
THE NONHOMOGENEOUS CAUCHY–RIEMANN EQUATION ON
FAMILIES OF OPEN RIEMANN SURFACES

FRANC FORSTNERIČ

ABSTRACT. In this paper we give an optimal solution to the ∂-equation for continuous or smooth
families of complex structures and (0, 1)-forms of a Hölder class on a smooth open orientable surface.
As an application, we obtain the Oka–Grauert principle for complex line bundles on such families.

1. THE ∂-EQUATION ON A FAMILY OF OPEN RIEMANN SURFACES

In this paper, we show that the nonhomogeneous Cauchy–Riemann equation, or the ∂-equation
for short, can be solved for very general families of complex structures and (0, 1)-forms of a
Hölder class on a smooth open orientable surface, with the usual gain of one derivative in the space
variable and without loss of regularity in the parameter. (The same approach can be carried out
in Sobolev spaces.) Our main results are Theorem 1.1 and its global version, Corollary 1.2. The
proof uses nonhomogeneous Beltrami equation on smoothly bounded relatively compact domains in
open Riemann surfaces, together with the Runge approximation theorem for families of holomorphic
functions on families of open Riemann surfaces (see [9, Theorem 1.1]). An application is a Dolbeault
cohomology vanishing theorem (see Proposition 1.5) and the classification of holomorphic line bundles
on such families (see Theorem 2.1).

We begin by introducing the setup, referring to [9] for more details. Let X be a smooth orientable
surface. A complex structure on X is an endomorphism J of its tangent bundle TX satisfying
J2 = −Id. Thus, J is a section of the smooth vector bundle T ∗X ⊗ TX → X whose fibre over
x ∈ X is the space Hom(TxX,TxX) of linear maps TxX 7→ TxX . We endow the plane R2 ∼= C
with the standard complex structure Jst given in standard basis by the matrix

(
0 −1
1 0

)
, and in complex

notation by multiplication by i =
√
−1. A differentiable function f : U → C on an open set U ⊂ X

is said to be J-holomorphic if the Cauchy–Riemann equation dfx ◦ Jx = i dfx holds for every x ∈ U .
We say that J is of (local) Hölder class C (k,α) for some k ∈ Z+ = {0, 1, 2, . . .} and 0 < α < 1 if
for any relatively compact domain Ω b X , the restriction J |Ω ∈ Γ(k,α)(Ω, T ∗Ω⊗ TΩ) is a section of
T ∗Ω ⊗ TΩ of class C (k,α)(Ω). (Hölder norms are defined in the usual way with respect to a smooth
Riemannian metric on X; see [10, Sect. 4.1]. If Ω has C 1 boundary, as will be the case in our results,
then a function f ∈ C (k,α)(Ω) extends to a unique function in C (k,α)(Ω). The same holds for complex
structures.) For such J , there is an atlas {(Ui, φi)}i of open sets Ui ⊂ X with

⋃
i Ui = X and J-

holomorphic charts φi : Ui → φi(Ui) ⊂ C of class C (k+1,α)(Ui); see [2, Theorem 5.3.4]. Since the
transition maps φi ◦φ−1

j are Jst-biholomorphic, J determines the structure of a Riemann surface onX ,
and every J-holomorphic function is of local class C (k+1,α) in the given smooth structure on X . Since
the inverse of a diffeomorphism of local class C (k+1,α) is again of the same class (see Norton [25] and
Bojarski et al. [4, Theorem 2.1]), the smooth structure on X determined by a complex structure J of
class C (k,α) is C (k+1,α) compatible with the given smooth structure.
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Let B be a topological space whose nature will depend on the integer l ≥ 0 to be specified. When
l = 0, we assume thatB is a paracompact Hausdorff space, and if l > 0 thenB will be a (paracompact)
manifold of class C l. A family {Jb}b∈B of complex structures on X is said to be of class C l,(k,α) if
for any relatively compact domain Ω b X , the map B 3 b 7→ Jb|Ω ∈ Γ(k,α)(Ω, T ∗Ω ⊗ TΩ) is
of class C l as a map to the Hölder space Γ(k,α)(Ω, T ∗Ω ⊗ TΩ). Following Kodaira and Spencer
[21] and Kirillov [20], the collection {(X, Jb)}b∈B is called a family of Riemann surfaces of class
C l,(k,α). Such a family {Jb}b∈B can equivalently be given by a family {µb}b∈B of maps from X to
the unit disc D = {ζ ∈ C : |ζ| < 1} of the same smoothness class C l,(k,α); see [9, Sect. 2]. A
continuous map f : B × X → Y to a complex manifold Y is said to be X-holomorphic if the map
fb = f(b, · ) : X → Y is Jb-holomorphic for every b ∈ B. Assuming that {Jb}b∈B is of class C l,(k,α),
the space Z = B × X endowed with the complex structure Jb on the fibre {b} × X admits fibre
preserving X-holomorphic charts of class C l,(k+1,α) with values in B × C which are local in b ∈ B
and semiglobal in the space variable x ∈ X (see [9, Theorem 4.1]). Every X-holomorphic function
f : B ×X → C of class C l,0 is of local class C l,(k+1,α) (see [9, Lemma 5.6]).

Assume now that X is a smooth open surface. Fix a complex structure J of class C (k,α)

(k ∈ Z+, 0 < α < 1) on X . By Gunning and Narasimhan [15], there is a J-holomorphic immersion
z : X → C. By what was said above, z is of class C (k+1,α) in the given smooth structure on X . Its
differentials dz and dz̄ trivialise the respective cotangent bundles T ∗(1,0)

J X and T ∗(0,1)
J X , and they are

of the same class C (k,α) as J . We have C ⊗ T ∗X = T
∗(1,0)
J X ⊕ T ∗(0,1)

J X , and every 1-form β on
X can be uniquely written as β = Adz + Bdz̄ for a pair of functions A,B : X → C. Note that β
is of class C (k,α) if and only if the functions A,B are of class C (k,α). Given a differentiable function
f : X → C, its differential equals

(1.1) df = ∂Jf + ∂Jf = fz · dz + fz̄ · dz̄,

where the partial derivatives fz and fz̄ with respect to z and z̄ are defined by the above equation.

Given a (0, 1)-form β = u dz̄ on a domain Ω ⊂ X , the ∂J -equation asks for a solution f : Ω→ C
of ∂Jf = β; equivalently, fz̄ = u. If Ω is relatively compact and has sufficiently regular boundary
then this elliptic equation is solvable in many function spaces with a gain of one derivative; see e.g.
Ahlfors [1] and Astala et al. [2].

We shall prove the following result, which gives families of solutions for families of complex
structures and (0, 1)-forms on domains in a smooth open surface.

Theorem 1.1. Assume that X is a smooth open orientable surface, Ω b X is a relatively compact
domain with C (k+1,α) boundary for some k ∈ Z+ and 0 < α < 1, l ∈ Z+, B is a paracompact
Hausdorff space if l = 0 and a C l manifold if l > 0, and {Jb}b∈B is a family of complex structures of
class C l,(k,α)(B × Ω) on Ω. Given a family of (0, 1)-forms {βb}b∈B on Ω of class C l,(k,α)(B × Ω),
there is a function f ∈ C l,(k+1,α)(B × Ω) satisfying

(1.2) ∂Jbf(b, · ) = βb on Ω for every b ∈ B.

Theorem 1.1, together with [9, Theorem 1.1], implies the following corollary concerning solutions
of families of global ∂-equations.

Corollary 1.2. Assume that {Jb}b∈B is a family of complex structures of local class C l,(k,α) on a
smooth open orientable surface X , where l, k ∈ Z+, l ≤ k + 1, 0 < α < 1 and B is as in Theorem
1.1. Given (0, 1)-forms βb ∈ Γ(X,T

∗(0,1)
Jb

X) such that the family {βb}b∈B is of local class C l,(k,α),
there is a function f : B ×X → C of local class C l,(k+1,α) satisfying

(1.3) ∂Jbf(b, · ) = βb on X for every b ∈ B.
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The condition l ≤ k+ 1 is due to the use of the Runge approximation theorem on families of open
Riemann surfaces [9, Theorem 1.1]. See also Remark 1.4 concerning the C∞ case.

These results are optimal since we have the expected gain of one derivative in the space variable
and no loss of regularity in the parameter b ∈ B. Note that the 1-forms βb and the function f in (1.2) are
expressed in terms of the smooth coordinates on X . Expressing them in terms of local Jb-holomorphic
charts leads to a loss of derivatives in the space variable if l > 0; see [9, V3, Theorem 9.1].

Proof of Theorem 1.1. We shall use the connection between complex structures and Beltrami
multipliers; see [9, Sect. 2] or any standard text on quasiconformal maps. Choose a smooth complex
structure J on X and a J-holomorphic immersion z : X → C. Every function µ : Ω → D of class
C (k,α)(Ω) with values in the unit disc determines a complex structure Jµ on Ω of the same class,
with µ = 0 corresponding to J |Ω. A function f : Ω → C satisfies the ∂Jµ-equation (and hence is
holomorphic on Ω) if and only if it satisfies the Beltrami equation fz̄ = µfz , with the partial derivatives
fz and fz̄ defined by (1.1). Conversely, every complex structure J ′ on Ω of class C (k,α) in the same
orientation class as J equals Jµ for a unique µ ∈ C (k,α)(Ω,D).

To prove the theorem, it suffices to show that for every point b0 ∈ B there is a neighbourhood
B0 ⊂ B of b0 such that equation (1.2) is solvable on B0 × Ω with f ∈ C l,(k+1,α)(B0 × Ω). By using
C l partitions of unity on B we then obtain a solution on B × Ω, thereby proving the theorem.

Note that the complex structure Jb0 on Ω extends to a complex structure onX of local class C (k,α).
To see this, we represent Jb0 in terms of J by a Beltrami multiplier µ ∈ C (k,α)(Ω,D). Since bΩ is of
class C (k+1,α), µ extends from Ω to a function µ′ : X → D of class C (k,α) with compact support (see
Gilbarg and Trudinger [10, Lemma 6.37]). The associated complex structure Jµ′ on X is of local class
C (k,α) and it coincides with Jµ on Ω. For k ≥ 1 the same conclusion holds if bΩ is of class C (k,α).

This reduces the proof of the theorem to the following proposition. In this result, the smooth
structure on X is the one defined by the complex structure J , and the Hölder norms are with respect to
a fixed smooth Riemannian metric on X (whose precise choice is unimportant).

Proposition 1.3. Let (X, J) be an open Riemann surface, and let Ω b X , k, α be as in Theorem
1.1. For µ ∈ C (k,α)(Ω,D) let Jµ denote the associated complex structure on Ω, with J0 = J |Ω.
For c > 0 set Bc = {µ ∈ C (k,α)(Ω) : ‖µ‖k,α < c}. There exists c > 0 such that for any
map Bc 3 µ 7→ βµ ∈ Γ(k,α)(Ω, T

∗(0,1)
Jµ

Ω) of class C l, l ∈ {0, 1, . . . ,∞, ω}, there is a function

f ∈ C l,(k+1,α)(Bc × Ω) such that for every µ ∈ Bc the function fµ = f(µ, · ) : Ω→ C satisfies

(1.4) ∂Jµfµ = βµ.

Proof. We begin by recalling some technical tools from [9, Secs. 3-4]. Choose a J-holomorphic
immersion z : X → C. There is a Cauchy kernel on (X, J) which determines on any smoothly
bounded domain Ω b X a pair of bounded linear operators P : C (k,α)(Ω) → C (k+1,α)(Ω) and
S : C (k,α)(Ω) → C (k,α)(Ω) (k ∈ Z+, 0 < α < 1) such that for any φ ∈ C (k,α)(Ω), the
Cauchy operator P solves the equation P (φ)z̄ = φ on Ω, while the Beurling operator S is given
by S(φ) = P (φ)z . Their properties are summarised in [9, Theorem 3.2]. Although the cited result is
stated for domains Ω with C∞ boundaries, it is clear from the proof and [10, Lemma 6.37] that it holds
if bΩ is of class C (k,α) if k ≥ 1 and of class C (1,α) if k ≥ 0.

By [9, Theorem 4.1] there are a constant c > 0 and a function h : Bc × Ω → C such that
for every µ ∈ Bc, hµ = h(µ, · ) : Ω → C is a Jµ-holomorphic immersion of class C (k+1,α)(Ω)

depending analytically on µ. We recall the proof since we shall use a similar idea in the sequel. The
function f = hµ must solve the Beltrami equation fz̄ = µfz . We look for a solution in the form
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f = z|Ω + P (φ) with φ ∈ C (k,α)(Ω). Note that φ = 0 corresponds to f = z|Ω. We have that

fz̄ = P (φ)z̄ = φ, fz = 1 + P (φ)z = 1 + S(φ).

Inserting in the Beltrami equation fz̄ = µfz gives (I − µS)φ = µ, where I denotes the identity map
on C (k,α)(Ω). For ‖µ‖k,α small enough we have that ‖µS‖k,α < 1, so the operator I−µS is invertible
and its bounded inverse depends analytically on µ:

Θ(µ) = (I − µS)−1 =
∞∑
j=0

(µS)j ∈ Lin(C k,α(Ω)).

The gives the following solution hµ = f to the Beltrami equation fz̄ = µfz on Ω:

hµ = z|Ω + P (Θ(µ)µ) = z|Ω + P ((I − µS)−1µ) ∈ C (k+1,α)(Ω).

Note that hµ depend analytically on µ. For ‖µ‖k,α small enough, hµ is so close to h0 = z|Ω in
C (k+1,α)(Ω) that it is an immersion. Hence, for c > 0 small enough, {θµ = dhµ}µ∈Bc is a family of
nowhere vanishing holomorphic 1-forms on (Ω, Jb) of class C (k,α)(Ω) with analytic dependence on
µ. The conjugate θ̄µ = dh̄µ is a nowhere vanishing antiholomorphic (0, 1)-form with respect to Jµ for
every µ ∈ Bc. Thus, every family {βµ}µ∈Bc on Ω, where βµ is a (0, 1)-form with respect to Jµ, is of
the form βµ = uµ dh̄µ for a family of functions uµ : Ω → C, µ ∈ Bc. If the family {βµ}µ∈Bc is of
class C l,(k,α)(Bc × Ω) then {uµ}µ∈Bc is of the same class, and vice versa.

We shall express the ∂Jµ-equation (1.4) as a nonhomogeneous Beltrami equation with respect to
the immersion z. For µ ∈ Bc we can uniquely express any complex 1-form β on Ω as

β = Adz +Bdz̄ = Aµdhµ +Bµdh̄µ.

Note that β is of class C (k,α)(Ω) if and only if the coefficients A,B,Aµ, Bµ : Ω→ C are of this class.
We shall now express Aµ and Bµ in terms of the functions A,B, µ, and

gµ := (hµ)z ∈ C (k,α)(Ω).

We have
dhµ = (hµ)z dz + (hµ)z̄ dz̄ = gµ dz + µgµ dz̄

where the second identity follows from the Beltrami equation (hµ)z̄ = µ(hµ)z . It follows that

Adz +Bdz̄ = Aµ(gµdz + µgµdz̄) +Bµ(µgµ dz + gµ dz̄)

= (Aµgµ +Bµµgµ)dz + (Aµµgµ +Bµgµ)dz̄

and hence
A = Aµgµ +Bµµgµ, B = Aµµgµ +Bµgµ.

Solving these equations on Aµ and Bµ gives

Aµ =
1

(1− |µ|2)gµ
(A− µ̄B), Bµ =

1

(1− |µ|2)gµ
(B − µA).

Taking β = df , we have A = fz , B = fz̄ , Aµ = fhµ , Bµ = fh̄µ . This shows that the equation

∂Jµf = βµ = uµdh̄µ ⇐⇒ fh̄µ =
fz̄ − µfz

(1− |µ|2)gµ
= uµ

is equivalent to nonhomogeneous Beltrami equation

(1.5) fz̄ − µfz = (1− |µ|2)gµ uµ.

We look for solution in the form f = f(µ) = P (φ) with φ ∈ C (k,α)(Ω). Inserting fz̄ = P (φ)z̄ = φ

and fz = P (φ)z = S(φ) into the above equation gives

fz̄ − µfz = (I − µS)φ = (1− |µ|2)gµ uµ.
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For ‖µ‖k,α small enough the operator I − µS is invertible and we obtain

φ = φµ = (I − µS)−1
(
(1− |µ|2)gµ uµ

)
.

Since the bounded linear operator (I − µS)−1 ∈ Lin(C k,α(Ω)) is analytic in µ and (1− |µ|2)gµ uµ ∈
C l,(k,α)(Bc × Ω), the map (µ, x) 7→ φµ(x) also belongs to C l,(k,α)(Bc × Ω). Finally, the solution of
(1.5) is fµ = P (φµ), and the map (µ, x)→ fµ(x) belongs to C l,(k+1,α)(Bc × Ω). �

By what has been said before, this complete the proof of Theorem 1.1. �

Proof of Corollary 1.2. Global solvability of (1.3) is obtained by exhaustingX by an increasing family
of relatively compact, smoothly Runge domains, solving the equation (1.3) on each of them by using
Theorem 1.1, and applying the Runge approximation theorem on families of open Riemann surfaces
[9, Theorem 1.1] at every step of the induction to ensure convergence of solutions. One follows the
standard scheme in the proof of Cartan’s Theorem B, see e.g. [16, Section VIII.14]. �

Remark 1.4. If B is a manifold of class C l with 0 < l ≤ k + 1, then the space Z = B × X in
Theorem 1.1, endowed with an atlas of class C l,(k+1,α) given by [9, Theorem 4.1], is a mixed manifold
of class C l in the sense of Jurchescu [17, 18], and a Levi-flat CR manifold of CR-dimension one in the
sense of the Cauchy–Riemann geometry; see [3]. In Jurchescu’s papers, maps which are holomorphic
on complex leaves of a mixed manifold are called morphic, while in CR geometry they are called CR
maps. The Runge approximation theorem [9, Theorem 1.1] shows that Z is also a Cartan manifold of
class C l in the sense of [18, Sect. 6]. Cartan manifolds are analogues of Stein manifolds in the category
of mixed manifolds. Solvability of the tangential ∂-complex on C∞ Cartan manifolds was shown by
Jurchescu in [19, Sect. 3] by using sheaf-theoretic approach, similar to the one in the classical theory
of Stein manifolds.

There are results in the literature concerning the ∂-equation on a moving family of domains, also
in higher dimensional manifolds; see Diederich and Ohsawa [7], Cho and Choi [6], Gong and Kim [11,
Theorem 4.5], Simon [27], Kruse [22], among others. Pulling back a complex structure by a family of
diffeomorphisms, the case of moving domains is related to the variation of the complex structure on a
fixed domain. In [14], Greene and Krantz studied stability of the ∂-Neumann operator and the Kohn
solution of the ∂-equation under small integrable variations of a complex structure J on a compact
strongly J-pseudoconvex domain M . Assuming that the boundary bM is of class 2s + 5 for some
s ≥ 1, they obtained continuous dependence of the Neumann operator NJ in the Sobolev L2-space
W s under small variations of J of class C 2s+5, and hence continuous dependence of solutions of the
∂J -equation in W s−1 [14, Theorems 3.9, and 3.10]. We could not find results in the literature with
smooth (better than continuous) dependence of solutions on the complex structure.

Let B, X , and {Jb}b∈B be as in Theorem 1.1, where the family Jb is of class C l,(k,α) for some
0 ≤ l ≤ k + 1 and 0 < α < 1. Denote by O the sheaf of germs of functions f of class C l on
Z = B × X such that fb = f(b, · ) is Jb-holomorphic for each b ∈ B. By [9, Lemma 5.6], O is a
subsheaf of the sheaf C l,(k+1,α) of functions of the indicated class. These are sheaves of unital abelian
rings; in particular, of abelian groups. We have the following corollary to Theorem 1.1.

Proposition 1.5. (Assumptions as above.) Hq(Z,O) = 0 for all q = 1, 2, . . ..

Proof. Consider the sequence of homomorphisms of sheaves of abelian groups

(1.6) 0 −→ O ↪−→ C l,(k+1,α) ∂−→ C
l,(k,α)
(0,1) −→ 0,

where C
l,(k,α)
(0,1) is the sheaf of germs of (0, 1)-forms of class C l,(k,α) on the fibres Zb = (X, Jb) and ∂

is the operator which equals ∂Jb on Zb for every b ∈ B. By Theorem 1.1 the sequence (1.6) is exact.
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The second and the third sheaf in (1.6) are fine sheaves (as they admit partitions of unity), so they are
acyclic, i.e., their cohomology groups of order ≥ 1 vanish. It follows that

H1(Z,O) = Γ
(
Z,C

l,(k,α)
(0,1)

)
/∂ Γ

(
Z,C l,(k+1,α)

)
and Hq(Z,O) = 0 for q ≥ 2 (see [16, Chapter VI]). Here, Γ denotes the space of global sections of a
sheaf. The quotient group on the right hand side above vanishes by Theorem 1.1. �

2. THE OKA PRINCIPLE FOR LINE BUNDLES ON FAMILIES OF OPEN RIEMANN SURFACES

Every holomorphic vector bundle on an open Riemann surface is holomorphically trivial by the
Oka–Grauert principle; see Oka [26], Grauert [13], and [8, Theorem 5.3.1]. We now show that
Proposition 1.5 implies the Oka principle for isomorphism classes of families of holomorphic line
bundles on families of open Riemann surfaces.

Let B be a paracompact Hausdorff space, X be a smooth open surface, and {Jb}b∈B be a
continuous family of complex structures on X of class C α for some 0 < α < 1. Let C denote the
sheaf of germs of continuous functions on Z = B ×X , and let O denote the subsheaf of C consisting
of germs of X-holomorphic functions. These are sheaves of unital abelian rings. Furthermore, let
O∗ ⊂ O and C ∗ ⊂ C denote the subsheaves consisting of germs with nonzero values; these are
sheaves of (multiplicative) abelian groups. A topological complex line bundle E → Z = B × X

is said to be X-holomorphic (or fibrewise holomorphic) if it admits a transition cocycle consisting
of sections of the sheaf O∗. The restriction of such a line bundle to any fibre Zb = (X, Jb) is a
holomorphic line bundle on the Riemann surface (X, Jb). We denote by Pic(Z) ∼= H1(Z,O∗) the set
of isomorphism classes of X-holomorphic line bundles on Z = B ×X .

We have the following Oka principle for families of complex line bundles.

Theorem 2.1. Every topological complex line bundle on Z = B × X is isomorphic to an X-
holomorphic line bundle, and any two X-holomorphic line bundles on Z which are topologically
isomorphic are also isomorphic as X-holomorphic line bundles. Furthermore, Pic(Z) ∼= H2(Z,Z).

It follows in particular that if B is contractible then Pic(Z) = 0.

Proof. The proof follows the standard argument for complex line bundles on a complex manifold, due
to Oka [26]; see [8, Theorem 5.2.2]. Let σ(f) = e2πif . Consider the following commutative diagram
whose rows are exponential sheaf sequences and whose vertical arrows are the natural inclusions:

(2.1)
0 −→ Z ↪−→ O

σ−→ O∗ −→ 1y y y
0 −→ Z ↪−→ C

σ−→ C ∗ −→ 1

Note that C is a fine sheaf, and hence Hq(Z,C ) = 0 for all q ∈ N. By Proposition 1.5 we also have
Hq(Z,O) = 0 for all q ∈ N. Hence, the relevant part of the long exact sequence of cohomology
groups associated to the diagram (2.1) gives

0 −→ H1(Z,O∗) −→ H2(Z;Z) −→ 0y ∥∥
0 −→ H1(Z,C ∗) −→ H2(Z;Z) −→ 0

Thus, all arrows in the central square are isomorphisms. Since Pic(Z) ∼= H1(Z,O∗) and H1(Z,C ∗)

is the set of isomorphisms classes of topological line bundles on Z, the theorem follows. �

The Oka principle for maps from families of open Riemann surfaces to Oka manifolds (see [9,
Theorem 1.6]) allows us to extend the first part of Theorem 2.1 to vector bundles of arbitrary rank by
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using the approach from the classical Oka–Grauert theory. However, the assumptions on the parameter
spaceB must be more restrictive for the cited result to imply. We state the following special case when
B is a CW complex and refer to the discussion preceding [9, Theorem 1.6] for more information.

Theorem 2.2. Assume that B is a finite CW complex or a countable locally compact CW-complex of
finite dimension,X is a smooth open surface, and {Jb}b∈B is a continuous family of complex structures
on X of local Hölder class C α for some 0 < α < 1. Then, every topological vector bundle on B ×X
is isomorphic to a fibrewise holomorphic vector bundle.

Proof. A topological vector bundleE onB×X is the pullback f∗U by a continuous map f fromB×X
to a suitable Grassmannian G = G(r,N) (consisting of complex r-planes in CN ) of the universal
bundle U → G. (We take N big enough such that E embeds as a topological vector subbundle of the
trivial bundle (B × X) × CN ; this is possible since B × X is paracompact.) Since G is a complex
homogeneous manifold, and hence an Oka manifold by Grauert [12], the Oka principle in [9, Theorem
1.6] shows that f is homotopic to a map F : B × X → G such that F (b, · ) : X → G is Jb-
holomorphic for every b ∈ B. The pullback F ∗U → B × X is then a fibrewise holomorphic vector
bundle topologically isomorphic to f∗U. �

Remark 2.3. Under the assumptions in Theorem 2.2, it is also possible to show that any two fibrewise
holomorphic vector bundles on B × X that are topologically isomorphic are also isomorphic as
fibrewise holomorphic vector bundles. One may follow the classical case for a single complex structure
on a Stein manifold X , due to Grauert [13]; see also the expositions by Cartan [5], Leiterer [23], and
[8, Theorem 5.3.1]. However, to complete the proof, we need need an Oka principle for sections of
fibrewise holomorphic principal bundles onB×X , thereby extending the Oka principle for maps from
B ×X to Oka manifolds in [9, Theorem 1.6]. We shall treat this in a subsequent publication.

Note that Mongodi and Tomassini [24] obtained the Oka principle for more general CR vector
bundles on certain real analytic Levi-flat submanifolds of complex Euclidean spaces by reducing the
problem to the Oka–Grauert theorem [13]. Our techniques use considerably less regularity.
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