
OKA-1 MANIFOLDS
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ABSTRACT. We introduce and study a new class of complex manifolds, Oka-1 manifolds,
characterized by the property that holomorphic maps from any open Riemann surface to the
manifold satisfy the Runge approximation and the Weierstrass interpolation conditions. We
prove that every complex manifold which is dominable at most points by spanning tubes of
complex lines in affine spaces is an Oka-1 manifold. In particular, a manifold dominable by
Cn at most points is an Oka-1 manifold. By using this criterion, we provide many examples
of Oka-1 manifolds among compact complex surfaces, including all Kummer surfaces and
all elliptic K3 surfaces. We show that the class of Oka-1 manifolds is invariant under Oka-1
maps inducing a surjective homomorphism of fundamental groups; this includes holomorphic
fibre bundles with connected Oka fibres. In another direction, we prove that every bordered
Riemann surface admits a holomorphic map with dense image in any connected complex
manifold. The analogous result is shown for holomorphic Legendrian immersions in an
arbitrary connected complex contact manifold.
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1. INTRODUCTION

The study of holomorphic curves is a perennial subject in complex and algebraic geometry.
In this paper, we introduce and investigate a new class of complex manifolds characterized
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by the property that they admit plenty of holomorphic curves parameterized by any open
Riemann surface. Here is the precise definition of this class of manifolds.

Definition 1.1. A connected complex manifold X with a Riemannian distance function distX
is an Oka-1 manifold if for any open Riemann surface R, Runge compact set K in R, discrete
sequence ai ∈ R without repetitions, continuous map f : R → X which is holomorphic on
a neighbourhood of K ∪

⋃
i{ai}, number ε > 0, and integers ki ∈ N = {1, 2, . . .} there is a

holomorphic map F : R→ X which is homotopic to f and satisfies

(1) supp∈K distX(F (p), f(p)) < ε and
(2) F agrees with f to order ki in the point ai for every i.

If condition (1) can be satisfied then X has the Oka-1 property with approximation. If in
addition condition (2) holds with ki = 1 then X has the Oka-1 property with approximation
and interpolation. A complex manifold X is Oka-1 if every component of X is such.

Recall that a compact set K in a Riemann surface R is said to be Runge if R \K does not
have any relatively compact connected component.

The definition of an Oka-1 manifold is motivated by classical results for holomorphic
functions on open Riemann surfaces due to Runge [49], Weierstrass [54], Behnke and Stein
[6], and Florack [18]. The term is inspired by the notion of an Oka manifold, which developed
from the Oka–Grauert theory. A complex manifold X is an Oka manifold if it satisfies the
approximation and interpolation conditions, analogous to those in Definition 1.1, for maps
S → X from any Stein manifold S. (See [26, Chapter 5] and [23, 29].) Thus, every Oka
manifold is also an Oka-1 manifold. The converse fails in general. For example, there is a
discrete set A ⊂ C2 whose complement is not dominable by C2 (see [48] or [26, Sect. 4.7]),
hence it fails to be Oka, but it is Oka-1 by a general position argument (see Corollary 2.9).

In this paper, we investigate the class of Oka-1 manifolds by combining techniques from
complex analysis and complex and algebraic geometry.

Here are some immediate observations. If X is an Oka-1 manifold then for every point
x ∈ X and tangent vector v ∈ TxX there exists an entire map f : C→ X with f(0) = x and
f ′(0) = v. Hence, the Kobayashi pseudometric of X vanishes identically and every bounded
plurisubharmonic function on X is constant, i.e., X is Liouville. It is even strongly Liouville;
see Corollary 7.5. Assuming that X is connected, it admits holomorphic maps with dense
images from any open Riemann surface, in particular, from C. This implies that the class of
compact Kähler or projective Oka-1 manifolds is conjecturally related to several important
classes of complex manifolds studied in the literature, such as the special manifolds in the
sense of Campana [9, 10]; see the discussion by Campana and Winkelmann in [11].

The conditions in Definition 1.1 easily imply that a homotopy from the initial map f to a
holomorphic map F can be chosen to consist of maps R → X which are holomorphic on a
neighbourhood ofK∪

⋃
i{ai} and agree with f to order ki at ai for every i. Note however that

the axiom of Oka-1 manifolds does not include the parameteric case concerning families of
maps R→ X . While the parameteric Oka property follows from the basic Oka property [26,
Proposition 5.15.1], the proof uses the basic Oka principle for maps from Stein manifolds of
arbitrary dimension, and it does not apply to Oka-1 manifolds. One can of course introduce
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and study the class of complex manifolds satisfying the parameteric Oka-1 property, but most
of the techniques developed in this paper do not apply to this case.

We now describe our main results, deferring the precise statements to individual sections.

In Section 2 we introduce a geometric sufficient condition on a complex manifold to be
Oka-1; see Theorem 2.2. This condition concerns dominability by spanning tubes of complex
lines in affine spaces Cn. It holds on any complex manifold X which is dominable by Cn at
every point in a Zariski open domain, so every such manifold is Oka-1; see Corollary 2.5. In
particular, a connected algebraic manifold which is algebraically dominable by Cn is Oka-1.
Dominability by tubes of lines is a considerably weaker condition than any of the sufficient
conditions in the theory of Oka manifolds, and is the first known condition implying an Oka-
type property which is purely local on the target manifold.

After the preparatory Sections 3–5, Theorem 2.2 is proved in Section 6 as a special case
of Theorem 6.1. The proof reveals several features of independent interest. In particular,
Proposition 2.7 shows that, to establish the Oka-1 property of a complex manifold X , it
suffices to show that every holomorphic map K → X from a neighbourhood of a compact set
K with piecewise smooth boundary in an open Riemann surface R can be approximated by
holomorphic maps L = K ∪D → X , where D ⊂ R is any compact disc attached to K along
a boundary arc. This resembles the convex approximation property, CAP, characterizing the
class of Oka manifolds (see [26, Section 5]). Here, we only need to approximate maps from
one-dimensional domains which, however, may be topologically nontrivial.

In Section 7 we study functorial properties of the class of Oka-1 manifolds. Among the
main results of the section are Theorem 7.6, which shows that the class of Oka-1 manifolds
is invariant under Oka maps inducing a surjective homomorphism of fundamental groups,
and Corollary 7.9 which gives the same conclusion for Oka-1 maps; see Definition 7.7. In
particular, if h : X → Y is a holomorphic fibre bundle with a connected Oka fibre, then X is
an Oka-1 manifold if and only if Y is an Oka-1 manifold. Recall that Oka maps preserve the
class of Oka manifolds; see [23, Theorem 3.15]. We show by examples that Oka-1 manifolds
are in general not open or closed in smooth families of manifolds. We also introduce the class
LSAP of complex manifolds having the so-called local spray approximation property; see
Definition 7.11. This condition is local, it holds on every Oka manifold and is invariant under
Oka maps, it implies the conclusion of Proposition 2.7 and hence the Oka-1 property, and it
seems to have nontrivial functorial properties that remain to be fully explored.

The question of holomorphic dominability of complex surfaces by C2 was studied in the
seminal paper [8] by Buzzard and Lu. In Section 8 we combine their results, and some
extensions obtained by inspection of their proofs, with the analytic methods developed in this
paper to summarize what we know about which such surfaces are Oka-1. In particular, we
show that the class of Oka-1 manifolds contains most compact complex surfaces of Kodaira
dimension −∞, all Kummer surfaces and elliptic K3 surfaces, and many elliptic surfaces of
Kodaira dimension 1. It turns out that for many classes of compact complex surfaces, the
conditions of being Oka, Oka-1, dominable by C2, and having a Zariski dense entire line
C → X are equivalent. We expect that this is a low dimensional phenomenon and that the
gaps between these conditions increase with the dimension of the manifold.
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In Section 9 we discuss the conjecture that every rationally connected projective manifold
is an Oka-1 manifold. Evidence that this may hold true is given by the results of Campana
and Winkelmann [11], who constructed holomorphic lines C → X with given jets through
any given sequence of points in a rationally connected manifold. As explained in Sect. 9,
an affirmative answer to our Conjecture 9.1 follows from Proposition 2.7 and a theorem of
Gournay [33, Theorem 1.1.1]; however, we could not understand the details of his proof.

Finally, in Section 10 we prove that for every connected complex manifold X and open
bordered Riemann surface M there exist holomorphic curves M → X passing through any
given sequence of points in X . Essentially the same proof, together with the main result of
the paper [22], gives the analogous statement for holomorphic Legendrian immersions from
bordered Riemann surfaces to any connected complex contact manifold. The existence of
proper holomorphic maps, immersions, and embeddings from bordered Riemann surfaces to
certain noncompact complex manifolds was studied in [15, 28].

The results in this paper also hold for holomorphic maps from open 1-dimensional
complex spaces, since every such space is normalized by an open Riemann surface.

2. A COMPLEX MANIFOLD DENSELY DOMINABLE BY TUBES OF LINES IS OKA-1

In this section, we introduce a geometric condition implying the Oka-1 property. It is based
on the notions of a tree and a tube of complex lines, and of dominability by such tubes. It
holds in particular on any complex manifold X which is dominable by CdimX at most points.

An affine complex line in Cn is a set of the form Λ = {a + tv : t ∈ C} = a + Cv, where
a ∈ Cn and v ∈ Cn \ {0} is a direction vector of Λ.

Definition 2.1. A tree of lines in Cn is a connected set Λ =
⋃k
i=1 Λi whose branches Λi

are affine complex lines with linearly independent direction vectors vi ∈ Cn. The tree Λ is
spanning if k = n; equivalently, if the direction vectors v1, . . . , vk are a basis of Cn. An open
connected neighbourhood T ⊂ Cn of a tree of lines Λ is a tube of lines around Λ if T is a
union of affine translates of Λ. Such a tube T is spanning if the tree Λ is spanning.

A complex manifold X is said to be dominable by a complex manifold Z at a point x ∈ X
if there exists a holomorphic map F : Z → X and a point z ∈ Z such that F (z) = x and the
differential dFz : TzZ → TxX is surjective; this requires that dimZ ≥ dimX . The classical
notion of dominability refers to the case Z = Cn with n = dimX .

We denote by Hk = Hk
X,g the k-dimensional Hausdorff measure on a manifold X with

respect to a Riemannian metric g on X; see Federer [17] or Morgan [47] for this notion.

Here is our first main result. Note that the choice of the Riemannian metric g on X is
irrelevant in the conditionH2n−1(E) = 0 used in the theorem.

Theorem 2.2. Let X be a complex manifold of dimension n. Assume that there is a closed
subset E ⊂ X with H2n−1(E) = 0 such that at every point x ∈ X \ E, X is dominable by a
spanning tube of lines T ⊂ CN (possibly depending on x). Then, X is an Oka-1 manifold.

Remark 2.3. When the condition in the theorem holds, we say that X is densely dominable
by (spanning) tubes of lines. If this holds with E = ∅, we say that X is strongly dominable
by tubes of lines. Note that Cn itself is a spanning tube of lines.
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We wish to point out that dense (and even strong) dominability by tubes of lines, or by
Euclidean spaces, is a considerably weaker condition than any of the sufficient conditions
used in the theory of Oka manifolds. It is the first known condition implying an Oka-type
property of a complex manifold X which is local in the Hausdorff topology, in the sense
that dominability is required at a single point of X at a time. For domains in Cn, a similar
condition was considered in [14, Theorem 1.12], where the main focus was on the study of
domains in Rn satisfying a similar property with respect to minimal surfaces.

Theorem 2.2 is proved in Section 6 in a more general form; see Theorem 6.1. Sections
3–5 contain the preparatory technical lemmas. In the remainder of this section, we discuss
applications of this theorem and its relationship to extant results in the literature.

The following obvious corollary was the vantage point of our investigations.

Corollary 2.4. If Ω is a connected domain in Cn such that every point z ∈ Ω is contained in
a spanning tube of lines Tz ⊂ Ω, then Ω is an Oka-1 manifold. In particular, every spanning
tube of lines in Cn is an Oka-1 manifold.

A domain Ω in a complex manifold X is said to be Zariski open if the complement
X \ Ω is a proper closed complex subvariety of X . This is the holomorphic analogue of
the standard notion in the category of complex algebraic manifolds. Let us record several
further observations which follow from Theorem 2.2.

Corollary 2.5. Let X be a connected complex manifold of dimension n.

(a) If X is densely dominable by Cn, then X is an Oka-1 manifold.
(b) If X is dominable by Cn at every point in a Zariski open subset, or if it contains a Zariski

open Oka domain, then X is an Oka-1 manifold.
(c) If Y is a complex manifold of dimension n = dimX which is densely dominable by tubes

of lines and h : Y → Ω is a proper holomorphic map onto a Zariski open subset Ω of X ,
then X is an Oka-1 manifold.

(d) If h : Y → X is a surjective holomorphic map of compact complex manifolds of the same
dimension and Y is densely dominable, then X is an Oka-1 manifold.

(e) A connected algebraic manifold algebraically dominable by Cn is an Oka-1 manifold.

Proof. Part (a) follows directly from Theorem 2.2. To obtain (b), note that an Oka domain
Ω ⊂ X is dominable by Cn with n = dimX at every point. If Ω is Zariski open in X then
A = X \ Ω is a closed complex subvariety of X with H2n−1(A) = 0. Hence, X is densely
dominable by Cn, so it is Oka-1 by (a). To prove (c), assume that E is a closed subset of Y
with H2n−1(E) = 0. Then, E ′ = h(E ∪ brh) is a closed subset of Ω with H2n−1(E ′) = 0.
(Here, brh denotes the branch locus of a holomorphic map h.) Since A = X \ Ω is a proper
complex subvariety of X , A ∪E ′ is a closed subset of X withH2n−1(A ∪E ′) = 0. Note that
X is dominable at every point of X \ A ∪ E ′, so the conclusion follows from (a). Part (d) is
an obvious consequence of (c). Finally, to see (e) note that if X is an algebraic manifold and
F : Cn → X is a dominating algebraic map then F (Cn \ brF ) is a Zariski open domain in
X . Hence, X is densely dominable by Cn, and thus an Oka-1 manifold by (a). �

Examples show that parts (c) and (d) in the corollary fail in general if dimY > dimX .
However, given an Oka map h : Y → X which induces a surjective homomorphism of
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fundamental groups, X is Oka-1 if and only if Y is Oka-1; see Theorem 7.6. A connected
Oka manifold X is strongly dominable by a holomorphic map F : Cn → X with n = dimX ,
in the sense that F (Cn \ brF ) = X (see [27]). It is not known whether every complex
n-manifold which is strongly dominable by Cn is an Oka manifold; see [26, Section 7.1].

A comprehensive study of complex surfaces holomorphically dominable by C2 was made
by Buzzard and Lu [8]. Inspection shows that the complex surfaces for which dominability
is established in their paper are actually densely dominable by Cn, hence Oka-1. We discuss
these applications in Section 8. Among the highlights, we mention that every Kummer surface
and every elliptic K3 surface is an Oka manifold; see Proposition 8.4 and Corollary 8.6.

When dimX = 1, i.e., X is a Riemann surface, dominability by tubes of lines is
clearly equivalent to dominability by C, which holds if and only if X is one of the surfaces
CP1,C,C∗ = C \ {0}, or a torus. These are precisely the Riemann surfaces which are Oka
manifolds; see [26, Corollary 5.6.4]. Summarizing, we have the following observation.

Corollary 2.6. For a Riemann surface X the following properties are pairwise equivalent.

• X is an Oka manifold.
• X is an Oka-1 manifold.
• X is dominable by C.
• X is not Kobayashi hyperbolic.
• X is one of the Riemann surfaces CP1,C,C∗, or a torus.

The proof of Theorem 2.2, given in Section 6, shows that the following ostensibly weaker
approximation and interpolation conditions imply Oka-1 properties (see Remark 6.2). We
shall say that a map f : K → X is holomorphic on a compact set K if it is the restriction to
K of a holomorphic map on a neighbourhood of K in the ambient manifold.

Proposition 2.7. Let X be a connected complex manifold.

(a) Assume that for any open Riemann surface R and pair of compact sets K ⊂ L in R with
piecewise smooth boundaries such that D = L \ K̊ is a disc attached to K along an arc
α ( bD, every holomorphic map f : K → X can be approximated uniformly on K by
holomorphic maps f̃ : L→ X . Then, X has the Oka-1 property with approximation.

(b) If in addition the map f̃ in part (a) can be chosen such that it agrees with f at a given finite
set of points in K, then X has the Oka-1 property with approximation and interpolation.
If in addition jet interpolation is possible then X is an Oka-1 manifold.

The conditions in the proposition obviously imply the analogous conditions if L \ K̊ is a
union of annuli. Indeed, attaching an annulus along a boundary component of K amounts to
successively attaching a pair of discs. This is the noncritical case in the proof of Theorem 2.2
(see Case 1), which holds by Lemma 5.1 if X is densely dominable by tubes of lines.

Remark 2.8. If X is a complex n-dimensional manifold and E is a closed subset of X with
H2n−2(E) = 0, then a generic holomorphic map f : M → X from a compact bordered
Riemann surface avoids E. Indeed, take a holomorphic submersion F : M × BN → X as in
(5.6), with F (· , 0) = f , where BN denotes the unit ball in CN . Since dimRM×BN = 2N+2,
the condition H2n−2(E) = 0 implies H2N(F−1(E)) = 0 by Fubini’s theorem, and hence the
set of parameters t ∈ BN for which the range of the map ft = F (· , t) : M → X intersects
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E has zero 2N -dimensional measure. Likewise, if H2n−1(E) = 0, the same argument shows
that a generic holomorphic map f : M → X satisfies f(bM) ∩ E = ∅, and in this case
f can be chosen to agree with a given holomorphic map M → X to a given finite order at
finitely many given points of M̊ = M \ bM . By using this argument inductively in the proof
of Theorem 2.2 we obtain the following corollary.

Corollary 2.9. Let X be an Oka-1 manifold of dimension n. If E is a closed subset of X with
H2n−2(E) = 0, then X \ E is an Oka-1 manifold. This holds in particular if E is a closed
complex subvariety of codimension at least two in X .

The hypothesis H2n−2(E) = 0 is optimal. Indeed, the corollary fails in general if E is a
complex hypersurface. For example, the complement in CPn of 2n+1 hyperplanes in general
position is Kobayashi hyperbolic by Green’s theorem [35], and so is the complement of a very
general hypersurface of sufficiently high degree; see Brotbek [7]. There is no analogue of
Corollary 2.9 for Oka manifolds where even the question of removability of a point is an open
problem, and closed discrete sets in Cn are not removable in general.

The jet transversality theorem shows that a generic holomorphic map M → X from a
compact bordered Riemann surface to an arbitrary complex manifold X is an immersion if
dimX > 1 and an injective immersion if dimX > 2; see [26, Section 8.8]. Using this fact
inductively in the proof of Theorem 2.2 gives the following corollary.

Corollary 2.10. If X is an Oka-1 manifold of dimension n > 1 then holomorphic maps
F : R→ X in Definition 1.1 can be chosen to be immersions (injective immersions if n > 2) if
the interpolation conditions allow it. If a complex manifold X of dimension > 1 has the Oka-
1 property with approximation, then every open Riemann surface R admits a holomorphic
immersion R→ X (injective immersion if dimX > 2) with everywhere dense image.

Corollary 2.10 clearly fails if the manifold X is Brody hyperbolic. On the other hand,
it was shown by Forstnerič and Winkelmann [24] that every connected complex manifold X
admits a holomorphic disc D→ X hitting any given sequence in X , so there are holomorphic
discs in X with everywhere dense images. (See also Kollár [41].) In Section 10 we generalize
this to maps from any bordered Riemann surface (see Theorem 10.1), and also from some
other open Riemann surfaces with more complicated topology (see Corollary 10.3).

Further examples of Oka-1 manifolds are discussed in Section 8 where we focus on
complex surfaces. Note however that a compact complex manifold may be dominable by
tubes of lines but not contain any rational curves. Examples include tori Cn/Γ, where Γ

is a discrete group of translations on Cn. These are complex homogeneous manifolds and
hence Oka manifolds (see [26, Proposition 5.6.1] due to Grauert [34]). By Corollary 2.4
and Proposition 7.4, a torus contains many domains which are dominable by tubes of lines.
Another such example are Hopf manifolds. Every Hopf manifold is an unramified quotient of
Cn \ {0} (n > 1) by a cyclic group, so it is an Oka manifold [26, Corollary 5.6.11]. Like tori,
Hopf surfaces contain many Oka-1 domains.

Problem 2.11. Let T ⊂ Cn be a spanning tube of lines for some n ≥ 2 (see Definition 2.1).

(a) Does there exist a dominating holomorphic map Cn → T ?
(b) Is T an Oka manifold?
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(c) Is there a compact Oka-1 manifold which is not an Oka manifold?

We expect that the answers to questions (a) and (b) are negative, while the answer to (c) is
positive in dimension > 1. Natural candidates may be the K3 surfaces.

Remark 2.12. Consider CP1 with the coordinate z ∈ C ∪ {∞}. We claim that the extended
(spanning) tube of rational curves

T̃ =
{

(z, w) ∈ CP1 × CP1 : |z| < 1 or |w| < 1
}

is an Oka surface, and hence by [26, Theorem 5.5.1 (e)] there is a surjective holomorphic map
C2 → T̃ . Indeed, the complement of the tree of rational curves Λ = {z = 0} ∪ {w = 0} in
X = CP1 × CP1 equals C2 with the complex coordinates (1/z, 1/w), and K = X \ T̃ is the
closed bidisc {|1/z| ≤ 1, |1/w| ≤ 1}, which is polynomially convex in X \ Λ ∼= C2. Hence,

T̃ \ Λ = (X \K) \ Λ = (X \ Λ) \K = C2 \K

is an Oka surface by Kusakabe’s theorem [43, Theorem 1.2 and Corollary 1.3] (see also [32]).
The same argument applies to any translation of the tree Λ within the tube T̃ . Clearly, there
are translates Λ2,Λ3 ⊂ T̃ of Λ = Λ1 with

⋂3
i=1 Λi = ∅. Hence, T̃ =

⋃3
i=1 T̃ \ Λi is a union

of Zariski open Oka domains T̃ \ Λi, so it is an Oka manifold by Kusakabe’s localization
theorem [44, Theorem 1.4]. This argument clearly fails in dimensions n > 2.

Let us say a few words about the proof of Theorem 2.2.

In Section 3 we collect some basic definitions and observations concerning trees and tubes
of complex lines in affine spaces Cn.

In Section 4 we obtain the first main lemma used in the proof (see Lemma 4.1), which
pertains to the situation described in Proposition 2.7. More precisely, let K be a compact
domain with piecewise smooth boundary in an open Riemann surface R, and let D ⊂ R be a
compact disc attached to K along a boundary arc α = K ∩ D = bK ∩ bD such that the set
L = K ∪ D has piecewise smooth boundary. Given a spanning tube of lines T ⊂ Cn and a
holomorphic map f : K → Cn such that f(α) ⊂ T , we show that f can be approximated
uniformly on K by holomorphic maps f̃ : L → Cn such that f̃(D) ⊂ T . The analogous
result holds for local holomorphic sprays of maps K → Cn sending α to T ; see Remark 4.2.

In Section 5 we use Lemma 4.1 and methods from Oka theory to prove Lemma 5.1, which
provides the noncritical case in the proof of Theorem 2.2. WithK ⊂ R as above, this concerns
the approximation of a holomorphic map f : K → X by holomorphic maps f̃ : L → X ,
where L c K is a compact set with piecewise smooth boundary such that L \ K̊ is the union
of finitely many pairwise disjoint compact annuli. In addition, f̃ can be chosen to agree with
f to a given finite order at a given finite set of points in K.

Using Lemma 5.1, we obtain Theorem 2.2 in Section 6 as a special case of Theorem 6.1.

In the paper, we shall frequently use the Mergelyan approximation theorem on compact
sets in Riemann surfaces with interpolation at finitely many points, both for functions and for
manifold-valued maps. We recall the relevant notions and terminology. Given a compact set
K in a complex manifold R, a map f : K → X to another complex manifold is said to be of
class A (K) if f is continuous on K and holomorphic on the interior K̊ of K. A map is said
to be holomorphic on K if it is holomorphic on a neighbourhood of K; this class is denoted
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by O(K). A compact set K in R is said to have the Mergelyan property if every function
f ∈ A (K) is a uniform limit on K of functions in O(K). If R is an open Riemann surface
then this holds in particular if K is Runge in R (see [19, Corollary 7]). The following result,
which we state for reader’s convenience, is [4, Theorem 1.13.1]; see also [19, Sec. 7.2].

Theorem 2.13. Assume that K is a compact set with the Mergelyan property in a Riemann
surface R. Given a complex manifold X , a map f : K → X of class A (K), and finitely
many points ai ∈ K (i = 1, . . . ,m), we can approximate f as closely as desired uniformly
on K by holomorphic maps f̃ : U → X on open neighbourhoods U ⊂ R of K such that
f̃(ai) = f(ai) for every i = 1, . . . ,m. In addition, f̃ can be chosen to agree with f to any
given finite order in the points ai ∈ K̊ = K \ bK.

3. TREES AND TUBES OF LINES

The notions of a tree and a tube of (affine complex) lines in Cn was introduced in
Definition 2.1. In this section we collect some observations which will be used in the sequel.

We can enumerate the branches Λi of a tree Λ =
⋃k
i=1 Λi so that for each i ≥ 2, the branch

Λi intersects the subtree Λi−1 =
⋃i−1
j=1 Λj in a single point. The intersections are transverse

(normal crossings) due to linear independence of direction vectors of the branches. Several
branches may intersect at the same point; we call Λ a regular tree if this does not happen.
Note that a tree with k branches is regular if and only of it has exactly k − 1 singular points
(simple nodes). Our definition of a tree of lines is similar to that of a tree of rational curves
in a complex manifold X (see [13, Definition 4.23] or [40]). However, an addition which is
important in the proof of Theorem 2.2 is that the direction vectors of the branches of a tree of
lines are linearly independent, and they are a basis of Cn if and only if the tree is spanning.

By a linear change of coordinates on Cn we can map the direction vectors v1, . . . , vk of a
tree Λ to the first k standard unit vectors e1, . . . , ek, where ei = (0, . . . , 1, . . . , 0) with 1 on
the i-th spot. Hence, it will suffice to consider trees of lines in coordinate directions.

Example 3.1. Let z = (z1, . . . , zn) be complex coordinates on Cn. For each i = 1, . . . , n let

(3.1) Λi = {z ∈ Cn : zj = 0 for all j ∈ {1, . . . , n} \ {i}} = Cei

be the coordinate axis in the zi direction.

(a) The union Λ =
⋃k
i=1 Λi of coordinate axes is a tree. It is a spanning tree if and only if

k = n, and is a regular tree if and only if n = 2.
(b) Let a1, . . . , ak ∈ C for 1 ≤ k < n be complex numbers. The set

(3.2) Λ = Λn ∪
k⋃
i=1

(
aien + Λi

)
is called a simple tree or a comb, and Λn is the stem (or the handle) of Λ. It is spanning if
and only if k = n − 1, and is regular if and only if the numbers ai are pairwise distinct.
Every tree of length ≤ 3 is a simple tree in suitable affine coordinates, but most trees of
length > 3 are not simple.

9



Lemma 3.2. For every tree of lines in Cn there is an affine change of coordinates which maps
it to a tree of the form

(3.3) Λ = Cen ∪
l⋃

j=1

Λj,

where each Λj is a tree in coordinate directions such that Λj ∩ Cen = ajen for some numbers
a1, . . . , al ∈ C (not necessarily distinct). A tree (3.3) is said to be in normal form.

Proof. Pick any branch of a given tree and map it to Cen by an affine transformation which
maps the direction vectors of the branches to coordinate vectors. Let a1, . . . , al ∈ C be such
that aien are the singular points of the new tree Λ. Then, Λ satisfies the lemma. �

Note that an affine linear transformation of Cn maps a tree of lines Λ to another tree of
lines Λ′, and it maps a tube T around Λ to a tube T ′ around Λ′.

It will be convenient to use polydisc tubes. Let ∆k ⊂ Ck denote the unit polydisc. The
polydisc tube of radius r > 0 around the coordinate axis Λn = Cen is defined by

Tr(Λn) = {z = (z′, zn) ∈ Cn−1 × C : z′ ∈ r∆n−1}.

For any affine complex line Λ ⊂ Cn there is an affine unitary change of coordinates
U : Cn → Cn mapping Λ onto Λn, and we take Tr(Λ) = U−1(Tr(Λn)). If Λ is a tree
of lines in the normal form (3.3), then the polydisc tube Tr(Λ) is defined to be the union of
polydisc tubes of the same radius r around its branches.

Remark 3.3. One can consider trees of lines in Cn having more than n branches. However,
examples show that a spanning tree with more than n branches need not contain a spanning
tree with n branches, such as those considered above. Our proof of Theorem 2.2 does not
apply if we assume dominability by spanning trees with more than n branches.

4. EXTENDING A HOLOMORPHIC MAP ACROSS A BUMP TAKING VALUES IN A TUBE

The following lemma will be used in the proof of Theorem 2.2.

Lemma 4.1. Assume thatK is a compact domain with piecewise smooth boundary in an open
Riemann surface R, and D is a compact topological disc with piecewise smooth boundary in
R such that α = D ∩K = bK ∩ bD is an arc and the compact set L = K ∪D has piecewise
smooth boundary. Let f = (f1, . . . , fn) : K → Cn be a map of class A (K) and T ⊂ Cn be a
spanning tube of lines such that f(α) ⊂ T . Then we can approximate f as closely as desired
uniformly on K and interpolate it to any given finite order at a given finite set of points in K̊
by holomorphic maps f̃ : K ∪D → Cn such that f̃(D) ⊂ T .

Proof. Recall that ∆n ⊂ Cn denotes the unit polydisc centred at the origin. We shall first
prove the lemma under the following additional assumptions on f and T :

(a) f(α) ⊂ r∆n for some r > 0, and
(b) T ⊂ Cn is the polydisc tube of radius r around a tree of lines Λ in the normal form (3.3).

(Recall that the polydisc tube Tr(Λ) is the union of polydisc tubes around its branches.)
10



These conditions on f and T imply that f(α) ⊂ r∆n ⊂ T. Indeed, r∆n is contained in the
tube of radius r around the stem Λn = Cen of the tree T .

By Mergelyan theorem we may assume that f is holomorphic on a neighbourhood of K
in R. Whenever invoking Runge or Mergelyan theorem, we shall also interpolate the given
map in the given finite set of points in K̊ without mentioning it again (see Theorem 2.13).

For simplicity of exposition, we first consider the case when Λ is a simple tree (a comb) of
the form (3.2). We begin by explaining how to choose the first n− 1 components of the new
map f̃ = (f̃ ′, f̃n) = (f̃1, . . . , f̃n); the last component f̃n will be determined in the final step.
The general case when Λ is of the form (3.3) will be obtained by induction on n.

Let β = bD \ α be the complementary arc to α in bD. Pick a closed topological disc
∆0 ⊂ D such that ∆0 ∩ α = ∅ and ∆0 ∩ bD is an arc contained in β. We extend the
first component f1 from K to K ∪ ∆0 by setting f1 = 0 on ∆0. By Runge theorem we can
approximate f1 on K ∪∆0 by a holomorphic function f̃1 on L = K ∪ D such that |f̃1| < r

holds on α ∪∆0; see (a). Hence, there is a closed disc ∆1 ⊂ D such that

(i1) ∆1 ∩ (α ∪∆0) = ∅,
(ii1) D \∆1 is the union of two disjoint discs and b∆1 ∩ β consists of two disjoint arcs, and

(iii1) |f̃1| < r holds on D \∆1.

Figure 4.1. Proof of Lemma 4.1 – the special case

See Figure 4.1. Condition (iii1) holds if the disc ∆1 satisfying conditions (i1) and (ii1) is
chosen large enough. Indeed, by increasing ∆1 the set D \∆1 shrinks to α∪∆0, and we have
that |f̃1| < r on α ∪ ∆0. Note that K ∩ ∆1 = ∅, and hence the set K ∪ ∆1 is Runge in an
open neighbourhood of L = K ∪D.

If n = 2, we proceed to the final argument explaining how to choose the last component
f̃n. Assume now that n > 2. Let ∆̃1 denote the union of ∆1 and the component of D \ ∆1

containing ∆0, so ∆̃1 ⊂ D is a closed disc disjoint from α (see Fig. 4.1). We extend the
second component f2 of f to the set K ∪ ∆̃1 by taking f2 = 0 on ∆̃1 and then apply Runge
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theorem onK∪∆̃1 to find a holomorphic function f̃2 on L such that |f̃2| < r holds on α∪∆̃1;
see (a). Hence, there is a disc ∆2 ⊂ D such that

(i2) ∆2 ∩ (α ∪ ∆̃1) = ∅,
(ii2) D \∆2 is the union of two disjoint discs and b∆2 ∩ β consists of two disjoint arcs, and

(iii2) |f̃2| < r holds on D \∆2.

As in the first step, condition (iii2) holds if the disc ∆2 satisfying (i2) and (ii2) is chosen big
enough within D \ (α ∪ ∆̃1). Let ∆̃2 denote the union of ∆2 and the component of D \ ∆2

containing ∆̃1, so ∆̃2 ⊂ D is a closed disc disjoint from α. See Figure 4.1.

If n = 3, we proceed to the last step. If on the other hand n > 3, we repeat the same
argument with the component f3 to obtain a holomorphic function f̃3 on L such that |f̃3| < r

holds on α∪ ∆̃2. We then pick a disc ∆3 ⊂ D which is disjoint from α∪ ∆̃2 such that D \∆3

is the union of two disjoint discs, one of them containing ∆̃2, and |f̃3| < r holds on D \∆3.
Let ∆̃3 denote the union of ∆3 and the component of D \∆3 containing ∆2. See Figure 4.1.

Clearly we can continue inductively in order to approximate the first n − 1 components
f1, . . . , fn−1 of f by holomorphic functions f̃1, . . . , f̃n−1 on L such that

(4.1) |f̃i| < r holds on D \∆i for i = 1, . . . , n− 1.

We now extend the last component fn to the Runge compact set K ′ = K ∪
⋃n−1
i=0 ∆i by

setting fn = ai on ∆i for i = 0, 1, . . . , n − 1, where a0 = 0 and the numbers ai ∈ C for
i = 1, . . . n − 1 are as in (3.2) with k = n − 1. Using Runge theorem we approximate fn on
K ′ by a holomorphic function f̃n on L = K ∪D such that

(4.2) |f̃n − ai| < r holds on ∆i for i = 0, 1, . . . , n− 1.

Conditions (4.1) and (4.2) imply that the map f̃ = (f̃ ′, f̃n) = (f̃1, . . . , f̃n) sends the disc
D into the tube T . Indeed, on the disc ∆i for i = 1, . . . , n − 1 all components of f̃ ′ except
perhaps f̃i are smaller than r in absolute value while |f̃n − ai| < r, so f̃(∆i) is contained in
the polydisc tube of radius r around the affine line anen + Λi ⊂ Λ. On the other hand, on
D \

⋃n−1
i=1 ∆i all components of f̃ ′ are smaller than r, so its image by f̃ is contained in the

polydisc tube of radius r around the stem Λn = Cen ⊂ Λ. Note also that

(4.3) |f̃j| < r holds on α ∪∆0 for all j = 1, . . . , n.

This proves the lemma (under the assumptions (a) and (b) on f and T ) if Λ is a simple
tree. Keeping the assumptions (a) and (b) in place, we now let Λ be any tree of the form (3.3)
with subtrees Λj for j = 1, . . . , l. We proceed by induction on n. The result clearly holds
for n = 2 since in this case every tree is a comb. Assume inductively that n > 2 and the
result (including the condition (4.3)) holds in dimensions < n. Let Σj denote the coordinate
subspace of Cn−1 × {0} spanned by the direction vectors of the affine lines in the tree Λj . By
renumbering the coordinates we may assume that Σ1 is spanned by the coordinate directions
1, . . . , n1 for some n1 < n. Pick a disc ∆0 ⊂ D as above. By the inductive hypothesis, we
can approximate the component functions fi for i = 1, . . . , n1 by functions f̃i ∈ O(K ∪ D)

satisfying |f̃i| < r on α ∪ ∆0 such that the map f̃ 1 = (f̃1, . . . , f̃n1) : K ∪ D → Cn1 send
D into the polydisc tube T 1 ⊂ Cn1 of radius r around the tree Λ1. Choose a disc ∆1 ⊂ D

satisfying conditions (i1)–(ii1) above, and with condition (iii1) replaced by
12



(iii1) |f̃i| < r holds on D \∆1 for i = 1, . . . , n1.

If l = 1 (so n1 = n−1), we proceed to the last step. Otherwise, we repeat the same procedure
for the second subtree Λ2. We may assume that the subspace Σ2 ⊂ Cn associated to Λ2

consists of coordinate directions n1 + 1, . . . , n2 for some n2 < n. Let ∆̃1 denote the union
of ∆1 and the component of D \ ∆1 containing ∆0. We extend the components fi of f for
i = n1+1, . . . , n2 to the setK∪∆̃1 by taking fi = 0 on ∆̃1 and apply the inductive hypothesis
to find holomorphic functions f̃i on L such that f̃ 2 = (f̃n1+1, . . . , f̃n2) : L → Cn2 maps D
into the polydisc tube T 2 ⊂ Cn2 of radius r around the tree Λ2, and |f̃i| < r holds on α ∪ ∆̃1

for all i = n1 + 1, . . . , n2. Hence, there is a disc ∆2 ⊂ D such that conditions (i2)–(ii2) hold,
and (iii2) is replaced by

(iii2) |f̃i| < r holds on D \∆2 for i = n1 + 1, . . . , n2.

Clearly this process continues inductively. In the last step, we choose f̃n as in (4.2) with n−1

replaced by l. We see as before that the holomorphic map f̃ = (f̃ 1, . . . , f̃ l, f̃n) : L → Cn

sends D into T . This closes the induction step and completes the proof of the lemma under
the additional assumptions (a) and (b) made at the beginning of the proof.

It remains to prove the general case of the lemma with the only assumption that f(α) ⊂ T ,
where T is a tube around an arbitrary spanning tree of lines Λ. By Lemma 3.2, for every point
p ∈ α there are an open neighbourhood αp ⊂ bK of p, a tube Tp ⊂ T containing a translate
of Λ through f(p) such that f(αp) ⊂ Tp, and an affine isomorphism Up : Cn → Cn such
that Up(f(p)) = 0, Up(Tp) is a tube of radius rp > 0 around a spanning tree of the form
(3.3), and Up(f(αp)) ⊂ rp∆

n. In other words, the assumptions (a) and (b) hold for the arc
αp, the map Up ◦ f , the tube Up(Tp), and the number rp. This allows us to subdivide the
arc α into a finite union α =

⋃s
j=1 αj of closed subarcs lying back-to-back such that the

above conditions hold on each αj for an affine linear change of coordinates Uj on Cn, tube
Tj ⊂ Uj(T ), and number rj > 0. Let pj−1 and pj denote the endpoints of αj such that
pj = αj ∩ αj+1 for j = 1, . . . , s − 1. Choose an embedded arc γj ⊂ D connecting the point
pj = αj ∩ αj+1 to a point qj ∈ β = bD \ α so that these arcs are pairwise disjoint, and
hence they subdivide D into the union D =

⋃s
j=1Dj of discs satisfying Dj ∩Dj+1 = γj for

j = 1, . . . , s− 1 and Dj ∩Dk = ∅ if |j − k| > 1. For notational reasons we also set γ0 = p0
and γs = ps. (See Figure 4.2.) We extend f to the arc γj as the constant map f(p) = f(pj)

Figure 4.2. Proof of Lemma 4.1 – the general case

for each p ∈ γj . By Mergelyan theorem we can approximate f as closely as desired on the
compact set S = K ∪

⋃s−1
j=1 γj by a holomorphic map defined on an open neighbourhood V

13



of S. Choose a small compact neighbourhood K̃ ⊂ V of S with smooth boundary such that
D \ K̃ =

⋃s
j=1 D̃j is the union of pairwise disjoint closed discs D̃j ⊂ Dj , and α̃j = bD̃j ∩ K̃

is an arc close enough to γj−1 ∪ αj ∪ γj such that

Uj(f(α̃j)) ⊂ rj∆
n ⊂ Tj holds for j = 1, . . . , s.

(See Figure 4.2.) It remains to apply the already established special case of the lemma to
successively extend the map (with approximation on K̃ and interpolation in the given finitely
many points in K̊) across each of the discs D̃1, . . . , D̃s. Since L = K ∪D ⊂ K̃ ∪

⋃s
j=1 D̃j ,

this completes the proof. �

Remark 4.2. In the proof of Lemma 5.1 we shall use a version of Lemma 4.1 for a certain
holomorphic map K × BN → Cn for some N ∈ N, where BN is the unit ball of CN . We
see by inspection that the same proof applies by using the Oka–Weil theorem instead of the
Runge theorem. This will be used in the proof of Lemma 5.1.

5. EXTENDING A HOLOMORPHIC MAP ACROSS AN ANNULUS

By using Lemma 4.1 and gluing methods from Oka theory, we now prove the following
lemma, which is the main ingredient in the proof of Theorems 2.2 and 6.1. It provides the
so-called noncritical case in the construction of holomorphic maps R→ X .

Lemma 5.1. Let X be a complex manifold of dimension n with a complete distance function
distX . Assume that Ω ⊂ X is an open subset and E ⊂ Ω is a closed subset with
H2n−1(E) = 0 such that X is dominable by a tube of lines at every point x ∈ Ω \ E.
Let R be an open Riemann surface and K ⊂ L be compact Runge sets in R with piecewise
smooth boundaries such that K ⊂ L̊ and K is a strong deformation retract of L. Assume
that f : K → X is a map of class A (K) such that f(bK) ⊂ Ω. Given a finite set
A = {a1, . . . , am} ⊂ K̊ and numbers ε > 0 and k ∈ N, there is a holomorphic map
f̃ : L→ X satisfying

(i) supp∈K distX(f̃(p), f(p)) < ε, and
(ii) f̃ agrees with f to order k at every point of A.

If Ω is dominable by a tube of lines at every point x ∈ Ω \ E then f̃ can be chosen such that

(iii) f̃(L \ K̊) ⊂ Ω.

Note that the condition that X be dominable at a point x ∈ Ω ⊂ X is weaker than the
condition that Ω be dominable at x. In the former case, a map which is dominating at x ∈ Ω

may have range in X , while in the latter case it must lie in Ω.

Proof. The conditions imply that the compact set D = L \ K̊ is a union of finitely many
pairwise disjoint annuli. It suffices to consider the case when D is a single annulus since the
same construction can be performed independently on each of them.

Before proceeding, we recall the following implication of the implicit function theorem.
Given a holomorphic map σ : T → X of complex manifolds which is a submersion at
a point t0 ∈ T , there are open neighbourhoods t0 ∈ T0 ⊂ T , σ(t0) ∈ X0 ⊂ X and a
biholomorphic map φ : T0 → X0 × ∆d with dimX + d = dimT such that σ|T0 = π ◦ φ,
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where π : X0×∆d → X0 is the projection π(x, t) = x. We shall call such a triple (T0, σ,X0)

a submersion chart. (When dimT = dimX , this says that σ is locally biholomorphically
at a point of maximal rank.) Given a submersion chart (T0, σ,X0), every holomorphic map
f : Y → X0 lifts to a holomorphic map g : Y → T0 such that σ ◦ g = f .

T0

σ

��

φ // X0 ×∆d

π

��
Y

f //

g
99ssssssssssss
X0

Id // X0

Given l ∈ N we write Zl = Z/lZ = {0, 1, . . . , l − 1}. The assumptions on E ⊂ Ω ⊂ X

and the general position argument in Remark 2.8 imply that, after a small perturbation of f
which is fixed to the given order k in the points in A ⊂ K̊, we have that f(bK) ⊂ Ω \ E.
Hence, we can subdivide the closed Jordan curve bK into a finite union of compact subarcs
{αi : i ∈ Zl} lying back-to-back and satisfying the following conditions.

(A1) αi and αi+1 have a common endpoint pi+1 and are otherwise disjoint for every i ∈ Zl.
(A2)

⋃
i∈Zl

αi = bK.
(A3) For every i ∈ Zl there are a spanning tube of lines Ti ⊂ Cni for some ni ≥ dimX , a

holomorphic map σi : Ti → X , a neighbourhood Ui ⊂ Ω \ E of f(αi), and an open
subset ωi ⊂ Ti such that σi(ωi) = Ui and the triple (ωi, σi, Ui) is a submersion chart.

Condition (A3) can be achieved if the arcs αi are chosen sufficiently short.

Let pi and pi+1 denote the endpoints of αi, ordered so that pi+1 = αi ∩ αi+1 for each
i ∈ Zl. Choose an embedded arc γi ⊂ D connecting the point pi to a point qi ∈ bL so that
these arcs are pairwise disjoint, they intersect bD = bK ∪ bL only in the respective endpoints
pi and qi, and these intersections are transverse. Note that the compact set

(5.1) S = K ∪
⋃
i∈Zl

γi

is admissible for Mergelyan approximation. Recall that f(αi) ⊂ Ui by condition (A3). We
extend f as a constant map to each arc γi having the value f(pi), and we use Mergelyan
theorem (see Theorem 2.13) to approximate the resulting map f : S → X uniformly on S by
a holomorphic map V → X on a neighbourhood V ⊂ R of S, which we still denote by f .
Assuming that the approximation is close enough, we have that

(5.2) f(γi ∪ αi ∪ γi+1) ⊂ Ui holds for each i ∈ Zl.

Let S̃ ⊂ V be a thin compact neighbourhood of S with smooth boundary and set

(5.3) K̃ = L ∩ S̃ ⊂ V.

In light of (5.2) and Ui ⊂ Ω (see (A3)), the set S̃ can be chosen such that

f(K̃ \ K̊) ⊂ Ω \ E.

Furthermore, we can choose S̃ (and hence K̃) such that the set

(5.4) L \ K̃ =
⋃
i∈Zl

Di
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is the union of pairwise disjoint compact discs Di with piecewise smooth boundaries, and for
each i ∈ Zl the arc α̃i = bDi ∩ L̊ is so close to the arc γi ∪ αi ∪ γi+1 that (5.2) implies

(5.5) f(α̃i) ⊂ Ui for all i ∈ Zl.

The complementary arc bDi \ α̃i lies in bL. See Figure 5.1.

Figure 5.1. Sets is the proof of Lemma 5.1

By standard methods, using flows of holomorphic vector fields and up to shrinking the
neighbourhood V around K̃ (5.3) if necessary, we can find a holomorphic map

(5.6) F : V × BN → X for some N ≥ dimX

satisfying the following conditions (see [26, Lemma 5.10.4]):

(F1) F (· , 0) = f ,
(F2) F (· , t) agrees with f to order k at each point of A ⊂ K̊ for every t ∈ BN , and
(F3) the partial derivative ∂

∂t

∣∣
t=0
F (p, t) : CN → Tf(p)X is surjective for all p ∈ V \ A.

Such F is called a (local) holomorphic spray with the core f which is dominating on V \ A.
(Here, A = {a1, . . . , am} is the finite set given in the statement.)

For each i ∈ Zl we pick a compact smoothly bounded disc neighbourhood Ci b V of the
arc α̃i such that f(Ci) ⊂ Ui (see (5.5)) and Ci ∩ A = ∅. Hence for some r ∈ (0, 1) we have
that F (Ci × rBN) ⊂ Ui. Replacing the map F (· , t) by F (· , rt) for each t ∈ BN , we may
assume that this holds for r = 1. Furthermore, Ci can be chosen such that Di \ C̊i is a closed
disc attached to Ci as in Lemma 4.1; see Figure 5.1.

Since (ωi, σi, Ui) is a submersion chart for the map σi : Ti → X (see condition (A3)),
there exists for each i ∈ Zl a holomorphic map gi : Ci × BN → ωi ⊂ Ti ⊂ Cni such that

(5.7) F = σi ◦ gi holds on Ci × BN .

SinceDi\C̊i is a closed disc attached toCi along an arc, Lemma 4.1 and Remark 4.2 show that
we can approximate the map gi as closely as desired uniformly on Ci×BN by a holomorphic
map g̃i : (Ci ∪Di)× BN → Ti ⊂ Cni . Define the map Gi by

(5.8) Gi = σi ◦ g̃i : (Ci ∪Di)× BN → X for i ∈ Zl.

It follows from (5.7) that Gi approximates F uniformly on Ci × BN for every i ∈ Zl.
Recall that the spray F is dominating on V \ A and Ci ∩ A = ∅ for every i ∈ Zl. Hence,

there is a number r ∈ (0, 1) depending on F such that, if the approximations are close enough,
we can glue F and the sprays Gi (i ∈ Zl) into a holomorphic spray F̃ : L× rBN → X which
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approximates F on K̃ × rBN , and it agrees with F (and hence with f = F (· , 0)) to order k
at every point of A × rBN (see (F2)). We refer to [26, Propositions 5.8.1 and 5.9.2] for this
gluing technique. The holomorphic map f̃ = F̃ (· , 0) : L → X then satisfies the conclusion
of Lemma 5.1 provided that the approximations made in the proof are close enough.

It remains to justify (iii). As before, we may assume after a small perturbation of f that
f(bK) ⊂ Ω \ E. There is a subdivision of bK into arcs αi as in (A2), open neighbourhoods
Ui ⊂ Ω\E of their images f(αi), and holomorphic maps σi : Ti → Ω from spanning tubes of
lines Ti ⊂ Cni satisfying condition (A3). We can choose the set K̃ in (5.3), neighbourhoods
Ci ⊂ V of the arcs α̃i = bDi ∩L in (5.5), and the spray F in (5.6) such that F (Ci×BN) ⊂ Ω

holds for every i ∈ Zl. From (5.8) and σi(Ti) ⊂ Ω it follows that each spray Gi (5.8) has
range in Ω. An inspection of the gluing method (see [26, Propositions 5.8.1 and 5.9.2]) shows
that the spray F̃ : L× rBN → X obtained by gluing F with the Gi’s satisfies

F̃ ((Ci ∪Di)× rBN) ⊂ Gi((Ci ∪Di)× BN) ⊂ Ω for every i ∈ Zl.

Since L = K̃ ∪
⋃
i∈Zl

Di (see (5.4)) and the holomorphic map f̃ = F̃ (· , 0) : L → X

approximates f on K̃, it follows that f̃(L\K̊) ⊂ Ω, so condition (iii) in the lemma holds. �

6. PROOF OF THEOREM 2.2

In this section we prove the following result, which includes Theorem 2.2 as a special case
with Ω = X (compare with Definition 1.1 of an Oka-1 manifold).

Theorem 6.1. Let X be a complex manifold endowed with a complete distance function
distX , and let Ω ⊂ X be a domain which is densely dominable by tubes of lines (see Remark
2.3). Assume that R is an open Riemann surface, K is a compact Runge set in R, ai ∈ R

is a discrete sequence without repetitions, and f : R → X is a continuous map which is
holomorphic on an open neighbourhood of K ∪

⋃
i{ai} and satisfies f(R \ K̊) ⊂ Ω. Given

ε > 0 and positive integers ki ∈ N, there is a holomorphic map F : R → X which is
homotopic to f and satisfies the following conditions:

(i) supp∈K distX(F (p), f(p)) < ε,
(ii) F (R \ K̊) ⊂ Ω, and

(iii) F agrees with f to order ki in the point ai for every i.

Proof. Call A = {ai}i∈N, and let U ⊂ R be an open neighbourhood of K ∪ A such that the
given map f is holomorphic on U . Pick a smooth strongly subharmonic Morse exhaustion
function ρ : R → R+ and an increasing sequence 0 < c1 < c2 < · · · diverging to infinity
such that the compact sets Kj = {ρ ≤ cj} for j = 1, 2, . . . satisfy the following conditions:

(A) K ⊂ K1 ⊂ U and A ∩K1 ⊂ K.
(B) The number cj is a regular value of ρ and the smooth level set {ρ = cj} = bKj is disjoint

from A for j = 1, 2, . . ..
(C) For every j = 1, 2, . . . the set Dj = {cj ≤ ρ ≤ cj+1} = Kj+1 \ K̊j contains at most one

critical point of ρ or at most one point of A, but not both.

The construction of such a function ρ and a sequence cj is standard, using the fact that Morse
critical points are isolated. Condition (A) is achieved by choosing ρ and c1 such that the set
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K1 = {ρ ≤ c1} is sufficiently close to K; this is possible since K is Runge in R. Note that
each Kj = {ρ ≤ cj} is a smoothly bounded Runge compact domain in R and the sequence
K1 b K2 b · · · b

⋃∞
j=1Kj = R is a normal exhaustion of R.

Given a compact set L ⊂ R and a pair of continuous maps f, g : L→ X , we write

dL(f, g) = max
p∈L

distX(f(p), g(p)).

Set K0 = K, f0 = f |K , and ε0 = ε/2, where K and ε > 0 are given in the statement. By
the assumption, there is a closed subset E ⊂ Ω withH2n−1(E) = 0 such that Ω is dominable
by a spanning tube of lines at every point of Ω \ E. By Remark 2.8, there is a holomorphic
map f1 : K1 → X which is ε0-close to f on K1, it agrees with f to order ki at every point
ai ∈ A ∩K1, and it satisfies

(6.1) f1(K1 \ K̊0) ⊂ Ω and f1(bK1) ⊂ Ω \ E.

Set D0 = K1 \ K̊0. We shall inductively construct a sequence of holomorphic maps
fj : Kj → X and numbers εj > 0 satisfying the following conditions for each j = 1, 2, . . .:

(aj) dKj−1
(fj, fj−1) < εj−1.

(bj) fj(Dj−1) ⊂ Ω and fj(bKj) ⊂ Ω \ E. (Here, Dj−1 = Kj \ K̊j−1 is given by (C).)
(cj) fj agrees with f to order ki at every point ai ∈ A ∩Kj .
(dj) fj is homotopic to f |Kj

: Kj → X by a homotopy mapping Kj \ K̊ to Ω.
(ej) εj < 1

2
min{εj−1, distX(fj(Dj−1), X \ Ω)}. (If Ω = X then the second number under

min is treated as +∞.)

The beginning of the induction is given by the map f1 found above and a number ε1 satisfying
(e1). Assume that for some j ∈ N we have found maps fk and numbers εk for k = 1, . . . , j,
and let us explain how to find the next pair (fj+1, εj+1). We distinguish cases.

Case 1: Dj does not contain any critical point of ρ nor any point of A. In this case, a map
fj+1 : Kj+1 → X satisfying (aj+1)–(cj+1) is given by Lemma 5.1. Assuming as we may that
the approximation in (aj+1) is close enough, fj+1|Kj

is homotopic to fj by a homotopy staying
close to fj , hence mapping Kj \ K̊ to Ω. Since Kj is a strong deformation retract of Kj+1

and f(R \ K̊) ⊂ Ω, we obtain a homotopy from fj+1 to f satisfying (dj+1). We then choose
a number εj+1 > 0 satisfying (ej+1), thereby completing the induction step in this case.

Case 2: Dj contains a critical point p of ρ. Our assumptions imply that such a point p is
unique, it is contained in the interior D̊j = K̊j+1 \Kj , and Dj ∩ A = ∅. There is a compact
smoothly embedded arc λ ⊂ bKj ∪ D̊j = K̊j+1 \ K̊j passing through p and having endpoints
in bKj such that λ intersects bKj only in these endpoints and the intersections are transverse,
and the set Kj ∪ λ is a strong deformation retract of Kj+1. (A discussion of the possible
changes of topology depending on the Morse index of ρ at p can be found in [4, Section 1.4].)
Condition (dj) implies that we can extend fj smoothly across the arc λ such that fj(λ) ⊂ Ω

and fj : Kj ∪λ→ X is homotopic to f |Kj∪λ by a homotopy mapping (Kj ∪λ) \ K̊ to Ω. We
apply Mergelyan theorem (see Theorem 2.13) to approximate fj on Kj ∪ λ by a holomorphic
map f̃j : V → X on a neighbourhood V ⊂ Kj+1 of Kj ∪ λ such that f̃j(bKj ∪ λ) ⊂ Ω and
f̃j agrees with fj to the given order ki at all points ai ∈ A ∩ Kj . Then, there are a compact
smoothly bounded neighbourhoodK ′ ⊂ V ofKj∪λ such that f̃j(K ′\K̊j) ⊂ Ω andKj+1\K ′
is a finite union of annuli. Applying Lemma 5.1 as in Case 1 to the pair of setsK ′ ⊂ Kj+1 and
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the map f̃j gives a holomorphic map fj+1 : Kj+1 → X satisfying conditions (aj+1)–(dj+1).
Finally, we pick a number εj+1 satisfying condition (ej+1).

Case 3: Dj contains a point ai ∈ A. Our assumptions imply that such a point is unique and
Dj does not contain any critical point of ρ. Hence, Dj is a finite union of annuli and Kj is a
strong deformation retract ofKj+1. Let U ⊂ R be the open set on which the initial continuous
map f : R → X is holomorphic. Pick a closed disc ∆ ⊂ U ∩ D̊j containing the point ai in
its interior. Choose a smooth embedded arc λ ⊂ bKj ∪ D̊j \ ∆̊ connecting a point p ∈ bKj

to a point q ∈ b∆ such that λ intersects bKj and b∆ only at p and q, respectively, and the
intersections are transverse. The set K̃j = Kj ∪∆ ∪ λ is then a strong deformation retract of
Kj+1 and an admissible set for Mergelyan approximation. Since f(R \ K̊) ⊂ Ω, condition
(dj) implies that fj(bKj) ⊂ Ω and f(ai) ∈ Ω lie in the same connected component of Ω.
Hence we can extend fj from Kj to a smooth map f̃j : K̃j → X which equals f on ∆ and
f̃j is homotopic to f |K̃j

by a homotopy mapping K̃j \ K̊ to Ω. We can now complete the

proof as in Case 2, first approximating the extended map f̃j : K̃j → X by a holomorphic map
on a neighbourhood of K̃j and then applying Lemma 5.1 to find the next holomorphic map
fj+1 : Kj+1 → X satisfying (aj+1) –(dj+1). Finally we choose εj+1 > 0 satisfying (ej+1).

This completes the induction step in all cases. The theorem now follows by verifying that
the limit map F = limj→∞ fj : R → X exists and satisfies the stated conditions. This is an
obvious consequence of conditions (aj)–(ej) whose verification is left to the reader. �

Remark 6.2. It is obvious that the proof of Theorem 6.1 also gives Proposition 2.7. Indeed,
Case 1 (the noncritical case) in the proof holds by the Oka-1 property with approximation and
interpolation in the finitely many points in the sublevel set Kj = {ρ ≤ cj}, while the proof of
Cases 2 and 3 only uses the Mergelyan theorem (see Theorem 2.13).

7. FUNCTORIAL PROPERTIES OF OKA-1 MANIFOLDS

In this section we study the behaviour of the Oka-1 property under certain natural
operations in the category of complex manifolds, and its relationship to other flexibility
properties of complex manifolds studied in the literature. A survey of these issues for the
smaller class of Oka manifolds can be found in [26, Chapter 7] and [23, 30].

It is obvious from the definition that an increasing union of Oka-1 manifolds is an Oka-1
manifold. The proof of the following simple observation is left to the reader.

Proposition 7.1. The product Z = X × Y is an Oka-1 manifold if and only if X and Y are
Oka-1 manifolds.

Next, we look at the following problem. Let X and Y be connected complex manifolds.
Under which conditions on a surjective holomorphic map h : X → Y isX an Oka-1 manifold
if (and only if) Y is an Oka-1 manifold?

Our first result in this direction concerns unramified holomorphic covering projections.

Proposition 7.2. Let h : X → Y be a holomorphic covering projection.

(a) If Y is an Oka-1 manifold, then X is an Oka-1 manifold.
(b) If X has the Oka-1 property for complex lines C→ X , then so does Y .
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Proof. To prove part (a), assume that Y is an Oka-1 manifold. Let K ⊂ L = K ∪ D be
compact sets in an open Riemann surface R as in Proposition 2.7, and let f : K → X be a
holomorphic map. Then, the projection g = h ◦ f : K → Y (see (7.1)) can be approximated
uniformly on K by holomorphic maps g̃ : L → Y , with interpolation in given finitely many
points a1, . . . , am ∈ K. We may assume that there is at least one point ai in each connected
component of K. If the approximation is close enough then g̃ is homotopic to g on K, and
hence it lifts to a unique holomorphic map f̃ : L → X which agrees with f at the points
a1, . . . , am and approximates f on K. Hence, X is Oka-1 by Proposition 2.7.

This argument fails in the opposite direction since a map K → Y need not lift to a map
K → X , unless the set K is simply connected. In the latter case, every holomorphic map
K → Y admits a holomorphic lift K → X . To prove (b), assume that X has the Oka-1
property for complex lines C → X . Let K ⊂ C be a smoothly bounded Runge compact
set, hence simply connected, and let g : K → Y be a holomorphic map. Since K is simply
connected, g lifts to a holomorphic map f : K → X . By the assumption we can approximate
f as closely as desired by a holomorphic map f̃ : C → X which agrees with f to a given
order k in the points a1, . . . , am ∈ K. The holomorphic map g̃ := h ◦ f̃ : C → Y then
approximates g on K and agrees with g to order k in the points a1, . . . , am. Applying this
argument inductively on an increasing sequence of discs exhausting C gives (b). �

Problem 7.3. If h : X → Y is a holomorphic covering projection and X is an Oka-1
manifold, is Y an Oka-1 manifold?

On the other hand, since a tube of lines is simply connected, we have the following
observation concerning the sufficient condition for Oka-1 manifolds in Theorem 2.2.

Proposition 7.4. If h : X → Y is a holomorphic covering space, then X is dominable by
tubes of lines if and only Y is dominable by tubes of lines. The same holds for dense and
strong dominabilities by tubes of lines.

Recall that a complex manifold X is said to be Liouville if it carries no nonconstant
negative plurisubharmonic functions, and strongly Liouville if the universal covering space
of X is Liouville. As remarked in the introduction, every Oka-1 manifold is Liouville.
Proposition 7.2 gives the following stronger conclusion.

Corollary 7.5. Every Oka-1 manifold is strongly Liouville.

Next, we show that the class of Oka-1 manifolds is invariant under Oka maps with
connected fibres. We recall this notion, referring to [26, Sect. 7.4] and [23, Sect. 3.6] for
a more detailed presentation.

A holomorphic map h : X → Y of complex manifolds is said to enjoy the parametric
Oka property with approximation and interpolation (POPAI) if for every holomorphic map
g : S → Y from a Stein manifold S, any continuous lifting f0 : S → X is homotopic through
liftings of g to a holomorphic lifting f : S → X as in the following diagram,

(7.1) X

h
��

S
g //

f
77ppppppp
Y
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with approximation on a compact O(S)-convex subset of S and interpolation on a closed
complex subvariety of S on which f0 is holomorphic. Furthermore, the analogous conditions
must hold for families of maps gp : S → Y depending continuously on a parameter p in a
compact Hausdorff space; see [26, Definitions 7.4.1 and 7.4.7] for the details.

A holomorphic map h : X → Y is said to be an Oka map if it enjoys POPAI and is a Serre
fibration (see [46, 25] and [26, Definition 7.4.7]). Assuming that Y is connected, such a map
is necessarily a surjective submersion and its fibres are Oka manifolds (see [23, Proposition
3.14]). In particular, the constant map X → point is an Oka map if and only if X is an Oka
manifold. More generally, if h : X → Y is an Oka map then X is an Oka manifold if and
only if Y is an Oka manifold (see [23, Theorem 3.15]).

Theorem 7.6. Let h : X → Y be an Oka map between connected complex manifolds.

(a) If Y is an Oka-1 manifold then X is an Oka-1 manifold.
(b) If X is an Oka-1 manifold and the homomorphism h∗ : π1(X)→ π1(Y ) of fundamentals

groups is surjective, then Y is an Oka-1 manifold.
(c) If h : X → Y is a holomorphic fibre bundle projection with a connected Oka fibre, then

X is an Oka-1 manifold if and only if Y is an Oka-1 manifold.

Proof. Fix a pair of compact sets K ⊂ L = K ∪ D in an open Riemann surface R as in
Proposition 2.7, where D is a disc attached to K along a boundary arc α = bD ∩ bK. Also,
let A be a finite subset of K and k ∈ N.

Proof of (a). Let f0 : K → X be a holomorphic map. Since Y is an Oka-1 manifold, the
holomorphic map h◦f0 : K → Y can be approximated uniformly onK by holomorphic maps
g : L→ Y with interpolation to order k in the points of A. Assuming that the approximation
is close enough, we see as in [23, proof of Theorem 3.15] that there is a holomorphic map
f1 : K → X which is uniformly close to f0 on K, it agrees with f0 to order k in the points
of A, and it satisfies h ◦ f1 = g on K; i.e., f1 is a lifting of g, see (7.1). (The construction of
f1 uses a holomorphic family of holomorphic retractions on the fibres of h, provided by [23,
Lemma 3.16].) Since g : L → Y is a holomorphic map, f1 is a holomorphic lifting of g over
K, and h : X → Y is an Oka map, we can approximate f1 (and hence f0) uniformly on K by
holomorphic maps f : L → X satisfying h ◦ f = g such that f agrees with f1 to order k in
the points of A. Hence, Proposition 2.7 shows that X is an Oka-1 manifold.

Proof of (b). Note that each connected component of K has the homotopy type of a finite
bouquet of circles. The assumption that the homomorphism h∗ : π1(X, x) → π1(Y, h(x)) is
surjective for some (and hence for all) x ∈ X therefore implies that every holomorphic map
g : K → Y lifts to a continuous map f0 : K → X such that h◦f0 = g. Since h is an Oka map,
we can homotopically deform f0 to a holomorphic map f1 : K → X satisfying h ◦ f1 = g.
Since X is an Oka-1 manifold, we can approximate f1 as closely as desired uniformly on K
by a holomorphic map f̃ : L → X which agrees with f1 to order k in the points of A. The
holomorphic map g̃ = h◦ f̃ : L→ Y then approximates g uniformly on K, and it agrees with
g to order k in the points of A. Hence, Y is an Oka-1 manifold by Proposition 2.7.

Proof of (c). This follows from (a) and (b) by noting that a holomorphic fibre bundle map
h : X → Y is an Oka map if and only if its fibre is an Oka manifold [26, Corollary 7.4.8 (i)],
and if the fibre of h is connected then h∗ : π1(X, x)→ π1(Y, h(x)) is surjective. �
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We now introduce the notion of an Oka-1 map by analogy with Oka maps.

Definition 7.7. A holomorphic map h : X → Y of complex manifolds is an Oka-1 map if

(i) h is a Serre fibration, and
(ii) given an open Riemann surface R, a holomorphic map g : R → Y , and a continuous

lifting f0 : R → X of g which is holomorphic on a neighbourhood of a compact
Runge subset K ⊂ R, we can deform f0 through liftings of g to a holomorphic lifting
f : R→ X which approximates f0 as closely as desired on K and agrees with f0 to any
given finite order in given finitely many points of K (see (7.1)).

Note that the constant map X → point is an Oka-1 map if and only if X is an Oka-1
manifold. Obviously, every Oka map is also an Oka-1 map, but the converse fails at least for
maps with noncompact fibres. We have the following analogue of [23, Proposition 3.14].

Proposition 7.8. An Oka-1 map h : X → Y to a connected complex manifold Y is a
surjective submersion and its fibres are Oka-1 manifolds.

Proof. It follows from the definition of an Oka-1 map that for every holomorphic disc
g : ∆ → Y and point x ∈ h−1(g(0)) ∈ X there is a holomorphic lifting f : ∆ → X

with h ◦ f = g and f(0) = x. Hence, every tangent vector v ∈ Tg(0)Y lies in the image of the
differential dhx : TxX → Tg(0)Y , so h is a submersion. Since any pair of points in Y lie in
the image of a holomorphic disc ∆ → Y , h is surjective. Hence, every fibre h−1(y) (y ∈ Y )

is a closed complex submanifold of X . Applying the definition of an Oka-1 map to liftings of
constant maps R→ y ∈ Y shows that h−1(y) is an Oka-1 manifold for every y ∈ Y . �

An inspection of the proof of Theorem 7.6 shows that it holds if h : X → Y is an Oka-1
map, so we obtain the following corollary.

Corollary 7.9. If h : X → Y is an Oka-1 map of connected complex manifolds then the
conclusion of Theorem 7.6 holds.

However, we do not know the answer to the following question.

Problem 7.10. Let h : X → Y be a holomorphic fibre bundle whose fibre is an Oka-1
manifold. Is h an Oka-1 map?

The proof of the analogous affirmative result for Oka manifolds and Oka maps (see [26,
Theorem 5.6.5] and [23, Theorem 3.15]) does not apply.

One might wonder why is the conclusion of Theorem 7.6 (b) weaker for Oka-1 manifolds
than for Oka manifolds, where the condition on the homotopy groups is unnecessary. The
reason is that Oka manifolds are characterized by the convex approximation property (CAP),
which refers to holomorphic maps from bounded convex sets in complex Euclidean spaces to
the given manifold; see [26, Definition 5.4.3 and Theorem 5.4.4].

We now introduce an approximation condition on a complex manifold which implies that
it is Oka-1; see Definition 7.11. This is a version of the convex approximation property, CAP
(see [26, Definition 5.4.3]), applied to dominating holomorphic sprays on discs with images
in a given open subset of X . It encapsulates the condition which is needed to glue a pair
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of sprays in the proof of Lemma 5.1. The condition is invariant under Oka maps and under
dominating holomorphic maps, but we do not know whether it characterizes Oka-1 manifolds.

Let us call a pair of compact topological discs D ⊂ D′ ⊂ C a special pair if both discs
have piecewise smooth boundaries and D′ \ D̊ is a disc attached to D along a boundary arc.
A holomorphic map F : D × BN → X to a complex manifold X is called a holomorphic
spray of maps D → X with the core f = F (· , 0). Such a spray is said to be dominating if
the partial derivative ∂

∂t

∣∣
t=0
F (z, t) : CN → Tf(z)X is surjective for all z ∈ D. (Dominating

sprays were used in the proof of Lemma 5.1, see (5.6).)

Definition 7.11. A complex manifold X has the local spray approximation property, LSAP,
at point x ∈ X if there is an open neighbourhood V ⊂ X of x satisfying the following
condition. Given a special pair of compact discs D ⊂ D′ ⊂ C and a dominating holomorphic
spray F : D×BN → V , there is a number r = r(F ) ∈ (0, 1) such that F can be approximated
as closely as desired uniformly on D × rBN by holomorphic maps G : D′ × rBN → X .

A manifold X has LSAP if the above condition holds at every point x ∈ X .

Remark 7.12. (A) The sprays in Definition 7.11 can either be defined over open
neighbourhoods of the compact discs D and D′, or else they could be continuous over the
closed disc and holomorphic over its interior. Our applications of LSAP work in both cases
since the gluing of sprays on Cartan pairs works in both cases (see [26, Section 5.9]).

(B) Since every holomorphic spray F : D × BN → X can be extended to a dominating
spray by adding additional parameters, thereby increasing the dimension N and shrinking
the ball if necessary (see [26, Lemma 5.10.4] for a more general result), LSAP is equivalent
to the condition that every holomorphic spray of discs (not necessarily dominating) can be
approximated by a spray on a bigger disc D′ as in Definition 7.11.

An inspection of the proof of Lemma 5.1 shows that if X is dominable by a tube of lines
(or by Cn) at x ∈ X , then X satisfies LSAP at x. Furthermore, if X has LSAP at every point
x ∈ Ω \ E ⊂ X , using the notation of Lemma 5.1, then the conclusion of the said lemma
holds. This observation and the proofs of Theorems 6.1 and 7.6 imply the following results.

Proposition 7.13. (a) A spanning tube of complex lines in Cn has LSAP.
(b) If a complex manifold X satisfies LSAP at every point x ∈ X \ E in the complement

of a closed subset E ⊂ X with H2 dimX−1(E) = 0, then X is an Oka-1 manifold. In
particular, a complex manifold with LSAP is an Oka-1 manifold.

(c) A complex manifold which is densely dominable by manifolds having LSAP is Oka-1. In
particular, if f : X → Y is a surjective holomorphic submersion and X is an LSAP
manifold, then Y is an LSAP manifold.

(d) A holomorphic fibre bundle X → Y with an LSAP fibre is an Oka-1 map.

Proof. Part (a) follows by inspecting the proof of Lemma 4.1. Parts (b) and (c) follow from
the proof of Theorem 6.1, with condition LSAP replacing the use of Lemma 5.1 as explained
above. Part (d) follows from the proof of Theorem 7.6. The details are similar to the proof
that a holomorphic fibre bundle with Oka fibre is an Oka map (see [26, Corollary 7.4.8]),
except that we also use localization as in the proof of Theorem 6.1. Note also that a lifting
f : D → X of a holomorphic map g : D → Y in a holomorphic fibre bundle h : X → Y

corresponds to a holomorphic section of the pullback bundle g∗X → D. �
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Another interesting question is whether the set of Oka-1 manifolds is open or closed
in a smooth family of complex manifolds. By [30, Corollary 5] (see also [26, Corollary
7.3.3]), compact complex surfaces that are Oka (and hence Oka-1) can degenerate to a
surface that is not strongly Liouville, and hence is not an Oka-1 manifold by Corollary 7.5.
This shows that the property of being Oka-1 is not closed in families of compact complex
manifolds. Concerning families of open manifolds, in [23, Section 10] there is an example
of a holomorphic submersion h : X → C from a Stein 3-fold X such that h is a trivial
holomorphic fibre bundle with fibre C2 over C∗ = C \ {0}, while the fibre X0 over 0 ∈ C is
the product ∆× C which is not Liouville, and hence not Oka-1.

There are immediate examples showing that the property of being Oka or Oka-1 is not
open in families of noncompact complex manifolds. For example, one can consider the family
h : X = {(z, w) ∈ C2 : |zw| < 1} → C whose fibre over any z ∈ C∗ is the disc, while the
fibre over z = 0 is C. On the other hand, we are not aware of an example of an isolated Oka
or Oka-1 fibre in a smooth family of compact complex manifolds.

8. OKA-1 MANIFOLDS AMONG COMPACT COMPLEX SURFACES

In this section, we summarize what we know about which compact complex surfaces are
Oka-1. Our discussion is based on the Enriques–Kodaira classification of such surfaces (see
Barth et al. [5, Table 10, p. 244]), combined with Corollary 2.5 and the results of Buzzard
and Lu [8] on holomorphic dominability. The analogous analysis concerning compact Oka
surfaces can be found in the paper [30] by Forstnerič and Lárusson and in [26, Section 7.3].
Comparing the two lists, we shall see that for many classes of compact complex surfaces
with Kodaira dimension < 2 the properties of being Oka, Oka-1, and dominable by C2, are
pairwise equivalent. The main exceptions are the K3 surfaces and the elliptic fibrations. In
the K3 class, Kummer surfaces and the elliptic K3 surfaces are Oka-1 (see Proposition 8.4
and Corollary 8.6), but it is not known whether any or all of them are Oka manifolds.

The most important invariant of a compact complex manifold X is its Kodaira dimension
κX ∈ {−∞, 0, 1, . . . , n = dimX}. Let KX = ΛnT ∗X denote the canonical line bundle of
X , and for each integer m ∈ N let Pm(X) = h0(K⊗mX ) denote the dimension of the complex
vector space of holomorphic sections of the m-th tensor power of KX . Then, k = κX is the
integer such that Pm(X) grows like mk as m → +∞, where k = −∞ means that K⊗mX
only admits the trivial (zero) section for every m. (See [5, p. 29].) By Kodaira’s pioneering
work [38] and its extensions (see Carlson and Griffiths [12] and Kobayashi and Ochiai [37]),
a compact complex manifold X which is holomorphically or even just meromorphically
dominable by CdimX satisfies κX < dimX . Manifolds with the maximal Kodaira dimension
κX = dimX are said to be of general type, and they cannot be Oka since they are not
dominable by CdimX . Conjecturally no such manifold is Oka-1 either, since it is believed
that any holomorphic line C → X in a manifold of general type is contained in a proper
complex subvariety of X . This conjecture of Lang [45] from 1986 seems to be still open.

In the sequel and unless stated otherwise, X denotes a compact complex surface with
Kodaira dimension κ ∈ {−∞, 0, 1}. A complete list of such surfaces, classified according to
the value of κ, can be found in the monograph by Barth et al. [5, Table 10, p. 244]. There are
10 classes, and every compact complex surface has a minimal model (obtained by blowing
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down all−1 rational curves) in exactly one of these classes. This minimal model is unique up
to isomorphisms, except for surfaces with minimal models in the classes 1 and 3.

A fibration f : X → C of a complex surface X onto a complex curve C is a proper
surjective holomorphic map with connected fibres. A fibration is relatively minimal if there
are no −1 curves on any fibre. (Any such curve is rational and can be blown down.) A
fibration is said to be elliptic if the general fibre Xp = f−1(p) is an elliptic curve (a complex
torus). Such a surface can have any Kodaira dimension κ ∈ {−∞, 0, 1}. A compact complex
surface X is an elliptic surface if it admits an elliptic fibration X → C onto an elliptic curve.
In this connection, we recall (see [5, Theorem 15.4, p. 127]) that if X is a compact complex
surface, f : X → C is a fibration without singular fibres, and the curve C is either CP1 or
elliptic, then f is a holomorphic fibre bundle.

8.1. Kodaira dimension κ = −∞. Rational surfaces (including nonminimal ones) are Oka,
and hence Oka-1. A ruled surface is Oka-1 if and only if its base is CP1 or an elliptic curve.
Theorem 8.1 covers surfaces of class VII if the global spherical shell conjecture holds true.

Let us go through the list and justify these claims.

Every smooth rational surface is obtained by repeatedly blowing up a minimal rational
surface. The minimal rational surfaces are the projective plane CP2, which is Oka, and the
Hirzebruch surfaces Σr for r ∈ Z+. The latter are holomorphic CP1-bundles over CP1,
so they are Oka by [26, Theorem 5.6.5]. Repeated blowups preserve the Oka property for
surfaces in this class by [26, Proposition 6.4.6], so nonminimal rational surfaces are also Oka.

A ruled surface is the total space of a holomorphic fibre bundle X → C with fibre CP1

over a compact curve C (see [5, p. 189]). By [26, Theorem 5.6.5] such a surface X is Oka
if and only if the base curve C is Oka, which holds if and only if C is CP1 or a quotient of
C (see [26, Corollary 5.6.4]). By Theorem 7.6 (c), X is Oka-1 if and only if C is CP1 or a
quotient of C. Note that minimal ruled surfaces over CP1 are just the Hirzebruch surfaces.

Class VII comprises the nonalgebraic compact complex surfaces of Kodaira dimension
κ = −∞. Minimal surfaces of class VII fall into several mutually disjoint classes. For second
Betti number b2 = 0, we have Hopf surfaces and Inoue surfaces. For b2 ≥ 1, there are Enoki
surfaces, Inoue-Hirzebruch surfaces, and intermediate surfaces; together they form the class
of Kato surfaces. Conjecturally, all surfaces with κ = −∞ and b2 ≥ 1 admit a global spherical
shell, i.e., a neighbourhood of the 3-sphere S3 ⊂ C2 holomorphically embedded into X so
that the complement is connected. If this global spherical shell conjecture holds true then
every minimal surface of class VII with b2 ≥ 1 is a Kato surface. The conjecture was proved
in the cases b2 ∈ {1, 2, 3} by Teleman in the respective papers [51, 52, 53]. Assuming that the
global spherical shell conjecture holds true, the following result gives a complete description
of Oka-1 surfaces in class VII. For the corresponding description of Oka surfaces in this class,
see [30, Theorem 4] or [26, Theorem 7.3.2].

Theorem 8.1. Minimal Hopf surfaces and minimal Enoki surfaces are Oka, and hence Oka-1.
Inoue surfaces, Inoue–Hirzebruch surfaces, and intermediate surfaces, minimal or blown up,
are not strongly Liouville, and hence not Oka or Oka-1.

Recall that every Oka-1 manifold is strongly Liouville by Corollary 7.5.

In summary, we have the following corollary concerning surfaces with κX = −∞.
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Corollary 8.2. Modulo the global spherical shell conjecture, the following conditions are
equivalent for every minimal compact complex surface X with κX = −∞:

Oka ⇐⇒ dominable by C2 ⇐⇒ Oka-1 ⇐⇒ not strongly Liouville.

8.2. Kodaira dimension. κ = 0. Bielliptic surfaces, Kodaira surfaces, and tori are Oka, and
hence Oka-1. Elliptic and Kummer K3 surfaces are Oka-1 manifolds, but we do not know
whether any or all of them are Oka manifolds. Again, we proceed case by case.

Tori (unramified quotients of C2) are complex homogeneous manifiolds, hence Oka (see
[26, Proposition 5.6.1]) and therefore Oka-1. In fact, more can be said about compact tori.

Proposition 8.3. A complex surface Y bimeromorphic to a compact torus is densely
dominable by C2, and hence an Oka-1 manifold.

Proof. Let Γ be a lattice of rank 4 in C2, that is, a free abelian subgroup Γ ∼= Z4 of C2. Given
finitely many points P = {p1, . . . , pm} in the torus X = C2/Γ, the complement X \ P is
universally covered by C2 \ Γ̃, where Γ̃ =

⋃m
i=1(ai + Γ) and ai ∈ C2 are points mapped

to pi under the quotient projection. Buzzard and Lu showed in [8, Proposition 4.1] that the
discrete set Γ̃ is tame in C2. Hence, C2 \ Γ̃ is an Oka manifold by [26, Proposition 5.6.17],
and its unramified quotientX \P is an Oka manifold by [26, Proposition 5.6.3]. Any compact
complex surface Y which is bimeromorphic toX admits a dominating holomorphic map from
such a complement X \P with a Zariski dense image in Y , so Y is densely dominable by C2.
The conclusion now follows from Corollary 2.5 (a). �

Most tori are not elliptic. The elliptic compact 2-tori form a 3-dimensional family in the
4-dimensional family of tori. A generic 2-torus does not contain any compact complex curves.

According to [5, p. 245], every bielliptic surface and every primary Kodaira surface is
the total space of a holomorphic fibre bundle with torus fibre over a torus, so it is Oka by [26,
Theorem 5.6.5] . A secondary Kodaira surface is a proper unramified holomorphic quotient of
a primary Kodaira surface, so it is Oka by [26, Proposition 5.6.3]. They are elliptic fibrations
over CP1 with b1(X) = 1 and with nontrivial canonical bundle.

A K3 surface is a simply connected surface (b1 = 0) with trivial canonical bundle, hence
κ = 0. We refer to Barth et al. [5, Chapter VIII] and Huybrechts [36] for a detailed treatment
of such surfaces; the basic description in [8, Section 4.2] will suffice for our needs. The class
of K3 surfaces includes Kummer surfaces, which form a dense codimension 16 family in the
moduli space of K3 surfaces, and the elliptic K3 surfaces, which form a dense codimension
one family in the moduli space. All elliptic fibrations in the K3 class are ramified. It is not
known whether any or all K3 surfaces are Oka. Here we will show that every Kummer surface
and every elliptic K3 surface is an Oka-1 manifold.

Let us recall the structure of Kummer surfaces; see [5, p. 224]. Let X = C2/Γ be a
compact complex 2-torus, and let h : C2 → X be the quotient (covering) map. The involution
C2 → C2, (z1, z2) 7→ (−z1,−z2) descends to an involution σ on X with 16 fixed points
P = {p1, . . . , p16}. (If ω1, . . . , ω4 ∈ C2 are the generators of the lattice Γ then p1, . . . , p16
are the images under h of the 16 points c1ω1 + · · · + c4ω4, where c1, . . . , c4 ∈ {0, 12}.) The
quotient spaceX/{1, σ} is a 2-dimensional complex space with 16 singular points q1, . . . , q16.
Blowing up X/{1, σ} at each of these points yields a smooth compact surface Y containing
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pairwise disjoint smooth rational curves C1, . . . , C16. (Each of them is a −2 curve.) This is
the Kummer surface associated to the rank four lattice Γ ⊂ C2.

Let C =
⋃16
i=1Ci. Note that Y \ C is an unramified two-sheeted quotient of X \ P . We

have seen in the proof of Proposition 8.3 that Y \ C and X \ P are Oka manifolds. If B is
a finite subset of Y \ C and A is its saturated preimage in X \ P , then the Zariski domains
Y0 = Y \ (B∪C) and X0 = X \ (A∪P ) are manifolds of the same kind, hence Oka. If Ỹ is a
compact surface bimeromorphic to Y , it admits a dominating holomorphic map from such Y0
(for some B) with a Zariski dense image in Ỹ , so Ỹ is densely dominable by C2. This proves
the following statement.

Proposition 8.4. A compact complex surface bimeromorphic to a Kummer surface is densely
dominable by C2, and hence an Oka-1 manifold.

Next, we consider elliptic fibrations. Suppose that f : X → C is an elliptic fibration
over a complex curve C = C \ P obtained by removing at most finitely many points P from
a compact complex curve C. (Such a curve C is quasi-projective.) Let m ≥ 0 denote the
cardinality of the set P . The Euler characteristic of C equals

(8.1) χ(C) = χ(C)−m = 2− 2g(C)−m,

where g denotes the genus. We assume that the fibration f : X → C has at most finitely
many multiple and singular fibres. Let np ∈ N for p ∈ C denote the multiplicity of the fibre
Xp = f−1(p), so np = 1 means that the fibre is not multiple, although it may still be singular.
(See [5, Chapter V] or [8, Sect. 3.2] for a detailed description of this notion.) The fibration
f : X → C determines the divisor

(8.2) D =
∑
p∈C

(
1− 1

np

)
p

with rational coefficients of degree

(8.3) degD =
∑
p∈C

(
1− 1

np

)
∈ Q+.

The sum is over p ∈ C with np > 1, and degD = 0 if and only of there are no multiple fibres.

We can now state our main result concerning Oka-1 manifolds among elliptic fibrations.

Theorem 8.5. Assume that C is a quasi-projective complex curve and f : X → C is a
relatively minimal elliptic fibration with at most a finite number of multiple fibres. Let D
denote the associated Q-divisor (8.2). Then, the following conditions are equivalent.

(a) The surface X is densely dominable by C2, and hence an Oka-1 manifold.
(b) χ(C,D) = χ(C)− degD ≥ 0. (See (8.1) and (8.3).)
(c) There is a holomorphic map C→ X with a Zariski dense image.

Assuming that X is not bimeromorphic to a primary or a secondary Kodaira surface, the
above conditions are also equivalent to the following:

(d) The fundamental group π1(X) is a finite extension of an abelian group.
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Proof. This result is analogous to [8, Theorem 3.9] by Buzzard and Lu, except that condition
(a) in their theorem, that X be dominable by C2, is now replaced by the stronger condition
that X be densely dominable. Hence, it follows that for such fibrations these two conditions
are equivalent. Condition (d) is equivalent to dominability of X by [8, Theorem 3.23]. To
prove the theorem, it thus suffices to show the implication (b) ⇒ (a).

The support P ⊂ C of the divisor D (8.2) is a finite subset of C by the assumption.
By [16, IV 9.12] the pair (C,D) has a uniformizing orbifold covering α : C̃ → C where
C̃ is one of the Riemann surfaces CP1,C,D according to χ(C,D) > 0, χ(C,D) = 0, or
χ(C,D) < 0. (Here, D is the unit disc in C.) This means that α : C̃ → C is a surjective
branched holomorphic map such that α : C̃ \ α−1(P ) → C \ P is a finite covering map, and
for each p ∈ P , α has ramification index np at every point of the fibre α−1(p). Then, the
pullback elliptic fibration f̃ : X̃ = α∗X → C̃ has no multiple fibres, and the natural map
X̃ → X covering α is an unramified covering map. Since the properties of being dominable
or densely dominable by C2 are invariant under covering maps, this reduces the problem to
the case when C ∈ {CP1,C,D} and X → C is an elliptic fibration without multiple fibres
(see [8, Proposition 3.4].) The case C = D is excluded by condition (b) (see [8, proof of
Theorem 3.9]), and the case C = CP1 reduces to C = C by removing a point.

It remains to show that the total space X of an elliptic fibration f : X → C without
multiple fibres is densely dominable. By [8, Lemma 3.8] there exists a holomorphic section
σ : C→ X of the fibration f . (The proof uses the fact that every singular fibre Xp = f−1(p)

which is not a multiple fibre admits an irreducible component of multiplicity one, so there
is a local holomorphic section of X at every point. This is seen by inspecting Kodaira’s list
of non-multiple singular fibres, see [5, Table 3, p. 201]. A global section is then found by
solving a Cousin-1 problem.) Let Xσ

p denote the union of all irreducible components of the
fibre Xp which do not contain the point σ(p) (such exist only if Xp is a singular fibre). Their
union Xσ =

⋃
pX

σ
p is a closed one-dimensional complex subvariety of X . By a theorem

of Kodaira [5, Proposition V-9.1, p. 206] there is a canonical fibre-preserving isomorphism
Θ : Jac(f)→ Ω ⊂ X from the Jacobian fibration Jac(f)→ C onto the Zariski open domain
Ω = X \Xσ in X . Recall that the fibre of the Jacobian fibration over p ∈ C is

Jac(f)p = Pic0(Xp) = H1(Xp,OXp)/H1(Xp,Z),

where the inclusion H1(Xp,Z) ↪→ H1(Xp,OXp) comes from the cohomology sequence of
the exponential sheaf sequence 0→ Z ↪→ C→ C∗ → 0:

0→ H1(Xp,Z)→ H1(Xp,OXp)→ H1(Xp,O
∗
Xp

) = Pic(Xp)→ H2(Xp,Z)→ 0

(see [8, p. 627]). Thus, Pic0(Xp) is the subgroup of the group Pic(Xp) consisting of
holomorphic line bundles E → Xp with trivial first Chern class 0 = c1(E) ∈ H2(Xp,Z).
We have that Lp := H1(Xp,OXp) ∼= C for all p ∈ C, L =

⊔
p∈C Lp → C is a holomorphic

line bundle, which is trivial by the Oka–Grauert principle, and Jac(f) is a quotient of L.
Let A ⊂ C be the discrete set of points p ∈ C for which the fibre Xp is singular, and set
X ′ =

⋃
p∈AXp and L′ =

⋃
p∈A Lp. The natural quotient projection φ : L → Jac(f) is a

nonramified covering map on the Zariski open set L \ L′ in L. The holomorphic map

h = Θ ◦ φ : L→ Ω = X \Xσ
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is then surjective, and h : L \ L′ → Ω \X ′ is a nonramified covering projection. Hence, h is
dominating on the Zariski open domain Ω \X ′, so X is densely dominable by L ∼= C2. �

Since a K3 surface has trivial fundamental group, we have the following corollary to
Theorem 8.5 (see part (d) of the theorem).

Corollary 8.6. Every elliptic K3 surface is densely dominable by C2, and hence Oka-1.

By the Enriques–Kodaira classification, every compact complex surface with Kodaira
dimension 0, which is not bimeromorphic to a torus or a K3 surface, is an elliptic fibration, so
the question of their (dense) dominability by C2 is covered by Theorem 8.5.

8.3. Kodaira dimension κ = 1. By the Enriques–Kodaira classification, every such surface
is an elliptic surface, given as the total space of an elliptic fibration X → C over an elliptic
curve. These are called properly elliptic surfaces. The equivalence of (a) and (b) in Theorem
8.5 gives the following corollary.

Corollary 8.7. Let f : X → C be an elliptic fibration over an elliptic curve C. Then, the
elliptic surface X is densely dominable by C2 if and only if the fibration f has no multiple
fibres. Every elliptic surface with this property is an Oka-1 manifold.

Proof. Let D be the Q-divisor (8.2). Since χ(C) = 0, we have that

χ(C,D) = χ(C)− degD = − degD,

so χ(C,D) ≥ 0 (condition (b) in Theorem 8.5) holds if and only if D = 0, which means that
there are no multiple fibres. �

9. A CONJECTURE ON RATIONALLY CONNECTED MANIFOLDS

A complex manifold X is said to be rationally connected if any pair of points in X is
connected by a rational curve CP1 → X . Among many references for rationally connected
projective manifolds, we refer to the papers by Kollar et al. [39, 42] and the monographs by
Kollár [40] and Debarre [13]. By [42, Theorem 2.1] several possible definitions of this class
coincide. In particular, if every sufficiently general pair of points in X can be connected by
an irreducible rational curve, then X is rationally connected.

There are reasons to believe that the following conjecture holds true.

Conjecture 9.1. Every compact rationally connected Kähler manifold is an Oka-1 manifold.

One indication is provided by the theorem of Campana and Winkelmann [11, Theorem
5.2] saying that every rationally connected projective manifold X admits an entire curve
C → X whose image contains a given countable subset of X , with prescribed finite order
jets in these points [11, Corollary 5.7]. In particular, every such X contains dense entire
curves C → X . Their construction relies on the deformation theory for rational curves in
rationally connected projective manifolds, in particular, on smoothing of a comb or a tree of
rational curves; see [11, Proposition 5.1 and Lemma 5.5]. This technique goes back to the
seminal paper [42] by Kollár, Miyaoka, and Mori; see also Kollár [40, Theorem 7.6, p. 155].
By using these methods, we tried to show that a rationally connected projective manifold is
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densely dominable by tubes of lines coming from trees of rational curves, and hence is an
Oka-1 manifold by Theorem 2.2. Our attempts remained inconclusive; see [2, Sect. 9].

Next, we observe that the approximation condition in Proposition 2.7 follows easily from
the Runge approximation theorem for compact pseudoholomorphic curves in certain compact
almost complex manifolds, due to Gournay [33, Theorem 1.1.1]. It can be verified that the
conditions in his theorem hold true for rationally connected projective manifolds. Hence, if we
use Gournay’s theorem at face value, Proposition 2.7 implies that every projective rationally
connected manifold enjoys the Oka-1 property with approximation. Some details are given in
our earlier preprint [2, Sect. 9], where it is also described how interpolation could be added to
Gournay’s theorem, and Conjecture 9.1 is stated as [2, Theorem 9.1].

Subsequently, we tried to fully understand Gournay’s proof of [33, Theorem 1.1.1], but
we did not succeed. For this reason, we decided to downgrade [2, Theorem 9.1] to Conjecture
9.1. Since rationally connected manifolds are a very important and much studied class of
projective manifolds, it would be of utmost interest to provide an additional explanation or an
independent proof of [33, Theorem 1.1.1] at least for this class.

10. DENSE HOLOMORPHIC CURVES IN AN ARBITRARY COMPLEX MANIFOLD

In this section we prove the following result which generalizes the case M = ∆ obtained
by Forstnerič and Winkelmann in [24]. In the last part of the section, we give an analogous
result for holomorphic Legendrian curves in complex contact manifolds; see Theorem 10.4.

Theorem 10.1. Assume that X is a connected complex manifold endowed with a complete
distance function distX , M = M ∪ bM is a compact bordered Riemann surface, and
f : M → X is a map of class A (M). Given a compact subset K ⊂ M , a countable set
B ⊂ X , and a number ε > 0 there is a holomorphic map F : M → X such that

(a) supp∈K distX(F (p), f(p)) < ε,
(b) F agrees with f to a given finite order at a given finite set of points C ⊂M , and
(c) B ⊂ F (M).

Furthermore, F can be chosen to be an immersion if dimX > 1, and to be an injective
immersion if dimX > 2, whenever condition (b) allows it.

We record the following immediate corollary.

Corollary 10.2. If X is a complex manifold and M is a bordered Riemann surface, then there
is a holomorphic map M → X , which can be chosen to be an immersion if dimX > 1 and
an injective immersion if dimX > 2, whose image is everywhere dense in X .

It was shown by Fornæss and Stout [20, 21] that every connected complex manifold X of
dimension n admits surjective holomorphic maps ∆n → X and Bn → X from the polydisc
and the ball in Cn. Hence, to obtain density, it would suffice to prove Corollary 10.2 for
maps M → ∆n. However, there seems to be no particular advantage in this reduction, which
furthermore does not give the approximation and general position result in Theorem 10.1.

Proof of Theorem 10.1. We assume without loss of generality that M is a smoothly bounded
compact domain without holes in an open Riemann surface R (see Stout [50, Theorem 8.1])
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and f0 = f is holomorphic on M (see Theorem 2.13). Let K, B, and ε be as in the statement,
and assume as we may thatK0 = K is a smoothly bounded compact domain which is a strong
deformation retract of M , the given countable set B = {b1, b2, . . .} is infinite, C ⊂ K̊0, and
f(C) ∩ B = ∅. (Here, C is the finite set for the interpolation condition in (b).) Pick a point
a0 ∈ K̊0 \ (C ∪ f−1(B)) and set b0 = f0(a0). Let ε0 = ε/2 and K−1 = ∅.

We shall inductively construct a sequence of holomorphic maps fj : M → X , smoothly
bounded compact domains Kj ⊂ M , numbers εj > 0, and points aj ∈ M , j ∈ N, satisfying
the following conditions.

(1j) Kj−1 ∪ {aj} ⊂ K̊j and Kj is a strong deformation retract of M .
(2j) εj < εj−1/2.
(3j) supp∈Kj−1

distX(fj(p), fj−1(p)) < εj .
(4j) fj(ai) = bi for all i ∈ {0, . . . , j}.
(5j) fj agrees with f to a given finite order at every point in C.

In addition, we shall guarantee that

(10.1)
⋃
j∈N

Kj = M.

Assume that we have such a sequence in hand. Conditions (1j), (2j), (3j), and (10.1)
ensure that there is a limit holomorphic map F = limj→∞ fj : M → X satisfying condition
(a) in the statement of the theorem. Moreover, conditions (5j) and (4j) guarantee (b) and
(c), respectively. So, the map F satisfies the conclusion of the theorem. Note that the final
statement can be granted as explained in Remark 2.8; it suffices to take the number εj > 0

sufficiently small at each step of the inductive construction.

It thus remains to explain the induction. The basis is provided by f0 = f , K0 = K,
ε0 = ε/2, and a0 ∈ K̊0; note that conditions (20) and (30) are void. For the inductive step,
fix j ∈ N and assume that we have objects fj−1, Kj−1, εj−1, and aj−1 satisfying conditions
(1j−1), (4j−1), and (5j−1). Choose any εj > 0 meeting (2j). If bj ∈ fj−1(M) then we choose
any point aj ∈ M with fj−1(aj) = bj and any smoothly bounded compact domain Kj ⊂ M

satisfying (1j), and set fj = fj−1. Assume on the contrary that bj /∈ fj−1(M). Choose a point
x ∈ bM ⊂ R and attach to M a smooth embedded arc γ ⊂ R such that γ ∩M = {x} and
the intersection of bM and γ is transverse at x. Let x′ ∈ R \M denote the other endpoint of
γ. Fix a point y ∈ γ \ {x, x′} and extend fj−1 to a smooth map fj−1 : M ∪ γ → X which is
holomorphic on a neighbourhood of M and satisfies fj−1(y) = bj . Theorem 2.13 furnishes a
holomorphic map g : V → X on an open neighbourhood V ⊂ R of M ∪ γ such that

(i) supp∈M∪γ distX(g(p), fj−1(p)) < εj/2,
(ii) g(ai) = bi for all i ∈ {0, . . . , j − 1},

(iii) g(y) = bj , and
(iv) g agrees with f to a given order at every point in C.

For (ii) and (iv) take into account (4j−1) and (5j−1). Now, [4, Theorem 6.7.1] (see also [31,
Theorem 2.3]) furnishes a conformal diffeomorphism φ : M → φ(M) ⊂ V such that φ agrees
with the identity map to a given order in the points in the finite set C ∪ {a0, . . . , aj−1} ⊂ M ,
φ is arbitrarily close to the identity map on Kj−1, and we have that

(10.2) y ∈ φ(M).
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In particular, φ can be chosen so that the map fj = g ◦ φ : M → X of class A (M) satisfies

(I) fj(ai) = g(ai) for all i ∈ {0, . . . , j − 1},
(II) bj ∈ fj(M) (see (iii) and (10.2)),

(III) supp∈Kj−1
distX(fj(p), g(p)) < εj/2, and

(IV) fj agrees with g to a given order at every point in C.

By Theorem 2.13 we may assume that fj is holomorphic on M . Finally, (II) enables us to
choose a point aj ∈ M with fj(aj) = bj and a smoothly bounded compact domain Kj ⊂ M

satisfying (1j). It is then clear in view of these choices and conditions (i)–(iv) and (I)–(IV)
that fj , Kj , εj and aj satisfy the requirements in (1j)–(5j). This closes the induction and
completes the proof of the theorem. Note that (10.1) is guaranteed by choosing the compact
domain Kj ⊂M sufficiently large at each step of the inductive construction. �

Combining the arguments used in [1, proofs of Theorems 1.6 and 1.8] with the proof
of Theorem 10.1, one may easily establish the analogous hitting results for some classes of
surfaces of infinite topology, at the cost of losing the control on the complex structure. In
particular, we have the following corollary.

Corollary 10.3. Let X be a connected complex manifold and B ⊂ X be a countable subset.
The following assertions hold.

(i) On every compact Riemann surface R there is a Cantor set C whose complement
M = R \ C admits a holomorphic map F : M → X with B ⊂ F (M).

(ii) On every open orientable smooth surface S there is a complex structure J such that
the open Riemann surface M = (S, J) admits a holomorphic map F : M → X with
B ⊂ F (M).

In both cases the holomorphic map F : M → X can be chosen to be an immersion if
dimX > 1 and an injective immersion if dimX > 2.

We leave the details of the proof to the reader. In particular, in both cases (and up to a
suitable choice of the Cantor set C in assertion (i) and of the complex structure J in assertion
(ii)) there is a holomorphic map M → X , which can be chosen an immersion if dimX > 1

and an injective immersion if dimX > 2, whose image is everywhere dense in X .

The analogue of Theorem 10.1 also holds for holomorphic Legendrian immersions in
an arbitrary connected complex contact manifold (X, ξ). These are immersions which are
tangential to the holomorphic contact subbundle ξ of the tangent bundle TX . The only
essential difference in the proof is that we use the Mergelyan approximation theorem for
Legendrian immersions f : S → X from an admissible set S in an open Riemann surface R,
given by [22, Theorem 1.2]. We refer to that paper for the background on this subject. The
precise result that one obtains is the following; we leave the details of the proof to the reader.

Theorem 10.4. Assume that (X, ξ) is a connected complex contact manifold, M = M ∪ bM
is a compact bordered Riemann surface, and f : M → X is a ξ-Legendrian immersion of
class A r(M) for some integer r ≥ 4 (i.e., smooth of order r on M and holomorphic on M ).
Given a compact subset K ⊂ M , a countable set B ⊂ X , and a number ε > 0, there is a
holomorphic Legendrian immersion F : M → X satisfying the conditions in Theorem 10.1,
which can be chosen injective if the interpolation conditions allow it.
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In particular, every bordered Riemann surface admits an injective holomorphic Legen-
drian immersion to X whose image is everywhere dense in X .

To justify the last statement in the theorem, recall that every holomorphic contact
subbundle ξ ⊂ TX is given in suitable local holomorphic coordinates at any point p ∈ X

as the kernel of the standard holomorphic contact form α = dz +
∑n

i=1 xidyi, on C2n+1 with
2n + 1 = dimX , where x = (x1, . . . , xn) ∈ Cn, y = (y1, . . . , yn) ∈ Cn, and z ∈ C are
complex coordinates on C2n+1. (This is the holomorphic Darboux theorem; see Alarcón et
al. [3, Appendix]). It was shown in [3] that every compact bordered Riemann surface M
admits a holomorphic Legendrian embedding g : M ↪→ (C2n+1, α). Composing g by the
contact isomorphism (x, y, z) 7→ (tx, ty, t2z) on (C2n+1, α) for a suitable t > 0 ensures that
g(M) lies in the image of the local chart, so we obtain a holomorphic Legendrian embedding
f : M ↪→ (X, ξ). Applying the first part of the theorem to f yields the result.
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[14] B. Drinovec Drnovšek and F. Forstnerič. Flexible domains for minimal surfaces in Euclidean spaces. J.

Math. Anal. Appl., 517(2):15, 2023. Id/No 126653.
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[22] F. Forstnerič. Mergelyan approximation theorem for holomorphic Legendrian curves. Anal. PDE,

15(4):983–1010, 2022.
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