. 
By [4, Lemma 3.5.4] we can extend h to a smooth path h : E → A∗ such that the map E → Rn given by 
f̃(t) = f(p) + 
 

∫ t

0 hθ satisfies f̃(0) = f(p), f̃(1) = f(q), and f̃(t) ∈ Ω for all t ∈ [0, 1]. Hence, (f̃ , hθ) is a 
generalized conformal minimal immersion on K ∪ E which agrees with (f, hθ) on K such that f̃(E) ⊂ Ω. 
To get a uniform approximation of f by f̃ , we split E into finitely many short subarcs and apply the same 
argument on each of them, matching the values of f at their endpoints. �

The following is a simplified version of the Mergelyan approximation theorem for conformal minimal sur-
faces; see [4, Theorems 3.6.1] for the first part and [4, Theorems 3.7.1] for the second one. The nonorientable 
analogues are given by [3, Theorems 4.4 and 4.8].

Theorem 2.4. Assume that M is an open Riemann surface, S = K ∪ E is an admissible Runge set in M , 
and n ≥ 3 and r ≥ 1 are integers. Then the following hold.

(a) Every generalized conformal minimal immersion f : S → Rn of class C r(S) can be approximated in 
C r(S) by conformal minimal immersion f̃ : M → Rn.

(b) If f = (f ′, f ′′) and f ′ = (f1, . . . , fn−2) extends to a harmonic map M → Rn−2 such that 
∑n−2

i=1 (∂fi)2
has no zeros on bK∪E, then the map f ′′ = (fn−1, fn) can be approximated in C r(S) by harmonic maps 
f̃ ′′ : M → R2 such that f̃ = (f ′, f̃ ′′) : M → Rn is a conformal minimal immersion.

In both cases it is possible to choose f̃ such that it agrees with f to any given order at finitely many given 
points in S̊ = K̊.

Remark 2.5. Recall that every generalized conformal minimal immersion on an admissible set S ⊂ M can 
be approximated by a full conformal minimal immersion in a neighbourhood of S; see [4, Definition 3.1.2 
and Proposition 3.3.2]. It follows that the condition in part (b) of Theorem 2.4, that 

∑n−2
i=1 (∂fi)2 has no 

zeros on bK ∪E, is generic and can be arranged by a small deformation of f . See also the discussion at the 
beginning of [4, Sect. 3.7].
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Fig. 3.1. Sets in the proof of Lemma 3.1.

3. Proof of Theorems 1.3 and 1.12

Throughout this section we assume that M is an open Riemann surface and Ω is an open connected set 
in Rn for n ≥ 3 satisfying the hypotheses of Theorem 1.3. We also fix a nowhere vanishing holomorphic 
1-form θ on M .

The main step in the proof of Theorem 1.3 is given by the following lemma.

Lemma 3.1. Let M be an open Riemann surface, and let K and L be smoothly bounded compact Runge 
domains in M such that K ⊂ L̊ and K is a deformation retract of L. Assume that f : K → Ω is a 
conformal minimal immersion of class C r(K) for some r ≥ 1. Given a finite set A ⊂ K̊ and numbers ε > 0
and k ∈ N, there is a conformal minimal immersion f̃ : L → Ω satisfying the following conditions:

(i) ‖f̃ − f‖C r(K) < ε, and
(ii) f̃ − f vanishes to order k at every point of A.

Proof. We follow a part of [4, proof of Theorem 3.10.3] with suitable modifications.
The assumptions imply that L \ K̊ is a finite union of annuli. For simplicity of exposition we assume that 

L \ K̊ is connected; in the general case we apply the same argument to each component. By condition (a) 
in Theorem 1.3 there are an integer l ≥ 2 and a family of compact connected subarcs {αj : j ∈ Zl} of bK
satisfying the following conditions.

(A1) αj and αj+1 have a common endpoint pj and are otherwise disjoint for j ∈ Zl.
(A2)

⋃
j∈Zl

αj = bK.
(A3) For every j ∈ Zl there is a Euclidean coordinate system x = (x′, x′′) on Rn = Rn−2 × R2 and a 

number δj > 0 such that

f(αj) ⊂ Wj :=
{
(x′, x′′) ∈ Rn : |x′| < δj

}
⊂ Ω. (3.1)

(The coordinate system x is related to a reference one by an element of the affine orthogonal group AO(n).) 
For each j ∈ Zl we connect the point pj ∈ bK to a point qj ∈ bL by a smooth embedded arc γj ⊂
(L̊ \K) ∪ {pj , qj} intersecting bK and bL transversely at pj and qj , respectively, such that the arcs γj for 
j ∈ Zl are pairwise disjoint (see Fig. 3.1). Hence,

S = K ∪
⋃
j∈Zl

γj (3.2)

is an admissible subset of M (see Definition 2.1). For each j ∈ Zl we denote by βj ⊂ bL the arc with 
the endpoints qj−1 and qj which does not contain any other point qi for i ∈ Zl \ {j − 1, j}. Note that ⋃

j∈Zl
βj = bL. Let Dj be the closed disc in L \ K̊ bounded by the arcs αj , βj , γj−1, and γj (see Fig. 3.1). 

It follows that L \ K̊ =
⋃

Dj .
j∈Zl
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By Lemma 2.3 we can extend f to a generalized conformal minimal immersion (f, hθ) on the admissible 
set S in (3.2) such that for each j ∈ Zl, and writing f = (f ′, f ′′) according to the coordinate system 
x = (x′, x′′) related to j, we have that

f(γj) ∈ Wj ∩Wj+1. (3.3)

Recall that the sets Wj were defined in (3.1). Set S0 = S and consider the admissible sets

Sj = S ∪
j⋃

i=1
Di ⊂ M for j = 1, 2, . . . , l.

Clearly, Sl = L. Set f0 = f . By a finite induction we now construct generalized conformal minimal immer-
sions fj : Sj → Ω for j = 1, . . . , l such that fj approximates fj−1 in the C r topology on Sj−1 for every j; 
the map fl : Sl = L → Ω will then satisfy the lemma.

We explain the initial step, constructing f1 from f0 = f ; the subsequent steps are similar. Let x = (x′, x′′)
be a coordinate system on Rn in which (3.1) holds for j = 1, and write f = (f ′, f ′′) accordingly. By 
Theorem 2.4 we can approximate f in C r(S) by a conformal minimal immersion on a neighbourhood of 
S1 = S∪D1 which maps S into Ω and satisfies conditions (3.1) and (3.3) for j = 1. To simplify the notation, 
assume that f is such. Since |f ′| < δ1 on bD1 \ β1 = α1 ∪ γ0 ∪ γ1, there is a disc Δ1 ⊂ D1 as shown in 
Fig. 3.1 (containing most of the disc D1 except a thin neighbourhood of bD1 \ β1) such that

|f ′| < δ1 on D1 \ Δ1, (3.4)

and hence f(D1 \ Δ1) ⊂ W1 ⊂ Ω. Note that S ∪ Δ1 is an admissible set which is Runge in L. Pick a ball 
B ⊂ Rn centred at p = {x = 0} and containing f(Δ1). By condition (b) in Theorem 1.3 there is a vector 
v = (0′, v′′) ∈ Rn such that v +B ⊂ Ω. Consider the generalized conformal minimal immersion g = (f ′, g′′)
on S ∪ Δ1 with values in Ω, where

g′′ =
{
f ′′, on S;
f ′′ + v′′, on Δ1.

By the second part of Theorem 2.4 (see also Remark 2.5) we can approximate g′′ on S ∪Δ1 by a harmonic 
map f̃ ′′ : S1 → R2 such that f1 := (f ′, f̃ ′′) : S1 → Rn is a conformal minimal immersion. We claim that 
f1(S1) ⊂ Ω provided that the approximations were close enough. Since f(S) ⊂ Ω, we have f1(S) ⊂ Ω if 
the approximation is close enough on S. Since the first n − 2 components of f1 agree with those of f , (3.4)
ensures that f1(D1 \ Δ1) ⊂ W1 ⊂ Ω. Finally, from f(Δ1) ⊂ B, v + B ⊂ Ω, and g = (f ′, f ′′ + v′′) on Δ1 we 
infer that g(Δ1) ⊂ Ω, and hence f1(Δ1) ⊂ Ω provided the approximation of g′′ by f̃ ′′ is close enough on 
Δ1.

This completes the first step of the induction. Applying the same argument to f1 on S1 = S ∪D1 gives 
a conformal harmonic immersion f2 : S2 = S1 ∪ D2 → Ω. In the l-th step we get a conformal harmonic 
immersion fl : Sl = L → Ω approximating f on K. �
Proof of Theorem 1.3. We follow [4, proof of Theorem 3.6.1], using Lemma 3.1 as the noncritical case in 
order to ensure that the images of our conformal minimal immersions lie in Ω. We explain the main idea 
and refer to the cited source for further details.

The inductive construction in the cited source gives a conformal minimal immersion f̃ : M → Rn as a 
limit of a sequence of conformal minimal immersions fi : Mi → Rn (i ∈ N), where the increasing sequence 
of smoothly bounded compact Runge domains M1 ⊂ M2 ⊂ · · · ⊂

⋃∞
Mi = M exhausts M , and for every 
i=1
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i ∈ {2, 3, . . .} the map fi approximates fi−1 on Mi−1. In the case at hand we must pay attention to find f̃
assuming values in Ω.

Pick a strongly subharmonic Morse exhaustion function ρ : M → R+. The inductive construction 
alternately uses the noncritical and the critical case. The noncritical case amounts to extending (by ap-
proximation) a conformal minimal immersion with values in Ω from a sublevel set K = {ρ ≤ c} to a larger 
sublevel set L = {ρ ≤ c′} with c′ > c, provided that ρ has no critical values in the interval [c, c′]. This is 
accomplished by Lemma 3.1. The critical case amounts to passing a critical point p of ρ; the topology of 
the sublevel set changes at p. We may assume that this is the only critical point on the level set {ρ = ρ(p)}. 
This is achieved by extending a conformal minimal immersion from a sublevel set K = {ρ ≤ c}, with 
c < ρ(p) sufficiently close to ρ(p) such that ρ has no critical values in [c, ρ(p)), as a generalized conformal 
minimal immersion across a smooth arc E ⊂ M attached to K such that the admissible set S = K ∪ E is 
a deformation retract of the sublevel set {ρ ≤ c′} for c′ > ρ(p) close enough to ρ(p). By Lemma 2.3, the 
extension of f from K to K ∪ E can be chosen such that f(E) ⊂ Ω. Together with Theorem 2.4 (a) (the 
Mergelyan approximation theorem) this reduces the proof to the noncritical case furnished by Lemma 3.1. 
This shows that the domain Ω is flexible.

Interpolation on a discrete set in M is handled in a similar way, and we refer to [4, proof of Theorem 
3.6.1] for the details. This also gives Proposition 1.2.

The proof of the last claim, where f : K → Rn is a conformal minimal immersion satisfying f(bK) ⊂ Ω, 
requires minor but obvious modifications. The main point is that the proof of Lemma 3.1 can be carried 
out so that the approximating map f̃ takes L \ K̊ into Ω, and the same is true for the extension across an 
arc required in the critical case. �
Proof of Theorem 1.12. Using the same scheme as in the proof of Theorem 1.3 just given, we need a modifi-
cation in the induction step in the proof of Lemma 3.1 to accommodate the weaker assumption in condition 
(b) in the theorem.

We shall use the notation in the proof of Lemma 3.1; see Fig. 3.1. We begin by uniformly approximating 
the given map f : K → Ω in the theorem by a holomorphic map from a neighbourhood of the admissible set 
S (3.2) to Ω. This is possible by the Bishop–Mergelyan approximation theorem; see [9] and [17, Theorems 
5 and 6]. (Analogous arguments apply to holomorphic immersions.)

Consider now the first step of the induction, whose goal is to construct a holomorphic map f1 : S1 =
S ∪ D1 → Ω which approximates the given map f = f0 on S = S0. Let z = (z′, zn) be a holomorphic 
coordinate system on Cn as in the assumption of the theorem such that

f(α1 ∪ γ1 ∪ γ2) ⊂ W1 = {(z′, zn) ∈ Cn : |z′| < δ1} ⊂ Ω. (3.5)

Write f = (f ′, fn) accordingly. By Mergelyan approximation on S we may assume that f is holomorphic on 
(a neighbourhood of) the admissible set S1 = S ∪D1. Pick a sufficiently large disc Δ1 ⊂ D1 as in Fig. 3.1
such that

|f ′| < δ1 on D1 \ Δ1. (3.6)

Choose r > 0 such that

|f ′| < r on D1. (3.7)

By condition (b) in the theorem there is vn ∈ C such that {(z′, vn) : |z′| ≤ r} ⊂ Ω. Hence, for η > 0 small 
enough we have that

{(z′, zn) : |z′| ≤ r, |zn − vn| ≤ η} ⊂ Ω. (3.8)
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Consider the function gn on S ∪ Δ1 defined by

gn =
{
fn, on S;
vn, on Δ1.

(3.9)

By Mergelyan’s theorem we can approximate gn on S∪Δ1 by a holomorphic function f̃n on a neighbourhood 
of S1 = S ∪D1. Consider the holomorphic map f1 := (f ′, f̃n) : S1 → Cn. We claim that f1(S1) ⊂ Ω if the 
approximations are close enough. Since f(S) ⊂ Ω, we have that f1(S) ⊂ Ω if the approximation is close 
enough on S. Since the first n − 1 components of the map f1 agree with those of f , condition (3.6) ensures 
that f1(D1 \ Δ1) ⊂ W1 ⊂ Ω, where the latter inclusion holds by (3.5). Finally, from (3.7), (3.8), and (3.9)
it follows that f1(Δ1) ⊂ Ω provided that the approximation of gn by f̃n is close enough on Δ1.

This completes the first step of the induction in the proof of Lemma 3.1, adjusted to this case. The 
subsequent steps are analogous. Using this version of Lemma 3.1 for holomorphic maps, Theorem 1.12 is 
obtained by following the scheme of proof of Theorem 1.3. �
4. Proper minimal surfaces in complements of minimally convex sets

We begin this section by proving Theorem 1.15. The proof relies on Theorem 1.3 and the Riemann–
Hilbert modification technique for minimal surfaces, developed in the papers [1–3] and presented in more 
detail in [4, Chapter 6]. This technique allows one to push the boundary of a bordered minimal surface 
to higher levels of a p-plurisubharmonic exhaustion function for p as in Theorem 1.15. We then present 
Corollary 4.3 which gives proper conformal minimal surfaces in Rn lying in the complement of a compact 
strongly p-convex compact set L ⊂ Rn for suitable values of p and touching L only at a given point.

Proof of Theorem 1.15. Let L be a compact p-convex set in Rn for some n ≥ 3 and 1 ≤ p ≤ max{2, n − 2}. 
Set Ω = Rn \ L, and assume that f : K → Ω is a conformal minimal immersion from a compact Runge 
set K with piecewise C 1 boundary in an open conformal surface M . The Mergelyan theorem for minimal 
surfaces (see Theorem 2.4) gives a conformal minimal immersion f0 : M → Rn which approximates f as 
closely as desired in C 1(K). Thus, there is a compact bordered Riemann surface M1 ⊂ M containing K in 
its interior such that K is Runge in M1, M1 is Runge in M , and f0(M1) ⊂ Ω.

Since the set L ⊂ Rn is p-convex, there is a p-plurisubharmonic exhaustion function τ : Rn → R+ with 
L = τ−1(0) such that τ is strongly p-plurisubharmonic on Ω = Rn \ L (see [4, Proposition 8.1.12]). Pick 
a closed cube P ⊂ Rn centred at the origin and a number c > 0 such that L ⊂ P ⊂ {τ < c}. By using 
the Riemann–Hilbert modification method adapted to minimal surfaces, we can push the boundary of the 
compact bordered Riemann surface f0 : M1 → Ω to higher levels of τ while approximating the map f0 as 
closely as desired on the compact subset K and not dropping the values of τ more than a given amount on 
M1 \K (see [4, Lemma 8.4.6, Theorem 8.3.1, Theorem 8.3.11]). This gives a conformal minimal immersion 
f1 : M1 → Rn which approximates f on K and satisfies

f1(M1) ⊂ Ω and τ(f1(ζ)) > c for all ζ ∈ bM1.

Therefore, f1 maps a neighbourhood of bM1 to Rn \ P ⊂ Ω.
The inductive construction in [4, proof of Theorem 3.10.3] gives a proper conformal minimal immersion 

f̃ : M → Rn as a limit of a sequence of conformal minimal immersions f̃i : Mi → Rn (i ∈ N), where 
the increasing sequence of smoothly bounded compact Runge domains M1 ⊂ M2 ⊂ · · · ⊂

⋃∞
i=1 Mi = M

exhausts M , and for every i ∈ {2, 3, . . .} the map f̃i approximates f̃i−1 on Mi−1 and the set f̃i(Mi \ M̊i−1)
is not much closer to the origin than f̃i−1(bMi−1). Starting from the map f̃1 = f1 : M1 → Ω we thus obtain 
a proper conformal minimal immersion f̃ : M → Rn which approximates f1 on M1 and maps M \M1 to 
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Rn \ P ⊂ Ω. Hence, f̃(M) ⊂ Ω and f̃ approximates f on K as closely as desired. Interpolation on a finite 
subset of K is easily built into the construction. This shows that the domain Ω = Rn \ L is flexible.

The same construction applies if f : K → Rn is a conformal minimal immersion from a compact Runge 
set K with piecewise C 1 boundary in an open conformal surface M such that f(bK) ⊂ Ω = Rn \ L, and 
it gives a proper conformal minimal immersion f̃ : M → Rn with f̃(M \K) ⊂ Ω and satisfying the other 
conditions in the theorem. �

We now present a corollary to (the proof of) Theorem 1.15 which is analogous to the main result in [16]
for the complex analytic case. (The result of [16] also follows from [22, Theorem 15] with X ′ a point and 
with jet-interpolation of the map at this point.)

Recall that D denotes the open unit disc in C. Let L ⊂ Rn be a closed smoothly bounded domain. Fix a 
point x ∈ bL and let τ be a smooth local defining function for L near x, i.e., τ is defined on a neighbourhood 
U ⊂ Rn of x and satisfies L ∩ U = {τ ≤ 0} and dτ(x) �= 0.

Definition 4.1. A smooth map f : D → Rn with f(0) = x ∈ bL touches L to a finite order k ∈ N at x if 
(τ ◦ f)(z) ≥ c|z|k holds for some c > 0 and for z ∈ D near the origin.

Clearly this implies that f(rD) ∩L = f(0) for some r > 0. The definition does not depend on the choice 
of the defining function, and it extends to smooth maps from surfaces.

Remark 4.2. If bL is real analytic at x ∈ bL and we choose the local defining function τ to be real analytic, 
the classical Łojasiewicz inequality [31] implies that if f : D → Rn is a real analytic map (every harmonic 
map is such) satisfying f(0) = x and f(z) /∈ L for 0 �= z ∈ D close to 0, then (τ ◦ f)(z) ≥ c|z|k holds for 
some c > 0, k ∈ N and for z ∈ D near the origin. In other words, if f touches L at an isolated point then 
the contact is of finite order.

A closed smoothly bounded domain L ⊂ Rn is said to be strongly minimally convex if at every point 
x ∈ bL the interior principal curvatures ν1 ≤ ν2 ≤ · · · ≤ νn−1 of bL satisfy ν1 + ν2 > 0 (see [4, Definition 
8.1.18.]). Such a domain L is not 2-convex at x from the outside [24, Remark 3.12], and hence there is an 
embedded conformal minimal disc in (Rn \ L) ∪ {x} centred at x and touching L to the second order at x
(see [24, Lemma 3.13]).

Corollary 4.3. Let L be a compact p-convex set with smooth boundary in Rn for n ≥ 3 and 1 ≤ p ≤
max{2, n − 2}. Given an open conformal surface M , a compact Runge subset K ⊂ M with piecewise C 1

boundary, a point ζ ∈ K̊, and a conformal minimal immersion f : K → Rn of class C 1(K) that touches L to 
a finite order at f(ζ) = x ∈ bL (see Definition 4.1 and Remark 4.2) and satisfies f(K \ {ζ}) ∩L = ∅, there 
exists a proper conformal minimal immersion f̃ : M → Rn with f̃(ζ) = x which approximates f as closely 
as desired in C 1(K), it agrees with f to any given finite order at ζ, and it satisfies f̃(M \ {ζ}) ∩ L = ∅.

In particular, if L is a compact strongly minimally convex set in Rn (n ≥ 3) then for every point x ∈ bL, 
open conformal surface M , and point ζ ∈ M there is a proper conformal minimal immersion f : M → Rn

such that f(ζ) = x and f(M \ {ζ}) ∩ L = ∅.

In the proof we shall need the following lemma, which can be proved similarly as [16, Lemma 2.2] for the 
complex analytic case, using the Taylor expansion and Cauchy’s estimates for harmonic functions. For more 
general results concerning the order of contact of complex curves with hypersurfaces, see D’Angelo [12,13].

Lemma 4.4. Let L ⊂ Rn be a compact smoothly bounded domain and f : D → Rn be a conformal harmonic 
map touching L to a finite order at f(0) = x ∈ bL (see Definition 4.1). There are r ∈ (0, 1) and an integer 
k ≥ 1 such that for any r′ ∈ (r, 1) there exists ε > 0 satisfying the following condition: For any conformal 
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harmonic map g : D → Rn such that f − g vanishes to order k at 0 ∈ D and satisfies |f(z) − g(z)| < ε for 
|z| ≤ r′, we have that g(rD \ {0}) ∩ L = ∅.

Proof of Corollary 4.3. Assume that f : K → Rn satisfies the stated conditions. By Lemma 4.4 there are 
an open neighbourhood V ⊂ M of ζ and an integer k > 0 such that any conformal minimal immersion 
g : K → Rn, which agrees with f to order k at ζ and approximates f sufficiently closely on K, touches L
to a finite order at x and g(V ) intersects L exactly at x. Since f(K \ V ) is a compact subset of Rn \ L, we 
also have that g(K \ V ) ⊂ Rn \ L provided that g approximates f sufficiently closely on K.

By Theorem 1.15 there is a proper conformal minimal immersion f̃ : M → Rn with f̃(M \K) ⊂ Rn \ L
that approximates f as closely as desired on K and agrees with f to order k at ζ. If the approximation on 
K is close enough then f̃ has all required properties.

The last claim follows from the observation that if L is strongly minimally convex then for every point 
x ∈ bL there is an embedded conformal minimal disc in (Rn \ L) ∪ {x} centred at x and touching L to the 
second order at x (see [24, Lemma 3.13]). �
Acknowledgments

The authors wish to thank Antonio Alarcón and Francisco J. López for helpful discussions. Research is 
supported by grants P1-0291, J1-3005, N1-0137, and N1-0237 from ARRS, Republic of Slovenia.

References

[1] A. Alarcón, B. Drinovec Drnovšek, F. Forstnerič, F.J. López, Every bordered Riemann surface is a complete conformal 
minimal surface bounded by Jordan curves, Proc. Lond. Math. Soc. (3) 111 (4) (2015) 851–886.

[2] A. Alarcón, F. Forstnerič, The Calabi–Yau problem, null curves, and Bryant surfaces, Math. Ann. 363 (3–4) (2015) 913–951.
[3] A. Alarcón, F. Forstnerič, F.J. López, New complex analytic methods in the study of non-orientable minimal surfaces in 

Rn, Mem. Am. Math. Soc. 264 (1283) (2020).
[4] A. Alarcón, F. Forstnerič, F.J. López, Minimal Surfaces from a Complex Analytic Viewpoint, Springer Monographs in 

Mathematics, Springer, Cham, 2021.
[5] A. Alarcón, F. Lárusson, Representing de Rham cohomology classes on an open Riemann surface by holomorphic forms, 

Int. J. Math. 28 (9) (2017) 1740004.
[6] A. Alarcón, F.J. López, Minimal surfaces in R3 properly projecting into R2, J. Differ. Geom. 90 (3) (2012) 351–381.
[7] M. Andersson, M. Passare, R. Sigurdsson, Complex Convexity and Analytic Functionals, Progress in Mathematics, vol. 225, 

Birkhäuser Verlag, Basel, 2004.
[8] G.P. Bessa, L.P. Jorge, L. Pessoa, Stochastic Half-Space Theorems for Minimal Surfaces and h-surfaces of R3, 2021.
[9] E. Bishop, Subalgebras of functions on a Riemann surface, Pac. J. Math. 8 (1958) 29–50.

[10] F. Bracci, A. Saracco, Hyperbolicity in unbounded convex domains, Forum Math. 21 (5) (2009) 815–825.
[11] R. Brody, Compact manifolds and hyperbolicity, Trans. Am. Math. Soc. 235 (1978) 213–219.
[12] J.P. D’Angelo, Real hypersurfaces, orders of contact, and applications, Ann. Math. (2) 115 (1982) 615–637.
[13] J.P. D’Angelo, Several Complex Variables and the Geometry of Real Hypersurfaces, CRC Press, Boca Raton, FL, 1993.
[14] B. Drinovec Drnovšek, Proper holomorphic discs avoiding closed convex sets, Math. Z. 241 (3) (2002) 593–596.
[15] B. Drinovec Drnovšek, F. Forstnerič, Hyperbolic domains in real Euclidean spaces, Pure Appl. Math. Q. (2022), in press, 

https://arxiv .org /abs /2109 .06943.
[16] B. Drinovec Drnovšek, M. Slapar, Proper holomorphic curves attached to domains, Complex Var. Elliptic Equ. 65 (3) 

(2020) 489–497.
[17] J.E. Fornæss, F. Forstnerič, E. Wold, Holomorphic approximation: the legacy of Weierstrass, Runge, Oka-Weil, and 

Mergelyan, in: Advancements in Complex Analysis. From Theory to Practice, Springer, Cham, 2020, pp. 133–192.
[18] F. Forstnerič, Stein Manifolds and Holomorphic Mappings (The Homotopy Principle in Complex Analysis), second edition, 

Ergebnisse der Mathematik und Ihrer Grenzgebiete. 3. Folge., vol. 56, Springer, Cham, 2017.
[19] F. Forstnerič, Domains without parabolic minimal submanifolds and weakly hyperbolic domains. arXiv e-prints, https://

arxiv .org /abs /2207 .04689, 2022.
[20] F. Forstnerič, D. Kalaj, Schwarz-Pick lemma for harmonic maps which are conformal at a point., Anal. PDE (2022), in 

press, https://arxiv .org /abs /2102 .12403.
[21] F. Forstnerič, F. Lárusson, The parametric h-principle for minimal surfaces in Rn and null curves in Cn, Commun. Anal. 

Geom. 27 (1) (2019) 1–45.
[22] F. Forstnerič, T. Ritter, Oka properties of ball complements, Math. Z. 277 (1–2) (2014) 325–338.
[23] F. Forstnerič, E.F. Wold, Oka domains in Euclidean spaces. arXiv eprints, https://arxiv .org /abs /2203 .12883, 2022.
[24] F.R. Harvey, H.B. Lawson, Jr. p-convexity, p-plurisubharmonicity and the Levi problem, Indiana Univ. Math. J. 62 (1) 

(2013) 149–169.

http://refhub.elsevier.com/S0022-247X(22)00667-9/bib8EE6E4DE8AEB658575E5F9E4B062CD3Ds1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bib8EE6E4DE8AEB658575E5F9E4B062CD3Ds1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bib83A555AC005133994AABD3EF652222EEs1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bib66158F826BDC37C6AEE513C11E116BBDs1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bib66158F826BDC37C6AEE513C11E116BBDs1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bib48B746EC37895936CF43E7B1FEAA201As1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bib48B746EC37895936CF43E7B1FEAA201As1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bib92044ABFA3E59D3131C65805BC92B27Bs1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bib92044ABFA3E59D3131C65805BC92B27Bs1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bib8BF26B7341BC299F69E52628762970ECs1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bib223EFEA2F074A65F8A9668648522AF0Cs1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bib223EFEA2F074A65F8A9668648522AF0Cs1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bib8ACB8B463FC866C7DF6918DC9329024Cs1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bib60E240D83FB1DEFF58616235F91A7C0Fs1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bibDC8EE82C06DBF5EB096CE6F42F19FA6Ds1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bib56888F6EC6514F0CB104CDE598974E55s1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bib39A759305D806839AC0EDFA72D8980F7s1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bibE2AE4B8132551166CE1A0904270AA2D8s1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bibCCB551B61D15E29D543394A954A81D5Es1
https://arxiv.org/abs/2109.06943
http://refhub.elsevier.com/S0022-247X(22)00667-9/bib5EF43708D085189D66809C1605C72AD5s1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bib5EF43708D085189D66809C1605C72AD5s1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bib8A7E6948D382DCCC79C88C246EA8A53Ds1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bib8A7E6948D382DCCC79C88C246EA8A53Ds1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bib778E79D935D19712F3BD632D1976DC7Es1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bib778E79D935D19712F3BD632D1976DC7Es1
https://arxiv.org/abs/2207.04689
https://arxiv.org/abs/2207.04689
https://arxiv.org/abs/2102.12403
http://refhub.elsevier.com/S0022-247X(22)00667-9/bib14CE8211FC18C76898B273F194E090BCs1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bib14CE8211FC18C76898B273F194E090BCs1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bib668DBDE45A70C74AE1DE663047655117s1
https://arxiv.org/abs/2203.12883
http://refhub.elsevier.com/S0022-247X(22)00667-9/bibE497559D9885E2D564CE710D4A4C7581s1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bibE497559D9885E2D564CE710D4A4C7581s1


B. Drinovec Drnovšek, F. Forstnerič / J. Math. Anal. Appl. 517 (2023) 126653 15
[25] S. Hildebrandt, F. Sauvigny, Minimal surfaces in a wedge. I. Asymptotic expansions, Calc. Var. Partial Differ. Equ. 5 (2) 
(1997) 99–115.

[26] S. Hildebrandt, F. Sauvigny, Minimal surfaces in a wedge. II. The edge-creeping phenomenon, Arch. Math. (Basel) 69 (2) 
(1997) 164–176.

[27] S. Hildebrandt, F. Sauvigny, Minimal surfaces in a wedge. III. Existence of graph solutions and some uniqueness results, 
J. Reine Angew. Math. 514 (1999) 71–101.

[28] S. Hildebrandt, F. Sauvigny, Minimal surfaces in a wedge. IV. Hölder estimates of the Gauss map and a Bernstein theorem, 
Calc. Var. Partial Differ. Equ. 8 (1) (1999) 71–90.

[29] D. Hoffman, W.H. Meeks III, The strong halfspace theorem for minimal surfaces, Invent. Math. 101 (2) (1990) 373–377.
[30] S. Kobayashi, Invariant distances on complex manifolds and holomorphic mappings, J. Math. Soc. Jpn. 19 (1967) 460–480.
[31] S. Łojasiewicz, Ensembles Semi-Analytiques, IHES, Bures-sur-Yvette, 1965.
[32] F.J. López, Minimal surfaces in a cone, Ann. Glob. Anal. Geom. 20 (3) (2001) 253–299.
[33] F.J. López, F. Martín, Minimal surfaces in a wedge of a slab, Commun. Anal. Geom. 9 (4) (2001) 683–723.
[34] W.H. Meeks III, J. Pérez, Conformal properties in classical minimal surface theory, in: Surveys in Differential Geometry. 

Vol. IX, in: Surv. Differ. Geom., vol. IX, Int. Press, Somerville, MA, 2004, pp. 275–335.

http://refhub.elsevier.com/S0022-247X(22)00667-9/bib6D57B65D8C519B5C46186A30F0067355s1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bib6D57B65D8C519B5C46186A30F0067355s1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bibAED9696450A7BA3CB822ABD05828D9ECs1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bibAED9696450A7BA3CB822ABD05828D9ECs1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bib07097DC5BAC9EFD05BF88399C30F19E5s1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bib07097DC5BAC9EFD05BF88399C30F19E5s1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bib77C93CC492CF3F6BA97BBF7AB52A8A2Fs1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bib77C93CC492CF3F6BA97BBF7AB52A8A2Fs1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bib38B883D2F0A3B0C2C3AD619A9EA3D470s1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bibB8BFC975BEE1490BC9A810628BD2FC86s1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bib929117F0202FE152EF74C03B601106DEs1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bib90325F57184E24CF1122D14665C1638Es1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bib6B0F92F2B5D11C0E1454D47D13792298s1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bib1AE27744065C59808C9AD0C2DCE95DA0s1
http://refhub.elsevier.com/S0022-247X(22)00667-9/bib1AE27744065C59808C9AD0C2DCE95DA0s1

	Flexible domains for minimal surfaces in Euclidean spaces
	1 Introduction
	2 Preliminaries
	3 Proof of Theorems 1.3 and 1.12
	4 Proper minimal surfaces in complements of minimally convex sets
	Acknowledgments
	References


