
REMOVING SINGULARITIES OF MINIMAL SURFACES BY ISOTOPIES
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ABSTRACT. Given an open Riemann surface M , we show that the branch points and the complete ends of
finite total curvature of a conformal minimal surface M → Rn, n ≥ 3, can be removed by an isotopy through
such surfaces. The analogous result holds for null holomorphic curves M → Cn.

1. INTRODUCTION

Let M be a connected open Riemann surface. Recall that an immersion u = (u1, . . . , un) : M → Rn

(n ≥ 3) is conformal (angle preserving) if and only if its (1, 0)-differential ∂u = (∂u1, . . . , ∂un) (the
C-linear part of the differential du = ∂u+ ∂u) satisfies the nullity condition

(1.1) (∂u1)
2 + · · ·+ (∂un)

2 = 0.

(See e.g. [18] or [3].) A conformal immersion u : M → Rn parametrises a minimal surface in Rn with the
Euclidean metric ds2 if and only if it is harmonic, if and only if ∂u is a holomorphic 1-form. Assuming
that this holds and choosing a nowhere vanishing holomorphic 1-form θ in M , we have 2∂u = fθ where
f : M → Cn is a holomorphic map with values in the punctured null quadric A∗ = A \ {0}, where

(1.2) A = {z = (z1, . . . , zn) ∈ Cn : z21 + · · ·+ z2n = 0}.

Given any point x0 ∈ M , we recover u from its Weierstrass data fθ by

(1.3) u(x) = u(x0) + ℜ
∫ x

x0

2∂u = u(x0) + ℜ
∫ x

x0

fθ, x ∈ M.

Here, ℜ denotes the real part. Conversely, a holomorphic map f : M → A∗ satisfying ℜ
∮
γ fθ = 0 for

every closed curve γ ⊂ M (that is, ℜ(fθ) is exact on M ) determines a conformal minimal immersion
u : M → Rn by the above formula. The generalised Gauss map, or simply the Gauss map, of u is the
holomorphic map

(1.4) G (u) : M → Q =
{
[z1 : · · · : zn] ∈ CPn−1 : z21 + · · ·+ z2n = 0

}
given by

(1.5) G (u)(p) = [∂u1(p) : · · · : ∂un(p)], p ∈ M.

In this paper, we consider minimal surfaces with isolated singularieties. One type of singularities are
branch points. Let u : M → Rn be a C 1 map with rank 2 at some point. Denote by br(u) ⊊ M the set of
points x ∈ M at which u is not an immersion, i.e., rank dux < 2. If the immersion u : M \ br(u) → Rn

is conformal and harmonic, then ∂u is a continuous (1, 0)-form on M which is holomorphic on M \ br(u)
and satisfies {∂u = 0} = br(u). By a theorem of Radó [19] (see also [20, Theorem 3.4.17]), ∂u extends
holomorphically to M , so br(u) is a closed discrete subset of M and u is harmonic on M . The points of
br(u) are called branch points of u, and u is said to be a branched conformal minimal surface; see e.g. [18,
Ch. 6] or [3, Remark 2.3.7]. Branch points of minimal surfaces are not removable by small deformations
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[3, Remark 3.12.6]. Our first result is that they are removable by isotopies. It is proved in Section 3; see the
more precise statement in Theorem 3.1.

Theorem 1.1. Given a branched conformal minimal surface u : M → Rn, there is an isotopy of branched
conformal minimal surfaces ut : M → Rn, t ∈ [0, 1], such that u0 = u and u1 is an immersion everywhere
on M , that is, br(u1) = ∅. Furthermore, we can choose the isotopy such that for each t ∈ [0, 1] the Gauss
map G (ut) (1.5) of ut equals G (u) in their common domain of definition M \ (br(ut) ∪ br(u)).

By an isotopy, we mean a family of maps depending continuously on a parameter t ∈ [0, 1]. The space

CMIbr(M,Rn)

of branched conformal minimal surfaces M → Rn is endowed with the compact-open topology and contains
the subspace CMI(M,Rn) of conformal minimal immersions M → Rn. Recall that u ∈ CMIbr(M,Rn)

is said to be nonflat if and only if u(M) is not contained in an affine plane of Rn; equivalently, the image
of the map f = 2∂u/θ : M → A is not contained in a ray of A (1.2). Also, u is called full if and only if
f(M) is not contained in a proper linear subspace of Cn. (See Definition 2.5.2 and Lemma 2.5.3 in [3, p.
106].) Note that the second assertion in Theorem 1.1 implies that if the given surface u is nonflat (resp. full)
then the isotopy ut (t ∈ [0, 1]) can be chosen to consist of nonflat (resp. full) surfaces.

Another important type of isolated singularities of minimal surfaces are complete ends of finite total
curvature. The Gaussian curvature of a smooth immersed surface u : M → Rn is a function K : M → R
whose value at p ∈ M is the Gauss curvature of the Riemannian metric u∗ds2 at p. If u ∈ CMI(M,Rn)

is a minimal surface then K assumes values in R− = (−∞, 0], and the total curvature is the number
TC(u) =

∫
M K dA ∈ [−∞, 0], where dA is the area measure determined by u∗ds2. (See [3, Sect. 2.6].)

We say that u is of finite total curvature if TC(u) > −∞. A minimal surface u : M → Rn is said to
be complete if the metric u∗ds2 induces a complete distance function on M . If M is a bordered Riemann
surface with compact closure M , P ⊂ M is a compact subset, and u : M \ P → Rn is a complete
conformal minimal surface of finite total curvature, then P is a finite set by a theorem of Huber [15] (see
also [3, Theorem 2.6.4]), ∂u extends to a meromorphic 1-form on M with a pole of order ≥ 2 at every point
of P by the Chern–Osserman theorem [7] (see also [3, Theorem 4.1.1]), u is proper at every end p ∈ P , and
its asymptotic behaviour at p is described by the Jorge–Meeks theorem [16] (see also [3, Theorem 4.1.3]).
Conversely, a nontrivial meromorphic 1-form ϕ = (ϕ1, . . . , ϕn) on an open Riemann surface M (such ϕ

is called an abelian differential) has a closed discrete polar locus P (ϕ) ⊂ M . If ϕ satisfies the nullity
condition (1.1) and has vanishing real periods on closed curves in M ′ = M \ P (ϕ), then it determines a
conformal minimal surface u : M ′ → Rn by u(x) = ℜ

∫ x
ϕ with a complete end of finite total curvature at

each point of P (ϕ). Let
CMIs(M,Rn)

denote the space of conformal minimal immersions u : M \ P → Rn, where P = P (u) is a closed discrete
subset of M and ∂u is meromorphic on M with an effective pole at every point p ∈ P and no other zeros
or poles. (The subscript s stands for singularities.) With θ as above, we have 2∂u = fθ where f is a
meromorphic map on M with values in A∗ (1.2) whose polar locus is P . (See Subsect. 2.2.) We can view
f as a holomorphic map to the complex submanifold

(1.6) Y = A∗ ∪Q

of Cn ∪ CPn−1 = CPn, where Q is the hyperquadric in (1.4). The topology on CMIs(M,Rn) is defined
by the condition that a sequence uj ∈ CMIs(M,Rn) converges to u ∈ CMIs(M,Rn) if and only if
fj = 2∂uj/θ : M → Y converges to f = 2∂u/θ : M → Y in the compact-open topology and there
is a point x0 ∈ M \ P (f) such that uj(x0) converges to u(x0) in Rn. Note that CMIs(M,Rn) contains the
subspace CMI(M,Rn) with its usual compact-open topology. We denote by

CMIfbr(M,Rn) ⊂ CMIbr(M,Rn), CMIfs(M,Rn) ⊂ CMIs(M,Rn), CMIf(M,Rn) ⊂ CMI(M,Rn)
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the corresponding subspaces of full maps.

The order of the pole of f at p ∈ P is the local intersection number of f with Q at p, which is positive,
so a pole cannot be removed by a small deformation of u. Our second main result is that complete ends of
finite total curvature of full minimal surfaces can be removed by an isotopy. It is proved in Sect. 4.

Theorem 1.2. Let M be an open Riemann surface and n ≥ 3 an integer. For any u ∈ CMIfs(M,Rn) there
is an isotopy ut ∈ CMIfs(M,Rn), t ∈ [0, 1], such that u0 = u and u1 is defined everywhere on M , that is,
u1 ∈ CMIf(M,Rn).

We wish to explain the reason for a somewhat different assumption on the initial minimal surface u

in Theorem 1.1 (where u need not be full) and in Theorem 1.2, where u is assumed to be full. The
proof of Theorem 1.1 amounts to finding a path of holomorphic abelian differentials ωt (t ∈ [0, 1]) on
M with values in A (1.2) and vanishing real periods such that ω0 = 2∂u and ω1 has no zeros. Integrating
these abelian differentials by the Weierstrass formula (1.3) gives an isotopy of conformal minimal surfaces
ut(x) = ℜ

∫ x
ωt satisfying the conclusion of Theorem 1.1. The proof is accomplished in two steps. In the

first step (see Proposition 3.2 (b)) we find a path of nontrivial abelian differentials ϖt = htω0 (t ∈ [0, 1])

with values in A, where ht is a path of meromorphic functions on M , satisfying ϖ0 = ω0 (that is, h0 ≡ 1)
but without paying attention to the period conditions. This does not require fullness. In the second step we
find a path of nowhere vanishing holomorphic functions ξt on M , with ξ0 ≡ 1, such that the path ωt = ξtϖt

(t ∈ [0, 1]) satisfies that each ωt has vanishing real periods; see Proposition 2.2. This does not required
fullness either; see Remark 3.3. The second assertion in Theorem 1.1 is granted in this construction since
each ωt is of the form ωt = 2ξtht∂u; see (1.5). Only Runge approximation for functions into C∗ = C \ {0}
is required for this task. The proof of Theorem 1.2 follows the same scheme but now the path of abelian
differentials ωt on M is constructed to be nowhere vanishing and such that ω1 is holomorphic on M (that
is, it has no poles). In this case, the period problem is considerably more delicate than in the context of
Theorem 1.1, and in order to solve it we use Runge approximation for maps into the Oka manifold Y in
(1.6). This forces us to ask that the given surface u in Theorem 1.2 be full, and prevents us to preserve the
Gauss map along the isotopy.

Going further, the proofs of Theorems 1.1 and 1.2 show that the two results can be combined, that is, we
can push both the branch points and the ends of finite total curvature out of the surface by an isotopy. Let

CMIbr,s(M,Rn) ⊃ CMIfbr,s(M,Rn)

denote the set of conformal minimal immersions u : M \ Eu → Rn, where

(1.7) Eu = E0
u ∪ E∞

u = br(u) ∪ P (u)

is a (possibly empty) closed discrete subset of M (depending on u) such that ∂u is meromorphic on M with
the zero set E0

u = br(u) (the branch locus of u) and the polar locus E∞
u = P (u) (the set of complete ends

of finite total curvature of u), and its subset of full maps. We call Eu the singular locus of u. The topology
on CMIbr,s(M,Rn) is determined in the same way as on its subspace CMIs(M,Rn).

The following is our third main result.

Corollary 1.3. Let M be an open Riemann surface and n ≥ 3 an integer. For every u ∈ CMIfbr,s(M,Rn)

there is an isotopy ut ∈ CMIfbr,s(M,Rn), t ∈ [0, 1], such that u0 = u and u1 is an immersion defined
everywhere on M , that is, u1 ∈ CMIf(M,Rn).

Every flat conformal minimal immersion is isotopic to a nonflat one [3, Theorem 5.7.6], hence the
immersion u1 in Theorem 1.1 can be chosen nonflat whenever one does not insist on the condition on the
Gauss map. Furthermore, by a recent result of Vrhovnik [21], every nonflat conformal minimal immersion
M → Rn, n ≥ 3, is isotopic to a proper one, which can be chosen an immersion with simple double points if
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n = 4 and an embedding if n ≥ 5. Therefore, the immersions u1 in Theorems 1.1 and 1.2, and in Corollary
1.3, can be chosen of this kind.

An immediate consequence of Theorems 1.1, 1.2, and Corollary 1.3 is that each of the inclusions in

(1.8) CMIfbr(M,Rn)� u

((QQ
QQQ

QQQ
QQQ

QQ

CMIf(M,Rn)

) 	

66nnnnnnnnnnnn

� u

((PP
PPP

PPP
PPP

PP
CMIfbr,s(M,Rn)

CMIfs(M,Rn)

) 	

66mmmmmmmmmmmm

induces a surjection of path components. The same holds for the inclusion

(1.9) CMI(M,Rn) ↪−→ CMIbr(M,Rn)

by Theorem 1.1. Recall that for any open Riemann surface M we have H1(M,Z) = Zl, l ∈ Z+ ∪ {∞}.
The set of path components of the space CMIf(M,R3) is in bijective correspondence with the 2l elements
of the group (Z2)

l (see [12, Corollary 1.6] or [3, Corollary 3.12.4]), and CMIf(M,Rn) is path connected for
n ≥ 4 by [5, Theorem 6.1]. For the space of nonflat conformal minimal immersions, the same holds by [12,
Corollary 1.6], and for CMI(M,Rn) it holds by [3, Corollary 5.7.7]. This implies the following corollary.

Corollary 1.4. Each of the spaces in (1.8) and (1.9) is path connected for n ≥ 4. If H1(M,Z) ∼= Zl, there
is a surjection from (Z2)

l to the set of path components of each of the spaces in (1.8) and (1.9) for n = 3.

Problem 1.5. Do the inclusions in (1.8) and (1.9) induce bijections of path components? Are they weak
homotopy equivalences?

The analogues of Theorems 1.1, 1.2, and Corollary 1.3 also hold, with essentially the same proofs, for
generalised null curves F : M → Cn, n ≥ 3. These are nonconstant meromorphic maps whose differential
∂F = dF has isolated zeros and poles and assumes values in the null quadric A (1.2). Equivalently, given
a nowhere vanishing holomorphic 1-form θ on M , we have dF = fθ where f is a holomorphic map from
M to the complex subvariety A ∪Q ⊂ CPn (see (1.4)). The real and the imaginary part of any generalised
null curve M → Cn are elements of the space CMIbr,s(M,Rn).

Our method of proof of the main results allows not only to remove the singularities but also to move them
freely within the surface. For example, in the context of Theorem 1.1, given a closed discrete subset C ⊂ M

and a bijective map of C to a subset of the branch locus br(u), there is an isotopy ut ∈ CMIbr(M,Rn),
t ∈ [0, 1], such that u0 = u and br(u1) = C; see Corollary 3.4. An analogous statement holds in the context
of Theorem 1.2; see Corollary 4.1. This follows by a straightforward modification of our proofs.

2. THE TOOLBOX

2.1. A Weierstrass interpolation theorem with parameters. In the proof of Theorem 1.1, we shall need
the following parametric version of Weierstrass interpolation for finitely many points in an open Riemann
surface. This is a special case of [1, Lemma 4.2] but with added approximation on a compact Runge set.

Lemma 2.1. Let K be a compact Runge set in an open Riemann surface M and aj : [0, 1] → M \ K,
j = 1, . . . , k, real analytic maps such that the points a1(t), . . . , ak(t) are distinct for every t ∈ [0, 1]. Also
let Λ ⊂ M be a closed discrete subset disjoint from

⋃k
j=1 aj([0, 1]) and λ : Λ → N a map. Given integers

n1, . . . , nk ∈ Z and a number ϵ > 0, there is a real analytic path of meromorphic functions {ft}t∈[0,1] on
M such that for every t ∈ [0, 1] and j = 1, . . . , k, the function ft has degree nj at aj(t) and has no other
zeros or poles, maxx∈K,t∈[0,1] |ft(x)− 1| < ϵ, and ft − 1 vanishes to order λ(p) at p for every p ∈ Λ.

4



Proof. It suffices to prove the result for k = n1 = 1. This gives for each j a path of holomorphic functions
{fj,t}t∈[0,1] on M with a simple zero at aj(t) and no other zeros, satisfying the approximation condition on
K and the interpolation conditions at points p ∈ Λ. The function ft =

∏k
j=1 f

nj

j,t then satisfies the theorem.

The real analytic map a = a1 : [0, 1] → M extends to a holomorphic map a : D → M

from an open simply connected neighbourhood D ⊂ C of the interval [0, 1] ⊂ R ⊂ C. Its graph
Σ = {(z, a(z)) : z ∈ D} ⊂ D × M is a smooth closed complex hypersurface in the Stein surface
D × M . Shrinking D around [0, 1] if necessary, we ensure that Σ ∩ (D × (K ∪ Λ)) = ∅. Since D is
contractible, we have H2(D × M,Z) ∼= H2(M,Z) = 0. Hence, Oka’s solution of the second Cousin
problem in [17] implies that every divisor on D ×M is a principal divisor. Applying this to the divisor Σ
gives a holomorphic function f ∈ O(D ×M) that vanishes to order 1 at every point of Σ and has no other
zeros. The function ft = f(t, · ) ∈ O(M) then has a simple zero at a(t) and no other zeros for every t ∈ D.
Since K is Runge in M and D is contractible, the inclusion D × K ↪→ D × M is homotopy equivalent
to the inclusion of a finite bouquet of circles representing K in the finite or countable bouquet of circles
representing M . Hence, the map 1/f : D ×K → C∗ extends to a continuous map D ×M → C∗. Since
[0, 1]×K is holomorphically convex in D ×M , the Oka principle for maps to the complex homogeneous
manifold C∗ (see Grauert [13] or [11, Theorem 5.4.4]) gives a holomorphic function g : D × M → C∗

approximating 1/f uniformly on [0, 1] ×K and such that g − 1/f vanishes to order λ(p) on D × {p} for
every p ∈ Λ. (There are no topological obstructions for these interpolation conditions since the sets D×{p}
are contractible.) Replacing f by fg gives a function satisfying the lemma provided that the approximation
of 1/f by g was close enough on [0, 1]×K. □

2.2. Abelian differentials and complex cones. Let M be a Riemann surface. An abelian differential
ω = (ω1, . . . , ωn) on M with values in Cn (whose components ωi are meromorphic 1-forms on M ) is said
to be nontrivial if it is not identically zero, and is said to be full if its range is not contained in a proper
linear subspace of Cn. A nontrivial abelian differential determines a divisor (ω) on M defined as follows.
Let ζ : U → C be a local holomorphic coordinate around a point p ∈ M with ζ(p) = 0. In this coordinate,
ω = f(ζ)dζ where f = (f1, . . . , fn) is a meromorphic map on U . Let k(p) ∈ Z be the unique integer
such that ζ−k(p)f(ζ) is holomorphic near ζ = 0 and nonvanishing at ζ = 0 (i.e., fi(0) ̸= 0 for some
i ∈ {1, . . . , n}). Then, (ω) =

∑
p∈M k(p)p. Its support supp(ω) = {p ∈ M : k(p) ̸= 0} is a closed

discrete subset of M . Likewise, the divisors of zeros and poles of ω are, respectively,

(2.1) (ω)0 =
∑

p∈M,k(p)>0

k(p)p, (ω)∞ =
∑

p∈M,k(p)<0

(−k(p))p,

hence (ω) = (ω)0− (ω)∞. The support of (ω)0 and (ω)∞ is the zero set and the polar set of ω, respectively.

A complex cone in Cn is a closed analytic subvariety A ⊂ Cn such that ζA ⊂ A for every ζ ∈ C. By a
theorem of Chow [9] (see also Chirka [8, p. 74, Remark]), such A is the common zero set of finitely many
homogeneous polynomials on Cn. An abelian differential ω = (ω1, . . . , ωn) on M is said to have values
in A if in any local holomorphic coordinate ζ on M we have ω = f(ζ)dζ, where f is a meromorphic map
with values in A. Such f can be seen as a holomorphic map in the projective closure of A.

2.3. A parametric interpolation theorem for multipliers with control of periods. The following
approximation result with interpolation for multiplier functions is an extension of [2, Theorem 4.1]; see
also [3, Theorem 5.3.1] and [4, Theorem 2.1].

Proposition 2.2. Assume that M is an open Riemann surface, K ⊂ M is a compact smoothly bounded
Runge domain, and {Cj : j ∈ I ⊂ N} is a collection of smoothly embedded oriented Jordan curves in M

determining a homology basis of M such that

•
⋃

j∈J Cj is a Runge compact set in M for every finite set J ⊂ I , and
5



• each curve Cj contains a nontrivial arc C̃j disjoint from Ci for all i ∈ I \ {j}.

Set C =
⋃

j∈I Cj and IK = {j ∈ I : Cj ⊂ K}. Let σa : [0, 1] → K (a = 1, . . . , α ∈ N) be a
finite collection of analytic Jordan arcs with pairwise disjoint graphs in [0, 1] × M , r ∈ N an integer,
Λ ⊂ M a closed discrete subset, and λ : Λ → N a map. Set Σ =

⋃α
a=1 σa([0, 1]) ⊂ K and assume that

Λ ∩ Σ = ∅ = C ∩ (Λ ∪ Σ). Let n ∈ N, let θt (t ∈ [0, 1]) be a continuous family of Cn-valued full abelian
differentials on M with the polar set Pt (see Subsect. 2.2), set P =

⋃
t∈[0,1] Pt, and assume that C∩P = ∅.

Also let φt ∈ O(K ∪ Λ) (t ∈ [0, 1]) be a continuous family of holomorphic functions with no zeros on a
neighbourhood of K ∪ Λ, and qj : [0, 1] → Cn (j ∈ I) a collection of continuous maps such that∫

Cj

φtθt = qj(t) for every j ∈ IK and t ∈ [0, 1].

Then, the family φt may be approximated uniformly on [0, 1] × K by continuous families of holomorphic
functions φ̃t : M → C∗ (t ∈ [0, 1]) satisfying the following conditions:

(a)
∫
Cj

φ̃tθt = qj(t) for every j ∈ I and t ∈ [0, 1].
(b) φ̃t − φt vanishes to order r at σa(t) for every a ∈ {1, . . . , α} and t ∈ [0, 1].
(c) φ̃t − φt vanishes to order λ(p) at p for every p ∈ Λ and t ∈ [0, 1].

Furthermore, if φ0 extends to a holomorphic function M → C∗ such that
∫
Cj

φ0θ0 = qj(0) for all j ∈ I ,
then the homotopy φ̃t can be chosen with φ̃0 = φ0.

The novelties with respect to [2, Theorem 4.1] are the interpolation conditions (b) and (c), and the fact
that the abelian differentials θt are allowed to have poles in the complement of C. This proposition will
be used for various tasks in the proofs of our main results. In particular, it will be applied in the proof of
Theorem 1.2 to preserve the residues when moving the poles. We shall explain the necessary modifications
of [2, proof of Theorem 4.1] which ensure these extra conditions. The same arguments apply word by word
in the more general framework when K is a Runge admissible set (see [2, Def. 3.1]) and the multipliers φt

are of class A (K); this generalisation is well understood and we shall not discuss it here. The key to the
proof of Proposition 2.2 is the following extension of [2, Lemma 3.2], which will also play a crucial role in
the proof of Theorem 1.2.

Lemma 2.3. In Proposition 2.2, assume in addition that IK = {1, . . . , l} for some l ∈ N, write
CK =

⋃l
j=1Cj , and for each t ∈ [0, 1] let Pt = (Pt

1, . . . ,Pt
l ) : C (CK) → (Cn)l denote the period

map whose j-th component (j = 1, . . . , l) is given by

(2.2) Pt
j(g) =

∫
Cj

gφtθt, g ∈ C (Cj).

Then there are a convex neighbourhood D ⊂ C of [0, 1] ⊂ R ⊂ C and a nowhere vanishing holomorphic
function Ξ : D × CN ×M → C∗ with Ξ(·, 0, ·) ≡ 1 satisfying the following conditions:

(a) Ξ(t, ζ, ·)− 1 vanishes to order r at σa(t) for every a ∈ {1, . . . , α}, t ∈ [0, 1], and ζ ∈ CN .
(b) Ξ(t, ζ, ·)− 1 vanishes to order λ(p) at p for every p ∈ Λ, t ∈ [0, 1], and ζ ∈ CN .
(c) For every t ∈ [0, 1] the map

CN ∋ ζ 7−→ Pt
(
Ξ(t, ζ, ·)

)
∈ (Cn)l

has maximal rank equal to ln at ζ = 0.

Proof. Up to enlarging K slightly, we may assume that Σ :=
⋃α

a=1 σa([0, 1]) ⊂ K̊. Using [2, Lemma 2.1]
as in [2, proof of Lemma 3.2] (see also [6, proof of Proposition 3.1]) we obtain for each j ∈ {1, . . . , l} an
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integer Nj ≥ n and continuous functions gj,k : Cj → C (k = 1, . . . , Nj) with the support on the arc C̃j

such that the function hj : CNj × Cj → C∗ given by

hj(ζj , p) =

Nj∏
k=1

eζj,kgj,k(p), ζj = (ζj,1, . . . , ζj,Nj ) ∈ CNj , p ∈ Cj

satisfies the following period domination condition:

(2.3)
∂

∂ζj
Pt
j

(
hj(ζj , ·)

)∣∣
ζj=0

: T0CNj −→ Cn is surjective for every t ∈ [0, 1].

Recall that Σ ∩ (C ∪ Λ) = ∅. Choose a small smoothly bounded convex neighbourhood D ⊂ C of [0, 1]
such that every analytic arc σa : [0, 1] → K̊ (a ∈ {1, . . . , α}) extends to a holomorphic map σa : D → K̊,
and set Σ′ =

⋃α
a=1 σa(D). Let δa(t) = (t, σa(t)) ∈ D×M for t ∈ D. By choosing the domain D ⊃ [0, 1]

small enough, we have that Σ′ ⊂ K̊ \ (C ∪ Λ) and {δa(D) : a = 1, . . . , α} is a family of pairwise disjoint
closed complex curves in the Stein surface D × M . Set ∆ =

⋃α
a=1 δa(D) ⊂ D × Σ′. We extend each

function gj,k : Cj → C (j ∈ {1, . . . l}, k ∈ {1, . . . , Nj}) by 0 to Σ′ ∪ Λ ∪ (CK \ Cj) and view it as a
continuous map gj,k : D × (Σ′ ∪ Λ ∪ CK) → C given by gj,k(t, ·) = gj,k for all t ∈ D. Note that gj,k
vanishes on ∆∪ (D×Λ). It is clear that gj,k extends to a continuous function on D×M that vanishes on a
neighbourhood of the divisor ∆∪ (D×Λ). Since the compact set [0, 1]×CK ⊂ D×M is holomorphically
convex and CK is a union of curves, Mergelyan’s theorem shows that we can approximate gj,k uniformly on
[0, 1]×CK by a holomorphic function on a neighbourhood of [0, 1]×CK in D×M , which we still denote
gj,k. Next, a standard recursive application of the Oka–Weil theorem with jet interpolation enables us to
approximate gj,k uniformly on [0, 1]× CK by a holomorphic function g̃j,k ∈ O(D ×M) vanishing to any
given order on each connected component of ∆ ∪ (D × Λ). (These components are δa(D) (a = 1, . . . , α)

and D × {p} for p ∈ Λ.) In particular, g̃j,k can be chosen such that g̃j,k(t, ·), t ∈ [0, 1], vanishes to order r
at the point σa(t) for all a ∈ {1, . . . , α}, and it vanishes to order λ(p) at every point p ∈ Λ. Set

Ξ(t, ζ, p) =
l∏

j=1

Nj∏
k=1

eζj,k g̃j,k(t,p), t ∈ D, ζ = (ζ1, . . . , ζl) ∈ CN1 × · · · × CNl , p ∈ M.

Setting N =
∑l

j=1Nj ≥ nl and identifying CN = CN1×· · ·×CNl , it is clear that Ξ : D×CN×M → C∗ is
holomorphic and satisfies Ξ(·, 0, ·) ≡ 1 and conditions (a) and (b) in the lemma. Moreover, (c) is guaranteed
by (2.3) whenever the approximation of each gj,k by g̃j,k on [0, 1]× CK is close enough. □

Proof of Proposition 2.2. Choose a normal exhaustion

K = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂
∞⋃
i=0

Ki = M

by smoothly bounded Runge compact domains such that, setting Ii = {j ∈ I : Cj ⊂ Ki} for i = 0, 1, 2, . . .

(note that Ii is finite and Ii ⊂ Ii+1 for every i ≥ 0), the following conditions hold for every i ∈ N:

• Ii \ Ii−1 is either empty or a singleton.
• The compact set Ki−1 ∪

⋃
j∈Ii Cj is Runge in M and admissible in the sense of [2, Def. 3.1].

In order to ensure the latter condition for i = 1 we might need to replace K = K0 by a slightly larger
compact domain. Set φ0

t = φt : K0 ∪ Λ → C∗ for t ∈ [0, 1]. The proof consists of constructing a sequence
of continuous families {φi

t ∈ O(Ki ∪ Λ)}i∈N (t ∈ [0, 1]) of holomorphic functions without zeros on a
neighbourhood of Ki ∪ Λ such that the following conditions hold for all t ∈ [0, 1] and i ∈ N:

(Ai) φi
t is as close as desired to φi−1

t uniformly on [0, 1]×Ki−1.
(Bi)

∫
Cj

φi
tθt = qj(t) holds for every j ∈ Ii.

(Ci) φi
t − φt vanishes to order r at the point σa(t) for every a ∈ {1, . . . , α} and t ∈ [0, 1].
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(Di) φi
t − φt vanishes to order λ(p) at every point p ∈ Λ.

(Ei) If φ0 extends to a holomorphic function M → C∗ such that
∫
Cj

φ0θ0 = qj(0) for all j ∈ I , then the

homotopy φi
t can be chosen with φi

0 = φ0.

As in the proof of [2, Theorem 4.1], if the approximation in (Ai) is close enough for every i ∈ N, we obtain
a limit continuous family of holomorphic functions φ̃t = limi→∞ φi

t : M → C∗, t ∈ [0, 1], satisfying
Proposition 2.2. Conditions (b) and (c) are trivially guaranteed by (Ci) and (Di).

We proceed by induction. The base is given by the family φ0
t (t ∈ [0, 1]). For the inductive step, we

assume that we have a suitable family φi−1
t for some i ∈ N and will provide φi

t. We distinguish cases.

The noncritical case: Ii = Ii−1. Assume that Ii = {1, . . . , l ∈ N} ̸= ∅, for the proof is much simpler
otherwise. Set Ci =

⋃l
j=1Cj and for each t ∈ [0, 1] consider the period map Pt : C (Ci) → (Cn)l

defined by (2.2) with φt replaced by φi−1
t . By Lemma 2.3, there are a convex neighbourhood D ⊂ C

of [0, 1] ⊂ R ⊂ C and a nowhere vanishing holomorphic function Ξ : D × CN × M → C∗ such that
Ξ(·, 0, ·) ≡ 1 and the following conditions hold for every t ∈ [0, 1].

(I) Ξ(t, ζ, ·)− 1 vanishes to order r at σa(t) for every a ∈ {1, . . . , α} and ζ ∈ CN .
(II) Ξ(t, ζ, ·)− 1 vanishes to order λ(p) at p for every p ∈ Λ and ζ ∈ CN .

(III) The map CN ∋ ζ 7−→ Pt
(
Ξ(t, ζ, ·)

)
∈ (Cn)l has maximal rank equal to ln at ζ = 0.

Taking into account conditions (Bi−1)–(Ei−1) and using a similar argument as in the proof of Lemma 2.3 to
ensure parametric interpolation, we find a continuous family of holomorphic functions ϕt : Ki ∪ Λ → C∗,
t ∈ [0, 1], on a neighbourhood of Ki ∪ Λ satisfying the following conditions:

(i) ϕt is as close as desired to φi−1
t uniformly on [0, 1]×Ki−1.

(ii) ϕt − φt vanishes to order r at σa(t) for every a ∈ {1, . . . , α} and t ∈ [0, 1].
(iii) ϕt − φt vanishes to order λ(p) at p for every p ∈ Λ and t ∈ [0, 1].
(iv) If φ0 extends to a holomorphic function M → C∗ such that

∫
Cj

φ0θ0 = qj(0) for all j ∈ I , then the
homotopy ϕt can be chosen such that ϕ0 = φ0.

In view of condition (III), if the approximation in (i) is close enough then, arguing as in [2, proof of Lemma
4.2], the implicit function theorem furnishes a continuous path β : [0, 1] → CN such that Ξ(t, β(t), ·) is
close to 1 uniformly on Ki−1 for all t ∈ [0, 1] and the continuous family of holomorphic functions

φi
t := Ξ(t, β(t), ·)ϕt : Ki ∪ Λ → C∗, t ∈ [0, 1]

satisfies conditions (Ai)–(Ei); in particular, in the assumptions in (iv) we can choose β with β(0) = 0. Note
that (Ci) is ensured by (Ci−1), (I), and (ii), while (Di) is guaranteed by (Di−1), (II), and (iii).

The critical case: Ii ̸= Ii−1. In this case Ii \ Ii−1 = {j} ⊂ I . Taking into account that
Cj ∩ (Λ ∪ Σ ∪ P ) = ∅ and Ki−1 ∪ Cj is an admissible Runge compact set in M , the construction is
reduced to the noncritical case by using Lemma 2.3 and [2, Lemma 2.3]. The details are similar to [2, proof
of Lemma 4.3] and we leave them out. This completes the proof of Proposition 2.2. □

3. REMOVING BRANCH POINTS

In this section we establish the following extension of Theorem 1.1 which says that we can move the branch
points out of a minimal surface while keeping the poles fixed. This result and Theorem 1.2 (on moving the
poles) trivially imply Corollary 1.3. We shall use the notation in (1.5) and (1.7).

Theorem 3.1. Let M be an open Riemann surface and n ≥ 3 an integer. For every u ∈ CMIbr,s(M,Rn)

there is an isotopy ut ∈ CMIbr,s(M,Rn), t ∈ [0, 1], such that u0 = u, ut − u is continuous on M (hence
E∞
ut

= E∞
u ) for all t ∈ [0, 1], and u1 : M \ E∞

u1
→ Rn is unbranched, hence u1 ∈ CMIs(M,Rn).

Furthermore, we can choose the isotopy such that for each t ∈ [0, 1] the Gauss map G (ut) of ut equals
G (u) in their common domain of definition M \ (br(ut) ∪ br(u) ∪ E∞

u ).
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The theorem says in particular that the inclusion CMIs(M,Rn) ↪→ CMIbr,s(M,Rn) induces a
surjection of path components. In the proof, we shall need the following result. The notion of an abelian
differential with values in a complex cone A ⊂ Cn was introduced in Subsect. 2.2.

Proposition 3.2. Assume that M is a connected open Riemann surface, A ⊂ Cn is a closed complex cone
of positive dimension, and ω is a nontrivial abelian differential on M with values in A. Then there is a path
of nontrivial abelian differentials ωt = htω (t ∈ [0, 1]) with values in A, where ht is a path of meromorphic
functions on M , satisfying ω0 = ω (that is, h0 ≡ 1) and either of the following conditions:

(a) ω1 = h1ω is a holomorphic 1-form on M without zeros.
(b) ht has no zeros for every t ∈ [0, 1], ωt − ω = (ht − 1)ω is holomorphic on M for every t ∈ [0, 1], and

ω1 = h1ω is an abelian differential on M without zeros.

Proof. Write (ω) =
∑

p∈M k(p)p = (ω)0 − (ω)∞ (see Subsect. 2.2).

We first explain how to obtain a path ωt (t ∈ [0, 1]) as in the statement satisfying condition (a). Choose a
normal exhaustion K0 ⊂ K1 ⊂ · · · ⊂

⋃∞
i=0Ki = M by compact Runge sets such that supp(ω)∩K0 = ∅.

Let supp(ω) ∩ K1 = {p1, . . . , pm} and set nj = k(pj) for j = 1, . . . ,m. For every j = 1, . . . ,m we
choose a real analytic path aj : [0, 1] → M \K0 such that aj(0) = pj and aj(1) ∈ M \K1. Pick a number
ϵ1 > 0. Lemma 2.1 furnishes a path {f1

t }t∈[0,1] of meromorphic functions on M with divisors

(3.1) (f1
t ) =

m∑
j=1

njaj(t), t ∈ [0, 1],

such that

(3.2) max
x∈K0, t∈[0,1]

|f1
t (x)− 1| < ϵ1.

Note that aj(0) = pj , so the divisor (f1
0 ) =

∑m
j=1 njpj is precisely the part of the divisor (ω) lying in K1.

Hence, the 1-form ω′ = 1
f1
0
ω has no zeros or poles on K1. Consider the path of abelian differentials

(3.3) ωt =
f1
t

f1
0

ω = f1
t ω

′, t ∈ [0, 1].

We have that ω0 = ω, ω1 = f1
1ω

′, supp(ωt) ∩ K0 = ∅ for all t ∈ [0, 1], supp(ω1) ∩ K1 = ∅, and ωt

approximates ω0 on K0 for all t ∈ [0, 1]. We now repeat the same procedure with the abelian differential ω1

in order to find a path of meromorphic functions {f2
t }t∈[1,2] on M such that the divisor (f2

1 ) agrees with the
part of the divisor (ω1) on K2, supp(f2

t ) ∩K1 = ∅ for all t ∈ [1, 2], supp(f2
2 ) ⊂ M \K2, and

max
x∈K1, t∈[1,2]

|f2
t (x)− 1| < ϵ2

for a given ϵ2 > 0. Set

ωt =
f2
t

f2
0

ω1, t ∈ [1, 2].

Then, supp(ωt) ∩ K1 = ∅ for all t ∈ [1, 2], supp(ω2) ∩ K2 = ∅, and ωt approximates ω1 uniformly on
K1 for all t ∈ [1, 2]. Continuing inductively, we obtain a path of abelian differentials ωt, t ∈ [0,∞), such
that supp(ωt) ∩Kj = ∅ for all t ≥ j and j = 0, 1, . . .. Choosing ϵj > 0 small enough at every step, the
approximation conditions ensure that ω∞ = limt→∞ ωt is an abelian differential without zeros or poles on
M . It remains to reparametrise the interval [0,∞] to [0, 1]. This explains part (a) of the proposition.

We now explain how to modify the above argument to obtain a path of abelian differentials ωt, t ∈ [0, 1],
satisfying condition (b). Set Λ = supp(ω)∞ and write (ω)∞ =

∑
p∈Λ λ(p)p. Choose K0 ⊂ K1 ⊂ · · · as

above, let supp(ω)0∩K1 = {p1, . . . , pm} and set nj = k(pj) > 0 for j = 1, . . . ,m. Choose analytic paths
9



aj : [0, 1] → M \K0 (j = 1, . . . ,m) such that aj(0) = pj , aj(1) ∈ M \K1, and Λ∩
⋃m

j=1 aj([0, 1]) = ∅.
Lemma 2.1 provides a path {f1

t }t∈[0,1] of holomorphic functions on M satisfying (3.1), (3.2), and

(3.4) f1
t − 1 vanishes to order λ(p) at p for every p ∈ Λ.

Note that (f1
0 ) =

∑m
j=1 njpj is the part of (ω)0 lying in K1, ω′ = 1

f1
0
ω has no zeros on K1, and the path of

abelian differentials ωt = f1
t ω

′ (t ∈ [0, 1]) defined as in (3.3) satisfies ω0 = ω, supp(ωt)0 ∩K0 = ∅ for
all t ∈ [0, 1], supp(ω1)0 ∩K1 = ∅, ωt approximates ω0 on K0 for all t ∈ [0, 1], and the difference ωt − ω

is holomorphic for all t ∈ [0, 1] as guaranteed by (3.4). Repeating the same procedure in a recursive way
as above leads to a path of abelian differentials ωt (t ∈ [0,∞]) that, after reparametrising [0,∞] to [0, 1],
satisfies the required properties. □

Proof of Theorem 3.1. Let u0 ∈ CMIbr,s(M,Rn). Then, ω0 = 2∂u0 is an abelian differential on M with
values in the null quadric A (1.2) whose divisor satisfies supp(ω0) = E0

u0
∪ E∞

u0
= br(u0) ∪ P (u0) (see

(1.7) and Subsect. 2.2 for the notation). Let {ωt}t∈[0,1] be a path of nontrivial abelian differentials on M

with values in A, provided by Proposition 3.2 (b), so ωt = htω0 for some meromorphic function ht on M

and ωt − ω0 is holomorphic for all t ∈ [0, 1], and ω1 has no zeros. In particular, (ωt)∞ = (ω0)∞ for all
t ∈ [0, 1]. Let Λ = supp(ω0)∞ and write (ω0)∞ =

∑
p∈Λ λ(p)p. Let {Cj : j ∈ I ⊂ N} be a collection of

smoothly embedded oriented Jordan curves in M determining a homology basis of M such that
⋃

j∈J Cj

is Runge in M for every finite set J ⊂ I , each curve Cj contains a nontrivial arc C̃j disjoint from Ci for
all i ∈ I \ {j}, and Cj ∩ Λ = ∅ for all j ∈ I . Since the real part ℜ(ω0) of ω0 is exact on M , we have
that ℜ

∫
Cj

ω0 = 0 for every j ∈ I . Proposition 2.2 then furnishes a path {ξt}t∈[0,1] ⊂ O∗(M) of nowhere
vanishing holomorphic functions on M , with ξ0 = 1, such that

(3.5) ξt − 1 vanishes to order λ(p) at p for every p ∈ Λ and t ∈ [0, 1],

and

(3.6) ℜ
∫
Cj

ξtωt = 0 for every j ∈ I and t ∈ [0, 1].

Since (ωt)∞ =
∑

p∈Λ λ(p)p, condition (3.5) ensures that ξtωt − ωt is holomorphic on M , and hence so is
ξtωt − ω0 for every t ∈ [0, 1] (recall that ωt − ω0 is holomorphic on M ). Thus, taking into account that
the curves Cj (j ∈ I) are a homology basis of M and ℜ(ω0) is exact on M , (3.6) implies that ℜ(ξtωt) is
exact on M as well for every t ∈ [0, 1]. Therefore, the real parts of the abelian differentials ξtωt integrate
by the Weierstrass formula (1.3) to a path of conformal minimal surfaces ut ∈ CMIbr,s(M,Rn) (t ∈ [0, 1])

such that u0 is the given initial map and for every t ∈ [0, 1] we have br(ut) = supp(ξtωt)0 = supp(ωt)0,
P (ut) = supp(ξtωt)∞ = supp(ωt)∞ = P (u0), and ut − u is continuous on M ; recall that each ξt
has neither zeros nor poles. In particular, br(u1) = supp(ω1)0 = ∅, and hence u1 ∈ CMIs(M,Rn).
Finally, since 2∂ut = ξtωt = 2ξtht∂u0, it is clear that the Gauss map G (ut) of ut equals G (u0) on
M \ (br(ut) ∪ br(u0) ∪ P (u0)) for every t ∈ [0, 1]; see (1.5). □

Remark 3.3. A comment is in order regarding the use of Proposition 2.2 in the proof of Theorem 3.1.
Proposition 2.2 is stated for a path of full abelian differentials θt on M . In our situation, ωt takes values in
the null quadric A (1.2) and is not assumed to be full. However, there is a C-linear subspace H ⊂ Cn such
that ω0 is full in H (meaning that ω0/θ : M → H is full for any nowhere vanishing holomorphic 1-form
θ on M ), and the same is then true for every ωt = htω0 (t ∈ [0, 1]) in the path given by the proposition.
Applying Proposition 2.2 to the path ωt with values in H gives a family of multipliers {ξt}t∈[0,1] ⊂ O∗(M)

with the properties stated in the proof of Theorem 3.1.

Let us record here the following extension of Theorem 3.1 which follows by a straightforward
modification of the proof.
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Corollary 3.4. If M , n, and u are as in Theorem 3.1 and C ⊂ M \E∞
u is a (possibly empty) closed discrete

subset of M that is in bijection with a subset of br(u), then there is an isotopy ut ∈ CMIbr,s(M,Rn),
t ∈ [0, 1], such that u0 = u, ut − u is continuous on M for all t ∈ [0, 1], and br(u1) = C. Furthermore, we
can choose the isotopy such that for each t ∈ [0, 1] the Gauss map G (ut) of ut equals G (u) in their common
domain of definition M \ (br(ut) ∪ br(u) ∪ E∞

u ).

4. REMOVING COMPLETE ENDS OF FINITE TOTAL CURVATURE

In this section, we prove Theorem 1.2. In view of Theorem 3.1, this will also yield Corollary 1.3.

Let M be an open Riemann surface and u ∈ CMIfs(M,Rn) for some n ≥ 3. Denote by P = P (u) =

{pj}j ⊂ M the closed discrete set of poles of the abelian differential ∂u. We shall construct a path
Pt = {pj(t)}j ⊂ M (t ∈ [0, 1)) of closed discrete subsets such that the graphs of the paths pj(t) in
[0, 1]×M are pairwise disjoint, pj(0) = pj and pj(t) diverges to infinity in M as t → 1 for every j, and an
isotopy ut : M \ Pt → Rn of conformal minimal immersions with a complete end of finite total curvature
at every point of Pt, t ∈ [0, 1) (that is, P (ut) = Pt) such that the limit u1 = limt→1 ut : M → Rn exists
and is a conformal minimal immersion without singularities.

Fix a holomorphic immersion z : M → C, which therefore provides a local holomorphic coordinate on
M on a neighbourhood of any point. Choose a normal exhaustion K0 ⊂ K1 ⊂ K2 ⊂ · · · of M by smoothly
bounded compact Runge sets, each contained in the interior of the next one, such that P ∩ K0 = ∅. We
shall proceed inductively, using the parameter interval [i, i + 1] ⊂ R in the i-th step of the induction and
finally reparametrising [0,+∞] to [0, 1] as in the proof of Proposition 3.2.

We begin by explaining the initial step of the construction with i = 0; every subsequent step will be
of the same kind. Choose real analytic paths pj(t) ∈ M \ K0, t ∈ [0, 1], with pairwise disjoint graphs in
[0, 1] ×M such that pj(0) = pj and pj(1) ∈ M \K1 for all j = 1, 2, . . .. The path pj(t) is chosen to be
independent of t if pj ∈ M \K1, which holds for all but finitely many j. Let γj(t) = (t, pj(t)) for t ∈ [0, 1].
There is a convex neighbourhood D ⊂ C of [0, 1] such that every pj extends from [0, 1] to a holomorphic
map pj : D → M , and Γj = γj(D) is a family of pairwise disjoint closed complex curves (graphs of pj
over D) in the Stein surface D ×M . Let Vj denote the holomorphic vector field on D ×M given by

Vj =
∂

∂t
+ ṗj(t)

∂

∂z

∣∣∣
x
,

where t is the coordinate on C and z : M → C is the holomorphic immersion. Note that Vj is tangent to
the complex curve Γj . Let ϕj,t(x) = (t, φj,t(x)) denote the holomorphic flow of Vj satisfying the initial
condition φj,0(x) = x. Shrinking D around [0, 1] if necessary, the flow is defined for all t ∈ D and all x in
a disc neighbourhood Uj ⊂ M of the point pj = pj(0) for every j, and the map

φj,t : Uj → Uj,t := φj,t(Uj) ⊂ M

is biholomorphic and satisfies φj,t(pj) = pj(t) for every t ∈ D and every j. Note that for all but finitely
many j we have Vj = ∂

∂t and hence φj,t is the identity on Uj for all t ∈ D. Choosing the discs Uj small
enough, we may assume that the sets {Uj,t}j are pairwise disjoint for all t ∈ D, and they are also disjoint
from a neighbourhood W0 ⊂ M of K0. Write 2∂u0 = f0θ. Consider the path of abelian differentials ωt on
the domains Ũt := W0 ∪

⋃
j Uj,t ⊂ M , t ∈ D, defined by

(4.1) ωt =

{
(φ−1

j,t )
∗(f0θ) on Uj,t,

f0θ on W0.

Note that ωt is full, it assumes values in the null quadric A∗ (1.2) for every t ∈ D, it has a pole of order
nj ≥ 2 at the point pj(t) for every j (with nj independent of t), and it has no other zeros or poles.
Furthermore, the residue of ωt at pj(t) is independent of t ∈ D, so it has vanishing real part (as this
holds for ω0 = 2∂u0). Write ωt = ftθ for t ∈ D. Then, ft : Ũt ∪W0 → Y = A∗ ∪ Q is a holomorphic
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map depending holomorphically on t ∈ D, and f0 = 2∂u0/θ is holomorphic on all of M . (Recall that
Q ⊂ CPn−1 is the hyperquadric (1.4).) Writing f(t, x) = ft(x), the map f with values in Y is holomorphic
on the open set

O := (D ×W0) ∪
⋃
t∈D

({t} × Ũt) ⊂ D ×M

and on the complex submanifold {0} × M . Note that f−1(Q) = Γ :=
⋃

j Γj is a complex submanifold
contained in O. It is obvious that f extends from a somewhat smaller open set containing (D ×K0) ∪ Γ to
a continuous map f : D ×M → Y which agrees with f0 on {0} ×M and maps (D ×M) \ Γ to A∗.

Let {Cl : l ∈ I ⊂ N} be a collection of smooth oriented Jordan curves in M determining a homology
basis of M such that

⋃
l∈J Cl is a Runge compact set in M for every finite set J ⊂ I , and each curve

Cl contains a nontrivial arc C̃l that is disjoint form Ci for all i ∈ I \ {l}. In addition, we choose
these curves such that C ∩ pj([0, 1]) = ∅ for every j = 1, 2, . . . where C =

⋃
l∈I Cl, and C1, . . . , Cℓ

determine a homology basis of K0. We assume that ℓ > 0 since the proof is much simpler otherwise. Let
Pt = (Pt

1, . . . ,Pt
ℓ) : C (C0) → (Cn)ℓ be the period map whose l-th component is given by

Pt
l (g) =

∫
Cl

gωt, g ∈ C (Cl).

Up to shrinking the domain D ⊃ [0, 1], Lemma 2.3 furnishes a nowhere vanishing holomorphic function
Ξ : D × CN ×M → C∗ satisfying the following conditions:

(I) Ξ(t, ζ, ·)− 1 vanishes to order nj at pj(t) for every t ∈ [0, 1], ζ ∈ CN , and j = 1, 2, . . ..
(II) The map CN ∋ ζ 7−→ Pt

(
Ξ(t, ζ, ·)

)
∈ (Cn)ℓ has maximal rank at ζ = 0 for each t ∈ [0, 1].

(III) Ξ(·, 0, ·) ≡ 1.

Recall that the manifolds Q ⊂ CPn−1 (1.4), Y = A∗ ∪ Q ⊂ CPn (1.6), and A∗ = Y \ Q are Oka
manifolds. Indeed, A∗ is a homogeneous space of the complex Lie group O(n,C), and hence an Oka
manifold by Grauert’s theorem [14]. (See also [11, Proposition 5.6.1 and Example 5.6.2].) The projection
π : A∗ → Q, π(z1, . . . , zn) = [z1 : · · · : zn], is a holomorphic fibre bundle with Oka fibre C∗ = C \ {0},
so Q is Oka by [11, Theorem 5.6.5]. Finally, π : Y → Q is a holomorphic line bundle, so Y is Oka by the
same theorem.

Recall that nj ≥ 2 denotes the order of the pole of f0 = 2∂u0/θ at the point pj for j = 1, 2, . . ..
By the Oka principle (see [11, Theorem 5.4.4]), there is a holomorphic map F : D × M → Y which
agrees with f to order nj along Γj for every j, it agrees with f(0, · ) on {0} ×M , and it approximates f as
closely as desired uniformly on [0, 1] × K0. Moreover, after shrinking D around [0, 1] we can ensure that
F−1(Q) = f−1(Q) = Γ, that is, F maps (D × M) \ Γ to the Oka domain A∗ = Y \ Q ⊂ Y . This can
be obtained by inductively using [10, Theorem 1.3]. Then, θt = F (t, · )θ (t ∈ [0, 1]) is an analytic path of
abelian differentials on M with values in A∗ satisfying the following conditions.

(i) θ0 = ω0 = 2∂u0.
(ii) θt − ωt is holomorphic near pj(t) for every t ∈ [0, 1] and j = 1, 2, . . .

(iii) θt approximates ωt uniformly on K0 and uniformly in t ∈ [0, 1].
(iv) θt has no zeros on M for any t ∈ [0, 1] and its polar locus is Pt = {pj(t)}j .

Assuming that the approximation of f by F is close enough, every θt is full, and the implicit function
theorem provides in view of conditions (II), (III), and (4.1) a path β : [0, 1] → CN such that β(0) = 0,
gt := Ξ(t, β(t), ·) is uniformly close to 1 on K0 for all t ∈ [0, 1], and the continuous family of abelian
differential gtθt (t ∈ [0, 1]) satisfies

ℜ
∫
Cl

gtθt = ℜ(Pt
l (1)) = ℜ

∫
Cl

ωt = ℜ
∫
Cl

f0θ = 0, l = 1, . . . , ℓ.
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(Cf. [6, proof of Proposition 3.1]. Note that fullness of ωt (t ∈ [0, 1]) has been used here in an important
way to kill the real periods, which is seen in condition (II) above.) Thus, taking into account conditions (I)
and (III) and replacing θt by gtθt, we may assume in addition to conditions (i)–(iv) above that

(4.2) ℜ
∫
Cl

θt = 0 for every l ∈ {1, . . . , ℓ} and t ∈ [0, 1].

(Note that g0 ≡ 1.) Proposition 2.2 then furnishes a path of holomorphic functions ht : M → C∗ (t ∈ [0, 1])

such that h0 ≡ 1 and the following conditions hold for every t ∈ [0, 1].

(a) ℜ
∫
Cl

htθt = 0 for every l ∈ I; take into account (4.2) and that ℜ
∫
Cl

θ0 = 2ℜ
∫
Cl

∂u0 = 0 for all l ∈ I .
(b) ht − 1 vanishes to order nj at the point pj(t) for every j = 1, 2, . . ..
(c) ht is uniformly close to 1 on K0.

Condition (b) implies that the full abelian differential htθt has the same residue as θt at the point pj(t) for
every j and t. By the construction, this agrees with the residue of θ0 = 2∂u0 at pj = pj(0), so its real part
vanishes. Hence, condition (a) implies that ℜ(htθt) is exact on M . Therefore, taking also (c) into account
and replacing θt by htθt, we may assume in addition to conditions (i)–(iv) above that ℜ(θt) is exact on M for
every t ∈ [0, 1]. It follows that the path of abelian differentials θt integrates by the Weierstrass formula (1.3)
to a path of maps ut ∈ CMIfs(M,Rn) with 2∂ut = θt for every t ∈ [0, 1], so u0 = u (see (i)), P (ut) = Pt

(see (iv)), and ut approximates u0 on K0 (see (iii) and (4.1)) for every t ∈ [0, 1]. In particular, the minimal
surface u1 ∈ CMIfs(M,Rn) has no singularities on K1. This completes the first step of the construction.

In the second step, we apply the same procedure, starting with u1 and finding a path {ut}t∈[1,2] ∈
CMIfs(M,Rn) such that for all t ∈ [1, 2] we have P (ut) ⊂ M \ K1, ut approximates u1 on K1, and
u2 is nonsingular on K2. Clearly, the induction may be continued so that the limit u∞ = limt→∞ ut
exists uniformly on compacts in M and u∞ ∈ CMI(M,Rn). Since all maps ut ∈ CMIfs(M,Rn) in the
construction approximate u0 on K0, which is full, we can ensure that they all are full as well.

This completes the proof of Theorem 1.2.

The following extension of this result, concerning moving complete ends of finite total curvature within
the surface, follows by a straightforward modification of the proof. Recall the notation in (1.7).

Corollary 4.1. If M , n, and u are as in Theorem 1.2 and C ⊂ M is a (possibly empty) closed discrete
subset that is in bijection with a subset of E∞

u , then there is an isotopy ut ∈ CMIfs(M,Rn), t ∈ [0, 1], such
that u0 = u and E∞

u1
= C.
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