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ABSTRACT. We show that every projective Oka manifold is subelliptic. This solves a long-
standing open problem. We present further results concerning the relationship between the
Oka property, ellipticity, subellipticity, and a new property that we call weak ellipticity.

1. INTRODUCTION

A complex manifold Y is said to be an Oka manifold if it satisfies all forms of the h-principle
(also called the Oka principle) for holomorphic maps X → Y from any Stein manifold and,
more generally, from reduced Stein spaces X . In Gromov’s terminology [18, 3.1, p. 878],
Oka manifolds are called Ell∞ manifolds. Two simple characterisations of the class of Oka
manifolds are the convex approximation property introduced by the first named author in [9]
and the convex Ell1 property (see Kusakabe [21, Theorem 1.3]).

A complex manifold Y is said to be elliptic in the sense of Gromov if it admits a
dominating holomorphic spray s : E → Y defined on the total space of a holomorphic vector
bundle π : E → X (see Gromov [18, 0.5, p. 855]). This means that s restricts to the identity
map on the zero section E0

∼= Y of E, and for every y ∈ Y the differential ds0y at the origin
0y ∈ Ey = π−1(y) maps Ey onto TyY . An ostensibly weaker condition, subellipticity, was
introduced by the first named author in [7, Definition 2]. It asks for the existence of finitely
many holomorphic sprays (Ej, πj, sj) on Y , j = 1, . . . ,m, satisfying

(1.1) (ds1)0y(E1,y) + (ds2)0y(E2,y) + · · ·+ (dsm)0y(Em,y) = TyY for all y ∈ Y .

One of the main results of Oka theory is that every elliptic manifold is an Oka manifold (see
[18, 0.6, p. 855] and [14]), and every subelliptic manifold is an Oka manifold [7, Theorem
1.1]. See also the survey in [11, Chap. 5]. Examples of elliptic and subelliptic manifolds
can be found in [11, Sect. 6.4] and in the surveys [13, 10, 6]. In particular, every complex
homogeneous manifold is elliptic but the converse fails in general.

In this paper we prove the following main result.

Theorem 1.1. Every projective Oka manifold is subelliptic.

Theorem 1.1 solves a long-standing open problem, originating in Gromov’s seminal 1989
paper [18, 3.2.A” Question], whether every Oka manifold is elliptic or subelliptic; see also
[11, Problem 6.4.21]. The first counterexamples for noncompact manifolds were found only
very recently. In 2024, Kusakabe showed that the complement Cn \ K of any compact
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polynomially convex set K ⊂ Cn for n > 1 is an Oka manifold [22, Theorem 1.6]. A
few years earlier it was shown by Andrist, Shcherbina, and Wold [2] that if K is a compact
set with nonempty interior in Cn for n ≥ 3, then Cn \K fails to be subelliptic. Taking K to
be polynomially convex, Cn \ K is Oka but not subelliptic. These examples are non-Stein,
and every Stein Oka manifold is elliptic [18, 3.2.A, p. 879]. However, there seems to be no
example in the literature of a compact Oka manifold that fails to be elliptic or subelliptic. In
light of Theorem 1.1, the remaining open questions on this topic are the following.

Problem 1.2. (a) Is every projective Oka manifold elliptic?
(b) Is there a compact non-projective Oka manifold that fails to be subelliptic?

In [18, 3.2.A’, p. 879], Gromov proposed a way to see that every projective Oka manifold is
elliptic, although this was not formally stated and no details were provided. We were unable
to verify step 2 in his outline (see Remark 3.1), while step 3 follows from a later result by
Prezelj [27, 28]; see Lemma 2.2.

A much studied property of algebraic manifolds is the algebraic version of ellipticity. A
complex algebraic manifold Y is said to be algebraically elliptic if it admits an algebraic
dominating spray s : E → Y defined on the total space of an algebraic vector bundle
π : E → Y ; see [11, Definition 5.6.13 (e)]. Similarly, Y is algebraically subelliptic if it
admits finitely many algebraic sprays (Ej, πj, sj) satisfying (1.1). It was recently shown by
Kaliman and Zaidenberg [20] that every algebraically subelliptic manifold is algebraically
elliptic; the converse is a tautology. Algebraic ellipticity is a Zariski local condition as
shown by Gromov [18, 3.5.B, 3.5.C]; see also [11, Proposition 6.4.2]. No such results are
known in the holomorphic category. Every algebraically elliptic manifold Y satisfies the
algebraic homotopy approximation theorem for maps X → Y from affine manifolds X ,
showing in particular that every holomorphic map which is homotopic to an algebraic map is
a limit of algebraic maps in the compact-open topology; see [8, Theorem 3.1], [11, Theorem
6.15.1], and the recent generalisations in [1, Sect. 2]. As shown by Lárusson and Truong
[25], this is the closest analogue of the Oka principle in the algebraic category. The optimal
known geometric sufficient condition for a compact algebraic manifold to be algebraically
elliptic is uniform rationality; see Arzhantsev, Kaliman, and Zaidenberg [3, Theorem 1.3].
However, there are examples of projective Oka manifolds that fail to be algebraically elliptic,
for example, abelian varieties. Hence, the algebraic counterpart to Theorem 1.1 is not true,
and the GAGA principle of Serre [29] fails for subellipticity of projective manifolds.

2. PROOF OF THEOREM 1.1

Let Y ⊂ CPn be a projective manifold. Denote by U → CPn the universal line bundle. We
shall need the following lemma.

Lemma 2.1. Given a point y0 ∈ Y and a tangent vector 0 6= v0 ∈ Ty0Y , there are an integer
k > 0 and an algebraic vector field V on the total space of the line bundle π : L = Uk → CPn

(the k-th tensor power of U) with the following properties.

(a) V vanishes on the zero section L0
∼= CPn of L.

(b) For every e ∈ L|Y = π−1(Y ), we have that dπeV (e) ∈ Tπ(e)Y .
2



(c) There are an affine chart U0 ⊂ CPn with y0 ∈ U0, isomorphic to Cn, with coordinates
x = (x1, . . . , xn), and an algebraic line bundle chart L|U0

∼= U0 × C in which

(2.1) V (x, t) =
n∑
i=1

t Vi(x)∂xi ,

where ∂xi = ∂/∂xi, Vi(x) are polynomials, and t ∈ C is the fibre coordinate.
(d) We have dπe0V (e0) = v0 for some e0 ∈ Ly0 .

Proof. Let z = [z0 : z1 : · · · : zn] be homogeneous coordinates on CPn. Set Λi = {zi = 0}
for i = 0, 1, . . . , n, and let Ui = CPn \ Λi

∼= Cn be the affine chart with coordinates
(z0/zi, . . . , zn/zi) where the term zi/zi = 1 is omitted. We may assume that y0 ∈ U0. Denote
the affine coordinates on U0 by x = (x1, . . . , xn), with xi = zi/z0.

Since Y ∩ U0 is an algebraic submanifold of U0
∼= Cn, there is a polynomial vector

field W (x) =
∑n

i=1 Vi(x)∂xi on Cn whose restriction to Y is tangential to Y and satisfies
W (y0) = v0. We associate to W the vector field V (x, t) =

∑n
i=1 t Vi(x)∂xi on the trivial line

bundle U0 × C ∼= Cn+1, where t ∈ C is the fibre coordinate. Thus, V is a horizontal vector
field depending linearly on t. It clearly satisfies conditions (c) and (d) in the lemma, and it
satisfies conditions (a) and (b) on U0 × C.

We now show that, for a sufficiently large k > 0, V extends to an algebraic vector field on
L = Uk satisfying conditions (a) and (b).

For every i = 0, 1, . . . , n, we have a line bundle trivialisation θi : L|Ui
∼=→ Ui × C with

transition maps θi,j = θi ◦ θ−1j on (Ui ∩ Uj)× C given by

θi,j([z], t) =
(
[z], (zi/zj)

kt
)
, 0 ≤ i, j ≤ n.

In particular, θi,0([z], t) =
(
[z], (zi/z0)

kt
)
. We shall analyse the behaviour of V near the

hyperplane Λ0 \ Λi for all i = 1, . . . , n. It suffices to consider the case i = 1 since the same
argument will apply to every i. Replacing the first coordinate x1 = z1/z0 by 1/x1 = z0/z1,
the vector field V has the same form (2.1), where the coefficient functions Vj(x) are rational
with poles along the hyperplane {x1 = 0} = {z0 = 0}. (The component V1 gets changed, but
this will not affect the subsequent argument.) In these coordinates, the transition map θ1,0 is
given by θ1,0(x, t) =

(
x, x−k1 t

)
. Its differential has the block form

Dθ1,0(x, t) =

(
In 0

b x−k1

)
where In is the identity n× n matrix and b = (−kx−k−11 t, 0, . . . , 0). Hence, the image vector
field V ′ = (θ1,0)∗V on the chart L|U1 for x ∈ U0 ∩ U1 equals

V ′(x, t) = Dθ1,0(x, t)V (x, t) =
n∑
i=1

tVi(x)∂xi + (−k)t2x−k−11 V1(x)∂t′ .

In terms of the new fibre variable t′ = x−k1 t (so t = xk1t
′) we have

V ′(x, t′) =
n∑
i=1

t′xk1Vi(x)∂xi − k(t′)2xk−11 V1(x)∂t′ .

By choosing k > 0 big enough, V ′ extends to the points of L over the hyperplane Λ0 \ Λ1 =

{x1 = 0} and it vanishes there. Applying this argument for every i = 1, . . . , n, we see that
3



for k > 0 big enough the vector field V extends to the line bundle L = Uk and it vanishes on
L0 ∪ (L|Λ0). �

Proof of Theorem 1.1. Given a point y0 ∈ Y and a vector v0 ∈ Ty0Y , let V be a vector field
on L = Uk given by Lemma 2.1. Since V vanishes on the zero section L0 of L, there is a
neighbourhood Ω ⊂ L of L0 such that the flow φτ (e) of V , starting at τ = 0 at any point
e ∈ Ω, exists for all τ ∈ [0, 1]. We may assume that Ω has convex fibres. The map

s0 = π ◦ φ1 : Ω→ CPn

is a local holomorphic spray on CPn. Set L|Y = π−1(Y ). Condition (b) in Lemma 2.1
implies that π ◦ φτ maps the domain Ω ∩ L|Y to Y for every τ ∈ [0, 1], so it is a family of
local holomorphic sprays on Y . On the zero section L0 we have a natural direct sum splitting
TL|L0 = L⊕ TCPn. Identifying a vector e ∈ Ly = π−1(y) with e ∈ T0yLy, we let

(Vds0)y(e) = (ds0)0y(e) ∈ TyCPn

denote the vertical derivative of s0 at y applied to the vector e. We claim that conditions (c)
and (d) in Lemma 2.1 imply

(2.2) (Vds0)y0(e0) = v0.

To see this, choose δ0 ∈ (0, 1] such that δ0e0 ∈ Ω. We make the calculation in the line bundle
chart on L|U0 over the affine chart e0 ∈ U0 ⊂ CPn on which V is of the form (2.1). It follows
that π ◦φτ (δe) = π ◦φδτ (e) holds for every e ∈ L|U0, 0 ≤ δ ≤ 1, and all τ for which the flow
exists. Taking δ ∈ [0, δ0] gives π ◦ φτ (δe0) = π ◦ φδτ (e0) for 0 ≤ τ ≤ 1. At τ = 1 we obtain

s0(δe0) = π ◦ φ1(δe0) = π ◦ φδ(e0), 0 ≤ δ ≤ δ0.

Differentiating with respect to δ at δ = 0 and noting that
d

dδ

∣∣∣
δ=0

φδ(e0) = V (e0) and

dπe0V (e0) = v0 (see condition (d)) gives (2.2).

So far, we have not used the hypothesis that Y is an Oka manifold. At this point, we replace
L by L|Y and Ω by Ω ∩ L|Y . Since the line bundle L → Y is negative, its total space L is
a 1-convex manifold with the exceptional subset L0

∼= Y (see Grauert [15, Satz 1, p. 341]).
Hence, there is a plurisubharmonic exhaustion function ρ : L → [0,∞) with ρ−1(0) = L0

which is strongly plurisubharmonic on L \ L0. (In fact, the squared norm of a negatively
curved hermitian metric on the line bundle L has this property.) In particular, L0 admits a
basis of strongly pseudoconvex neighbourhoods Ω ⊂ L with convex fibres. Assuming that Y
is an Oka manifold, the results of Prezelj [27, 28] give a global holomorphic map s : L→ Y

which agrees with s0 : Ω → Y to the second order along the zero section L0 of L. Hence,
s satisfies (2.2). Since the point y0 ∈ Y and the vector v0 ∈ Ty0Y were arbitrary and Y is
compact, finitely many sprays of this type dominate Y , so Y is subelliptic.

Let us provide the details for the last step of the proof. We recall the special case of
Prezelj’s result which will be used. Assume that X is a 1-convex manifold with the maximal
compact nowhere-discrete complex submanifold Y (called the exceptional submanifold ofX),
h : Z → X is a holomorphic fibre bundle with an Oka fibre, K is a compact holomorphically
convex subset of X containing Y , and a : X → Z is a continuous section of h : Z → X

which is holomorphic on a neighbourhood of K. The main result of [27] (whose proof is
completed in [28]) gives a homotopy of continuous sections at : X → Z, t ∈ [0, 1], such
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that at agrees with a to any given finite order along Y , the sections at are holomorphic on a
neighbourhood of K, they approximate a as closely as desired uniformly on K and uniformly
in t ∈ [0, 1], and the section a1 is holomorphic on X .

In the case at hand, it suffices to apply Prezelj’s result to the 1-convex manifold X = L

with the exceptional submanifold L0
∼= Y , letting h : Z = X × Y → X be the trivial

projection with the Oka fibre Y and a : X → Z be the graph of a continuous extension
a0 : X → Y of the holomorphic spray s0 : Ω → Y constructed above. Such an extension
clearly exists if we choose Ω to be strongly pseudoconvex and with convex fibres. Let
a1 : X → Z be a holomorphic section furnished by Prezelj’s theorem which agrees with
a0 to the second order along Y . The map s = h ◦ a1 : L→ Y is then a holomorphic spray on
Y with the required property. This completes the proof of Theorem 1.1. �

For later reference we formulate the last part of the proof of Theorem 1.1 as a lemma.
A holomorphic vector bundle π : E → Y is said to be negative if it admits a hermitian
metric h that is negatively curved in the sense of Griffiths [16, 17]. For such h, the square
norm function φ : E → R+, φ(e) = |e|2h, e ∈ E, is plurisubharmonic on E and strongly
plurisubharmonic on the complement E \E0 of the zero section E0. If Y is compact, then the
zero section E0

∼= Y is the exceptional submanifold of E (see [15, Satz 1, p. 341]).

Lemma 2.2. Assume that π : E → Y is a Griffiths negative holomorphic vector bundle on
a compact complex manifold Y and s : Ω → Y is a local holomorphic spray defined on a
neighbourhood Ω ⊂ E of the zero section E0. If Y is an Oka manifold, then there exists a
global holomorphic spray s : E → Y which agrees with s0 to any given finite order along E0.
In particular, if s0 is dominating, then s can be chosen to be dominating.

3. FURTHER RESULTS ON ELLIPTICITY AND SUBELLIPTICITY

In this section we collect some further results, remarks, and open problems concerning the
relationship between the Oka property, ellipticity, and subellipticity of a complex manifold.
We also introduce a new property that we call weak ellipticity (see Definition 3.6), which
implies the Oka property for all complex manifolds and characterises the Oka property in the
class of projective manifolds; see Theorem 3.7.

We begin with the following remark concerning [18, 3.2.A’, p. 879].

Remark 3.1. If L→ Y is a negative holomorphic line bundle on a compact (hence projective)
manifold Y , then for a sufficiently large k > 0 the vector bundle Hom(Lk, TY ) ∼= L−k⊗ TY
on Y is generated by finitely many global holomorphic sections h1, . . . , hN (theorem of
Hartshorne; see Lazarsfeld [26, Theorem 6.1.10]). Let E = NLk denote the direct sum
of N copies of Lk. Considering hi as a homomorphism hi : Lk → TY , it follows that the
holomorphic vector bundle map h = ⊕Ni=1hi : E → TY is an epimorphism. More precisely,
h is defined by h(e1, . . . , eN) =

∑N
i=1 hi(ei), where e1, . . . , eN ∈ Lky for some y ∈ Y and

the sum takes place in TyY . Gromov proposed [18, 3.2.A’, Step 2, p. 879] that such h is
the vertical derivative of a local (dominating) holomorphic spray s0 : U → Y from an open
neighbourhoodU ⊂ E of its zero sectionE0

∼= Y . If this holds true and Y is an Oka manifold,
then Lemma 2.2 gives a dominating spray on Y , so Y is elliptic. However, we do not know
how to prove Gromov’s claim.
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Problem 3.2. Which holomorphic vector bundles π : E → Y of rank ≥ dimY admit a local
dominating spray s : U → Y from a neighbourhood U ⊂ E of the zero section E0 of E?

The discussion in Remark 3.1, together with Lemma 2.2, imply the following.

Corollary 3.3. A projective Oka manifold Y which admits a local dominating spray is elliptic.

Proof. Assume that E → Y is a holomorphic vector bundle and s0 : U → Y is a local
dominating holomorphic spray from a neighbourhood U ⊂ E of the zero section E0. By the
argument in Remark 3.1, there exists a Griffiths negative holomorphic vector bundle Ẽ → Y

with a vector bundle epimorphism h : Ẽ → E over Y . Then, Ẽ is a 1-convex manifold whose
exceptional variety is the zero section Ẽ0 [15, Satz 1, p. 341]. Choose a neighbourhood V ⊂ Ẽ

of Ẽ0 such that h(V ) ⊂ U . The composition s = s0 ◦ h : V → Y is then a local dominating
spray. Since Y is Oka, Lemma 2.2 implies that Y is elliptic. �

The following observation generalises [12, Proposition 6.2]. Recall that every complex
homogeneous manifold is elliptic [11, Proposition 5.6.1], and hence an Oka manifold.

Proposition 3.4. Assume that a compact complex manifold Y admits a local dominating
holomorphic spray (E, π, s). If the bundle π : E → Y is generated by global holomorphic
sections, then Y is a complex homogeneous manifold.

The condition on E to be globally generated holds for a trivial bundle and for any
sufficiently Griffiths positive bundle, but it fails for negative bundles.

Proof. Let s : U → Y be a local dominating spray defined on a neighbourhood U ⊂ E of the
zero section E0. The vertical derivative Vds|E0 : V T (E)|E0 = E → TY is a vector bundle
epimorphism. Given a holomorphic section ξ : Y → E, the map

Y 3 y → Vξ(y) := Vds(y)(ξ(y)) ∈ TyY

is a holomorphic vector field on Y . (We are using the natural identification of the vertical
tangent bundle V T (E)|E0 on the zero section E0 with the bundle E itself.) Applying this
argument to sections ξ1, . . . , ξm : Y → E generating E gives holomorphic vector fields
V1, . . . , Vm on Y spanning the tangent bundle TY (since Vds is surjective). Thus, the manifold
Y is holomorphically flexible. Since Y is compact, these vector fields are complete, so their
flows are complex 1-parameter subgroups of the holomorphic automorphism group Aut(Y ).
The spanning property implies that Aut(Y ) acts transitively on Y . Since the holomorphic
automorphism group of a compact complex manifold is a finite dimensional complex Lie
group [5], it follows that Y is a homogeneous space of the complex Lie group Aut(Y ). �

There are projective Oka manifolds that are not homogeneous, for instance, blowups
of certain projective manifolds such as projective spaces, Grassmannians, etc.; see [11,
Propositions 6.4.5 and 6.4.6], the papers [19, 24], and the survey [6, Subsect. 6.3]. Many
of these manifolds are algebraically elliptic. Another class of non-homogeneous projective
surfaces which are algebraically elliptic are the Hirzebruch surfaces Hl for l = 1, 2, . . .; see
[4, p. 191] and [11, Proposition 6.4.5]. In view of Proposition 3.4, such manifolds do not
admit a local dominating spray from any globally generated holomorphic vector bundle.
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Remark 3.5. Let S be the largest class of complex manifolds for which the Oka property
implies subellipticity, that is, the class of manifolds that are either subelliptic or not Oka. As
remarked above, it is long known that every Stein manifold belongs to S . By Theorem 1.1,
so does every projective manifold. We know of two ways to produce new members of S
from old. If Y → X is a covering map and X is subelliptic, so is Y . Also, X is Oka if and
only if Y is. Hence, a covering space of a manifold in S is in S . Also, it is easily seen that
a product of manifolds in S is in S .

Every projective manifold Y carries an affine bundle π : A → Y , whose total space is
Stein. (This is the so-called Jouanolou trick; its relevance in Oka theory was noted in [23].)
Suppose that Y is Oka. Then A is Oka and, being Stein, therefore elliptic. Let p : E → A be
a vector bundle with a dominating spray s : E → A. Let E0 be the zero section of E. Since A
is Stein, E can be taken to be trivial; it is then clear that the composition π ◦ p : E → A→ Y

is an affine bundle on Y with E0 as an affine subbundle. The holomorphic map π ◦s : E → Y

resembles a dominating spray over Y in that for every y ∈ Y , its restriction to the fibre
(π ◦p)−1(y) is a submersion at each point of E0∩ (π ◦p)−1(y) and maps each such point to y.

We turn this setting into a new definition as follows.

Definition 3.6. A complex manifold Y is weakly elliptic if there is an affine bundle π : A→ Y

with an affine subbundle B and a holomorphic map s : A → Y , such that for every y ∈ Y ,
the restriction of s to the fibre π−1(y) is a submersion at each point of B ∩ π−1(y) and maps
each such point to y.

Note that ellipticity is precisely the special case of B having rank zero: then A has a
compatible vector bundle structure with B as its zero section.

Theorem 3.7. (a) Every weakly elliptic manifold is Oka.
(b) A projective manifold is Oka if and only if it is weakly elliptic.

Proof. (a) Let Y be as in the definition of weak ellipticity and let f : X → Y be a holomorphic
map from a Stein manifold X . The pullback f ∗B → X , being a fibre bundle with a
contractible Oka fibre over a Stein base, has a holomorphic section, which may serve as the
zero section in a compatible vector bundle structure on the pullback bundle f ∗A → X . The
composition of the bundle morphism f ∗A → A over f followed by the map s : A → Y is
then a dominating relative spray on Y with core f . This shows that Y is relatively elliptic (or
Ell1 in Gromov’s terminology) and hence Oka by [21, Theorem 1.3].

(b) is clear from (a) and the discussion preceding the theorem. �
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