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In this paper, we find surprisingly small Oka domains in Euclidean spaces Cn of

dimension n > 1 at the very limit of what is possible. Under a mild geometric

assumption on a closed unbounded convex set E in Cn, we show that Cn \ E is an Oka

domain. In particular, there are Oka domains only slightly bigger than a halfspace, the

latter being neither Oka nor hyperbolic. This gives smooth families of real hypersurfaces

�t ⊂ Cn for t ∈ R dividing Cn in an unbounded hyperbolic domain and an Oka domain

such that at t = 0, �0 is a hyperplane and the character of the two sides gets reversed.

More generally, we show that if E is a closed set in Cn for n > 1 whose projective closure

E ⊂ CPn avoids a hyperplane � ⊂ CPn and is polynomially convex in CPn \ � ∼= Cn, then

Cn \ E is an Oka domain.

1 Introduction

A complex manifold Y is said to be an Oka manifold if every continuous map X → Y

from a Stein manifold X is homotopic to a holomorphic map, with Runge approximation

on a compact holomorphically convex subset and interpolation on a closed complex sub-

variety of X where the given map happens to be holomorphic (see [9, Definition 5.4.1 and

Theorem 5.4.4] and [22]). Thus, in the absence of topological obstructions, holomorphic
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maps from Stein manifolds to an Oka manifold satisfy the same approximation and

interpolation results as holomorphic functions, that is, maps X → C. Oka manifolds

are at the heart of many existence theorems, with diverse applications. They are at the

opposite end of spectrum from Kobayashi hyperbolic manifolds [17], which do not admit

any nonconstant holomorphic images of C. Discovering Oka manifolds is a difficult task

and progress has been sporadic. The best known examples are complex homogeneous

manifolds (Grauert [14]) and Gromov-elliptic manifolds [15].

Most complex manifolds are neither hyperbolic nor Oka, but have a mixture of

both properties. For example, a halfspace in Cn is the product of a halfplane, which is

hyperbolic, and the affine space Cn−1, which is Oka. Hence, a halfspace does not contain

any Oka domains. We show in this paper that most closed convex sets in Cn for n > 1

have Oka complement. In particular, it was a surprise to discover Oka domains only

slightly bigger than a halfspace; see Theorems 1.4 and 1.8.

We begin by presenting our main result. Let us consider Cn as an affine domain

in the projective space CPn = Cn ∪ H, where H = CPn \ Cn ∼= CPn−1 is the hyperplane at

infinity. Given a closed subset E ⊂ Cn, we denote by E its topological closure in CPn.

Theorem 1.1. If E is a closed subset of Cn for n > 1 and � ⊂ CPn is a complex

hyperplane such that E ∩ � = ∅ and E is polynomially convex in CPn \ � ∼= Cn, then

Cn \ E is Oka.

Choosing complex coordinates z = (z′, zn) on Cn in which � = {zn = 0}, it is

easily seen that E ∩ � = ∅ if and only if the set E ∩ {(z′, zn) : |zn| ≤ c|z′|} is compact for

some c > 0.

If E is as in Theorem 1.1 then the domain CPn \ E is also Oka (see [10,

Theorem 5.1]).

The proof of Theorem 1.1 (see Section 3) combines the characterization of Oka

manifolds by Condition Ell1, due to Kusakabe [19] (see Theorem 3.1), with a new result

proved in this paper concerning the existence of holomorphically varying families of

Fatou–Bieberbach domains in (Cn−1 × C∗) \ K, where K is a polynomially convex set in

Cn for n > 1; see Theorem 2.3.

Example 1.2. Conditions in Theorem 1.1 are easily verified for the Siegel upper

halfspace

E = {
z = (z′, zn) ∈ Cn : �zn ≥ |z′|2}

. (1.1)
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(Here,  and � denote, respectively, the real and the imaginary part of a complex

number.) The interior of E is biholomorphic to the ball {w ∈ Cn : |w| < 1} via the

Cayley map

z = �(w′, wn) = i

(
w′

1 − wn
,

1 + wn

1 − wn

)
.

Indeed, we have that

�zn − |z′|2 = 1 − |w|2
|1 − wn|2 and w = �−1(z) =

(
2z′

zn + i
,

zn − i

zn + i

)
.

(See Rudin [25, Sec. 2.3].) Hence, � extends to an automorphism of CPn mapping the

closed ball B = {w ∈ Cn : |w| ≤ 1} onto the projective closure E of E so that the

hyperplane {wn = 1} gets mapped to the hyperplane at infinity H = CPn \ Cn in the

z coordinates, while the hyperplane � = {zn = −i} is at infinity in the w coordinates.

Hence, in the affine w coordinates the set E is the closed ball B, which is polynomially

convex, and E ∩ � = ∅.

Theorem 1.1 can be equivalently expressed as follows, considering H as the

hyperplane at infinity and letting E be a closed set in Cn = CPn \ H and K = E its

closure in CPn.

Theorem 1.3. Assume that K is a compact subset of CPn for n > 1 and � ⊂ CPn is a

complex hyperplane such that K ∩ � = ∅ and K is polynomially convex in CPn \ � ∼= Cn.

Then, for every complex hyperplane H ⊂ CPn the manifold CPn \ (H ∪ K) is Oka.

It is natural to look for geometric sufficient conditions on a closed set E in Cn

to satisfy Theorem 1.1. In Section 4, we show that this holds if the topological closure

of E in CPn is a projectively convex set, meaning that the set of complex hyperplanes

contained in CPn \ E is connected and their union equals CPn \ E (see Definition 4.1 and

Theorem 4.2).

An important class of sets E ⊂ Cn to which Theorem 1.1 applies are convex

sets satisfying weak additional conditions. We now describe several results of this type

obtained in the paper.

Let E be a closed domain in Cn with C 1 boundary. We denote by TpbE the affine

tangent hyperplane to bE at p ∈ bE and by TC
p bE the unique affine complex hyperplane

in TpbE passing though p. If E is convex, then E ∩ TpbE ⊂ bE. We have the following

result.
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1804 F. Forstnerič and E. Fornæss Wold

Theorem 1.4. If E is a closed convex set with C 1 boundary in Cn for n > 1 such that

E ∩ TC
p bE does not contain an affine real halfline for any p ∈ bE, then Cn \ E is an Oka

domain.

A closed convex set E in Rn is said to be strictly convex if the interior of the line

segment connecting any pair of points in E is contained in the interior of E; equivalently,

if the boundary of E does not contain any line segment. The following is a corollary to

Theorem 1.4.

Corollary 1.5. If E is a closed strictly convex domain with C 1 boundary in Cn for n > 1,

then its complement Cn \ E is an Oka domain.

Theorem 1.4 follows from Theorem 1.1 by showing that the projective closure

E ⊂ CPn of any closed convex set E ⊂ Cn as in Theorem 1.4 is a compact polynomially

convex set in another affine chart on CPn. This is proved in Section 5 by a combination

of complex, convex, and projective geometry.

Theorem 1.4 is new for unbounded convex sets. For compact sets E in Cn with

n > 1 it is known that Cn \ E is Oka provided that E is polynomially convex, which

includes all compact convex sets (see Kusakabe [18, Theorem 1.2 and Corollary 1.3] and

[13]). There are also examples of compact non-polynomially convex sets in Cn for n > 1

with Oka complements; see [10, Theorem 4.10].

In dimension n = 2, our results give the first known examples of Oka domains

with unbounded complements. For n ≥ 3, such examples were found by Kusakabe [18,

Theorem 1.6], who showed that for any closed polynomially convex set E contained in a

set {(z′, z′′) ∈ Cn−2 × C2 : |z′′| ≤ c(1 + |z′|)} for some c > 0, the complement Cn \ E is Oka.

However, domains of this type are much bigger than some of those given by Theorem 1.4.

There are many examples satisfying Theorem 1.4, which are of the form

E = {(z′, zn) ∈ Cn : �zn ≥ φ(z′, zn)}, (1.2)

where φ is a convex function. An example is the Siegel upper halfspace (1.1). Its

boundary {�zn = |z′|2} is strongly convex in the z′ direction and is foliated by translates

of the zn axis. Hence, Theorem 1.4 shows that Cn \ E = {(z′, zn) ∈ Cn : �zn < |z′|2}
is an

Oka domain.

Theorem 1.4 and Corollary 1.5 imply the following interesting phenomenon.

Assume that E is a closed strictly convex set of the form (1.2). Equivalently, φ is a strictly

convex function, meaning that for every pair of distinct points a, b ∈ Cn−1 × R we have
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that

φ(ta + (1 − t)b) < tφ(a) + (1 − t)φ(b) for all 0 < t < 1.

Consider the 1-parameter family of real hypersurfaces

�t = {(z′, zn) ∈ Cn : �zn = tφ(z′, zn)} for t ∈ R.

If t > 0, the convex domain �+
t = {�zn > tφ(z′, zn)} above �t does not contain any affine

complex line, so it is hyperbolic (see [4, 5]), while the domain �−
t = {�zn < tφ(z′, zn)}

below �t is Oka by Theorem 1.4. For t < 0, the picture is reversed, while at t = 0 the

hyperplane �0 = {�zn = 0} splits Cn into a pair of halfspaces. The same conclusion

holds if we rescale the Siegel domain (1.1), or a domain of the form {�zn > φ(z′)} where φ

is strictly convex. These are the first known examples of splitting Cn by a smooth family

of hypersurfaces into pairs of an unbounded hyperbolic domain and a (necessarily

unbounded) Oka domain such that the nature of the two domains gets reversed at some

value of the parameter.

There are examples in the literature of holomorphic families of compact Oka

manifolds degenerating to a non-Oka manifold; see [11, Corollary 5]. A recent example

with open manifolds (see [10, Theorem 10.1]) is a holomorphic fibration X → C, with

X a Stein domain in C3, that is trivial over C∗ = C \ {0}, with fibres being Fatou–

Bieberbach domains in C2, which degenerate over 0 to the product of a disc with C.

However, the reversal of nature of the two sides, observed above, does not occur in this

example.

We describe another class of closed unbounded convex sets in Cn with Oka

complements. We shall say that a convex function φ : Rn → R is irreducible if it is

not of the form φ = ψ ◦ P + l where P : Rn → Rm is a linear projection with m < n, ψ

is a convex function on Rm, and l is a linear function on Rn. This means that φ is not

a convex function of a smaller number of variables, which is linear in the remaining

variables.

Corollary 1.6. If φ is an irreducible convex function on Cn−1 × R, then the domain

�φ = {(z′, zn) ∈ Cn : �zn < φ(z′, zn)}

is Oka. The same is true for domains of the form

�φ = {(z′, zn) ∈ Cn : �zn < φ(z′)},

where φ : Cn−1 → R is an irreducible convex function.
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1806 F. Forstnerič and E. Fornæss Wold

Proof. By Azagra [3, Theorem 1 and Proposition 1], the condition that φ is irreducible

implies that for every ε > 0 there is a smooth strictly convex function ψ : Cn−1 × R → R

such that φ − ε < ψ < φ. Hence, the domain �ψ = {�zn < ψ(z′, zn)} is Oka by

Corollary 1.5. This gives an increasing sequence φ1 < φ2 < φ3 < · · · of smooth strictly

convex functions on Cn−1 × R converging uniformly to φ such that the sequence of

Oka domains �φj
increases to the domain �φ as j → ∞. By [9, Proposition 5.6.7], it

follows that �φ is Oka. A similar argument holds in the second case, where the new

domain �ψ = {�zn < ψ(z′)} is Oka by Theorem 1.4 since the real lines contained in

the boundary b�ψ = {�zn = ψ(z′)} (in the zn direction) are not complex tangent

to b�ψ . �

Let us illustrate Corollary 1.6 by an example.

Example 1.7. Every concave wedge in Cn of the form

�zn < c|zn| +
n−1∑
j=1

(
aj|zj| + bj|�zj|

)

for c ≥ 0 and strictly positive numbers a1, . . . , an−1, b1, . . . , bn−1 is an Oka domain.

We also have the following result, which improves Corollary 1.5.

Theorem 1.8. If E is a closed convex set in Cn for n > 1 that does not contain any

affine real line, then Cn \ E is an Oka domain.

Proof. By Theorem 6.1, there is a nested sequence E1 ⊃ E2 ⊃ E3 ⊃ · · · of smoothly

bounded strictly convex sets in Cn such that E = ⋂∞
j=1 Ej. By Corollary 1.5, the domain

�j = Cn \ Ej is Oka for every j ∈ N. Hence, Cn \ E = ⋃∞
j=1 �j is the increasing union of

Oka domains �j, so it is Oka by [9, Proposition 5.6.7]. �

The above results show that complements of most closed convex sets in Cn for

n > 1 are Oka. They provide a partial answer to [10, Problem 4.13], asking whether it

is possible to characterise Oka domains in Cn in terms of geometric properties of their

boundaries, in analogy to the classical Levi problem characterising smoothly bounded

domains of holomorphy as the Levi pseudoconvex ones. Since the biholomorphically

invariant version of strong convexity is strong pseudoconvexity, it is natural to ask the

following questions.
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Problem 1.9.

(a) Is the complement Cn \ E of every compact strongly pseudoconvex domain

E ⊂ Cn (n > 1) an Oka domain?

(b) Is every smoothly bounded Oka domain in Cn Levi pseudoconcave?

The answer to question (a) is negative if E is unbounded; see [10, Example

4.19]. Note that an Oka domain cannot have any local peak points for plurisubharmonic

functions, as this would yield a nonconstant bounded plurisubharmonic function on the

domain. In particular, an Oka domain has no strongly pseudoconvex boundary points.

Hence, the answer to (b) is affirmative in dimension n = 2.

Part (b) of the Problem 1.9 may be considered as the dual Levi problem. It has

been known since Oka’s work in 1940s (see [24, Chaps. VI and IX]) that a smoothly

bounded domain in Cn is a domain of holomorphy (equivalently, a Stein domain) if and

only if its boundary is Levi pseudoconvex. Oka manifolds are in many ways dual to Stein

manifolds, a fact made precise by Lárusson’s model category (see [21] and [9, Sect. 7.5])

in which Oka manifolds are fibrant and Stein manifolds are cofibrant. It is therefore

natural to expect that these two classes of domains in Cn are also dual to each other

in the geometric sense. If true, this would be an interesting new paradigm in complex

analysis.

Here is another open problem.

Problem 1.10. Is there a smooth real hypersurface � in Cn for n > 1 such that the

connected components of Cn \ � are Oka domains? The same question for CPn.

A smooth hypersurface splitting C2 or CP2 into pairwise disjoint Oka domains

is necessarily Levi-flat, for otherwise one of these Oka domains would admit a bounded

nonconstant plurisubharmonic function, which is impossible. For the same reason, a

smoothly bounded domain in a complex surface which is both Oka and Stein has Levi-

flat boundary. A well-known and long-standing open problem is whether there exists a

smooth Levi-flat hypersurface in CP2; the answer is negative in CPn for n > 2 (see Siu

[26]). On the other hand, Stensønes [27] constructed Fatou–Bieberbach domains in Cn for

any n > 1 having smooth boundaries, but it is not known whether the closure of such a

domain can have Oka complement.

2 Holomorphic Families of Fatou–Bieberbach Domains Avoiding the Union of a

Complex Hyperplane and a Polynomially Convex Set

In this section, we develop the relevant tools that are used in the proof of Theorem 1.1.

The main result of the section is Theorem 2.3; see also Corollary 3.2. It gives
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1808 F. Forstnerič and E. Fornæss Wold

holomorphic families of Fatou–Bieberbach domains in (Cn−1 × C∗) \ K, where K is a

compact polynomially convex set in Cn for some n > 1. These domains avoid both a

complex hyperplane and a polynomially convex set, so they are fairly small. Finding

small Fatou–Bieberbach domains is of interest also in connection to Michael’s problem;

see Dixon and Esterle [6].

Recall that a Lie algebra g of holomorphic vector fields on a complex manifold

X is said to have the density property if the Lie subalgebra g0 of g, generated by all

C-complete vector fields in g (using sums and Lie brackets), is dense in g in the compact-

open topology (see Varolin [29] or [9, Sect. 4.10]). If X is an algebraic manifold and g

consists of algebraic vector fields, then g is said to have the algebraic density property

if g0 = g.

We recall the following result due to Varolin [29, Theorem 5.1 (1)].

Theorem 2.1. If 1 ≤ k < n, then the Lie algebra gn,k of holomorphic vector fields on

Cn = Ck ×Cn−k that vanish on Ck × {0}n−k has the density property, and the Lie algebra

of polynomial vector fields with the same property has the algebraic density property.

This holds in particular for the Lie algebra of holomorphic vector fields vanishing on

the hyperplane {zn = 0} = Cn−1 × {0}.

Although the algebraic case of the above result is not explicitly stated in [29],

it is evident from [29, proof of Theorem 5.1]. The holomorphic case will suffice for our

needs.

The following important application of Theorem 2.1 is seen by [9, proof of

Theorem 4.9.2], which was originally proved in [12]. This is the key argument of the

Andersén–Lempert approximation theory for isotopies of injective holomorphic maps by

holomorphic automorphisms; cf. [1]. (See also Varolin [29, Theorem 2.5] and [7, Theorem

2.12].) To prove the parametric version (the second part of the theorem) in the case

at hand, one uses holomorphic vector fields on Cn depending holomorphically on the

parameter ζ and vanishing on the hyperplane {zn = 0} (see Kutzschebauch [20] and [9,

Theorem 4.9.10]).

Theorem 2.2. Assume that � is a Stein Runge domain in Cn for n > 1 and �t : � → Cn

(t ∈ [0, 1]) is an isotopy of injective holomorphic maps such that �0 is the identity map

on �, and for every t ∈ [0, 1] the domain �t(�) is Runge in Cn and �t agrees with the

identity map on {zn = 0} ∩ �. Then �1 can be approximated uniformly on compacts in �

by holomorphic automorphisms of Cn fixing {zn = 0} pointwise.
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More generally, let � be a Stein Runge domain in CN×Cn with coordinates ζ ∈ CN

and z ∈ Cn whose projection to CN is a domain U ⊂ CN . Assume that

�t(ζ , z) = (ζ , φt(ζ , z)) for (ζ , z) ∈ � and t ∈ [0, 1] (2.1)

is an isotopy of injective holomorphic maps such that φ0(ζ , z) = z, and for all t ∈ [0, 1]

the domain �t(�) is Runge in CN ×Cn and φt(ζ , (z′, 0)) = (z′, 0) holds for every ζ ∈ U and

z′ ∈ Cn−1. Then �1 can be approximated uniformly on compacts in � by holomorphic

maps F : U × Cn → Cn fixing U × {zn = 0} pointwise such that F(ζ , · ) ∈ Aut(Cn) for all

ζ ∈ U.

By using Theorem 2.2, we now prove the following result, which is the main

analytic ingredient in the proof of Theorem 1.1.

Theorem 2.3. Assume that K is a compact polynomially convex set in Cn for some

n > 1, L is a compact polynomially convex set in CN for some N ∈ N, and f : U → Cn is a

holomorphic map on an open neighbourhood U ⊂ CN of L such that

f (ζ ) ∈ (Cn−1 × C∗) \ K holds for all ζ ∈ L.

Then there are a neighbourhood V ⊂ U of L and a holomorphic map F : V × Cn → Cn

such that for every ζ ∈ V we have that

F(ζ , 0) = f (ζ ) and the map F(ζ , · ) : Cn → (Cn−1 × C∗) \ K is injective.

It follows that

Bζ = {F(ζ , z) : z ∈ Cn} ⊂ (Cn−1 × C∗) \ K

is a family of Fatou–Bieberbach domains depending holomorphically on the parameter

ζ ∈ V. This result is similar in spirit to [13, Theorem 1.1], but the Fatou–Bieberbach

domains that we construct here also avoid the hyperplane {zn = 0}, which is crucial for

our applications.

Proof. Since the set L is polynomially convex, we may assume that U is Stein and

Runge in CN . Then, X = U × Cn is a Runge Stein domain in CN+n and the graph


 = {(ζ , f (ζ )) ∈ X : ζ ∈ U} of f is a closed Stein submanifold of X. The restricted graph


L = {(ζ , f (ζ )) ∈ X : ζ ∈ L} ⊂ L ×
(
(Cn−1 × C∗) \ K

)
(2.2)
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1810 F. Forstnerič and E. Fornæss Wold

is clearly O(
)-convex (i.e., holomorphically convex in 
), hence also O(X)-convex as

well as polynomially convex in CN × Cn since X is Runge in CN × Cn. (See Hörmander

[16] and Stout [28] for results on holomorphic convexity.) By [8, Lemma 6.5, page 111] the

compact set (L×K)∪
L is O(X)-convex and hence polynomially convex, so it has a basis

of Runge Stein neighbourhoods.

Let π : CN × Cn → CN denote the projection on the first factor. Consider the

injective π-fibre preserving holomorphic map � = (Id, φ) of the form (2.1) on a small

Runge Stein neighbourhood � = �′ ∪ �′′ of (L × K) ∪ 
L in CN × Cn, which equals the

identity map on a neighbourhood �′ of L × K and whose second component equals

φ(ζ , z) = f (ζ ) + 1

2
(z − f (ζ )) = 1

2
f (ζ ) + 1

2
z

for (ζ , z) in a neighbourhood �′′ of the graph 
L in (2.2). Thus, φ(ζ , · ) is a contraction

by the factor 1/2 around the point f (ζ ) ∈ Cn for every ζ . For a suitable choice of the

neighbourhood �′′ of 
L, the map φ = φ1/2 is connected to φ0(ζ , z) = z by the isotopy

φt(ζ , z) = tf (ζ ) + (1 − t)z for 0 ≤ t ≤ 1

2

such that φt(ζ , z) ∈ �′′ for every (ζ , z) ∈ �′′ and t ∈ [0, 1/2]. On �′, we take the constant

isotopy φt(ζ , z) = φ0(ζ , z) = z. Clearly, the trace of the isotopy �t = (Id, φt) for t ∈ [0, 1/2]

then consists of Runge domains �t(�) ⊂ �.

By Theorem 2.2, we can approximate � as closely as desired on a smaller

neighbourhood of (L × K) ∪ 
L by a holomorphic map

� : V × Cn → V × Cn, �(ζ , z) = (ζ , ψ(ζ , z)),

where V ⊂ U is a neighbourhood of L, such that for every ζ ∈ V we have that

• ψ(ζ , · ) ∈ Aut(Cn),

• ψ(ζ , z) = z for every z = (z′, 0) ∈ Cn−1 × {0}, and

• ψ(ζ , f (ζ )) = f (ζ ).

Choose a pair of constants a, b ∈ R such that

0 < a < 1/2 < b < 1 and b2 < a.

If the approximation of φ by ψ is close enough then the estimate

a|z − f (ζ )| ≤ |ψ(ζ , z) − f (ζ )| ≤ b|z − f (ζ )| (2.3)
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Oka Domains in Euclidean Spaces 1811

holds in a neighbourhood of the graph 
L in (2.2). At the same time, we can ensure that

ψ is arbitrarily close to the map (ζ , z) �→ z on a neighbourhood of L × K.

It is obvious that this gives a sequence of holomorphic maps ψk of the same

kind as ψ for k = 1, 2, . . . such that the estimate (2.3) holds for all of them on the

same neighbourhood of 
L, and the sequence ψk converges to the map (ζ , z) �→ z on

a neighbourhood of L × K as k → ∞.

Consider the sequence of automorphisms

θk(ζ , · ) = ψk(ζ , · ) ◦ ψk−1(ζ , · ) ◦ · · · ◦ ψ1(ζ , · ) ∈ Aut(Cn)

for k ∈ N and ζ in a neighbourhood of L. Due to the condition b2 < a in the estimate (2.3),

which holds for all k ∈ N, the attracting basin Bζ ⊂ Cn of the sequence θk at the fixed

point f (ζ ) is biholomorphic to Cn for every ζ in a neighbourhood V ⊂ CN of L, and there

is a holomorphic map F : V × Cn → Cn such that F(ζ , · ) : Cn
∼=−→ Bζ is a biholomorphic

map for every ζ ∈ V (see Wold [30, Theorem 4]). If the convergence of the sequence ψk to

the map (ζ , z) �→ z is fast enough on a neighbourhood of L × K, which can be arranged

by our construction, then no point of K escapes a given neighbourhood of K, and hence

none of the basins Bζ intersect K. Furthermore, the condition ψk(ζ , (z′, 0)) = (z′, 0) for all

ζ ∈ V, z′ ∈ Cn−1, and k ∈ N ensures that the basin Bζ does not intersect the hyperplane

Cn−1 ×{0}. Hence, Bζ = F(ζ ,Cn) is a Fatou–Bieberbach domain in (Cn−1 ×C∗) \K centred

at f (ζ ) = F(ζ , 0) for every ζ ∈ V. �

3 Proof of Theorem 1.1

We now show how Theorem 2.3 implies Theorem 1.1, and hence also Theorem 1.3.

We shall use the following characterization of Oka manifolds due to Kusakabe

[19, Theorem 1.3].

Theorem 3.1. A complex manifold Y is an Oka manifold if and only if for every

compact convex set L ⊂ CN (N ∈ N), open set U ⊂ CN containing L, and holomorphic

map f : U → Y there are an open set V in CN with L ⊂ V ⊂ U and a holomorphic map

F : V × Cn → Y for some n ≥ dim Y such that F(· , 0) = f and

∂

∂z

∣∣∣
z=0

F(ζ , z) : Cn → Tf (ζ )Y is surjective for every ζ ∈ V.

Such a map F is called a dominating holomorphic spray with the core f = F(· , 0).

Note that the map F in Theorem 2.3 is a dominating spray with the given core f .

Hence, the following is an immediate corollary to Theorems 2.3 and 3.1.
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1812 F. Forstnerič and E. Fornæss Wold

Corollary 3.2. If K is a compact polynomially convex set in Cn for some n > 1 then

(Cn−1 × C∗) \ K is an Oka manifold.

By using this corollary we infer the following.

Proposition 3.3. Under the assumptions of Theorem 1.1, the domain Cn \ (E ∪ �)

is Oka.

Proof. If � = H then, since E ∩ � = ∅, it follows that E is compact and hence Cn \ E is

Oka by [18, Theorem 1.2 and Corollary 1.3] (see also [13]).

Assume now that � �= H and K = E is a compact polynomially convex set in

CPn \ � ∼= Cn. Choose complex coordinates z = (z1, . . . , zn) on CPn \ � such that H \ � =
{zn = 0}. Then,

Cn \ (E ∪ �) = CPn \ (E ∪ H ∪ �) = (CPn \ �) \ (H ∪ K) = {(z′, zn) : zn �= 0} \ K.

We are now in the situation of Corollary 3.2, which gives the desired conclusion. �

We also recall the following result; see [10, Theorem 5.1 and Corollary A.5].

Theorem 3.4. Let K be a compact subset of CPn for n > 1. If there is a complex

hyperplane � ⊂ CPn \ K such that K is polynomially convex in CPn \ � ∼= Cn, then K

is polynomially convex in CPn \ �′ for every complex hyperplane �′ ⊂ CPn \ K which

is connected to � by a path of complex hyperplanes in CPn \ K, and CPn \ K is an Oka

domain.

Proof of Theorem 1.1. By Theorem 3.4 applied to the compact set K = E ⊂ CPn there

are hyperplanes �0 = �, �1, . . . , �n in CPn \ E close to � such that
⋂n

i=0 �i = ∅ and E is

polynomially convex in CPn \ �i for i = 0, 1, . . . , n. Let Cn = CPn \ H. By Proposition 3.3

the domain Cn \ (E ∪ �i) is Oka for every i = 0, . . . , n. Note that

Cn \ E =
n⋃

i=0

Cn \ (E ∪ �i).

Since every Oka domain Cn \ (E ∪ �i) = (Cn \ E) \ �i is Zariski open in Cn \ E, the

localization theorem for Oka manifolds [19, Theorem 1.4] (see also [10, Theorem 3.6])

implies that Cn \ E is an Oka domain. �
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Oka Domains in Euclidean Spaces 1813

4 Projectively Convex Sets

This section contains some preparatory results used in the proof of Theorem 1.4.

There are several notions of convexity for subsets of complex projective spaces.

We shall be interested in the following ones; see [2, Definition 2.1.2].

Definition 4.1. Let K be a compact set in CPn.

(i) The set K is linearly convex if for every point p ∈ CPn \ K there is a complex

hyperplane � ⊂ CPn with p ∈ � and � ∩ K = ∅.

(ii) The set K is projectively convex if it is linearly convex and the space of all

complex hyperplanes contained in CPn \ K is connected.

Note that complex hyperplanes in CPn are parameterized by the dual projective

space CPn∗. The set of hyperplanes lying in CPn \ K is clearly open, but it need

not be connected in general. Clearly, both notions are invariant under holomorphic

automorphisms of CPn. Our interest in projective convexity is that it gives a geometric

sufficient condition for validity of Theorem 1.1. This gives many new examples of Oka

domains in Euclidean and projective spaces.

Theorem 4.2. The following hold for any compact projectively convex set K � CPn

with n > 1.

(a) For every complex hyperplane � ⊂ CPn with � ∩ K = ∅ the set K is

polynomially convex in CPn \ � ∼= Cn.

(b) CPn \ K is an Oka manifold.

(c) For every complex hyperplane H ⊂ CPn the set CPn \ (H ∪ K) is an Oka

manifold.

Proof. To prove (a) we proceed as follows. (See also [10, Corollary A.5].) By the

assumption, the domain CPn \ K is a union of complex hyperplanes that form an open

connected family HK ⊂ CPn∗. Fix �0 ∈ HK . Given a point p ∈ CPn \ (K ∪ �0), there is

a path �t ∈ HK for t ∈ [0, 1] connecting �0 to a hyperplane �1 with p ∈ �1. We may

assume that �t �= �0 for t ∈ (0, 1]. Note that K ⊂ CPn \ �0 = Cn, and �t := �t \ �0 ⊂ Cn

for t ∈ (0, 1] is a path of affine complex hyperplanes in Cn \ K such that p ∈ �1 and �t

diverges to infinity as t → 0. By Oka’s criterion (see Oka [23], Stout [28, Theorem 2.1.3]),

and [10, Corollary A.2] this implies that p does not belong to the polynomial hull of K

in CPn \ �0. Since this holds for every point p ∈ CPn \ (K ∪ �0), we conclude that K is

polynomially convex in CPn \ �0. This proves (a).
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1814 F. Forstnerič and E. Fornæss Wold

To prove (b), choose hyperplanes �0, �1, . . . , �n ∈ HK such that
⋂n

i=0 �i = ∅. (It

suffices to take small generic perturbations of any given hyperplane �0 ∈ HK .) Then,

CPn \ K =
n⋃

i=0

CPn \ (K ∪ �i).

By part (a), the set K is polynomially convex in CPn \ �i
∼= Cn for every i = 0, . . . , n, and

hence the domain CPn \ (K ∪�i) = (CPn \�i)\K is Oka by [18, Theorem 1.2 and Corollary

1.3]. This gives a covering of CPn \ K by Zariski open Oka domains, so CPn \ K is Oka by

Kusakabe’s localization theorem [19, Theorem 1.4].

Part (c) follows from (a) and Theorem 1.3, which is equivalent to Theorem 1.1

proved in the previous section. �

Example 4.3. In Cn with coordinates (z′, zn), we consider a domain of the form

� = {
(z′, zn) ∈ Cn : |zn|2 < c(1 + |z′|2)

}
for c > 0.

Let H denote the hyperplane at infinity and � = {zn = 0}. In suitable affine coordinates

w = (w′, wn) on CPn \ � = (Cn ∪ H) \ � ∼= Cn in which � is the hyperplane at infinity

and H = {wn = 0}, the domain � is the complement of H ∪B where B is a ball centred at

the origin. Hence, � is an Oka domain by part (c) of Theorem 4.2.

Remark 4.4. The use of hyperplanes in the proof of Theorem 4.2 can be replaced by

more general hypersurfaces to obtain the following criterion for validity of Theorem 3.4.

Let K be a compact subset of CPn and � ⊂ CPn \ K be a hyperplane. Assume that for

every p ∈ CPn \ (K ∪ �) there is a continuous 1-parameter family of compact complex

hypersurfaces At ⊂ CPn \ K (t ∈ [0, 1]) of the same degree k ∈ N such that p ∈ A0 and

At converges to � as t → 1, that is, for every neighbourhood U ⊂ CPn of � there is a

c ∈ (0, 1) such that At ⊂ U for all t ∈ (c, 1). Then K is polynomially convex in CPn \ �,

so Theorem 3.4 applies. This is seen by the argument in the proof of Theorem 4.2, using

Oka’s criterion for polynomial convexity.

We now give a geometric characterization of closed sets in Cn having projectively

convex closures. Assume that � is a complex affine subspace of dimension k ∈ {1, . . . ,

n − 1} in Cn and p ∈ �. In suitable affine complex coordinates z = (z′, z′′) ∈ Ck × Cn−k,

we have that p = 0 and � = {z′′ = 0}. Given c > 0, we define

C(�, p, c) = {(z′, z′′) ∈ Cn : |z′′| ≤ c|z′|}. (4.1)
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Oka Domains in Euclidean Spaces 1815

This is a closed cone with the axis � and vertex p. The analogous definition makes sense

for real affine subspaces of Rn.

The proof of the following elementary observation is left to the reader.

Lemma 4.5. Let E be a closed set in Cn and � be a complex affine subspace of Cn.

Consider Cn as a domain in CPn and set H = CPn \ Cn. The following are equivalent.

(i) There is a point p ∈ � and a number c > 0 such that C(�, p, c)∩E is compact.

(ii) The projective closure of � does not intersect E along H, that is, E∩�∩H = ∅.

We shall say that � is E-stable if these equivalent conditions hold.

Remark 4.6. Let E and � be as in Lemma 4.5.

(a) If the condition in Lemma 4.5 (i) holds for a point p0 ∈ �, then it holds for

every point p ∈ �, with a constant c > 0 depending on p.

(b) If � is E-stable then so is any parallel translate �′ of �. In fact, �
′∩H = �∩H.

(c) The space of E-stable k-dimensional affine subspaces � ⊂ Cn \ E is open.

Proposition 4.7. Let E be a closed subset of Cn. Then the closure E ⊂ CPn is

projectively convex if and only if the following three conditions hold.

(i) Every point p ∈ Cn \ E lies in an E-stable hyperplane � ⊂ Cn such that

E ∩ � = ∅.

(ii) Every E-stable affine complex line L ⊂ Cn has a parallel translate contained

in an E-stable complex hyperplane � ⊂ Cn \ E.

(iii) The space of E-stable affine complex hyperplanes in Cn \ E is connected.

Proof. Let H = CPn \ Cn. By Lemma 4.5, condition (i) means that Cn \ E is a union

of affine hyperplanes whose projective closures do not intersect E. Condition (ii) means

that for every point p ∈ H \ E there is an affine hyperplane � ⊂ Cn \ E such that p ∈
� ⊂ CPn \ E. Hence, (i) and (ii) together are equivalent to CPn \ E being a union of

complex hyperplanes. Finally, (iii) means that the set of complex hyperplanes in CPn \ E

is connected. Hence, the three conditions together are equivalent to E being projectively

convex. �

The following is an immediate corollary to Theorem 1.1 and Proposition 4.7.

Corollary 4.8. If a closed set E in Cn for n > 1 satisfies the hypotheses in

Proposition 4.7 then Cn \ E is an Oka domain.
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1816 F. Forstnerič and E. Fornæss Wold

As an application of this result, we show the following.

Proposition 4.9. The complement of an affine real line in C2 is Oka.

Proof. We may assume that the affine real line in question is R×{0} ⊂ C2. Let � denote

its complement in C2. Consider the following subsets of C2:

�+ = {(z, 0) : z ≥ 0}, �− = {(z, 0) : z ≤ 0}.

Then � = (� \ �+) ∪ (� \ �−) and both domains � \ �± = C2 \ �± are Zariski open in

�. In view of the localization theorem [19, Theorem 1.4] it suffices to show that C2 \ �±
are Oka.

Consider C2 \ �+. It is immediate that a complex line L ⊂ C2 \ �+ is �+-stable if

and only if it intersects the complex line C × {0} at a point (a, 0) with �a < 0, that is, in

the interior of �−. It is easily seen that the set of such lines is connected and its union

equals C2 \ �+, so this domain is Oka by Corollary 4.8. (An alternative argument is that

the closure of �+ in CP2 is an embedded closed holomorphic disk D+. Such a disk is

polynomially convex in CP2 \ � ∼= C2 for any complex line � not intersecting D+, and

hence C2 \ �+ is Oka by Theorem 1.1.) The analogous argument applies to the domain

C2 \ �−. �

Remark 4.10. It was shown by Kusakabe [18, Corollary 1.7] that if (n, k) is a pair

of integers with 1 ≤ k ≤ n, n ≥ 3, and (n, k) �= (3, 3) then for any closed set E in

Rk ⊂ Cn the complement Cn \ E is Oka; in particular, Cn \ Rk is Oka for these pairs of

values (n, k). To prove this, Kusakabe used his theorem (see [18, Theorem 1.6]) saying

that if E is a closed, possibly unbounded polynomially convex subset of Cn = Cn−2 ×
C2, which is contained in a set of the form {(z′, z′′) : |z′′| ≤ c(1 + |z′|)} with respect

to some holomorphic coordinates z = (z′, z′′) on Cn−2 × C2 and c > 0, then Cn \ E is

Oka. This approach does not work for the exceptional cases (n, k) ∈ {(2, 1), (2, 2), (3, 3)}.
Proposition 4.9 settles the case n = 2, k = 1 by a completely different method. The

remaining two cases (2, 2) and (3, 3) are not amenable to this method either, so they

remain an open problem.

5 Convex Domains in Cn With Oka Complements

In this section, we prove Theorem 1.4. We will show that for every closed convex set

E ⊂ Cn satisfying the conditions of that theorem, its projective closure E ⊂ CPn is

projectively convex (see Definition 4.1), so the result will follow from Theorem 4.2.
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Oka Domains in Euclidean Spaces 1817

Given a domain E ⊂ Cn with C 1 boundary and a point p ∈ bE, we denote by

TC
p bE the maximal complex subspace (a complex hyperplane) in the real tangent space

TpbE. (Both tangent spaces are considered as affine spaces passing through the point

p.) Recall that a real affine subspace � ⊂ Cn with p ∈ � ∩ bE is said to be supporting

for E at p if � ∩ E ⊂ bE. If E is convex and bE is of class C 1, then this holds if and only

if � ⊂ TpbE, and if � is complex then it holds if and only if � ⊂ TC
p bE.

The notion of an E-stable affine subspace was introduced in Lemma 4.5.

Lemma 5.1. Let E be a closed convex set in Cn and p ∈ bE. Assume that � ⊂ Cn is a

supporting affine complex subspace for E at p. Then � is E-stable if and only if E ∩ �

does not contain a real halfline. The analogous result holds in the real setting.

Proof. Choose affine coordinates z = (z′, z′′) on Cn = Ck × Cn−k with k = dim � such

that p = 0 and � = {z′′ = 0}.
If E ∩ � contains a real halfline L, then the terminal point of L at infinity

lies in the projective closure E ⊂ CPn of E, so � is not E-stable. Note also that,

since E is closed and convex, the line segments lq connecting the given initial point

p to points q ∈ L moving to infinity converge to a halfline in E ∩ � with the finite

endpoint p.

To prove the converse, assume that � is not E-stable, so the intersection of E

with the closed cone C(�, p, c) in (4.1) is unbounded for every c > 0. Letting c → 0 we

obtain a sequence of unit vectors vj = (v′
j, v′′

j ) ∈ Cn and numbers tj > 0 such that tjvj ∈ E

for all j ∈ N, limj→∞ tj = +∞, and limj→∞ |v′′
j |/|v′

j| = 0. By passing to a subsequence,

we may assume that the sequence v′
j/|v′

j| converges to a unit vector v′ ∈ Ck. The line

segments lj ⊂ E connecting p = 0 to the points tjvj ∈ E then converge to the halfline

R+v′ ∈ E ∩ � terminating at p. �

Recall that affine subspaces � and V in Rn are said to be complementary if and

only if dim � + dim V = n and their intersection is a point. For vector subspaces, this

holds if and only if Rn is their direct sum � ⊕ V.

Lemma 5.2. Let E be a closed convex set in Rn, and let � ⊂ Rn be an affine subspace

such that E ∩ � is bounded. Then the following are equivalent.

(i) Every parallel translate �′ of � intersects E.

(ii) There is a vector subspace V ⊂ Rn complementary to � such that E = E ∩
� + V.
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1818 F. Forstnerič and E. Fornæss Wold

If these equivalent conditions fail, then there is a translate �′ of �, which is a

supporting subspace for E at a point q ∈ bE ∩ �′.

Note that the set E ∩ � + V in part (ii) is a tube with basis E ∩ � and fibre V.

Proof of Lemma 5.2. The implication (ii) ⇒ (i) is obvious.

Let us now prove that (i) ⇒ (ii). We begin with the case when � is a hyperplane.

Choose coordinates (x1, . . . , xn) on Rn such that � = {xn = 0}. By the assumption, the

closed convex set E′ = E ∩� is bounded. Let H± = {± xn ≥ 0}. The assumption that every

translate of � intersects the set E+ := E ∩ H+ gives a sequence of unit vectors vj ∈ H+

and numbers tj > 0 with limj→∞ tj = +∞ such that tjvj ∈ E+. By compactness of the unit

sphere we may pass to a subsequence and assume that limj→∞ vj = v. Fix a point x′ ∈ E′.
The line segments connecting x′ to the points tjvj ∈ E+ converge to the halfline x′ +R+v

as j → ∞. Since E is closed and convex, this halfline belongs to E+. In particular, v /∈ �

since E∩� is bounded. This shows that E+ contains the tube E′+R+v. Since E− := E∩H−

is unbounded as well, the analogous argument shows that it contains a tube E′ + R+w

for some unit vector w ∈ H−. Note that w = −v, for otherwise the convex hull of the

union of these tubes contains a point in � \ E′. Hence, E contains the tube E′ + Rv, and

the same argument as above shows that E = E′ + Rv.

The above argument also shows that if a set E as in the lemma is not a tube of

the form E′ + Rv then at least one of the closed convex sets E± := E ∩ H± is bounded,

and hence there is a parallel translate of � satisfying the last statement in the lemma.

Consider now the general case. We may assume that p = 0 and

� = {x ∈ Rn : xk+1 = 0, . . . , xn = 0}.

For every j ∈ {k+1, . . . , n} let Vj ⊂ Rn denote the subspace of dimension k+1 spanned by

the coordinate directions 1, . . . , k and j. Then � is a hyperplane in Vj, so the special case

proved above gives E ∩ Vj = E′ + R· vj for some unit vector vj ∈ Vj \ �. Due to convexity

it follows that E contains the tube E′ + V with V = span{vk+1, . . . , vn}. Thus, V is an

(n − k)-dimensional subspace of Rn complementary to �. If E contains a vector w ∈ Rn

not in E′ +V, then convex combinations of w and vectors from E′ +V give points in E ∩�

which are not contained in E′, a contradiction. �

Corollary 5.3. If the set E is as in Theorem 1.4 and � ⊂ Cn is an affine complex

subspace such that E ∩ � is bounded, then there is a parallel translate �′ of � with

E ∩ �′ = ∅, and also one satisfying E ∩ �′ = {p} with p ∈ bE. Furthermore, � is E-stable.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2024/3/1801/7046029 by guest on 09 M
arch 2024



Oka Domains in Euclidean Spaces 1819

Proof. If no translate of � avoids E then by Lemma 5.2 the set E is a tube E′ + V,

where E′ = E ∩ � and V ⊂ Cn is a real subspace complementary to �. Hence, at every

point p ∈ bE the tangent hyperplane TpbE contains the affine real subspace p + V of

dimension at least two. Since TC
p bE is a real hyperplane in TpbE, its intersection with

p + V contains a real line, contradicting the hypothesis in Theorem 1.4. This shows that

there is a translate �′ of � avoiding E, and also one which is a supporting subspace

for E at a point p ∈ bE (see Lemma 5.2). In the latter case, �′ (being a complex affine

subspace) is contained in TC
p bE. The assumption in Theorem 1.4 that E ∩ TC

p bE contains

no halfline implies by Lemma 5.1 that TC
p bE is E-stable. Hence, �′ ⊂ TC

p bE is also

E-stable, and the same holds for � since this property is translation invariant. �

Proof of Theorem 1.4. We claim that E ⊂ CPn is projectively convex, so the result will

follow from Theorem 4.2. By Proposition 4.7 we must verify the following conditions:

(i) Cn \ E is a union of E-stable affine complex hyperplanes,

(ii) every E-stable complex line L ⊂ Cn has a parallel translate contained in an

E-stable complex hyperplane � ⊂ Cn \ E, and

(iii) the set of all E-stable affine complex hyperplanes in Cn \ E is connected.

Proof of (i): Choose a point q ∈ Cn \ E. Let p ∈ bE be the closest point to q in

E. The tangent plane TpbE is then a supporting hyperplane for E and is orthogonal to

the real line through p and q. The affine complex tangent plane TC
p bE is E-stable by

Lemma 5.1. The parallel translate � of TC
p bE to the point q is then contained in Cn \ E,

and it is E-stable since this property is translation invariant.

Proof of (ii): Let L be an E-stable affine complex line. Then E ∩ L is bounded, and

Lemma 5.2 shows that a parallel translate L′ of L is tangent to bE at some point p ∈ bE.

Then, L′ ⊂ TC
p bE, which is an E-stable complex hyperplane by Lemma 5.1. Translating

TC
p bE away from E gives an E-stable hyperplane � ⊂ Cn \ E containing a translate of L.

Proof of (iii): We claim that a complex affine hyperplane � in Cn is E-stable if

and only if it is parallel to the complex tangent space TC
p bE for some point p ∈ bE.

In one direction, Lemma 5.1 shows that for every p ∈ bE the complex tangent space

TC
p bE is E-stable. Conversely, if � is E-stable then � ∩ E is a bounded set, and Corollary

5.3 shows that a parallel translate of � is tangent to bE at some point p ∈ bE, so this

translate equals TC
p bE. It is easily seen that if E is as in the theorem then its boundary

bE is connected, so the above shows that the set of E-stable hyperplanes is connected.

It remains to see that the set E of E-stable complex affine hyperplanes in Cn

which do not intersect E is also connected. If a hyperplane � ⊂ Cn \ E is E-stable, then
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1820 F. Forstnerič and E. Fornæss Wold

by Corollary 5.3 we can translate � within Cn \ E until it hits bE for the first time at

some point p ∈ bE, and this new hyperplane �′ is then equal to TC
p bE and �′ ∩ E ⊂ bE.

This shows that the set of E-stable affine complex hyperplanes contained in Cn \ ◦
E is

connected. Take an interior point q ∈ ◦
E = E \ bE; we may assume that q = 0. Consider

the decreasing family of closed convex domains Ek = (1 + 1/k)E, that is, we dilate E

by the factor 1 + 1/k. Note that E ⊂ ◦
Ek for all k and E = ⋂∞

k=1 Ek. Clearly, every Ek

has the same properties as E and the same set of stable hyperplanes. From what has

been shown above, the set Ek of E-stable hyperplanes avoiding Cn \ ◦
Ek is connected. As

k → ∞, the domains Ek shrink down to E, and hence E = ⋃∞
k=1 Ek is an increasing union

of connected sets, so it is connected. �

6 Intersections of Strictly Convex Sets

It is well known that every closed convex set in a Euclidean space Rm is an intersection

of halfspaces. In this section, we characterise those closed sets that are intersections of

strongly convex sets. A closed set in Rm is called strongly convex if it has C 2 boundary

and the principal normal curvatures of the boundary are strictly positive at every point.

Clearly, a strongly convex domain is also strictly convex, but the converse fails in

general.

The following result is used in the proof of Theorem 1.8.

Theorem 6.1. If E is a closed convex set in Rm, which does not contain an affine line,

then E = ⋂
j Ej where every Ej is a closed strongly convex set and Ej+1 ⊂ Ej for j = 1, 2, . . ..

Conversely, a convex set containing a line is not contained in any strictly

convex set.

Proof. In [2, Section 1.3], a set K ⊂ RPm is called convex if (i) K does not contain a

projective line, and (ii) the intersection of any projective line with K is connected. (There

are other notions of convexity in projective spaces, but this is the one relevant here.) If

E is a closed convex set in Rm that does not contain any affine real line then its closure

K = E in RPm is convex.

Fix a point p ∈ RPm \K. By [2, Theorem 1.3.11], there is a hyperplane H ⊂ RPm \K

with p ∈ H. If p ∈ Rm, then the real hyperplane H ′ = H ∩ Rm contains p and a proper

cone Q around H ′ avoids E. (In the terminology introduced in Lemma 4.5, H ′ is E-stable.)

We may assume that p is the origin, H ′ = {x = (x1, . . . , xm) ∈ Rm : xm = 0}, and E

is contained in the halfspace {xm > 0}. Then there exists a smooth strongly convex
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function f (x1, . . . , xm−1) (i.e., with positive definite Hessian at every point) such that

f (0) = 0 and the graph of f is contained in a strictly smaller cone Q′ ⊂ Q. For such f and

ε > 0 small enough, the set

E′ = {x ∈ Rm : xm ≥ f (x1, ..., xm−1) + ε}

is strongly convex with E ⊂ E′ and 0 ∈ Rm \ E′. Hence, the function

ρ(x1, . . . , xm) = ef (x1,...,xm−1)−xm − 1

is strongly convex on Rm, ρ(0) = 0, and ρ ≤ e−ε − 1 < 0 on E.

By scaling, it follows that for every compact set K ⊂ Rm \ E there exist strongly

convex functions ρ1, ..., ρk on Rm such that E ⊂ {x ∈ Rm : ρj(x) ≤ −1, j = 1, .., k} such

that for every x ∈ K we have that ρj(x) > 0 for some j ∈ {1, ..., k}. Exhausting Rm \ E

by compact sets, it follows that there exist strongly convex functions {ρj}∞j=1 such that

E = ⋂∞
j=1{x ∈ Rm : ρj(x) ≤ 0} and ρj(x) ≤ −1 for x ∈ E for all j.

It remains to find a decreasing sequence of smoothly bounded strongly convex

sets E1 ⊃ E2 ⊃ · · · ⊃ ⋂∞
k=1 Ek = E. We begin by taking τ1 = ρ1 and E1 = E′

1 = {τ1 ≤ 0}. To

get E2, we take the convex set E1 ∩E′
2 = {max{τ1, ρ2} ≤ 0} and smoothen the corners. This

is done by a regularized maximum function defined as follows (see [9, page 69]). Given

a number δ > 0, we select a nonnegative smooth even function ξ ≥ 0 on R with support

in [− δ
2 , δ

2 ] such that
∫

ξ(t)dt = 1, and we set for (u1, u2) ∈ R2:

rmax{u1, u2} =
∫
R2

max{t1 + u1, t2 + u2} ξ(t1)ξ(t2)dt1 dt2. (6.1)

It is easily verified that the function rmax is smooth, increasing in every variable, and

convex jointly in both variables. Hence, if u1(x) and u2(x) are (strongly) convex functions

then rmax{u1(x), u2(x)} is also (strongly) convex. Moreover, we have that

max{u1, u2} ≤ rmax{u1, u2} ≤ max{u1, u2} + δ for all (u1, u2) ∈ R2

and

rmax{u1, u2} =
⎧⎨
⎩

u1, if u2 ≤ u1 − δ,

u2, if u1 ≤ u2 − δ.

In a similar one defines rmax for any finite number of variables.
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This shows that for a suitable choice of ξ in the definition of rmax the function

τ2 := rmax{τ1, ρ2} : Rm → R

is smooth strongly convex and satisfies τ2(a1) > 0, τ2(a2) > 0, and τ2 ≤ −c2 < 0 on E

for some c2 > 0. The set E2 = {τ2 ≤ 0} is strongly convex with smooth boundary, and it

satisfies E ⊂ ◦
E2 ⊂ E2 ⊂ E1 ∩ E′

2 and a2 /∈ E2.

Assume inductively that we have constructed strongly convex functions τj :

Rm → R for j = 1, . . . , k such that the sets Ej = {τj ≤ 0} satisfy E ⊂ Ek ⊂ Ek−1 · · · ⊂ E1,

τj ≤ cj < 0 on E for all j = 1, . . . , k, and τj(ai) > 0 for 1 ≤ i ≤ j). We then take

τk+1 = rmax{τk, ρk+1}

for a suitable choice of the weight function ξ in rmax to obtain the next strongly convex

function τk+1 and the next set Ek+1 = {τk+1 ≤ 0} in the sequence. �
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[9] Forstnerič, F. “Stein Manifolds and Holomorphic Mappings (The Homotopy Principle in

Complex Analysis).” Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 56,

2nd ed. Cham: Springer, 2017.
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