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Abstract Let (E, h) be a semipositive hermitian holomorphic line bundle on a compact complex
manifold X with dimX > 1. Assume that for each point x ∈ X there exists a divisor D ∈ |E| in
the complete linear system determined by E whose complement X \ D is a Stein neighbourhood of x
with the density property. Then, the disc bundle ∆h(E) = {e ∈ E : |e|h < 1} is an Oka manifold while
E \∆h(E) = {e ∈ E : |e|h > 1} is a Kobayashi hyperbolic domain. In particular, the zero section of E
admits a basis of Oka neighbourhoods {|e|h < c} with c > 0. We show that this holds ifX is a projective
space, a complex Grassmannian, or a product of Grassmannians. This phenomenon contributes to the
heuristic principle that Oka properties are related to metric positivity of complex manifolds.
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1. Introduction

A complex manifold Y is called an Oka manifold if holomorphic maps S → Y from any Stein
manifold S satisfy the Oka principle with approximation on compact holomorphically convex
subsets of S and interpolation on closed complex subvarieties of S; see [16, Definition 5.4.1 and
Theorem 5.4.4]. This is a central holomorphic flexibility notion in complex geometry, and it is
of major interest to find new examples of Oka manifolds. A complex manifold Y is an Oka-1
manifold [2] if these properties hold for maps S → Y from any open Riemann surface S. Every
complex homogeneous manifold is Oka (see Grauert [22] and [16, Proposition 5.6.1]). Many
further examples were given by Gromov [30] and others; see the surveys in [16, 18].

In this paper, we describe a new phenomenon in Oka theory, relating the Oka property of
tubes in hermitian holomorphic line bundles on compact Oka manifolds with the curvature
properties of the metric. In particular, we show that disc bundles in many Griffiths semipositive
holomorphic line bundles are Oka manifolds. This holds for semipositive ample line bundles on
projective spaces (see Theorem 1.1), Grassmannians (see Proposition 4.4), and their products
(see Corollary 4.9). Further examples can be found in Section 4. Our main result, Theorem
1.5, establishes this phenomenon for any polarised manifold (X,E) with the polarised density
property, see Definition 1.7. An important ingredient in the proofs are the recent results of the
second named author [40], who found large classes of Oka manifolds given as complements of
closed holomorphically sets in Cn and in Stein manifolds with the density property.

Let π : E → X be a holomorphic line bundle on a connected compact complex manifold X ,
and let h be a hermitian metric on E. Denote by |e|h the norm of e ∈ E. We are interested in
conditions on X and the hermitian line bundle (E, h) which ensure that the disc bundle

(1.1) ∆h(E) = {e ∈ E : |e|h < 1}

is an Oka manifold. In particular, when does the zero sectionE(0) = {e ∈ E : |e|h = 0} admit a
basis of open Oka neighbourhoods? It turns out that these questions are related to semipositivity
of the metric h, hence to the existence of nontrivial holomorphic sections X → E.
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We begin with some immediate observations. The total space E is Oka if and only if the
base X is Oka [16, Theorem 5.6.5]. Since ∆h(E) admits a holomorphic retraction onto the zero
section E(0) ∼= X , if ∆h(E) is Oka then X is Oka [16, Proposition 5.6.8]. For any c > 0 the
disc bundle ∆h,c(E) = {|e|h < c} is biholomorphic to ∆h(E) by a dilation in the fibres, so
an affirmative answer to the first question implies the same for the second one. The answers to
both questions are negative for any hermitian metric h on the trivial line bundle E = X ×C. In
this case, ∆h(E) is contained in X × c∆ for some c > 0, where ∆ ⊂ C is the unit disc. This
manifold admits a bounded plurisubharmonic function coming from c∆ which is nonconstant
on every open subset, so it cannot contain any Oka domain [16, Proposition 7.1.9]. The same
argument applies to trivial vector bundles of higher rank on a compact complex manifold.

A more subtle analysis is tied to the curvature of the metric h, which determines the geometric
shape of the disc bundle (1.1). The curvature of h is the (1, 1)-form on X given by

iΘh = −i ∂∂ log h = −1

2
ddc log h, i =

√
−1

(see (2.3)). A hermitian holomorphic line bundle (E, h) is positive if iΘh is a positive (1, 1)-
form, and semipositive if iΘh ≥ 0. A holomorphic line bundle E is positive if it admits a
hermitian metric with positive curvature. The disc bundle ∆h(E) is a Hartogs domain in E, and
the Levi form of its boundary is the hermitian form determined by ddc log h (see Proposition
2.3). Hence, the metric negativity iΘh < 0 at x0 ∈ X is equivalent to ∆h(E) being strongly
pseudoconvex over a neighbourhood of x0, so it is not Oka. (Indeed, a domain with a strongly
pseudoconvex boundary point admits a nonconstant bounded plurisubharmonic function, hence
it cannot be Oka; see [16, Proposition 7.1.9].) If on the other hand iΘh ≥ 0 then ∆h(E) is
pseudoconcave, and we will show that it is an Oka manifold in many cases of interest.

We begin by considering line bundles on the simplest compact Oka manifolds, the projective
spaces CPn. The isomorphism classes of holomorphic line bundles on a complex space X are
in bijective correspondence with the elements of the Picard group Pic(X) = H1(X,O∗). For
projective spaces, Pic(CPn) ∼= Z is a free cyclic group generated by the hyperplane section
bundle OCPn(1) (see Griffiths and Harris [29] or Wells [53]). It is customary to write OCPn(k)
for the k-th tensor power of OCPn(1). The dual U = OCPn(−1) of OCPn(1) is the universal
bundle; see [53, p. 17, Example 2.6]. The line bundle OCPn(k) is positive resp. negative
according to whether k > 0 or k < 0. It admits a hermitian metric whose curvature is k-times
the Fubini–Study form on CPn (see Example 2.4).

Theorem 1.1. Given a positive holomorphic line bundle E = OCPn(k) on CPn (n ≥ 1, k ≥ 1)
and a semipositive hermitian metric h on E (i.e., iΘh ≥ 0), the following assertions hold.

(a) The punctured disc bundle ∆∗h(E) = {e ∈ E : 0 < |e|h < 1} is an Oka manifold, and the
disc bundle ∆h(E) = {e ∈ E : |e|h < 1} is an Oka-1 manifold.

(b) If n ≥ 2 or E = OCPn(1) then the disc bundle ∆h(E) is an Oka manifold.
(c) The domain Dh(E) = E \∆h(E) = {e ∈ E : |e|h > 1} is Kobayashi hyperbolic and has

pseudoconvex boundary bDh(E) = {|e|h = 1}.

For a negative holomorphic line bundle E = OCPn(k) (n ≥ 1, k ≤ −1) and a seminegative
hermitian metric h on E (iΘh ≤ 0), the following assertions hold.

(a’) The domain ∆∗h(E) is Kobayashi hyperbolic and pseudoconvex along {|e|h = 1}.
(b’) The domain Dh(E) = E \∆h(E) is Oka.

These results hold if the metric h is continuous and semipositive (resp. seminegative) in the weak
sense. They also hold for the restrictions of these bundles to any affine Euclidean chart in CPn.
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With (E, h) as in part (b) of the theorem, the circle bundle {e ∈ E : |e|h = 1} splits E
into a relatively compact Oka domain {|e|h < 1} and a hyperbolic domain {|e|h > 1}. A
phenomenon of this type was first observed by Forstnerič and Wold [21] who showed that,
under a mild assumption on an unbounded closed convex set K ⊂ Cn (n > 1), its interior K̊ is
Kobayashi hyperbolic while its complement Cn \K is an Oka domain.

Note that the natural projection ∆h(E)→ CPn in Theorem 1.1 is a holomorphic submersion
and a topological fibre bundle, the base and the total space are Oka manifolds in case (b), yet
its fibres are Kobayashi hyperbolic. In particular, it is not an Oka map (see Definition 2.8) since
the fibres of an Oka map are Oka manifolds (see [18, Proposition 3.14]). We now show that this
phenomenon does not occur in holomorphic fibre bundles.

Proposition 1.2. If E → X is a holomorphic fibre bundle on a connected complex manifold X
whose fibre Y is Kobayashi hyperbolic with dimY > 0, then E is not an Oka manifold.

Proof. Let π : X̃ → X be the universal covering. The pullback bundle π∗E → X̃ has the same
fibre Y . Since Y is hyperbolic, there are no nontrivial holomorphic maps to its holomorphic
automorphism group Aut(Y ) (see Kobayashi [35, Theorem 5.4.5]), so this is a flat bundle.
Since X̃ is simply connected, it follows that the bundle π∗E → X̃ is trivial, isomorphic to
X̃×Y (see Royden [47, Corollary 1]). This manifold is not Oka due to the hyperbolic factor Y .
Since the natural map π∗E → E is a holomorphic covering map and the class of Oka manifolds
is invariant under such maps (see [16, Proposition 5.6.3]), the manifold E is not Oka. �

Theorem 1.1 is proved in Section 3; here is an outline. If E = OCPn(k) with k > 0, then for
any hermitian metric h on E the restriction of the disc bundle ∆h(E) to any affine Euclidean
chart in CPn is a Hartogs domain Ω in Cn+1 whose radius grows at least linearly (see Example
2.4). If h is semipositive then Ω is pseudoconcave (see Proposition 2.3 (iii’)). By Proposition
3.1, such a domain is Oka if n ≥ 2. This result and the localization theorem for Oka manifolds
[38, Theorem 1.4] are the key to the proof of part (b). Part (a) is seen by an explicit analysis
of the hyperplane section bundle OCPn(1), using that complements of compact polynomially
convex sets in Cn+1 (n ∈ N) are Oka (see Kusakabe [40, Corollary 1.3]), and that the relevant
properties of these tubes are preserved under tensor powers (see Proposition 2.1 and Corollary
2.2). When passing to the hermitian dual bundle (E∗, h∗), positivity and negativity get reversed
and the punctured disc bundle ∆∗h(E) is biholomorphic to the outer tube Dh∗(E

∗) = {h∗ > 1}
of the dual bundle, which gives part (b’). Parts (c) and (a’) follow from Grauert’s result on
blowing down exceptional varieties [23, Satz 1, p. 341]; see Remark 1.10.

We now proceed towards our main results. Recall that a holomorphic vector field on a
complex manifold X is said to be complete if its flow exists for all complex values of time, so
it forms a complex one-parameter group of holomorphic automorphisms of X . The following
class of complex manifolds was introduced by Varolin [52]; see also [16, Definition 4.10.1].

Definition 1.3. A complex manifold X has the density property if every holomorphic vector
field on X can be approximated uniformly on compacts by sums and commutators of complete
holomorphic vector fields on X .

Every Stein manifold X with the density property has infinite dimensional automorphism
group (hence dimX > 1), and it is an elliptic Oka manifold (see [16, Proposition 5.6.23]).
The fact that the Euclidean spaces Cn, n > 1, have the density property was discovered by
Andersén and Lempert [4]. Most complex Lie groups and complex homogeneous manifolds
have the density property. Surveys can be found in [16, Chapter 4], [19], and [41].
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Theorem 1.4. Assume that X is a compact complex submanifold of CPn such that for the
affine charts Ui ∼= Cn covering CPn the Stein manifold X ∩ Ui has the density property for
every i = 0, . . . , n. Let E ∼= OCPn(k) with k ≥ 1 be a positive holomorphic line bundle
on CPn endowed with a hermitian metric h satisfying iΘh|TX ≥ 0. Then the disc bundle
∆h(E)|X = {e ∈ E|X : |e|h < 1} is an Oka manifold whileDh(E)|X = {e ∈ E|X : |e|h > 1}
is a Kobayashi hyperbolic domain in E|X with pseudoconvex boundary {e ∈ E|X : |e|h = 1}.

An example satisfying Theorem 1.4 is the hyperquadric hypersurface

X =
{

[z0 : z1 : · · · : zn] ∈ CPn : z2
0 + z2

1 + · · ·+ z2
n = 0

}
, n ≥ 3.

The intersection of X with any affine chart zi 6= 0 is the complexified sphere in Cn, which is a
Danielewski manifold and has the density property (see Kaliman and Kutzschebauch [34]). This
null quadric plays a major role in the theory of minimal surfaces; see [3]. Another example is
the Plücker embedding of a Grassmannian of dimension > 1; see Example 4.3.

Denote by |E| the complete linear system of divisors on X associated to a holomorphic line
bundle E → X (see e.g. [29]). The divisors in |E| are the zero sets of nontrivial holomorphic
sections of E. The following is our main result.

Theorem 1.5. Let E be a holomorphic line bundle on a compact complex manifold X . Assume
that for each point x ∈ X there exists a divisor D ∈ |E| whose complement X \ D is a Stein
neighbourhood of x with the density property. Given any semipositive hermitian metric h on E,
the disc bundle ∆h(E) (1.1) is an Oka manifold while Dh(E) = E \ ∆h(E) is a Kobayashi
hyperbolic domain with pseudoconvex boundary bDh(E) = {|e|h = 1}. In particular, the zero
section of E admits a basis of Oka neighbourhoods ∆h,c(E) = {|e|h < c} with c > 0.

A holomorphic line bundle E on a compact complex manifold X is called basepoint-free
if the intersection of the divisors in |E| is empty. If this holds, there is a holomorphic map
Φ : X → CPn for some n ∈ N (see (3.3)) such that E is isomorphic to the pullback Φ∗OCPn(1)
of the hyperplane section bundle (see [31, Theorem II.7.1]). Hence, E admits a semipositive
hermitian metric obtained by pulling back a positive metric on OCPn(1) (see Example 2.4). This
gives the following metric-free corollary to Theorem 1.5.

Corollary 1.6. Let E be a holomorphic line bundle on a compact complex manifold X . If for
each point x ∈ X there exists a divisor D ∈ |E| whose complement is a Stein neighbourhood
of x with the density property, then the zero section of E admits a basis of Oka neighbourhoods.

Theorems 1.4 and 1.5 are proved in Section 3. In Section 4 we give several examples. To
simplify the discussion, we recall the following notions. A holomorphic line bundle E on a
compact complex manifold X is called ample if some positive tensor power E⊗k (k > 0)
is very ample, meaning that holomorphic sections of E⊗k provide an embedding of X into a
projective space by a map of the form (3.3). The Kodaira embedding theorem [37] implies that
a positive line bundle is ample; conversely, every ample line bundle admits a hermitian metric
that makes it a positive line bundle. A polarised manifold (X,E) is a pair of a compact complex
manifold X and an ample line bundle E on X . Note that such X is necessarily projective, and
every projective manifold admits an ample line bundle. We introduce the following notion.

Definition 1.7. (a) A polarised manifold (X,E) has the polarised density property if for each
point x ∈ X there exists a divisor D ∈ |E| whose complement X \ D is a Stein
neighbourhood of x with the density property.

(b) A compact projective manifold X has the polarised density property if (X,E) has the
polarised density property for every ample line bundle E on X .
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Recall that a Stein manifold with the density property is an Oka manifold (see [16, Proposition
5.6.23]). Hence, if (X,E) has the polarised density property, then X is an Oka manifold by the
localization theorem for Oka manifolds (see Kusakabe [38, Theorem 1.4]).

It is easily seen that every holomorphic line bundle satisfying the condition of Theorem 1.5 is
ample (see Proposition 4.1). Hence, Theorem 1.5 can be equivalently stated as follows.

Theorem 1.8. If (X,E) is a polarised manifold with the polarised density property, then for
any semipositive hermitian metric h on E the disc bundle ∆h(E) (1.1) is an Oka manifold while
the domain Dh(E) = E \∆h(E) is Kobayashi hyperbolic.

Theorem 1.1 says that the projective space CPn of dimension n > 1 has the polarised density
property. In Section 4 we prove the following results on this topic.

• If (X,E) has the polarised density property then so does (X,E⊗k) for every k > 1 (see
Proposition 4.2).
• Every complex Grassmannian of dimension > 1 has the polarised density property (see

Proposition 4.4).
• If (X1, E1) and (X2, E2) have the polarised density property then so does their exterior

tensor product (X1 ×X2, E1 � E2) (see Proposition 4.5).
• If (X,E) has the polarised density property, then (X ×CPn, E �OCPn(k)) (n, k > 0)

also has the polarised density property (see Proposition 4.6).
• Recall that a rational manifold is a projective manifold birationally isomorphic to a

projective space. If X1, . . . , Xm (m ≥ 2) are rational manifolds such that every
Xi with dimXi > 1 has the polarised density property, then their product X =
X1 ×X2 × · · · ×Xm also has the polarised density property (see Proposition 4.8).

So far we have only discussed line bundles. One may ask what can be said about the Oka
properties of (semi) positive hermitian vector bundles (E, h) of rank > 1 on an Oka manifold
X . In particular, when is the tube {e ∈ E : |e|h < 1} Oka? Its boundary {|e|h = 1} is strongly
pseudoconvex in the fibre direction and pseudoconcave in the remaining directions; see [14,
Proposition 6.2]. We are not aware of any example of an Oka domain whose boundary fails to
be pseudoconcave. For the same reason, we do not know anything about these questions if the
hermitian metric has mixed signature. On the other hand, we obtain the following analogue of
Theorem 1.1 (b’) for any Griffiths seminegative hermitian vector bundle (see Griffiths [26, 28]
and Definition 2.5) of rank > 1 (possibly trivial) on an Oka manifold.

Theorem 1.9. If (E, h) is a Griffiths seminegative hermitian holomorphic vector bundle of rank
> 1 on a (not necessarily compact) Oka manifold X , then Dh(E) = {e ∈ E : |e|h > 1} is an
Oka domain with pseudoconcave boundary bDh(E) = {e ∈ E : |e|h = 1}.

Remark 1.10. If (E, h) is a Griffiths seminegative holomorphic vector bundle on a complex
manifold X , then the function φ(e) = |e|2h is plurisubharmonic on E (see Proposition 2.6 and
Remark 2.7). If in addition the metric h is Griffiths negative then φ is strongly plurisubharmonic
on E \ E(0). In the latter case, with X compact, the zero section E(0) is the maximal compact
complex submanifold of E, which can be blown down to a point (see Grauert [23, Satz 1, p.
341]). This gives a Stein space Ẽ, which is typically singular at the blown-down point, such that
the image of the tube {|e|h < c} is a relatively compact domain in Ẽ for any c > 0, and the tube
{0 < |e|h̃ < 1} ⊂ E is Kobayashi hyperbolic for any hermitian metric h̃ on E.

Remark 1.11. The proofs of Theorems 1.1, 1.4, 1.5, and 1.9, given in Section 3, show that
these results hold also for continuous hermitian metrics. Indeed, the basic relationship between
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semipositivity or seminegativity of the hermitian metric and the eigenvalues of the Levi form of
the norm function remains in place (see Remark 2.7).

As an application of our results, we show in Section 5 that the Oka properties of tube domains
in holomorphic vector bundles E → X on a compact complex manifold X imply the existence
of holomorphic maps S → E from any Stein manifold S with dimS < dimE having the
cluster set either in the zero section E(0) (when E is a positive line bundle; see Theorem 5.2) or
at infinity (when E is a Griffiths negative vector bundle; see Theorem 5.1).

Our results contribute to the heuristic principle that Oka properties are related to metric
positivity of complex manifolds while holomorphic rigidity properties, such as Kobayashi
hyperbolicity, are related to metric negativity. Examples of this principle are discussed in [18,
Sect. 11]; let us recall the most important ones and mention some new ones.

Beginning on the rigidity side, a hermitian manifold with holomorphic sectional curvature
bounded above by a negative constant is Kobayashi hyperbolic; see Grauert and Reckziegel
[24], whose result generalizes the Ahlfors–Schwarz lemma [1], and the results by Wu and Yau
[54, 55], Tosatti and Yang [50], Diverio and Trapani [12], and Broder and Stanfield [10], among
several others. Furthermore, every compact complex manifold of Kodaira general type is volume
hyperbolic [36], and hence no such manifold is Oka.

On the flexibility side, every compact Kähler manifold with semipositive holomorphic
bisectional curvature is Oka; see [18, Theorem 11.4], which follows from the classification
of such manifolds by Mori [45] and Siu and Yau [48] (for positive bisectional curvature, when
they are projective spaces) and Mok [44] in the semipositive case. As for not necessarily Kähler
metrics, if (X,h) is a compact connected hermitian manifold whose holomorphic bisectional
curvature is semipositive everywhere and positive at a point, then X is a projective space (see
Ustinovskiy [51, Corollary 0.3]), which is Oka. Every compact Kähler manifold with positive
holomorphic sectional curvature is rationally connected and projective (see Yang [56]), hence
an Oka-1 manifold (see Alarcón and Forstnerič [2, Corollary 9.2]). It is not known whether
every such manifold is Oka. A recent result of Matsumura [43, Theorem 1.3] implies that a
projective manifold with semipositive holomorphic sectional curvature is the total space of a
holomorphic fibre bundle over an Oka manifold with a projective rationally connected fibre
enjoying the corresponding semipositivity. By [16, Theorem 5.6.5] the problem whether every
such manifold is Oka reduces to the rationally connected case. Hence, the main next step is to
better understand the relationship between (semi) positivity of holomorphic sectional curvature
and the Oka property for rationally connected projective manifolds.

2. Preliminaries

In this section, we recall the necessary notions and tools, and we prepare some results which
will be used in the proofs given in the following section.

A holomorphic line bundleE → X is given on some open covering {Ui}i ofX by a 1-cocycle
of nonvanishing holomorphic functions φi,j : Ui,j = Ui ∩ Uj → C∗. A point (x, t) ∈ Uj × C
with x ∈ Ui,j is identified in E with (x, φi,j(x)t) ∈ Ui×C. A holomorphic section f : X → E
is given by a 1-cochain fi ∈ O(Ui) satisfying fi = φi,jfj on Ui,j . A hermitian metric h on E is
given on any holomorphic line bundle chart (x, t) ∈ Ui × C by h(x, t) = hi(x)|t|2, where the
positive functions hi : Ui → (0,+∞) satisfy the compatibility conditions

(2.1) hi(x)|φi,j(x)|2 = hj(x) for x ∈ Ui,j .



Oka tubes in holomorphic line bundles 7

The curvature of the metric h is the (1, 1)-form on X given on each chart Ui by

(2.2) Θh = −∂∂ log hi = −∂∂ log h =
i

2
ddc log h.

(The second equality holds since ∂∂ log |t|2 = 0 on t 6= 0.) The bundle (E, h) is said to be
positive (resp. negative) if the real (1, 1)-form

(2.3) iΘh = −i ∂∂ log h = −1

2
ddc log h

on X is positive (resp. negative). Similarly we define semipositivity and seminegativity. It is
obvious that the restriction of a (semi) positive line bundle E → X to a complex submanifold
Y ⊂ X is (semi) positive. If (E′, h′) is another hermitian holomorphic line bundle on X
given on the same open covering {Ui}i by the 1-cocyle φ′i,j , then the tensor product line bundle
E ⊗ E′ is given by the 1-cocycle φi,jφ′i,j ∈ O(Ui,j ,C∗). If f and f ′ are holomorphic section
of E and E′, respectively, given by 1-cochains fi, f ′i ∈ O(Ui), then f ⊗ f ′ is a holomorphic
section of E ⊗ E′ given by the 1-cochain fif ′i ∈ O(Ui). If a hermitian metric h′ on E′ is given
by functions h′i : Ui → (0,∞), then the product metric h ⊗ h′ on E ⊗ E′ is defined by the
collection hih′i : Ui → (0,∞). From (2.2) we see that

Θh⊗h′ = Θh + Θh′ .

Hence, the product of semipositive metrics is semipositive, and is positive if one of the metrics
is positive. For k ∈ Z we denote by E⊗k the k-th tensor power of E, given by the 1-cocycle
φki,j . If h is a hermitian metric on E given by functions hi(x) (2.1), then the metric h⊗k on E⊗k

is given by the functions hi(x)k for x ∈ Ui. The hermitian dual bundle (E∗, h∗) is naturally
isomorphic to (E−1, h−1), where we omitted the tensor product sign. From (2.2) we see that

Θh⊗k = kΘh for all k ∈ Z.

Conversely, if E = L⊗k (k 6= 0) and h is a hermitian metric on E given in charts Ui ⊂ X by
positive functions hi, then h = h̃⊗k where h̃ is a hermitian metric on the line bundle L defined
by the collection of functions h̃i = h

1/k
i : Ui → (0,∞).

Proposition 2.1. Let (E, h) be a hermitian holomorphic line bundle on a complex manifold X .

(i) For every k ∈ N there is a surjective fibre preserving holomorphic map Ψk : E → E⊗k

such that Ψk(E(0)) = E⊗k(0) and the maps Ψk : ∆∗h(E) → ∆∗
h⊗k

(E⊗k) and
Ψk : Dh(E)→ Dh⊗k(E⊗k) are unbranched k-sheeted holomorphic coverings.

(ii) The punctured disc bundle ∆∗h(E) is fibrewise biholomorphic to the outer tubeDh∗(E
∗) =

{h∗ > 1} in the dual bundle (E∗, h∗).

Proof. If E → X is given by a 1-cocyle φi,j ∈ O∗(Ui,j), then E⊗k is given by the 1-cocyle
φki,j . Denote by Φi,j(x, tj) = (x, φi,j(x)tj) the transition maps in E and by Φk

i,j(x, tj) =

(x, φi,j(x)ktj) the associated transition maps in E⊗k. We define the map Ψk on any chart
Ui × C by Ψk(x, ti) = (x, tki ). Since ti = φi,j(x)tj for x ∈ Ui,j , we have that

(Ψk ◦ Φi,j)(x, tj) = Ψk(x, φi,j(x)tj) = (x, φi,j(x)ktkj ) = (Φk
i,j ◦Ψk)(x, tj),

showing that Ψk : E → E⊗k is a well-defined k-sheeted covering projection which is branched
along E(0), and Ψk : E \ E(0) → E⊗k \ E⊗k(0) is an unbranched k-sheeted covering.
From the definition of the metric h⊗k on E⊗k it follows that Ψk : ∆∗h(E) → ∆∗

h⊗k
(E⊗k)

and Ψk : Dh(E)→ Dh⊗k(E⊗k) are unbranched holomorphic coverings. This proves (i).
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Part (ii) is seen as follows. Compactifying each fibre Ex ∼= C (x ∈ X) with the point at
infinity yields a holomorphic fibre bundle Ê → X with fibre CP1 having a well-defined ∞-
section E(∞) ∼= X . Set Ẽ = Ê \ E(0) → X . If t ∈ C is a coordinate on a fibre Ex
then u = t−1 is a coordinate on Ẽx, and the transition functions between the u-coordinates
are φ−1

i,j = 1/φi,j . Hence, (Ẽ, h−1) is a hermitian holomorphic line bundle on X with zero

section Ẽ(0) = E(∞) which is naturally isomorphic to the dual line bundle (E∗, h∗). Under
this identification, the identity map on Ê induces a fibre preserving biholomorphism

(2.4) I : E \ E(0)→ E∗ \ E∗(0)

mapping ∆∗h(E) onto Dh∗(E
∗) = {h∗ > 1} and Dh(E) onto ∆∗h∗(E

∗). �

Corollary 2.2. Let (E, h) be a hermitian holomorphic line bundle on a complex manifold X .

(i) If the punctured disc bundle ∆∗
h⊗k

(E⊗k) is Oka for some k ∈ N then it is Oka for all
k ∈ N, and in such case the disc bundle ∆h⊗k(E⊗k) is Oka-1 for all k ∈ N.

(ii) ∆∗h(E) is Oka (resp. hyperbolic) if and only if Dh∗(E
∗) is Oka (resp. hyperbolic).

Proof. All claims except the second statement in part (i) follow from Proposition 2.1 and the fact
that both the class of Oka manifolds and the class of hyperbolic manifolds are invariant under
covering projections. If ∆∗h(E) is Oka, it is the image of a strongly dominating holomorphic
map Cn+1 → ∆∗h(E) with n = dimX (see [17]). Thus, the disc bundle ∆h(E) is densely
dominable by Cn+1, and hence an Oka-1 manifold by [2, Corollary 2.5 (b)]. �

Recall that a real function f of class C 2 on a complex manifold X is plurisubharmonic if
ddcf ≥ 0 and strongly plurisubharmonic if ddcf > 0. Both conditions generalize to upper
semicontinuous functions with values in [−∞,+∞) (see Grauert and Remmert [25]). The
curvature formula (2.3) for a hermitian metric h leads to the following observation, which we
record for reference. (See also Proposition 2.6 for vector bundles of higher rank.)

Proposition 2.3. Let h be a hermitian metric of class C 2 on a holomorphic line bundleE → X .
The following conditions are equivalent.

(i) The curvature of h is seminegative: iΘh ≤ 0.
(ii) The function log h is plurisubharmonic on E.

(iii) The disc bundle ∆h(E) = {h < 1} is pseudoconvex along b∆h(E) = {h = 1}.

Furthermore, if iΘh < 0 then h is strongly plurisubharmonic on E \ E(0). Likewise, the
following conditions are equivalent.

(i’) The curvature of h is semipositive: iΘh ≥ 0.
(ii’) The function − log h is plurisubharmonic on E \ E(0).

(iii’) The disc bundle ∆h(E) = {h < 1} is pseudoconcave along b∆h(E) = {h = 1}.

Proof. The equivalence (i)⇔ (ii) is an immediate consequence of the curvature formula (2.3).
Assume now that U is a Stein domain in X such that E|U ∼= U × C is a trivial line bundle. On
this chart we have h(x, t) = ξ(x)|t|2 for some positive C 2 function ξ on U , and

(2.5) ∆h(E)|U = {(x, t) ∈ U × C : h(x, t) < 1} = {(x, t) ∈ U × C : |t|2elog ξ(x) < 1}
is a Hartogs domain. If log h is plurisubharmonic (condition (ii) holds) then so is h, and
hence ∆h(E)|U is pseudoconvex. The converse is also well-known and easily seen: if the
Hartogs domain (2.5) is pseudoconvex then log ξ is plurisubharmonic on U , and hence log h
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is plurisubharmonic on E|U . This proves (ii) ⇔ (iii). If iΘh < 0 then log ξ and hence ξ are
strongly plurisubharmonic, so h is strongly plurisubharmonic on E \ E(0). The equivalences
(i’)⇔ (ii’)⇔ (iii’) are proved in the same way and we leave out the details. �

Example 2.4 (Special hermitian line bundles on projective spaces). Let z = (z0, z1, . . . , zn)
be Euclidean coordinates on Cn+1 and [z] = [z0 : z1 : · · · : zn] the associated homogeneous
coordinates on CPn. On the affine chart Ui = {[z] ∈ CPn : zi 6= 0} ∼= Cn (i = 0, 1, . . . , n)
we have the affine coordinates zi = (z0/zi, . . . , zn/zi), where the term zi/zi = 1 omitted. Fix
k ∈ Z and define a hermitian metric h on E = OCPn(k) by

(2.6) h([z], t) =
|t|2

(1 + |zi|2)k
=
|zi|2k

|z|2k
|t|2 for [z] ∈ Ui and t ∈ C.

The transition functions on OCPn(k) are φi,j([z]) = (zj/zi)
k (see [53, p. 18]). In view of

(2.1) we see that h = h̃⊗k, where h̃ is the metric on OCPn(1) given by (2.6) with k = 1. It
follows from (2.3) and (2.6) that iΘh = k i ∂∂ log

(
|z|2
)
, which is k-times the Fubini–Study

form. Identifying Ui with Cn, the disc tube of the bundle E = OCPn(k) with the metric (2.6),
restricted to Ui, is given by

(2.7) ∆h(E)|Ui =
{

(z, t) ∈ Cn × C : |t| < (1 + |z|2)k/2
}
.

This is a Hartogs domain whose radius is of order |z|k as |z| → ∞. Since any two hermitian
metrics on E are comparable, the disc bundle of any hermitian metric on E grows at this rate.

We now recall the notions of Griffiths (semi) positivity and Griffiths (semi) negativity of a
hermitian holomorphic vector bundle (E, h) of arbitrary rank r ≥ 1 on a complex manifold X
of dimension n (see Griffiths [26, 28]). The hermitian metric h on E is given in any local frame
(e1, · · · , er) by a hermitian matrix function h = (hλµ) with

hλµ(x) = (eµ(x), eλ(x))h for λ, µ = 1, . . . , r.

Its connection matrix θh and the curvature form Θh are given in any local holomorphic frame by

θh = h−1∂h, Θh = ∂ θh = −h−1∂∂h+ h−1∂h ∧ h−1∂h.

(See [11, Chapter V] or [53, Chapter III].) For a line bundle these equal θh = h−1∂h = ∂ log h
and Θh = −∂∂ log h (cf. (2.2)). In local holomorphic coordinates z = (z1, . . . , zn) on X and a
local frame (e1, . . . , er) on E, we can identify the curvature tensor

iΘh =
∑

i,j=1,...,n
λ,µ=1,...,r

cijλµdzi ∧ dz̄j · e∗λ ⊗ eµ

with the hermitian form on TX ⊗ E given by

Θ̃h(ξ ⊗ v) =
∑

i,j=1,...,n
λ,µ=1,...,r

cijλµξiξ̄jvλv̄µ.

The following notions are due to Griffiths [26, 28]; see also [6] and [11, Chapter VII].

Definition 2.5. Let E → X be a holomorphic vector bundle. A hermitian metric h on E is
Griffiths semipositive (resp. Griffiths seminegative) if Θ̃h(ξ ⊗ v) ≥ 0 (resp. Θ̃h(ξ ⊗ v) ≤ 0)
for all ξ ∈ TxX and v ∈ Ex (x ∈ X). If there is strict inequality for all ξ ∈ TxX \ {0} and
v ∈ Ex \ {0} (x ∈ X) then the metric is Griffiths positive (resp. Griffiths negative).
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For line bundles, Griffiths positivity (resp. negativity) coincides with the previous definition.
The following proposition explains the connection between Griffiths seminegativity of a
hermitian metric and plurisubharmonicity of the associated squared norm function. The
equivalences between (i), (ii) and (iii) can be found in Raufi [46, Sect. 2]. The equivalences
(ii)⇔ (iv) and (iii)⇔ (v) are obvious. For the last statement, see [14, Proposition 6.2].

Proposition 2.6. For a hermitian metric h on a holomorphic vector bundle E → X the
following conditions are equivalent:

(i) The metric h is Griffiths seminegative.
(ii) For any local holomorphic section u of E, the function |u|2h is plurisubharmonic.

(iii) For any local holomorphic section u of E, the function log |u|2h is plurisubharmonic.
(iv) The squared norm function φ(e) = |e|2h is plurisubharmonic on E.
(v) The function log φ(e) = log |e|2h is plurisubharmonic on E.

If h is Griffiths negative then the function φ in (iv) is strongly plurisubharmonic on E \ E(0).

Remark 2.7. The conditions (ii) and (iii) in Proposition 2.6 are equivalent also for a continuous
hermitian metric on a holomorphic vector bundle, and they can be used to define Griffiths
seminegativity and semipositivity for a not necessarily smooth hermitian metric (see [46,
Definition 1.2 and Sect. 2]). The equivalences (ii) ⇔ (iv) and (iii) ⇔ (v) are obvious in the
continuous case as well. For a metric of class C 2, the relationship between the eigenvalues of
the curvature form and those of the Levi form of the squared norm function can be found in
Griffiths [27, p. 426]; see also the summary in [14, Proposition 6.2]. In the notation used in the
latter paper, Griffiths seminegativity can be expressed by s(e) = 0 for every e ∈ E \ E(0).

In the final part of this section we recall some notions from Oka theory and a couple of results
which are frequently used in the sequel. We begin by recalling the notion of Oka property of a
holomorphic map and of Oka map; see [16, Definitions 7.4.1 and 7.4.7] where this is called the
parametric Oka property with approximation and interpolation, abbreviated POPAI.

Definition 2.8. A holomorphic map π : Y → Z of reduced complex spaces has the Oka property
if holomorphic maps f : X → Z from any Stein manifold X satisfy the parametric h-principle
for liftings F : X → Y with π ◦ F = f . The map π : Y → Z is an Oka map if it satisfies the
Oka property and is a topological (Serre) fibration.

More precisely, the Oka property of the map π : Y → Z means that every continuous lifting
F0 : X → Y of a given holomorphic map f : X → Z is homotopic through liftings of f to
a holomorphic lifting F : X → Y . Furthermore, if F0 is holomorphic on a compact O(X)-
convex subset K ⊂ X and on a closed complex subvariety X ′ ⊂ X , then the homotopy of
liftings Ft : X → Y (t ∈ [0, 1]) can be chosen such that every map Ft is holomorphic on
K ∪ X ′, it agrees with F0 on X ′, and it approximates F0 uniformly on K (and uniformly in
the parameter t ∈ [0, 1]). Finally, the analogous conditions hold for any continuous family of
holomorphic maps fp : X → Z depending on a parameter p in a compact Hausdorff space.

For a holomorphic submersion π : Y → Z, the basic Oka property implies the parametric
Oka property (see [16, Theorem 7.4.3]). If π : Y → Z is an Oka map of complex manifolds with
Z connected then π is a surjective submersion, its fibres are Oka manifolds (see [18, Proposition
3.14]), and Y is an Oka manifold if and only if Z is an Oka manifold (see [18, Theorem 3.15]).

The following result is due to Kusakabe [40, Lemma 5.1]; see also [18, Proposition 3.18].
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Proposition 2.9. Assume that for every point y in a complex manifold Y there exist complex
manifolds Z1, . . . , Zk and holomorphic submersions πj : Y → Zj (j = 1, . . . , k) enjoying the
Oka property such that TyY =

∑k
j=1 ker(dπj)y. Then Y is an Oka manifold.

An unbounded closed set S in a complex manifold Y is called holomorphically convex (or
O(Y )-convex) if S is the union of an increasing sequence of compact O(Y )-convex sets.

Definition 2.10 (Definition 4.1 in [40]). Let π : Y → Z be a holomorphic submersion. A
closed subset S of Y is called a family of compact holomorphically convex sets if the restriction
π|S : S → Z is proper and each point of Z admits an open neighbourhood U ⊂ Z such that the
set S ∩ π−1(U) is O(π−1(U))-convex.

The following is a special case of [40, Theorem 4.2] which is used in this paper.

Theorem 2.11. Let π : Y → Z be a holomorphic fibre bundle whose fibre is a Stein manifold
with the density property, and let S ⊂ Y be a family of compact holomorphically convex sets.
Then the restriction π|Y \S : Y \ S → Z enjoys the Oka property.

In [40, Theorem 4.2] it is assumed that the map π : Y → Z is a holomorphic submersion
and each point of Z admits an open neighborhood U ⊂ Z such that π−1(U) is Stein and the
restriction π−1(U)→ U enjoys the fibred density property. When π : Y → Z is a holomorphic
fibre bundle, the latter condition clearly holds if the fibre is Stein and has the density property.

3. Proofs of the main results

In this section, we prove Theorems 1.1, 1.4, 1.5, and 1.9. We also obtain Theorem 3.3.

Proof of Theorem 1.1. We begin by considering the hyperplane section bundle E = OCPn(1).
The total space E can be identified with CPn+1 \ {0}, where 0 ∈ Cn+1 is an affine chart in
CPn+1, such that the zero section E(0) is the hyperplane at infinity CPn = CPn+1 \ Cn+1

and the fibres of the projection π : E → CPn are the punctured complex lines through
the origin 0 ∈ Cn+1, with the added point at infinity. Let h be a semipositive hermitian
metric on E, iΘh ≥ 0. Proposition 2.3 shows that the function 1/h is plurisubharmonic on
E \ E(0) = Cn+1 \ {0}. Clearly, this function tends to infinity at E(0) and tends to 0 at the
origin 0 ∈ Cn+1, so it extends to a plurisubharmonic exhaustion function on Cn+1. Therefore,
the set K = {1/h ≤ 1} = {h ≥ 1} is a compact polynomially convex neighbourhood of
the origin (see Stout [49, Theorem 1.3.11]). Note that ∆∗h(E) = Cn+1 \ K, which is Oka
by [40, Corollary 1.3] (see also [20, Theorem 1.2]), ∆h(E) = CPn+1 \ K, which is Oka by
[18, Corollary 5.2], and Dh(E) = K̊ \ {0}, which is a bounded domain in Cn+1 and hence
Kobayashi hyperbolic. Finally, if H is a complex hyperplane in CPn+1 then CPn+1 \ (H ∪K)
is Oka by [21, Theorem 1.3]. This shows that for any affine chart Cn ∼= U ⊂ CPn the restricted
disc bundle ∆h(E)|U is Oka as well. This proves the theorem for E = OCPn(1).

For its dual bundle E∗ = U = OCPn(−1), the universal bundle on CPn, parts (a’) and (b’)
of the theorem follow immediately from the results for E = OCPn(1) in view of Proposition
2.1 (ii). Indeed, the total space of U is biholomorphic to Cn+1 blown up at the origin, its zero
section U(0) is the exceptional fibre over 0 ∈ Cn+1, the fibres of the projection π : U → CPn
are the complex lines Cz for z ∈ Cn+1 \ {0}, and U \ U(0) is biholomorphic to Cn+1 \ {0}.
If h is a seminegative hermitian metric on U then 1/h is a semipositive hermitian metric on
E = CPn+1 \ {0}, K = {h ≤ 1} is a compact polynomially convex neighbourhood of the



12 F. Forstnerič and Y. Kusakabe

origin blown up at the origin, the domain Dh(U) = {h > 1} = ∆∗1/h(E) is Oka, and the
domain ∆∗h(U) = {0 < h < 1} = {1/h > 1} = D1/h(E) is hyperbolic.

For the tensor powers E⊗k = OCPn(k) with k > 1, parts (a) and (c) follow from the already
proved result for E = OCPn(1) and Corollary 2.2. Likewise, the proofs of (a’) and (b’) for
U⊗k = OCPn(−k) with k > 1 follow from the case for U and Corollary 2.2.

It remains to prove part (b) for semipositive bundles (E, h) with E = OCPn(k) when k ≥ 1
and n ≥ 2. The key to the proof is the following result of independent interest. The idea used in
this proposition will also be applied in the proofs of Theorems 1.4 and 1.5.

Proposition 3.1. Assume that φ is a positive continuous function on Cn (n ≥ 2) such that log φ
is plurisubharmonic, and there is a constant c > 0 such that φ(z) ≥ c |z| holds for all z ∈ Cn.
Then, the following (pseudoconcave) Hartogs domain is an Oka domain:

(3.1) Ω = {(z, t) ∈ Cn × C : |t| < φ(z)}.

Proof. Let T : Cn+1 = Cn×C→ C denote the projection T (z, t) = t. Consider the closed set

S = Cn+1 \ Ω = {(z, t) ∈ Cn × C : |t| ≥ φ(z)}
= {(z, t) ∈ Cn × C∗ : log φ(z)− log |t| ≤ 0}.

Since log |t| is harmonic on t ∈ C∗, the function ψ(z, t) = log φ(z)−log |t| is plurisubharmonic
on Cn × C∗. Since φ is assumed to grow at least linearly near infinity, the restricted projection
T |S : S → C is proper. It follows that for every r > 0 the set

(3.2) Sr = {(z, t) ∈ S : |t| ≤ r} = {(z, t) ∈ Cn × C∗ : ψ(z, t) ≤ 0 and log |t| ≤ log r}

is compact and O(Cn × C∗)-convex (see [49, Theorem 1.3.11]). Since the fibre of the map
T is Cn with n ≥ 2, which has the density property, Theorem 2.11 implies that the restricted
projection T : (Cn×C∗)\S → C∗ has the Oka property. Since S∩{t = 0} = ∅, the projection
T : Cn+1 \ S → C has the Oka property as well (see [39, Theorem 4.1], or use the localization
principle for the Oka property of a holomorphic submersion, given by [16, Theorem 7.4.4] and
originally proved in [15, Theorem 4.7]).

Since the function φ in (3.1) is assumed to grow at least linearly at infinity, we have that
Λ ∩ S = ∅ for every complex hyperplane Λ ⊂ Cn+1 sufficiently close to Λ0 = {t = 0}, and
there is a path Λs (s ∈ [0, 1]) of such hyperplanes connecting Λ0 to Λ. For any such Λ, the set
Sr in (3.2) is also O(Cn+1 \Λ)-convex by [18, Corollary A.5]. As r →∞ these sets exhaust S,
so S is O(Cn+1\Λ)-convex. Let TΛ : Cn+1 → C be a C-linear projection with (TΛ)−1(0) = Λ.
If Λ is sufficiently close to Λ0 then the restricted projection TΛ : S → C is still proper. Using
again Theorem 2.11, we infer that the projection TΛ : Cn+1 \ S → C has the Oka property.
Applying this conclusion for two linearly independent projections and using Proposition 2.9, we
see that Cn+1 \ S = Ω is an Oka manifold. �

We continue with the proof of part (b) in Theorem 1.1. Let E be a positive holomorphic
line bundle with a semipositive hermitian metric h on CPn with n > 1. From the equivalences
(i’) ⇔ (ii’) ⇔ (iii’) in Proposition 2.3 and (2.5), we see that the restriction of the disc bundle
∆h(E) to any affine chart Cn ∼= U ⊂ CPn is a pseudoconcave Hartogs domain of the form (3.1)
with log φ plurisubharmonic. We have seen in Example 2.4 that the function φ grows at least
linearly near infinity. Hence, Proposition 3.1 implies that ∆h(E)|U is an Oka domain. Note
that ∆h(E)|U is a Zariski open domain in ∆h(E). Since charts of this kind cover ∆h(E), the
localization theorem for Oka manifolds (see [38, Theorem 1.4]) implies that ∆h(E) is Oka. �
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Remark 3.2. The proof of Proposition 3.1 also gives the following more general result related
to [40, Theorem 1.6]. Recall that a closed subset S of a Stein manifold X is said to be O(X)-
convex if it is exhausted by an increasing sequence of compact O(X)-convex sets.

Theorem 3.3. Let S be a closed subset of Cn × C∗ (n ≥ 2) which is O(Cn × C∗)-convex (this
holds in particular if S is convex). Assume that for every complex hyperplane Cn ∼= Λ ⊂ Cn+1

close enough to Λ0 = Cn × {0} we have that Λ ∩ S = ∅. Then, Cn+1 \ S is an Oka domain.

The hypothesis that the condition Λ ∩ S = ∅ for all hyperplanes Λ close to Λ0 is equivalent
to asking that the projective closures of Λ0 and S do not intersect at infinity. For closed subsets
S of Euclidean spaces of dimension ≥ 3, Theorem 3.3 generalizes [21, Theorem 1.1] due to
Forstnerič and Wold. Indeed, the holomorphic convexity hypothesis on the set S in the latter
result (where it is called E) is strictly stronger than the one in Theorem 3.3. However, Theorem
3.3 does not apply to subsets of C2, while the cited result [21, Theorem 1.1] does.

Proof of Theorem 1.4. Let Cn ∼= Ui ⊂ CPn for i = 0, . . . , n be affine Euclidean charts
covering CPn such that the Stein manifold Xi = X ∩ Ui has the density property for every
i. By the localization theorem [38, Theorem 1.4], it suffices to prove that the restricted bundle
∆h(E)|Xi is Oka for every i. There is a standard trivialization E|Ui ∼= Ui × C, and the bundle
∆h(E)|Ui = {(z, t) : |t| < φ(z)} is a Hartogs domain of the form (3.1) with the function
φ : Ui → (0,∞) growing at least linearly near infinity (see Example 2.4). Hence,

Ωi := ∆h(E)|Xi = {(x, t) ∈ Xi × C : |t| < φ(x)}.
Since iΘh ≥ 0 on X , Ωi is pseudoconcave (see the equivalence (i’)⇔ (iii’) in Proposition 2.3)
and log φ is plurisubharmonic on Xi. Hence, the closed set S = E|Xi \ Ωi is holomorphically
convex in Xi × C∗ (see the proof of Proposition 3.1). Let T : Xi × C → C denote the
projection onto the second factor, T (x, t) = t. The above properties imply that the restricted
projection T |S : S → C is proper, and S is a family of compact holomorphically convex sets
in Xi with respect to T (see Definition 2.10). Since Xi is a Stein manifold with the density
property, Theorem 2.11 implies that the restricted projection T : (Xi × C) \ S = Ωi → C has
the Oka property. We now apply the same argument with tilted projections TΛ : Ui × C → C
defined by affine hyperplanes Λ ⊂ Ui × C ∼= Cn+1 sufficiently close to Λ0 = Ui × {0}.
Such a hyperplane Λ is the graph of a C-linear function t = ξ(x) of x ∈ Ui ∼= Cn,
and Λ ∩ (Xi × C) = {(x, t) : x ∈ Xi, t = ξ(x)}. Fibres of the restricted projection
TΛ : Xi × C → C are parallel translates of Λ ∩ (Xi × C) in the vertical t-direction, so this
projection is a (trivial) holomorphic fibre bundle with fibre Xi. Since φ grows at least linearly,
the projection TΛ : S → C is proper if Λ is close enough to Λ0. For such Λ, the same argument
as before shows that TΛ : (Xi ×C) \ S = Ωi → C has the Oka property. Clearly, finitely many
such projections satisfy the hypotheses in Proposition 2.9, and hence Ωi is an Oka domain. By
the localization theorem [38, Theorem 1.4] this proves that ∆h(E)|X is Oka. The fact that the
exterior tube Dh(E)|X is Kobayashi hyperbolic is seen as in the proof of Theorem 1.1 (c). �

Proof of Theorem 1.5. By the assumption there are holomorphic sections s0, . . . , sn : X → E
such that Xi = {x ∈ X : si(x) 6= 0} is a Stein manifold with the density property for every
i = 0, 1, . . . , n and

⋃n
i=0Xi = X . Consider the holomorphic map Φ : X → CPn given by

(3.3) Φ(x) = [s0(x) : s1(x) : · · · : sn(x)] ∈ CPn, x ∈ X.
(The map Φ is well-defined since si(x) are elements of the 1-dimensional vector space Ex ∼= C
and at least one of them is nonzero for every x.) Note that Φ maps Xi = {si 6= 0} to the
complement of the standard i-th hyperplane CPn−1 ∼= Hi ⊂ CPn, and Φ−1(CPn \Hi) = Xi.
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Then, E is isomorphic to Φ∗OCPn(1), the pullback of the hyperplane section bundle (see [31,
Theorem II.7.1]). For completeness, we include a simple argument. Let π∗ : E∗ → X be the
dual bundle of π : E → X , and denote by 〈e∗, e〉 the natural pairing of elements e ∈ E and
e∗ ∈ E∗ over the same base point π(e) = π∗(e∗) ∈ X . Let U → CPn be the universal bundle.
We can identify U with Cn+1 blown up at the origin so that the zero section U(0) ∼= CPn is the
exceptional fibre over 0 ∈ Cn+1 and the fibres of the projection U→ CPn are the complex lines
in Cn+1 through the origin. The holomorphic map Φ̃ : E∗ → Cn+1 given by

Φ̃(e∗) =
(
〈e∗, si(x)〉

)n
i=0
, e∗ ∈ E∗, x = π∗(e∗) ∈ X

maps E∗x isomorphically onto the complex line in Cn+1 determined by the point Φ(x) ∈ CPn,
so it gives a line bundle isomorphism E∗ ∼= Φ∗U. It follows that E ∼= Φ∗U∗ = Φ∗OCPn(1).

The proof can now be completed as for Theorem 1.4. The restricted bundle E|Xi ∼= Xi × C
admits a trivialization induced via the map Φ (3.3) by the standard trivialization of OCPn(1) over
Ui = CPn \Hi

∼= Cn. In this trivialization, ∆h(E)|Xi is a pseudoconcave Hartogs domain of
the form (3.1) in Xi × C. The same argument as in the proof of Theorem 1.4, using the Oka
property of tilted projections (Xi × C) \ ∆h(E)|Xi → C which come from linear projections
Cn × C → C close to the standard projection onto the second factor, shows that ∆h(E)|Xi is
Oka for every i = 0, . . . , n. By the localization theorem, it follows that ∆h(E) is Oka. �

Proof of Theorem 1.9. Let π : E → X denote the vector bundle projection and set S = {e ∈
E : |e|h ≤ 1}. Assuming that rankE = r > 1 and the hermitian metric h is Griffiths
seminegative, we wish to prove that the exterior tube Dh(E) = E \ S = {e ∈ E : |e|h > 1}
is an Oka manifold. Condition (iv) in Proposition 2.6 shows that the squared norm function
φ(e) = |e|2h is plurisubharmonic on E. Hence, for each holomorphic chart ψ : U → Bn from
an open set U ⊂ X onto the unit ball Bn ⊂ Cn (n = dimX) and each 0 < ρ < 1, the compact
set {e ∈ S|U : |ψ ◦ π(e)| ≤ ρ} is defined by plurisubharmonic functions in the Stein manifold
E|U , so it is O(E|U )-convex (see Stout [49, Theorem 1.3.11]). Since E → X is a holomorphic
vector bundle of rank r ≥ 2, its fibre Cr has the density property [4]. Hence, Theorem 2.11
implies that the projection π : Dh(E) = E \ S → X has the Oka property (see Definition 2.8).
Since it is also a topological fibre bundle, it is an Oka map. As X is an Oka manifold, it follows
that Dh(E) is an Oka manifold (see [18, Theorem 3.15] saying that, if Y → X is an Oka map
of complex manifolds, then Y is an Oka manifold if and only if X is an Oka manifold). �

4. Examples of line bundles satisfying Theorem 1.5

In this section, we give examples and obtain functorial properties of the class of polarised
manifolds with the polarised density property (see Definition 1.7).

We first show that every holomorphic line bundle satisfying the condition of Theorem 1.5 is
ample, and hence it is natural to restrict ourselves to the polarised situation from the beginning.
It is easily seen that for a polarised manifold (X,E) and a divisor D ∈ |E|, the complement
X \D is affine (and hence Stein) since E is ample.

Proposition 4.1. Let E be a holomorphic line bundle on a compact complex manifold X .
Assume that for each point x ∈ X there exists a divisor D ∈ |E| whose complement X \D is a
Stein neighbourhood of x. Then E is ample.

Proof. By the assumption, there are finitely many section s0, s1, . . . , sn : X → E whose
divisors Di = {si = 0} have empty intersection and X \ Di = {si 6= 0} is Stein for every
i = 0, 1, . . . , n. Consider the holomorphic map Φ = [s0 : · · · : sn] : X → CPn (3.3). We
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have seen in the proof of Theorem 1.5 that E is isomorphic to the pullback Φ∗OCPn(1) of the
hyperplane section bundle (cf. [31, Theorem II.7.1]). Given a point z = [z0 : · · · : zn] ∈ CPn,
choose i ∈ {0, . . . , n} such that zi 6= 0 and note that Φ−1(z) is a closed complex subvariety of
X contained in X \ Di, which is Stein. Since a Stein manifold does not contain any compact
complex subvariety of positive dimension, Φ−1(z) is a finite set (or empty), so Φ is a finite
holomorphic map. It follows that the line bundle E ∼= Φ∗OCPn(1) is ample (see Lazarsfeld [42,
proof of Theorem 1.2.13]). �

Proposition 4.2. If a polarised manifold (X,E) has the polarised density property, then so does
every positive tensor power (X,E⊗k) for k > 0.

Proof. If the line bundle E is given on an open cover {Ui} of X by a 1-cocycle φi,j , then a
holomorphic section f : X → E is given by a collection of holomorphic functions fi : Ui → C
satisfying fi = φi,jfj on Ui,j . Since the bundle E⊗k is given by the 1-cocycle φki,j , the
collection fki defines a holomorphic section f⊗k of E⊗k. Evidently, {f = 0} = {f⊗k = 0}.
By the assumption there are holomorphic sections s0, . . . , sn : X → E such that for every
i = 0, 1, . . . , n the domain Xi = {si 6= 0} is a Stein manifold with the density property and⋃n
i=0Xi = X . Hence, for any integer k ≥ 1 the collection s⊗k0 , . . . , s⊗kn of sections of E⊗k

shows that (X,E⊗k) has the polarised density property. �

Example 4.3 (Line bundles on Grassmannians). Given integers 1 ≤ m < n we denote
by Gm,n the Grassmann manifold of complex m-dimensional subspaces of Cn. Note that
G1,n = CPn−1. These manifolds are complex homogeneous, and hence Oka. The Plücker
embedding P : Gm,n ↪→ CPN , withN =

(
n
m

)
−1, sends anm-plane span(v1, . . . , vm) ∈ Gm,n

(where v1, . . . , vm ∈ Cn are linearly independent vectors) to the complex line in CN+1 given
by the vector v1 ∧ · · · ∧ vm ∈ Λm(Cn) ∼= CN+1. The intersection of the submanifold
X = P (Gm,n) ⊂ CPN with an affine chart CN ∼= U ⊂ CPN is biholomorphic to Cm(n−m),
which has the density property if m(n − m) = dimGm,n > 1. It follows that the pullback
P ∗OCPN (1) of the hyperplane section bundle on CPN toGm,n has the polarised density property
and Theorem 1.4 applies to it. Every holomorphic line bundle on Gm,n is obtained from a line
bundle on CPN , and the pullback map P ∗ : Pic(CPN ) → Pic(Gm,n) is a group isomorphism;
hence, Pic(Gm,n) ∼= Z (see [9, Example 1.1.4 (3)] or [13, Lemma 11.1]). The pullback of
the universal bundle U = OCPN (−1) is isomorphic to the determinant bundle of the universal
bundle on Gm,n, and it generates Pic(Gm,n). Write OGm,n(k) for the (−k)-th tensor power of
this generator. Thus, OGm,n(1) = P ∗OCPN (1). A line bundle E → Gm,n is positive (resp.
negative) if E ∼= OGm,n(k) for some k > 0 (resp. k < 0). The above observation for OGm,n(1)
and Proposition 4.2 imply the following.

Proposition 4.4. Every ample holomorphic line bundle on a complex Grassmann manifold
of dimension > 1 has the polarised density property. Thus, every complex Grassmannian of
dimension > 1 has the polarised density property.

To state the next result, consider a pair of polarised manifolds (X1, E1) and (X2, E2). Let
πi : X1 ×X2 → Xi for i = 1, 2 denote the standard projections. Then, π∗iEi is a holomorphic
line bundle on X1 ×X2 for i = 1, 2. Their tensor product

E = E1 � E2 := (π∗1E1)⊗ (π∗2E2)→ X1 ×X2

is called the external tensor product of E1 and E2. A pair of holomorphic sections fi ∈
H0(Xi, Ei) for i = 1, 2 defines a holomorphic section f1 � f2 ∈ H0(X1 × X2, E1 � E2)
by trivially extending both line bundles and sections to X1×X2 and taking their tensor product.
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Similarly, for a pair of semipositive hermitian metrics hi on Ei for i = 1, 2, the semipositive
hermitian metric h = h1� h2 on E1�E2 is defined in an obvious manner by considering hi as
a hermitian metric on π∗iEi. Note that the restriction of E = E1 �E2 to X1 × {x2} (x2 ∈ X2)
is isomorphic to E1, and analogously for the second factor. Clearly, this operation extends to
any finite number of line bundles Ei → Xi, i = 1, . . . ,m.

Ischebeck [32] proved that if Y is a rational manifold (in particular, if Y is a projective space
or a complex Grassmannian) then Pic(X × Y ) = Pic(X)×Pic(Y ), so we get all holomorphic
line bundles on X × Y as external tensor products of lines bundles on X and Y .

Proposition 4.5. If the polarised manifolds (X1, E1) and (X2, E2) have the polarised density
property, then the product (X1 ×X2, E1 � E2) also has the polarised density property.

Proof. Let f1, . . . , fn ∈ H0(X1, E1) and g1, . . . , gm ∈ H0(X2, E2) be holomorphic sections
of the respective line bundles which satisfy the definition of the polarised density property. As
explained above, we may consider both bundles and their section to be defined onX = X1×X2.
Consider the collection of sections fi�gj ∈ H0(X,E1�E2) for i = 1, . . . , n and j = 1, . . . ,m.
For any pair of indices i, j in the given range, the set

Ui,j := {figj 6= 0} = {x1 ∈ X1 : fi(x1) 6= 0} × {x2 ∈ X2 : gi(x2) 6= 0}
is the product of Stein manifolds with the density property, so it is Stein with the density property
(see Varolin [52, p. 136, I.1]). Since the sets Ui,j cover X , the proposition holds. �

Proposition 4.6. If the polarised manifold (X,E) has the polarised density property, then
(X × CPn, E � OCPn(k)) (n > 0, k > 0) also has the polarised density property. The
same is true for (X ×Gm,n, E � OGm,n(k)) with 1 ≤ m < n and k > 0.

Proof. Since every projective space is also a Grassmannian, it suffices to consider the second
case. If dimGm,n > 1, this follows from Propositions 4.4 and 4.5. If dimGm,n = 1 then
Gm,n = CP1. We follow the proof of Proposition 4.5 and use that if X is a Stein manifold with
the density property then X×C also has the density property (see Varolin [52, p. 136, I.2]). �

Remark 4.7. Assuming that holomorphic line bundles E1 and E2 on a projective manifold X
have the polarised density property, we do not know whether their tensor product E1 ⊗ E2 has
the polarised density property. Indeed, given nontrivial sections f : X → E1 and g : X → E2,
the zero set of the section f ⊗ g : X → E1 ⊗ E2 is {f = 0} ∪ {g = 0}, and its complement is
{f 6= 0}∩ {g 6= 0}. This manifold need not have the density property even if both {f 6= 0} and
{g 6= 0} are Stein manifolds with the density property.

Recall that a projective manifold is said to be rational if it is birationally isomorphic to a
projective space. Every rational curve is isomorphic to CP1.

Proposition 4.8. If X1, . . . , Xm (m ≥ 2) are rational manifolds such that every Xi with
dimXi > 1 has the polarised density property, then their product X1 × X2 × · · · × Xm also
has the polarised density property.

Proof. It suffices to prove the result for m = 2 and apply induction. By Ischebeck [32] we have
that Pic(X) = Pic(X1) × Pic(X2) and each group Pic(Xi) is discrete. Let E be an ample
line bundle on X1 × X2. Then the restriction of E to each factor Xi (i = 1, 2) is an ample
line bundle Ei and E ∼= E1 � E2. If dimX1 > 1 and dimX2 > 1 then both E1 and E2 have
the polarised density property by the assumption, and the conclusion follows from Proposition
4.5. If dimX1 > 1 and dimX2 = 1 then X2

∼= CP1, E2 = OCP1(k) for some k > 0, and
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the conclusion follows from Proposition 4.6. The same argument applies if dimX1 = 1 and
dimX2 > 1. In the remaining case, both X1 and X1 are isomorphic to CP1 and Ei ∼= OCP1(ki)
for some ki > 0 (i = 1, 2). Fixing a point p = (p1, p2) ∈ X = CP1 × CP1 we can find a
pair of holomorphic sections fi : CP1 → Ei (i = 1, 2) such that pi ∈ Ui = {fi 6= 0} ∼= C.
Thus, f1f2 is a section of E ∼= E1 � E2, and the set {(x1, x2) ∈ X : f1(x1)f2(x2) 6= 0} is a
neighbourhood of p isomorphic to C2, which has the density property. This shows that X has
the polarised density property. �

Since every complex Grassmannian is a rational manifold, we have the following corollary to
Propositions 4.4 and 4.8.

Corollary 4.9. If X = X1×· · ·×Xm is a product of complex Grassmannians and dimX > 1,
then X has the polarised density property.

In conclusion, we pose the following open problems, from more general to more special.

Problem 4.10. Let X be a projective Oka manifold of dimension > 1 and E be an ample
holomorphic line bundle on X .

(a) Is there a hermitian metric h on E such that the disc bundle ∆h(E) is an Oka manifold?
Does this hold for every semipositive hermitian metric on E?

(b) Does this hold if X is Zariski locally isomorphic to Cn with n > 1?
(c) Does this hold if X is a homogeneous rational manifold with dimX > 1?

We comment on part (d) of the above problem. By the Borel–Remmert theorem [8], a rational
homogeneous manifold is a product X = X1 × · · · × Xn of (generalized) flag manifolds Xi

(i = 1, . . . , n). Since each Xi is rational (see Borel [7]), it follows from Ischebeck’s result [32]
that every line bundle E on X is isomorphic to the external tensor product E1 �E2 � · · ·�En
of line bundles Ei → Xi. Note that if E is ample then so is every factor Ei. By Proposition
4.5, this reduces the problem to the case when X is a flag manifold of dimension > 1. Assume
that E is an ample line bundle on X . (Line bundles of flag manifolds were studied by Andersen
[5] and Iversen [33], among others). To obtain an affirmative answer, it would suffice to find
a divisor D ∈ |E| whose complement X \ D is isomorphic to CdimX , which has the density
property. Indeed, assume that such D exists. Since X is homogeneous and Pic(X) is discrete,
for each point x ∈ X there exists a holomorphic automorphism ϕ of X such that ϕ∗E ∼= E and
ϕ∗D ∈ |ϕ∗E| = |E| does not contain x. Therefore, (X,E) has the polarised density property.

5. Holomorphic maps from Stein manifolds to vector bundles

Assume that (E, h) is a hermitian holomorphic vector bundle on a compact Oka manifold
X . In this section, we combine the results obtained in this paper with those of Drinovec
Drnovšek and Forstnerič [14] to find holomorphic maps S → E from Stein manifolds S with
dimS < dimE which are either proper or have their boundary cluster set contained in the zero
section of E. The former case occurs when (E, h) is Griffiths negative and the exterior tube

(5.1) Dh(E) = {e ∈ E : |e|h > 1}.

is Oka. This holds in particular if rankE > 1 (see Theorem 1.9) or if (E, h) is a negative
line bundle on CPn (see Theorem 1.1 (b’)). The latter case occurs when (E, h) is a positive
line bundle with Oka disc bundle ∆h(E) = {h < 1} (1.1); sufficient conditions are given by
Theorems 1.1, 1.4, 1.5, and 1.9. We begin with the former case.
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Theorem 5.1. Let (E, h) be a Griffiths negative hermitian holomorphic vector bundle on a
compact complex manifold X (see Definition 2.5). Assume that S is a Stein manifold with
dimS < dimE, K ⊂ S is a compact O(S)-convex subset, and f0 : S → E is a continuous
map which is holomorphic on a neighbourhood of K and satisfies f0(S \ K̊) ⊂ E \E(0). If the
domainDh(E) (5.1) is Oka, then we can approximate f0 uniformly onK by proper holomorphic
maps f : S → E homotopic to f0. Furthermore, if 2 dimS < dimE then f can be chosen an
embedding, and if 2 dimS ≤ dimE then f can be chosen an immersion.

With (E, h) as in the theorem, the domain Dh(E) (5.1) is Oka if E is a line bundle on
X = CPn (see Theorem 1.1 (b’)), or if rankE > 1 and X is an Oka manifold (see Theorem
1.9), so the result applies in these cases. If Dh(E) is Oka then for every t > 0 the domain

(5.2) Dh,t = {e ∈ E : |e|h > t}

is Oka as well, since it is biholomorphic to Dh(E) = Dh,1(E) by a fibre dilation.

Proof. Choose a normal exhaustion B0 b B1 b · · · ⊂
⋃∞
i=0Bi = S by relatively compact,

smoothly bounded, strongly pseudoconvex domains such that K ⊂ B0 and the given map f0 is
holomorphic on a neighbourhood ofB0. Also, choose an increasing sequence 0 < t0 < t1 < · · ·
with limi→∞ ti = +∞. Since the hermitian metric h is Griffiths negative, the function

(5.3) φ : E → [0,+∞), φ(e) = |e|2h (e ∈ E)

is strongly plurisubharmonic in E \ E(0) (see Proposition 2.6). Clearly, φ is an exhaustion
function on E without critical points in E \ E(0).

Recall that dimS < dimE and f0(S \ K̊) ⊂ E \ E(0) by the assumption. By [14,
Theorem 1.1] we can approximate f0 uniformly on K by a holomorphic map f̃0 : B0 → E,
which is homotopic to f0 through a family of maps sending B0 \ K̊ to E \ E(0), such that
f̃0(bB0) ⊂ Dh,t0(E) (see (5.2)). The homotopy condition allows us to extend f̃0 to a continuous
map f̃0 : S → E satisfying f̃0(S \ B0) ⊂ Dh,t0(E), and the given homotopy from f0 to f̃0 on
B0 extends to a homotopy between these two maps on all of S sending S \B0 to E \ E(0).

Since the tube Dh,t0(E) is biholomorphic to Dh(E), and hence Oka, we can apply the Oka
principle in [18, Theorem 1.3] to approximate f̃0 uniformly on B0 by a holomorphic map
f1 : S → E, homotopic to f̃0 by a homotopy as above, such that f1(S \B0) ⊂ Dh,t0(E).

We now repeat the same procedure with the map f1. First, we approximate f1 on B0 by a
holomorphic map f̃1 : B1 → E such that f̃1(B1 \ B0) ⊂ Dh,t0(E) and f̃1(bB1) ⊂ Dh,t1(E).
Next, we extend f̃1 to a continuous map f̃1 : S → E \ E(0) which agrees with the given
holomorphic map f̃1 on a neighbourhood of B1 and satisfies f̃1(S \B1) ⊂ Dh,t1(E). Since the
tube Dh,t1(E) is Oka, we can apply [18, Theorem 1.3] to approximate f̃1 uniformly on B1 by a
holomorphic map f2 : S → E such that f2(S \ B1) ⊂ Dh,t1(E). By the same argument as in
the first step, there is a homotopy connecting f1 to f2 sending S \ K̊ to E \ E(0).

Continuing inductively, we find a sequence of holomorphic maps fi : S → E for i = 1, 2, . . .
such that the following conditions hold for every i ≥ 1:

(i) fi approximates fi−1 as closely as desired on Bi−1.
(ii) fi(S \Bi−1) ⊂ Dh,ti−1

(E).
(iii) fi is homotopic to fi−1 through a homotopy sending S \ K̊ to E \ E(0).
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Assuming as we may that the approximation is close enough at every step, the sequence fi
converges uniformly on compacts in S to a proper holomorphic map f : S → E homotopic to
the initial map f0. (Condition (iii) is only needed to keep the induction going.) The additions in
the last sentence of the theorem follow by using the well-known general position argument. We
leave the obvious details to the reader. �

Assuming that (E, h) is a hermitian line bundle on X , we have seen in Section 2 that the tube
Dh(E) (5.2) is fibrewise biholomorphic to the punctured disc bundle ∆∗h∗(E

∗) in the hermitian
dual bundle (E∗, h∗), and the section E(∞) in the associated CP1-bundle Ê → X corresponds
to the zero section E∗(0) of the dual bundle. Hence, Theorem 5.1 implies an analogous result
for maps S → E∗ \ E∗(0) whose cluster set lies in the zero section E∗(0). However, we can
prove a stronger result in this direction, allowing the initial map S → E∗ to intersect the zero
section is a compact set. To state the result, we recall the following notion.

A sequence (xj)j∈N in a topological space X is said to be divergent if for every compact
set K ⊂ X there is j0 ∈ N such that xj ∈ X \ K for all j ≥ j0. Given a continuous map
f : X → Y of topological space with X noncompact, its cluster set is

C(f) = {y ∈ Y : there is a divergent sequence xj ∈ X with lim
j→∞

f(xj) = y}.

(If X is compact then C(f) = ∅.) We have the following result for maps from Stein manifolds
to positive hermitian line bundles on compact Oka manifolds.

Theorem 5.2. Assume that (E, h) is a positive hermitian holomorphic line bundle on a compact
complex manifold X such that the disc bundle ∆h(E) is Oka. Given a Stein manifold S with
dimS ≤ dimX , a compact O(S)-convex set K ⊂ S, and a continuous map f0 : S → E
which is holomorphic on a neighbourhood of K and satisfies f0(K) ⊂ ∆h(E), f0 can be
approximated uniformly on K by holomorphic maps f : S → ∆h(E) homotopic to f0 such that
C(f) ⊂ E(0). If in addition 2 dimS ≤ dimX then f can be chosen an injective immersion.

Proof. Since the bundle (E, h) is positive, the function σ = 1/h : E → (0,+∞) is strongly
plurisubharmonic (see Proposition 2.3). Furthermore, dσ 6= 0 on E \ E(0), and for any pair of
numbers 0 < a < b the set

(5.4) Ea,b = {e ∈ E : a ≤ σ(e) ≤ b}

is compact. Let U ⊂ S be an open Stein domain containing K and f0 : S → E be a continuous
map which is holomorphic on U . Choose a smoothly bounded strongly pseudoconvex domain
B0 ⊂ S such that K ⊂ B0 ⊂ B̄0 ⊂ U and B̄0 is O(S)-convex. Recall that X , and hence E, are
Oka manifolds. By the transversality theorem for holomorphic maps of Stein manifold to Oka
manifolds (see [16, Corollary 8.8.7]), we may assume that the map f0 : U → E is transverse to
the zero section E(0). Hence, the set

V0 = {x ∈ U : f0(x) ∈ E(0)}

is a closed complex subvariety of U which does not contain any connected component of U .
The set K ∪ (B̄0 ∩ V0) is O(S)-convex. Let c0 > 0 be chosen such that f0(B0) ⊂ {σ > c0}.
Pick numbers c1 > c0 and ε > 0. Choose a compact O(S)-convex set K ′ ⊂ U such that

(5.5) K ∪ (B̄0 ∩ V0) ⊂ K̊ ′ and σ ◦ f0 > c1 + 1 on bB0 ∩K ′.

The second condition holds if K ′ is a sufficiently small neighbourhood of K ∪ (B̄0 ∩ V0). Set
K0 = K ′ ∩ B̄0. We claim that there is a holomorphic map g : B̄0 → E satisfying the following
conditions for a fixed Riemannian distance function dist on E:



20 F. Forstnerič and Y. Kusakabe

(i) dist(g(x), f0(x)) < ε for all x ∈ K0.
(ii) σ(g(x)) > σ(f0(x))− ε for all x ∈ B̄0 \K0.

(iii) σ ◦ g > c1 on bB0.
(iv) g is homotopic to f0 on B̄0.

In the special case when V0 = ∅ andK0 is a compact subset ofD, a map g with these properties
is given by [14, Lemma 5.3], which is the main inductive step in [14, proof of Theorem 1.1]. In
the case at hand, the compact set K0 ⊂ B̄0 may intersect bB0, but we have that σ ◦ f0 > c1 + 1
on bB0∩K0 by condition (5.5). Hence, to ensure condition (iii), it suffices to apply [14, Lemma
5.2] finitely many times for points in the compact set {x ∈ bB0 \K0 : σ(f0(x)) ≤ c1 +1}. (The
cited lemma amounts to lifting a small piece of f0(bB0) to a higher level set of σ by a prescribed
amount, while at the same time approximating f0 on K0 (condition (i)). This lifting procedure
uses modifications involving local peak functions and gluing, and it is designed in such a way
that condition (ii) can be fulfilled. Condition (iv) is built into the construction as well. The fact
that the function σ is not defined on E(0) is irrelevant in this proof since the compact set K0

contains V0 ∩ B̄0 in its relative interior, and σ is only used on B̄0 \K0.)

By approximation, we may assume that g is holomorphic on a neighbourhood of B̄0, and we
can extend it to a continuous map g : S → E homotopic to f0. We now use the hypothesis that
the disc bundle ∆h(E) is an Oka manifold. Hence, the tube

Ωc1 = E(0) ∪ {σ > c1} = ∆h,1/c1(E)

is Oka as well. By the Oka principle in [18, Theorem 1.3] we can approximate g uniformly on
B0 by a holomorphic map f1 : S → E, homotopic to g, such that

f1(S \B0) ⊂ Ωc1 .

Pick an arbitrary smoothly bounded strongly pseudoconvex domain B1 ⊂ S such that B0 ⊂ B1

and B1 is O(S)-convex.

Continuing inductively, we obtain a normal exhaustion of S by an increasing sequence of
smoothly bounded, strongly pseudoconvex domains B0 b B1 b · · · ⊂

⋃∞
i=0Bi = S,

a sequence of continuous maps fi : S → E (i = 0, 1, . . .), and an increasing sequence
0 < c0 < c1 < c2 < · · · with limi→∞ ci = +∞ such that for every i = 1, 2, . . . the map fi is
holomorphic on B̄i, it approximates fi−1 on B̄i−1, and it maps Bi \Bi−1 to Ωci = ∆h,1/ci(E).
Assuming as we may that the approximation is close enough at every step, the limit map
f = limi→∞ fi : X → E exists, it approximates f0 on K and is homotopic to it, and it satisfies
C(f) ⊂ E(0). We leave the obvious details of this induction to the reader. If 2 dimS ≤ dimX
then we can additionally use the general position argument at every step of the induction to
ensure that the map f is an injective immersion. �
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