REMOVING SINGULARITIES OF MINIMAL SURFACES BY ISOTOPIES
ANTONIO ALARCON AND FRANC FORSTNERIC

ABSTRACT. Given an open Riemann surface M, we show that the branch points and the complete ends of
finite total curvature of a conformal minimal surface M — R™, n > 3, can be removed by an isotopy through
such surfaces. The analogous result holds for null holomorphic curves M — C".

1. INTRODUCTION

Let M be a connected open Riemann surface. Recall that an immersion v = (ug,...,u,) : M — R"
(n > 3) is conformal (angle preserving) if and only if its (1,0)-differential Ou = (Juy,...,0u,) (the
C-linear part of the differential du = Qu + du) satisfies the nullity condition

(1.1) (Ou1)? + -+ + (Qun)? = 0.

(See e.g. [[18]] or [3]].) A conformal immersion u : M — R"™ parametrises a minimal surface in R" with the
Euclidean metric ds? if and only if it is harmonic, if and only if Qu is a holomorphic 1-form. Assuming
that this holds and choosing a nowhere vanishing holomorphic 1-form € in M, we have 20u = ff where
f: M — C" is a holomorphic map with values in the punctured null quadric A, = A \ {0}, where

(1.2) A={z=(21,...,20) €EC": 2} + -+ 22 = 0}.

Given any point xg € M, we recover u from its Weierstrass data f6 by
x x
(1.3) u(z) :u(xo)—f-ﬂ?/ 28u:u(x0)+§R/ fo, xeM.
fy) xo

Here, R denotes the real part. Conversely, a holomorphic map f : M — A, satisfying R 997 f0 = 0 for
every closed curve v C M (that is, R(f0) is exact on M) determines a conformal minimal immersion
u : M — R" by the above formula. The generalised Gauss map, or simply the Gauss map, of u is the
holomorphic map

(1.4) g(u) :M—)Q: {[Zl . "‘5Zn] ECP”*lIZ%—F"'—I-Z?L:O}
given by
(1.5) G (u)(p) = [Qui(p) : -+~ : Qun(p)], p€ M.

In this paper, we consider minimal surfaces with isolated singularieties. One type of singularities are
branch points. Let u : M — R™ be a ¢! map with rank 2 at some point. Denote by br(u) C M the set of
points © € M at which w is not an immersion, i.e., rank du, < 2. If the immersion w : M \ br(u) — R"
is conformal and harmonic, then Ju is a continuous (1, 0)-form on M which is holomorphic on M \ br(u)
and satisfies {0u = 0} = br(u). By a theorem of Rad¢ [19] (see also [20, Theorem 3.4.17]), Ou extends
holomorphically to M, so br(u) is a closed discrete subset of M and w is harmonic on M. The points of
br(u) are called branch points of u, and w is said to be a branched conformal minimal surface; see e.g. [18],
Ch. 6] or [3, Remark 2.3.7]. Branch points of minimal surfaces are not removable by small deformations
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(3l Remark 3.12.6]. Our first result is that they are removable by isotopies. It is proved in Section 3} see the
more precise statement in Theorem[3.1]

Theorem 1.1. Given a branched conformal minimal surface u : M — R", there is an isotopy of branched
conformal minimal surfaces u; : M — R™, t € [0, 1], such that uy = u and uy is an immersion everywhere
on M, that is, br(uy) = @. Furthermore, we can choose the isotopy such that for each t € [0, 1] the Gauss
map 9 (ut) (1.5) of us equals & (u) in their common domain of definition M \ (br(u;) U br(u)).

By an isofopy, we mean a family of maps depending continuously on a parameter ¢ € [0, 1]. The space
CMI,, (M, R")

of branched conformal minimal surfaces M — R" is endowed with the compact-open topology and contains
the subspace CMI(M,R™) of conformal minimal immersions A/ — R". Recall that w € CMI,,(M,R")
is said to be nonflat if and only if u(M) is not contained in an affine plane of R"; equivalently, the image
of the map f = 20u/0 : M — A is not contained in a ray of A (I.2). Also, u is called full if and only if
f(M) is not contained in a proper linear subspace of C". (See Definition 2.5.2 and Lemma 2.5.3 in [3] p.
106].) Note that the second assertion in Theorem [I.T|implies that if the given surface u is nonflat (resp. full)
then the isotopy u; (¢ € [0, 1]) can be chosen to consist of nonflat (resp. full) surfaces.

Another important type of isolated singularities of minimal surfaces are complete ends of finite total
curvature. The Gaussian curvature of a smooth immersed surface v : M — R" is a function K : M — R
whose value at p € M is the Gauss curvature of the Riemannian metric u*ds? at p. If u € CMI(M, R")
is a minimal surface then K assumes values in R_ = (—o00,0], and the total curvature is the number
TC(u) = [,; K dA € [—00,0], where dA is the area measure determined by u*ds®. (See [3l Sect. 2.6].)
We say that u is of finite total curvature if TC(u) > —oo. A minimal surface u : M — R” is said to
be complete if the metric u*ds? induces a complete distance function on M. If M is a bordered Riemann
surface with compact closure M, P C M is a compact subset, and u : M \ P — R" is a complete
conformal minimal surface of finite total curvature, then P is a finite set by a theorem of Huber [[15]] (see
also [3, Theorem 2.6.4]), Ou extends to a meromorphic 1-form on M with a pole of order > 2 at every point
of P by the Chern—Osserman theorem [7]] (see also [3, Theorem 4.1.1]), u is proper at every end p € P, and
its asymptotic behaviour at p is described by the Jorge—Meeks theorem [16] (see also [13, Theorem 4.1.3]).
Conversely, a nontrivial meromorphic 1-form ¢ = (¢1,...,¢,) on an open Riemann surface M (such ¢
is called an abelian differential) has a closed discrete polar locus P(¢) C M. If ¢ satisfies the nullity
condition (I.1)) and has vanishing real periods on closed curves in M’ = M \ P(¢), then it determines a
conformal minimal surface u : M’ — R" by u(z) =R [ * ¢ with a complete end of finite total curvature at
each point of P(¢). Let

CMIg(M,R"™)
denote the space of conformal minimal immersions u : M \ P — R", where P = P(u) is a closed discrete
subset of M and Ou is meromorphic on M with an effective pole at every point p € P and no other zeros
or poles. (The subscript s stands for singularities.) With 6 as above, we have 20u = f6 where f is a
meromorphic map on M with values in A, whose polar locus is P. (See Subsect.[2.2]) We can view
f as a holomorphic map to the complex submanifold

(1.6) Y=A,UQ

of C* U CP"~! = CP", where Q is the hyperquadric in (T.4). The topology on CMI4(M,R") is defined
by the condition that a sequence u; € CMI(M,R") converges to v € CMIg(M,R") if and only if
fj = 20u;/0 : M — Y converges to f = 20u/f : M — Y in the compact-open topology and there
is a point zg € M \ P(f) such that u;(x) converges to u(xo) in R". Note that CMI¢(M, R™) contains the
subspace CMI(M, R™) with its usual compact-open topology. We denote by

CMIL _(M,R™) ¢ CMIL,(M,R"), CML(M,R") c CMI4(M,R"), CMI'(M,R") ¢ CMI(M,R"™)
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the corresponding subspaces of full maps.

The order of the pole of f at p € P is the local intersection number of f with @) at p, which is positive,
so a pole cannot be removed by a small deformation of w. Our second main result is that complete ends of
finite total curvature of full minimal surfaces can be removed by an isotopy. It is proved in Sect. 4}

Theorem 1.2. Let M be an open Riemann surface and n > 3 an integer. For any u € CMIg(M ,R™) there
is an isotopy uy € CMIL(M,R™), t € [0,1], such that ug = w and uy is defined everywhere on M, that is,
u; € CMIF (M, R™).

We wish to explain the reason for a somewhat different assumption on the initial minimal surface
in Theorem [I.1] (where u need not be full) and in Theorem [I.2] where u is assumed to be full. The
proof of Theorem amounts to finding a path of holomorphic abelian differentials w; (¢ € [0, 1]) on
M with values in A (I.2Z)) and vanishing real periods such that wy = 20u and w; has no zeros. Integrating
these abelian differentials by the Weierstrass formula gives an isotopy of conformal minimal surfaces
u(z) =R [ * wy satisfying the conclusion of Theorem The proof is accomplished in two steps. In the
first step (see Proposition [3.2] (b)) we find a path of nontrivial abelian differentials w; = hywo (¢ € [0, 1])
with values in A, where h; is a path of meromorphic functions on M, satisfying wy = wy (that is, hg = 1)
but without paying attention to the period conditions. This does not require fullness. In the second step we
find a path of nowhere vanishing holomorphic functions &; on M, with £y = 1, such that the path w; = &y
(t € [0,1]) satisfies that each w; has vanishing real periods; see Proposition This does not required
fullness either; see Remark [3.3] The second assertion in Theorem [I.1]is granted in this construction since
each wy is of the form w; = 2&;h,0u; see (I.5). Only Runge approximation for functions into C* = C\ {0}
is required for this task. The proof of Theorem [I.2] follows the same scheme but now the path of abelian
differentials w; on M is constructed to be nowhere vanishing and such that w; is holomorphic on M (that
is, it has no poles). In this case, the period problem is considerably more delicate than in the context of
Theorem |1.1] and in order to solve it we use Runge approximation for maps into the Oka manifold Y in
(1.6). This forces us to ask that the given surface u in Theorem [I.2]be full, and prevents us to preserve the
Gauss map along the isotopy.

Going further, the proofs of Theorems|I.I]and[I.2]show that the two results can be combined, that is, we
can push both the branch points and the ends of finite total curvature out of the surface by an isotopy. Let

CMIy, (M, R™) D CMIy, (M, R")
denote the set of conformal minimal immersions u : M \ &, — R", where
1.7 Eu=EYUEX = br(u) U P(u)

is a (possibly empty) closed discrete subset of M (depending on ) such that du is meromorphic on M with
the zero set £) = br(u) (the branch locus of 1) and the polar locus £2° = P(u) (the set of complete ends
of finite total curvature of u), and its subset of full maps. We call &, the singular locus of u. The topology
on CMIy, s(M,R™) is determined in the same way as on its subspace CMI(M,R™).

The following is our third main result.

Corollary 1.3. Let M be an open Riemann surface and n > 3 an integer. For every u € CMIbeS (M,R™)
there is an isotopy u; € CMIbeS(M, R™), t € [0,1], such that uo = w and w; is an immersion defined
everywhere on M, that is, uy € CMIf(M, R™).

Every flat conformal minimal immersion is isotopic to a nonflat one [3, Theorem 5.7.6], hence the
immersion u1 in Theorem [I.1] can be chosen nonflat whenever one does not insist on the condition on the
Gauss map. Furthermore, by a recent result of Vrhovnik [21]], every nonflat conformal minimal immersion

M — R"™, n > 3, is isotopic to a proper one, which can be chosen an immersion with simple double points if
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n = 4 and an embedding if n > 5. Therefore, the immersions u; in Theorems|[I.T]and[I.2] and in Corollary
[I.3] can be chosen of this kind.

An immediate consequence of Theorems [I.1} [I.2] and Corollary [I.3]is that each of the inclusions in

(1.8) CMI (M, R”\
CMIf (M, ]R”\ CMIY, (M, R")
CMIL (M, R™)

induces a surjection of path components. The same holds for the inclusion
(1.9 CMI(M,R") — CMI},(M,R")

by Theorem Recall that for any open Riemann surface M we have Hy(M,7Z) = Z!, 1 € Z, U {oo}.
The set of path components of the space CMIf(M ,R3) is in bijective correspondence with the 2! elements
of the group (Zs)" (see [[12} Corollary 1.6] or [3, Corollary 3.12.4]), and CMIf(M , R™) is path connected for
n > 4 by [5, Theorem 6.1]. For the space of nonflat conformal minimal immersions, the same holds by [12}
Corollary 1.6], and for CMI(M,R™) it holds by [3, Corollary 5.7.7]. This implies the following corollary.

Corollary 1.4. Each of the spaces in (I.8) and (T.9) is path connected for n, > 4. If Hi (M, 7)) = 7!, there
is a surjection from (Zg)l to the set of path components of each of the spaces in (1.8) and (1.9) for n = 3.

Problem 1.5. Do the inclusions in (L.8) and (I.9) induce bijections of path components? Are they weak
homotopy equivalences?

The analogues of Theorems and Corollary also hold, with essentially the same proofs, for
generalised null curves F': M — C", n > 3. These are nonconstant meromorphic maps whose differential
OF = dF has isolated zeros and poles and assumes values in the null quadric A (I.2)). Equivalently, given
a nowhere vanishing holomorphic 1-form ¢ on M, we have dF' = f6 where f is a holomorphic map from
M to the complex subvariety A U Q C CP" (see (1.4)). The real and the imaginary part of any generalised
null curve M — C" are elements of the space CMIy, s(M, R™).

Our method of proof of the main results allows not only to remove the singularities but also to move them
freely within the surface. For example, in the context of Theorem|[I.1] given a closed discrete subset C' C M
and a bijective map of C' to a subset of the branch locus br(u), there is an isotopy u; € CMIy, (M, R™),
t € [0,1], such that up = w and br(u;) = C; see Corollary An analogous statement holds in the context
of Theorem see Corollary This follows by a straightforward modification of our proofs.

2. THE TOOLBOX

2.1. A Weierstrass interpolation theorem with parameters. In the proof of Theorem[I.1] we shall need
the following parametric version of Weierstrass interpolation for finitely many points in an open Riemann
surface. This is a special case of [1, Lemma 4.2] but with added approximation on a compact Runge set.

Lemma 2.1. Let K be a compact Runge set in an open Riemann surface M and a; : [0,1] — M \ K,

j =1,...,k, real analytic maps such that the points a;(t), ..., ax(t) are distinct for every t € [0, 1]. Also
let A C M be a closed discrete subset disjoint from U?Zl a;([0,1]) and X\ : A — N a map. Given integers
Ni,...,ng € Z and a number € > 0, there is a real analytic path of meromorphic functions { ft}tE[O,l] on

M such that for every t € [0,1] and j = 1,. ..k, the function f; has degree n; at a;(t) and has no other

zeros or poles, max ¢ ie(o1] | ft(¥) — 1] < ¢, and fi — 1 vanishes to order X(p) at p for every p € A.
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Proof. 1t suffices to prove the result for £ = n; = 1. This gives for each j a path of holomorphic functions
{ f]‘7t}t€[071] on M with a simple zero at a;(¢) and no other zeros, satisfying the approximation condition on
K and the interpolation conditions at points p € A. The function f; = ]_[;‘5:1 fjng then satisfies the theorem.

The real analytic map @ = a7 : [0,1] — M extends to a holomorphic map a : D — M
from an open simply connected neighbourhood D C C of the interval [0,1] € R C C. Its graph
Y = {(z,a(z2)) : z € D} C D x M is a smooth closed complex hypersurface in the Stein surface
D x M. Shrinking D around [0, 1] if necessary, we ensure that 3 N (D x (K U A)) = @. Since D is
contractible, we have H?(D x M,7Z) = H?(M,Z) = 0. Hence, Oka’s solution of the second Cousin
problem in [[17] implies that every divisor on D x M is a principal divisor. Applying this to the divisor X
gives a holomorphic function f € &(D x M) that vanishes to order 1 at every point of 3 and has no other
zeros. The function f; = f(t,-) € ¢(M) then has a simple zero at a(¢) and no other zeros for every ¢t € D.
Since K is Runge in M and D is contractible, the inclusion D x K — D x M is homotopy equivalent
to the inclusion of a finite bouquet of circles representing K in the finite or countable bouquet of circles
representing M. Hence, the map 1/f : D x K — C* extends to a continuous map D x M — C*. Since
[0,1] x K is holomorphically convex in D x M, the Oka principle for maps to the complex homogeneous
manifold C* (see Grauert [[13] or [11, Theorem 5.4.4]) gives a holomorphic function g : D x M — C*
approximating 1/ f uniformly on [0, 1] x K and such that g — 1/f vanishes to order A(p) on D x {p} for
every p € A. (There are no topological obstructions for these interpolation conditions since the sets D x {p}
are contractible.) Replacing f by fg gives a function satisfying the lemma provided that the approximation
of 1/ f by g was close enough on [0, 1] x K. O

2.2. Abelian differentials and complex cones. Let M be a Riemann surface. An abelian differential
w = (w1,...,wy)on M with values in C" (whose components w; are meromorphic 1-forms on M) is said
to be nontrivial if it is not identically zero, and is said to be full if its range is not contained in a proper
linear subspace of C™. A nontrivial abelian differential determines a divisor (w) on M defined as follows.
Let ¢ : U — C be alocal holomorphic coordinate around a point p € M with {(p) = 0. In this coordinate,
w = f(¢)d¢ where f = (f1,..., fn) is @ meromorphic map on U. Let k(p) € Z be the unique integer
such that (~*) f(¢) is holomorphic near ¢ = 0 and nonvanishing at ¢ = 0 (i.e., f;(0) # 0 for some
i € {1,...,n}). Then, (w) = > cp k(p)p. Its support supp(w) = {p € M : k(p) # 0} is a closed
discrete subset of M. Likewise, the divisors of zeros and poles of w are, respectively,

2.1) Wo= >, k@p, (W= Y. (k)

pEM, k(p)>0 pEM, k(p)<0
hence (w) = (w)o — (W)oo- The support of (w)g and (w)o is the zero set and the polar set of w, respectively.

A complex cone in C" is a closed analytic subvariety A C C” such that (A C A forevery ( € C. By a
theorem of Chow [9] (see also Chirka [8], p. 74, Remark]), such A is the common zero set of finitely many
homogeneous polynomials on C". An abelian differential w = (w1, ...,wy) on M is said to have values
in A if in any local holomorphic coordinate ¢ on M we have w = f(()d(, where f is a meromorphic map
with values in A. Such f can be seen as a holomorphic map in the projective closure of A.

2.3. A parametric interpolation theorem for multipliers with control of periods. The following
approximation result with interpolation for multiplier functions is an extension of [2, Theorem 4.1]; see
also [3, Theorem 5.3.1] and [4, Theorem 2.1].

Proposition 2.2. Assume that M is an open Riemann surface, K C M is a compact smoothly bounded
Runge domain, and {C} : j € I C N} is a collection of smoothly embedded oriented Jordan curves in M
determining a homology basis of M such that

° UjeJ C is a Runge compact set in M for every finite set J C I, and
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e cach curve C; contains a nontrivial arc éj disjoint from C; forall i € T\ {j}.

Set C = U;er Cj and I = {j € I :C; C K}. Leto, : [0,1] = K (a = 1,...,a € N) be a
finite collection of analytic Jordan arcs with pairwise disjoint graphs in [0,1] x M, r € N an integer,
A C M a closed discrete subset, and \ : A — N a map. Set ¥ = |Jo_, 04([0,1]) C K and assume that
ANY=2=CN(AUX). Letn € N, let 6, (t € [0,1]) be a continuous family of C"-valued full abelian
differentials on M with the polar set P, (see Subsect. , set P = Ute[o,l] P, and assume that CNP = @.
Also let o € O(K UA) (t € [0,1]) be a continuous family of holomorphic functions with no zeros on a
neighbourhood of K U A, and q; : [0,1] — C" (j € I) a collection of continuous maps such that

/ @iy = q;j(t) foreveryj € I andt € [0,1].

j
Then, the family ¢, may be approximated uniformly on [0,1] x K by continuous families of holomorphic
functions ¢y : M — C* (t € [0, 1]) satisfying the following conditions:

(a) fcj oi0y = q;(t) forevery j € I and t € [0, 1].
(b) @1 — ¢ vanishes to order r at o4(t) for everya € {1,...,a}andt € [0,1].
(¢) @t — pr vanishes to order \(p) at p for everyp € Aandt € [0, 1].

Furthermore, if g extends to a holomorphic function M — C* such that ij wobo = q;(0) forall j € I,
then the homotopy ¢ can be chosen with pg = pq.

The novelties with respect to [2, Theorem 4.1] are the interpolation conditions (b) and (c), and the fact
that the abelian differentials 6; are allowed to have poles in the complement of C'. This proposition will
be used for various tasks in the proofs of our main results. In particular, it will be applied in the proof of
Theorem [I.2]to preserve the residues when moving the poles. We shall explain the necessary modifications
of [2| proof of Theorem 4.1] which ensure these extra conditions. The same arguments apply word by word
in the more general framework when K is a Runge admissible set (see [2, Def. 3.1]) and the multipliers ¢y
are of class 7 (K); this generalisation is well understood and we shall not discuss it here. The key to the
proof of Proposition [2.2]is the following extension of [2, Lemma 3.2], which will also play a crucial role in
the proof of Theorem|1.2

Lemma 2.3. In Proposition assume in addition that I = {1,... 1} for some | € N, write
cK = Ué’:1 Cj, and for each t € [0,1] let Pt = (Pi,...,P}) : €(CK) — (C™)! denote the period
map whose j-th component (j = 1,...,1) is given by

(2.2) 7’5(9)—/‘9%% g € €(Cj).

J
Then there are a convex neighbourhood D C C of [0,1] C R C C and a nowhere vanishing holomorphic
function Z : D x CN x M — C* with 2(-,0, ) = 1 satisfying the following conditions:

(@) 2(t,¢,-) — 1 vanishes to order r at o,(t) for everya € {1,...,a}, t € [0,1], and ¢ € CV,
(b) E(t,¢,-) — 1 vanishes to order X(p) at p for everyp € A, t € [0,1], and ¢ € CV.
(c) Foreveryt € [0,1] the map

CN 5 (— PI(E(R, () € (C)
has maximal rank equal to In at ¢ = 0.

Proof. Up to enlarging K slightly, we may assume that ¥ := J;,_, 04([0, 1]) C K. Using [2, Lemma 2.1]

as in [2, proof of Lemma 3.2] (see also [6, proof of Proposition 3.1]) we obtain for each j € {1,...,1} an
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integer N; > n and continuous functions g; : C; — C (k = 1,..., N;) with the support on the arc 5’j
such that the function h; : CNi x C; — C* given by

C]; H C]k:g]k (€J717,,,,<j7Nj)€(CNj’ pGCJ

satisfies the following period domlnatlon condition:

0

N . . .
(2.3) 3C ( (Gs) )‘C o LCY — C™ is surjective for every ¢ € [0, 1].
Recall that ¥ N (C'U A) = @. Choose a small smoothly bounded convex neighbourhood D C C of [0, 1]
such that every analytic arc o, : [0,1] — K (a € {1,...,a}) extends to a holomorphic map o4 : D — K,

and set X/ = (Jo_, 04(D). Let 6,(t) = (t,04(t)) € D x M for t € D. By choosing the domain D D [0, 1]
small enough, we have that 3/ ¢ K \ (C U A) and {6,(D) : a = 1,...,a} is a family of pairwise disjoint
closed complex curves in the Stein surface D x M. Set A = [Ji_, 0,(D) C D x ¥'. We extend each
function g; : C; — C (j € {1,... 1}, k € {1,...,N;}) by 0 to ¥’ UA U (CK \ C}) and view it as a
continuous map g;; : D x (X' UAUCK) — C given by g;x(t,) = g; forall t € D. Note that g;
vanishes on A U (D x A). Itis clear that g; ;, extends to a continuous function on D x M that vanishes on a
neighbourhood of the divisor AU (D x A). Since the compact set [0, 1] x CX C D x M is holomorphically
convex and C* is a union of curves, Mergelyan’s theorem shows that we can approximate 95,k uniformly on
[0, 1] x CK by a holomorphic function on a neighbourhood of [0, 1] x C¥ in D x M, which we still denote
gjk- Next, a standard recursive application of the Oka—Weil theorem with jet interpolation enables us to
approximate g; . uniformly on [0, 1] x C¥ by a holomorphic function §;, € &(D x M) vanishing to any
given order on each connected component of A U (D x A). (These components are d,(D) (a = 1,..., )
and D x {p} for p € A.) In particular, g;  can be chosen such that g; x(¢, -), t € [0, 1], vanishes to order r
at the point o, (t) forall a € {1, ..., a}, and it vanishes to order A(p) at every point p € A. Set

=(t,¢,p) HHeWM(tvP teD, ¢=(C,...,4) €CM x ... xCM pe M.
j=1k=1
Setting N = 25.:1 N; > nland identifying CV = CM x...xCM, itisclear that = : DxCN x M — C*is
holomorphic and satisfies =(, 0, -) = 1 and conditions (a) and (b) in the lemma. Moreover, (c) is guaranteed
by (2.3) whenever the approximation of each g; ;. by g on [0, 1] x CX is close enough. O

Proof of Proposition Choose a normal exhaustion

o0
K=KyCKiCKyc-—-c|JKi=M
i=0
by smoothly bounded Runge compact domains such that, setting I* = {j € I : C; C K;}fori=0,1,2,...
(note that I’ is finite and I’ C I'*! for every i > 0), the following conditions hold for every i € N:

e I\ I'~!is either empty or a singleton.

e The compact set K; 1 U |J. jeri C; is Runge in M and admissible in the sense of [2, Def. 3.1].

In order to ensure the latter condition for ¢ = 1 we might need to replace K = K by a slightly larger
compact domain. Set ¢ = ¢, : Ko U A — C* for t € [0, 1]. The proof consists of constructing a sequence
of continuous families {p! € O(K; U A)}ien (t € [0,1]) of holomorphic functions without zeros on a
neighbourhood of K; U A such that the following conditions hold for all ¢ € [0, 1] and ¢ € N:

(A;) ¢ is as close as desired to !~ ! uniformly on [0, 1] x K;_i.

Bi) Jo. @iy = q;(t) holds for every j € I'.
J

(C;) ¢t — oy vanishes to order r at the point o, (t) for every a € {1,...,a} and t € [0,1].
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(D;) ¢! — @4 vanishes to order A(p) at every point p € A.
(E;) If g extends to a holomorphic function M — C* such that fc_ wobo = q;(0) for all j € I, then the
J

homotopy ¢} can be chosen with ¢} = (.

As in the proof of [2, Theorem 4.1], if the approximation in (A;) is close enough for every ¢ € N, we obtain
a limit continuous family of holomorphic functions @; = lim; o @i : M — C*, t € [0, 1], satisfying
Proposition Conditions (b) and (c) are trivially guaranteed by (C;) and (D).

We proceed by induction. The base is given by the family ) (¢ € [0, 1]). For the inductive step, we
assume that we have a suitable family <pft_1 for some i € N and will provide (!. We distinguish cases.

The noncritical case: I' = I'~!. Assume that I' = {1,...,1 € N} # @, for the proof is much simpler
otherwise. Set C? = U§:1 C; and for each t € [0, 1] consider the period map P! : €(C?) — (C")!
defined by (2.2) with ¢, replaced by @i_l. By Lemma there are a convex neighbourhood D C C
of [0,1] € R C C and a nowhere vanishing holomorphic function = : D x C¥ x M — C* such that
Z(+,0,-) = 1 and the following conditions hold for every ¢ € [0, 1].

(@) =(t,¢, ) — 1 vanishes to order 7 at o, (t) forevery a € {1,...,a} and ¢ € CV.
(I1) Z(t,¢,-) — 1 vanishes to order A(p) at p for every p € A and ¢ € CV.
(III) The map CV > ¢ — P! (E(¢,¢,+)) € (C")! has maximal rank equal to In at ¢ = 0.

Taking into account conditions (B;_1)—(E;_1) and using a similar argument as in the proof of Lemma[2.3]to
ensure parametric interpolation, we find a continuous family of holomorphic functions ¢; : K; UA — C*,
t € [0, 1], on a neighbourhood of K; U A satisfying the following conditions:

(1) ¢y is as close as desired to gpi_l uniformly on [0, 1] x K;_;.
(il) ¢+ — ¢y vanishes to order r at o, (t) forevery a € {1,...,a} and t € [0, 1].
(iii) ¢+ — ¢ vanishes to order A(p) at p forevery p € A and ¢ € [0, 1].
(iv) If g extends to a holomorphic function M — C* such that ij wobo = q;(0) for all j € I, then the
homotopy ¢; can be chosen such that ¢g = .

In view of condition (III), if the approximation in (i) is close enough then, arguing as in [2, proof of Lemma
4.2], the implicit function theorem furnishes a continuous path 3 : [0,1] — C¥ such that Z(¢, 3(t), -) is
close to 1 uniformly on K;_; for all ¢ € [0, 1] and the continuous family of holomorphic functions

@) =2t B(1), )¢r s KiUA - C*, t€0,1]
satisfies conditions (A;)—(E;); in particular, in the assumptions in (iv) we can choose § with 5(0) = 0. Note
that (C;) is ensured by (C;_1), (I), and (ii), while (D;) is guaranteed by (D;_1), (II), and (iii).
The critical case: I' # I'~!. 1In this case I' \ I'"' = {j} C I. Taking into account that
C;N(AUXUP) = @and K;_; UCj is an admissible Runge compact set in M, the construction is

reduced to the noncritical case by using Lemma[2.3]and [2, Lemma 2.3]. The details are similar to [2}, proof
of Lemma 4.3] and we leave them out. This completes the proof of Proposition[2.2] O

3. REMOVING BRANCH POINTS

In this section we establish the following extension of Theorem|[I.I| which says that we can move the branch
points out of a minimal surface while keeping the poles fixed. This result and Theorem [I.2] (on moving the
poles) trivially imply Corollary We shall use the notation in (1.5]) and (1.7).

Theorem 3.1. Let M be an open Riemann surface and n > 3 an integer. For every u € CMIy, s(M,R")
there is an isotopy u; € CMIy,, (M, R™), t € [0,1], such that uy = wu, us — w is continuous on M (hence
o = &EF) forallt € [0,1], and wy = M \ £5° — R" is unbranched, hence u; € CMIg(M,R™).
Furthermore, we can choose the isotopy such that for each t € [0, 1] the Gauss map < (u;) of us equals
94 (u) in their common domain of definition M \ (br(u;) U br(u) U EX).
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The theorem says in particular that the inclusion CMIg(M,R") — CMIy, s(M,R™) induces a
surjection of path components. In the proof, we shall need the following result. The notion of an abelian
differential with values in a complex cone A C C" was introduced in Subsect. [2.2]

Proposition 3.2. Assume that M is a connected open Riemann surface, A C C" is a closed complex cone
of positive dimension, and w is a nontrivial abelian differential on M with values in A. Then there is a path
of nontrivial abelian differentials w; = hyw (t € [0, 1]) with values in A, where hy is a path of meromorphic
functions on M, satisfying wy = w (that is, hg = 1) and either of the following conditions:

(a) w1 = hyiw is a holomorphic 1-form on M without zeros.
(b) hy has no zeros for every t € [0,1], wy —w = (hy — 1)w is holomorphic on M for every t € [0, 1], and
w1 = hyw is an abelian differential on M without zeros.

Proof: Write (w) = 3\ k(p)p = (w)o — (w)oo (see Subsect..

We first explain how to obtain a path w; (¢ € [0, 1]) as in the statement satisfying condition (a). Choose a
normal exhaustion Ky C Ky C --- C |J;2, K; = M by compact Runge sets such that supp(w) N Ko = @.
Let supp(w) N K1 = {p1,...,pm} and set n; = k(p;) for j = 1,...,m. Forevery j = 1,...,m we
choose a real analytic path a; : [0,1] — M \ K such that a;(0) = p; and a;(1) € M \ K. Pick a number
€1 > 0. Lemmafurnishes a path {f} }efo,1) of meromorphic functions on M with divisors

(3.1 () = nja;(t), teo,1],
j=1

such that

3.2 Lz) -1 .

(3.2) . [fi (@) =1 < e

Note that a;(0) = pj, so the divisor (f}) = >_iL1 m;pj is precisely the part of the divisor (w) lying in K.
Hence, the 1-form w’ = %w has no zeros or poles on K;. Consider the path of abelian differentials
0
_ Ji&l _ rl
(3.3) wp="Zw=fiw, tel01].
fo
We have that wy = w, w1 = fiw’, supp(wy) N Ko = @ for all t € [0, 1], supp(w1) N K1 = &, and w;
approximates wy on K for all ¢ € [0, 1]. We now repeat the same procedure with the abelian differential w;
in order to find a path of meromorphic functions { ff}te[w] on M such that the divisor (f3) agrees with the
part of the divisor (w;) on Ko, supp(fZ) N K; = @ forall t € [1,2], supp(f2) C M \ K>, and

max |fA(z) — 1| < e

ze€K1,t€(1,2]
for a given €2 > (. Set
_f?
wy = swi, tEL2].
s

Then, supp(w;) N Ky = @ forall t € [1,2], supp(wz) N K2 = &, and w; approximates w; uniformly on
K, for all t € [1,2]. Continuing inductively, we obtain a path of abelian differentials w;, t € [0, 00), such
that supp(w;) N K; = @ forallt > jand j = 0,1,.... Choosing €; > 0 small enough at every step, the
approximation conditions ensure that ws, = limy_,~ wy is an abelian differential without zeros or poles on
M. Tt remains to reparametrise the interval [0, oo] to [0, 1]. This explains part (a) of the proposition.

We now explain how to modify the above argument to obtain a path of abelian differentials wy, t € [0, 1],
satisfying condition (b). Set A = supp(w)c and write (w)oo = >y A(p)p. Choose Ky C K7 C --- as
above, let supp(w)oN K1 = {p1,...,pm} and set n; = k(p;) > 0for j = 1,...,m. Choose analytic paths

9



aj :[0,1] = M\ Ko (j =1,...,m) such that a;(0) = pj, a;(1) € M\ K1,and ANU7L, a;([0,1]) = 2.
Lemmaprovides a path { f} }tefo,1) of holomorphic functions on M satisfying (3.1), (3.2), and

(3.4) f# — 1 vanishes to order A(p) at p for every p € A.

Note that (f}) = 71 nyp; is the part of (w)o lying in Ki, ' = iéw has no zeros on K71, and the path of
abelian differentials w; = flw’ (t € [0,1]) defined as in (3.3) satisfies wg = w, supp(w;)o N Ko = @ for
all t € [0, 1], supp(w1)o N K1 = &, w; approximates wy on Ky for all ¢ € [0, 1], and the difference wy — w
is holomorphic for all ¢ € [0, 1] as guaranteed by (3.4). Repeating the same procedure in a recursive way
as above leads to a path of abelian differentials w; (¢ € [0, 00]) that, after reparametrising [0, co] to [0, 1],
satisfies the required properties. U

Proof of Theorem[3.1] Let uy € CMIy,, o(M,R™). Then, wy = 20uy is an abelian differential on M with
values in the null quadric A (T:2) whose divisor satisfies supp(wo) = €3 U £ = br(ug) U P(ug) (see
and Subsect. [2.2| for the notation). Let {w;}4c[0,1) be a path of nontrivial abelian differentials on M
with values in A, provided by Proposition (b), so wy = hywg for some meromorphic function h; on M
and w; — wy is holomorphic for all ¢ € [0, 1], and w;y has no zeros. In particular, (w;)oo = (wp)eo for all
t € [0,1]. Let A = supp(wo) oo and write (wo)oo = > ,ecp A(P)p- Let {C; : j € I C N} be a collection of
smoothly embedded oriented Jordan curves in M determining a homology basis of M such that | J e C;
is Runge in M for every finite set J C I, each curve C; contains a nontrivial arc 5} disjoint from C; for
alli € I\ {j},and C; N A = @ forall j € I. Since the real part #(wp) of wy is exact on M, we have
that 3} fcj wg = 0 for every j € I. Proposition then furnishes a path {gt}te[(),l] C 0*(M) of nowhere
vanishing holomorphic functions on M, with §y = 1, such that

(3.5) & — 1 vanishes to order A\(p) at p forevery p € A and ¢ € [0, 1],
and
3.6) §R/ &uwy =0 forevery j € Iandt € [0, 1].

Cj

Since (wt)oo = Y- e A(p)p, condition (B.5) ensures that §w; — w; is holomorphic on M, and hence so is
& — wy for every t € [0, 1] (recall that w; — wp is holomorphic on M). Thus, taking into account that
the curves C; (j € I) are a homology basis of M and (wy) is exact on M, implies that R(&w;) is
exact on M as well for every t € [0, 1]. Therefore, the real parts of the abelian differentials &w; integrate
by the Weierstrass formula (I.3) to a path of conformal minimal surfaces u; € CMIy, s(M,R") (t € [0, 1])
such that g is the given initial map and for every ¢ € [0, 1] we have br(u;) = supp(&w:)o = supp(wy)o,
P(ut) = supp(&wi)eo = supp(wi)eo = Pl(ug), and uy — w is continuous on M; recall that each &
has neither zeros nor poles. In particular, br(u;) = supp(wi)o = &, and hence u; € CMIg(M,R™).
Finally, since 20u; = &wy = 2&hiduy, it is clear that the Gauss map ¢ (u;) of u; equals ¥ (ugp) on
M\ (br(u) Ubr(ug) U P(up)) for every ¢ € [0, 1]; see (L.5). O

Remark 3.3. A comment is in order regarding the use of Proposition [2.2] in the proof of Theorem [3.1]
Proposition is stated for a path of full abelian differentials 8; on M. In our situation, w; takes values in
the null quadric A (I.2)) and is not assumed to be full. However, there is a C-linear subspace H C C" such
that wy is full in H (meaning that wy/6 : M — H is full for any nowhere vanishing holomorphic 1-form
6 on M), and the same is then true for every wy = hywp (t € [0,1]) in the path given by the proposition.
Applying Propositionto the path w; with values in H gives a family of multipliers {&; };c(o,1] C 0" (M)
with the properties stated in the proof of Theorem [3.1]

Let us record here the following extension of Theorem [3.1] which follows by a straightforward

modification of the proof.
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Corollary 3.4. If M, n, and u are as in Theoremand C C M\ EP is a (possibly empty) closed discrete
subset of M that is in bijection with a subset of br(u), then there is an isotopy u; € CMly, (M, R"™),
t € [0, 1], such that ug = u, uy — w is continuous on M for all t € [0,1], and br(uy) = C. Furthermore, we
can choose the isotopy such that for each t € [0, 1] the Gauss map 9 (u) of u equals 4 (u) in their common
domain of definition M \ (br(u;) Ubr(u) U EX).

4. REMOVING COMPLETE ENDS OF FINITE TOTAL CURVATURE

In this section, we prove Theorem [I.2] In view of Theorem [3.1] this will also yield Corollary [1.3]

Let M be an open Riemann surface and u € CMIL(M, R™) for some n > 3. Denote by P = P(u) =
{pj}; C M the closed discrete set of poles of the abelian differential Ju. We shall construct a path
P, = {pj(t)}; € M (t € [0,1)) of closed discrete subsets such that the graphs of the paths p;(¢) in
[0, 1] x M are pairwise disjoint, p;(0) = p; and p;(t) diverges to infinity in M as t — 1 for every j, and an
isotopy u; : M \ P, — R™ of conformal minimal immersions with a complete end of finite total curvature
at every point of P, t € [0,1) (that is, P(u;) = P;) such that the limit u; = limy_1 uy : M — R” exists
and is a conformal minimal immersion without singularities.

Fix a holomorphic immersion z : M — C, which therefore provides a local holomorphic coordinate on
M on a neighbourhood of any point. Choose a normal exhaustion Koy C K7 C Ko C --- of M by smoothly
bounded compact Runge sets, each contained in the interior of the next one, such that P N Ky = &. We
shall proceed inductively, using the parameter interval [i,7 + 1] C R in the i-th step of the induction and
finally reparametrising [0, +oc] to [0, 1] as in the proof of Proposition 3.2]

We begin by explaining the initial step of the construction with ¢ = 0; every subsequent step will be
of the same kind. Choose real analytic paths p;(t) € M \ Ko, t € [0, 1], with pairwise disjoint graphs in
[0,1] x M such that p;(0) = pj and p;(1) € M \ K; forall j = 1,2,.... The path p;(t) is chosen to be
independent of ¢ if p; € M \ K, which holds for all but finitely many j. Let v;(t) = (¢, p;(t)) fort € [0, 1].
There is a convex neighbourhood D C C of [0, 1] such that every p; extends from [0, 1] to a holomorphic
map p; : D — M, and I'; = ~;(D) is a family of pairwise disjoint closed complex curves (graphs of p;
over D) in the Stein surface D x M. Let V; denote the holomorphic vector field on D x M given by

Vi= g+ i
where t is the coordinate on C and z : M — C is the holomorphic immersion. Note that V; is tangent to
the complex curve I';. Let ¢;(z) = (¢, ¢;+(z)) denote the holomorphic flow of V; satisfying the initial
condition ¢;o(x) = x. Shrinking D around [0, 1] if necessary, the flow is defined for all ¢ € D and all z in

a disc neighbourhood U; C M of the point p; = p;(0) for every j, and the map
it Uj = Uje = 95 (Uj) € M

is biholomorphic and satisfies ¢;¢(p;) = p;(t) for every t € D and every j. Note that for all but finitely
many j we have V; = % and hence ¢;; is the identity on U; for all ¢ € D. Choosing the discs U; small
enough, we may assume that the sets {U;;}; are pairwise disjoint for all ¢ € D, and they are also disjoint
from a neighbourhood Wy C M of K. Write 20ug = fof. Consider the path of abelian differentials w; on
the domains (7t =Wy U Uj Uj+ C M, t € D, defined by

4.1 oy = {(soj_,tl)*(fo@) on Ujs,
fof on Wy.

Note that w; is full, it assumes values in the null quadric A, (1.2)) for every ¢ € D, it has a pole of order
n; > 2 at the point p;(t) for every j (with n; independent of t), and it has no other zeros or poles.
Furthermore, the residue of w; at p;(t) is independent of ¢ € D, so it has vanishing real part (as this

holds for wy = 20ug). Write w; = fi0 fort € D. Then, f; : ﬁt UWp =Y = A, UQ is a holomorphic
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map depending holomorphically on ¢ € D, and fy = 20up/6 is holomorphic on all of M. (Recall that
Q C CP™ ! is the hyperquadric (T.4).) Writing f(t, ) = fi(x), the map f with values in Y is holomorphic
on the open set
O:=DxWo)u | J{t} xT) c Dx M
teD

and on the complex submanifold {0} x M. Note that f~}(Q) =T := |J ;T'j is a complex submanifold
contained in O. It is obvious that f extends from a somewhat smaller open set containing (D x Ky) UT to
a continuous map f : D x M — Y which agrees with fy on {0} x M and maps (D x M)\ T to A..

Let {C; : | € I C N} be a collection of smooth oriented Jordan curves in M determining a homology
basis of M such that | ;. ; C; is a Runge compact set in M for every finite set J C I, and each curve
C; contains a nontrivial arc C; that is disjoint form C; for all i € I\ {I}. In addition, we choose
these curves such that C' N p;([0,1]) = @ for every j = 1,2,... where C = J;c; Ci, and C1,...,Cy
determine a homology basis of Ky. We assume that £ > 0 since the proof is much simpler otherwise. Let
Pt = (PL,...,Pt) : €(C% — (C") be the period map whose I-th component is given by

Pf(g):/Cth, g€ C ().
1

Up to shrinking the domain D D [0, 1], Lemma furnishes a nowhere vanishing holomorphic function
Z:D x CN x M — C* satisfying the following conditions:

(D Z(t,¢,-) — 1 vanishes to order n; at p;(t) forevery t € [0,1],( € CV,and j = 1,2,....
(II) The map CV > ¢ — P(E(¢,¢,+)) € (C™)¢ has maximal rank at { = 0 for each ¢ € [0, 1].
I =(-,0,-) = 1.

Recall that the manifolds Q ¢ CP" ! (T4), Y = A, UQ c CP" (T.), and A, = Y \ Q are Oka
manifolds. Indeed, A. is a homogeneous space of the complex Lie group O(n,C), and hence an Oka
manifold by Grauert’s theorem [14]. (See also [11, Proposition 5.6.1 and Example 5.6.2].) The projection
T Ay — Q,m(z1,...,2n) = [21 1 -+t 2y, is @ holomorphic fibre bundle with Oka fibre C* = C \ {0},
so @ is Oka by [11, Theorem 5.6.5]. Finally, 7 : ¥ — @ is a holomorphic line bundle, so Y is Oka by the
same theorem.

Recall that n; > 2 denotes the order of the pole of fy = 20ug/6 at the point p; for j = 1,2,....
By the Oka principle (see [[11, Theorem 5.4.4]), there is a holomorphic map F' : D x M — Y which
agrees with f to order n; along I'; for every j, it agrees with f(0,-) on {0} x M, and it approximates f as
closely as desired uniformly on [0, 1] x Kj. Moreover, after shrinking D around [0, 1] we can ensure that
FYQ) = f~1(Q) =T, that is, F maps (D x M) \ T to the Oka domain A, = Y \ Q C Y. This can
be obtained by inductively using [10, Theorem 1.3]. Then, 6, = F'(¢,-)0 (¢ € [0, 1]) is an analytic path of
abelian differentials on M with values in A, satisfying the following conditions.

(1) 6o = wo = 20uy.
(ii) 6y — wy is holomorphic near p;(t) forevery t € [0,1]and j = 1,2,...
(iii) 6, approximates w; uniformly on K and uniformly in ¢ € [0, 1].
(iv) 6, has no zeros on M for any ¢ € [0, 1] and its polar locus is P, = {p;(t)};.

Assuming that the approximation of f by F' is close enough, every 6, is full, and the implicit function
theorem provides in view of conditions (II), (II), and apath B : [0,1] — CV such that 3(0) = 0,
g+ := Z(t,B(t),) is uniformly close to 1 on Ky for all ¢ € [0,1], and the continuous family of abelian
differential ¢,0; (¢t € [0, 1]) satisfies

R gb=RPI1)=R[| w=R[| fo0=0, I=1,....L
C @) G
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(Cf. [6, proof of Proposition 3.1]. Note that fullness of w; (¢ € [0,1]) has been used here in an important
way to kill the real periods, which is seen in condition (II) above.) Thus, taking into account conditions (I)
and (IIT) and replacing 60; by g:0;, we may assume in addition to conditions (i)—(iv) above that

(4.2) R[] 6,=0 foreveryle {1,...,£}andt € [0,1].

o
(Note that go = 1.) Proposition[2.2]then furnishes a path of holomorphic functions h; : M — C* (¢ € [0, 1])
such that hg = 1 and the following conditions hold for every ¢ € [0, 1].

(a) %fcl h8; = 0 for every [ € I; take into account (4.2) and that %fcl 0y = 2R sz Oug = Oforalll € I.
(b) hy — 1 vanishes to order n; at the point p;(¢) forevery j = 1,2, .. ..
(¢) hy is uniformly close to 1 on K.

Condition (b) implies that the full abelian differential /.6, has the same residue as 6, at the point p;(t) for
every j and t. By the construction, this agrees with the residue of 6y = 20ug at p; = p;(0), so its real part
vanishes. Hence, condition (a) implies that R(h.0;) is exact on M. Therefore, taking also (c) into account
and replacing 0; by h0;, we may assume in addition to conditions (i)—(iv) above that ®(6;) is exact on M for
every t € [0, 1]. It follows that the path of abelian differentials ; integrates by the Weierstrass formula (I.3))
to a path of maps u; € CMI (M, R™) with 20u; = 6; for every t € [0, 1], s0 ug = u (see (i), P(us) = P
(see (iv)), and u; approximates ug on Ky (see (iii) and {.1I))) for every ¢ € [0, 1]. In particular, the minimal
surface u; € CMIg(M , R™) has no singularities on K. This completes the first step of the construction.

In the second step, we apply the same procedure, starting with u; and finding a path {Ut}te[LQ] €
CMIL (M, R™) such that for all ¢ € [1,2] we have P(u;) C M \ K, u; approximates u; on K1, and
uo is nonsingular on Ky. Clearly, the induction may be continued so that the limit us, = limy oo us
exists uniformly on compacts in M and us, € CMI(M,R"). Since all maps u; € CMIL(M, R™) in the
construction approximate ug on Ky, which is full, we can ensure that they all are full as well.

This completes the proof of Theorem [1.2]

The following extension of this result, concerning moving complete ends of finite total curvature within
the surface, follows by a straightforward modification of the proof. Recall the notation in (1.7).

Corollary 4.1. If M, n, and u are as in Theorem and C C M is a (possibly empty) closed discrete
subset that is in bijection with a subset of EX°, then there is an isotopy u; € CMIL(M,R"), t € [0, 1], such
that ug = uand £37 = C.
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