THE OKA PRINCIPLE FOR TAME FAMILIES OF STEIN MANIFOLDS
FRANC FORSTNERIC AND ALFHEIDUR EDDA SIGURDARDOTTIR

ABSTRACT. Let X be a smooth open manifold of even dimension, 7" be a topological space, and
/ = {Ji}ter be a continuous family of smooth integrable Stein structures on X. Under suitable
additional assumptions on 7" and ¢, we prove an Oka principle for continuous families of maps from the
family of Stein manifolds (X, J;), t € T, to any Oka manifold, showing that every family of continuous
maps is homotopic to a family of .J;-holomorphic maps depending continuously on ¢. We also prove the
Oka-Weil theorem for sections of _#-holomorphic vector bundles on Z = T x X and the Oka principle
for isomorphism classes of such bundles. The assumption on the family _¢ is that the J;-convex hulls
on any compact set in X are upper semicontinuous with respect to ¢ € 1'; such a family is said to be
tame. For suitable parameter spaces 1, we characterise tameness by the existence of a continuous family
pt: X - Ry =10,+00), ¢t € T, of strongly .J;-plurisubharmonic exhaustion functions on X. Every
family of complex structures on an open orientable surface is tame. We give an example of a nontame
smooth family of Stein structures J; on R*™ (+ € R, n > 1) such that (R®", .J;) is biholomorphic to C™
for every t € R. We show that the Oka principle fails on any nontame family.
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Let X be a smooth manifold of dimension 2n > 2. An almost complex structure J on X is
an endomorphism J : TX — TX of its tangent bundle satisfying J2 = —Id. When n = 1, i..,
X is a smooth surface, every such J of local Holder class %, 0 < a < 1, determines on X the
structure of a Riemann surface [2, Theorem 5.3.4]; if X is an open surface then (X, J) is a Stein
manifold according to Behnke and Stein [3]]. In [14] the first named author showed that, under suitable
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regularity assumptions on the parameter space 7" and on a family ¢ = {.J; };c7 of complex structures
on a smooth open surface X, the Oka principle holds for families of .J;-holomorphic maps from X
to any Oka manifold Y, with continuous or smooth dependence on ¢t € 71" and with approximation on
suitable families of Runge subsets of X. The notion of an Oka manifold (see [[L1], [12} Sect. 5.4], and
[[L3]]) developed from the classical Oka—Grauert—Gromov principle [46l 22, 25]].

In this paper we study the mapping problem for families of Stein structures on smooth manifolds of
dimension 2n > 4. Integrability is then a nontrivial condition; see Section@ However, this is not the
only new issue. The construction in [[14] strongly uses the fact that the holomorphic hull of a compact
set in a smooth surface X is independent of the choice of the complex structure on X. This is no longer
the case on higher dimensional manifolds. In Theorem .1 we give an example of a smooth family of
integrable Stein structures {.J; };cg on R?" for any n > 1 such that (R?", J;) is biholomorphic to C"
for every t € R but the J;-convex hulls of the closed ball explode when ¢t € R \ {0} approaches
0. This phenomenon excludes the possibility of any reasonable analysis of global analytic problems.
Motivated by this example, we introduce a tameness condition on a family of Stein structures {.J; }tcr
on a smooth manifold X which excludes this type of pathology. Such a family is said to be tame if the
Jy-convex hulls of any compact set in X are upper semicontinuous with respect to ¢ € T'; see Definition
Tameness is characterised by the existence of a continuous family of strongly J;-plurisubharmonic
exhaustion functions p; : X — R ; see Theorem[5.5] Every family of Riemann surface structures is
tame. We give several examples of tame families of Stein structures on higher dimensional manifolds.

The following Oka principle is a special case of our main result, Theorem [6.1]

Theorem 1.1. Assume that T is a finite CW complex, X is a smooth manifold, ¢ = {Ji}icr is a tame
Sfamily of smooth Stein structures on X depending continuously on t, and'Y is an Oka manifold. Then,
every continuous map f : Z =T x X — Y is homotopic to a _# -holomorphic map F : Z — Y,
i.e. such that F(t,-) : X — Y is Ji-holomorphic for every t € T and continuous in t. If f is
Y -holomorphic on a neighbourhood of a closed subset K C Z with proper projection K — T and
Ji-convex fibres K (t € T), then F' can be chosen to approximate f in the fine topology on K.

The special case when Y is the complex number field C is the Oka—Weil theorem for such families;
see Theorem [6.3] We show in Corollary [6.4] that the Oka principle fails on any nontame family, so
tameness is a necessary and sufficient condition for the Oka principle. The Oka—Weil theorem is also
proved for sections of fibrewise holomorphic vector bundles on tame families of Stein structures; see
Theorem This is used to obtain global solutions of the d-equation for fibrewise smooth (p, q)-
forms in all bidigrees, see Theorem We also prove the Oka principle for the classification of
complex vector bundles on such families, extending the classical results of Oka [46] and Grauert [22];
see Theorems[9.1]and[9.2]. Our results open a new direction in modern Oka theory.

An important ingredient in the proofs is a theorem of Hamilton [27], also called the global
Newlander—Nirenberg theorem, on representing small integrable deformations of the complex structure
on the closure of a smoothly bounded, relatively compact, strongly pseudoconvex domain €2 in a Stein
manifold X by small deformations of {2 in X. We need a version with continuous dependence on
parameters; see Theorem [3.1] which is obtained from the proof of Hamilton’s theorem by Greene
and Krantz [24, Theorem 1.13]. Unlike the original proof and its improvements [[16, [21]], which use
the Nash—Moser technique, the proof in [24] is based on stability of the canonical (Kohn) solution of
the J-equation with respect to perturbations of the complex structure, obtained in [24, Theorem 3.10]
by following the pioneering work of Kohn [32} 33] on the O-Neumann problem. A special case of
Hamilton’s theorem with parameters for smoothly bounded domains in Riemann surfaces, and under
considerably lower regularity assumptions on the family of complex structures, was obtained by the

first named author in [[14, Theorem 4.3] using the Beltrami equation.
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2. ALMOST COMPLEX STRUCTURES AND INTEGRABILITY

In this section we recall the relevant background concerning almost complex structures.

Let X be a smooth manifold of real dimension 2n. An almost complex structure J on X is an
endomorphism J : TX — TX of its tangent bundle satisfying .J?2 = —Id. Every point 29 € X has an
open coordinate neighbourhood U C X such that TX |y = U x R*" and J : TX |y — TX|y is given
by (x,€&) = (z, A(z)€), where the matrix A(x) € G Loy, (R) satisfies A(x)? = —I with I € G L2, (R)
the identity matrix. We say that .J is of class €’* if its matrix A(z) in any smooth local coordinate on
U C Xisa%"* map U — GLo,(R). Similarly one defines (local) Holder classes %) with k € Z,
and 0 < a < 1; see [17, Sect. 4.1]. An almost complex structure .J extends to an endomorphism of the
complexified tangent bundle CTX = TX ®g C. Since J2 = —Id holds for every = € X, .J induces
a decomposition CT'X = H & H into a direct sum of complex subbundles of rank n whose fibres H,
and H, over x € X are, respectively, the +i = /—1 and —i eigenspaces of .J, on CT}, X. This gives
complex vector bundle projections 71 g : CTX — H and 71 : CT X — H satisfying

(2.1 71,0 = To,1, 71,0+ 7,1 =1d, moom1 =0=m10mp.

Conversely, a pair of such projections determines an almost complex structure .J on X. Note that 71 g
and 7 1 are as smooth as J. An almost complex structure J of class € on X is said to be (formally)
integrable if the subbundle H = m; o(CTX) satisfies the commutator condition [H, H] C H for its
sections, which are called vector fields of type (1,0). Every such vector field is of the form v — iJv
where v is a real vector field on X. If n = 1 then the commutator condition is void, but integrability
is a nontrivial condition when n > 2. For later reference, we state the following precise version of the
Newlander—Nirenberg integrability theorem.

Theorem 2.1. If X is a smooth manifold of dimension 2n and J is an integrable almost complex
structure on X of local Hélder class €%, with k > 1 an integer (or k > 0 when X is a surface) and
0 < a < 1, then every point o € X has a neighbourhood U C X with a J-holomorphic coordinate
map z : U — C" of class €F 1) Thus, (X, J) is a complex manifold, and the smooth structure on
X determined by J is €519 compatible with the given smooth structure.

This result has a complex genesis. For surfaces (n = 1), see Korn [34], Lichtenstein [37], Chern
[6], and Astala et al. [2, Theorem 5.3.4]. For n > 1 the result is due to Newlander and Nirenberg
[42] under stronger regularity assumptions. Improvements were given by Nijenhuis and Woolf [43]],
Kohn [32] Theorem 12.1], Malgrange [38]], Webster [50, Theorem 3.1], Treves [49]], and possibly
others. (See also Nirenberg [44] and Hormander [29, Sect. 5.7].) The last statement concerning the
compatibility of smooth structures follows from the fact that the inverse of a diffeomorphism of local
Holder class %) with k& > 1 is of the same class; see Norton [45] and Bojarski et al. [S, Theorem
2.1]. A 1-parametric version of the Newlander—Nirenberg theorem was proved by Gong [20].

Denote by A'(CT*X) the I-th exterior power of the complexified cotangent bundle CT*X. Its
sections are complex differential /-forms on X. The projections 71 o and 7 in (2.I) give rise to
projections 7, , : A(CT*X) — AP4(CT*X) onto complex vector subbundles of A/(CT*X) for
0<p,q<n,withp+q=1¢€ {1,...,2n}, such that ©, ,— AP4(CT*X) = A}(CT*X). Sections
of AP4(CT™X) are differential forms of bidegree (p, ¢) with respect to the complex structure J on X.
Assuming that J is of class j € {0,1,...,00}, these subbundles are also of class €7. Let @f’q(X)
denote the space of (p, ¢)-forms of class €7 on X, and let d be the exterior differential on X. We have
the operators 0 = d; and & = 9 defined by

0=mpp1god: ZVUX) = ZVHUX), D=mpg0d: ZPIX) — 204G (X).
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Integrability of J is equivalent to each of the conditions 9> = 0, 9 = 0,and d = O + O (see
[10, Proposition 1.2.1]). If .J is integrable then the kernel of the operator J (resp. d) on functions
are precisely the J-holomorphic (resp. the J-antiholomorphic) functions. We also have the conjugate
differential d° = d5 = i(0 — 9) and the operator dd® = 2i9. For a € function p : X — R, dd°p is
a (1,1)-form called the Levi form of p. A function p is said to be (strongly) J-plurisubharmonic
if dd°p > 0 (resp. dd°p > 0), in the sense that for any x € X and 0 # v € T, X we have
(dd°p(x),v A Ju) > 0 (resp. > 0); see [12} Eq. (1.39), p. 30]. A complex manifold (X, J) is a
Stein manifold if and only if it admits a strongly J-plurisubharmonic exhaustion function p : X — R4
(see Grauert [23]). A necessary and sufficient topological condition for the existence of an integrable
Stein structure on a smooth manifold of dimension 2n > 6 was given by Eliashberg [9, [7]. The
situation is more complicated on manifolds of dimension 4; see Gompf [18.|19] and [12, Chap. 10].

A domain D € X with €2 boundary is said to be strongly pseudoconvex (or strongly J-
pseudoconvex if we wish to emphasise the choice of the complex structure .J) if it admits a defining
function p : U — R on a neighbourhood U of D such that D = {p < 0}, dp # 0 on bD = {p = 0},
and dd°p(z) > 0 for every x € bD. See Krantz [35] for the basic theory of such domains.

Fix a smooth Riemannian metric ¢ on X. Such g extends to a field of C-bilinear forms on the
complexified tangent spaces C1, X, z € X. Given an almost complex structure J on X determined
by the projections (2.1)), write a vector u € CTX in the form u = u1,0 + up,1 where uy 9 = 1 0(u)
and ug,1 = 70,1 (u). Then, g and J determine a field of inner products on the fibres of CT'X by

(22) (ua U>J - g(“’l,(hm) + Q(UO,LW), u,v S CTxXa WS X

(cf. [10} p. 8]). This inner product is J-hermitian on the subbundle H C CT'X on which J = i,
J-antihermitian on the conjugate subbundle H C CTX on which J = —i, the subbundles H and H
are (-, - ) s-orthogonal, and for every u € CT'X we have

ul|* = (u,u); = [|RutollZ + |[Susollz + [Ruoa | + |Suoall2-

Here, R and & denote the real and imaginary part. By duality and multilinear algebra, the field of inner
products (-, ) in extends to the bundles AP4(CT*X). If J is of class €7 then so is (-, - );, and
if an almost complex structure J’ on X is €7 close to J then (-, - )y is €7 close to (-,-);. Given a
domain D € X with %! boundary, we have an inner product of forms ¢, € @f (D) given by

2.3) (6,9)s = /D (6,9)s dV

where dV is the volume form on X determined by g. If {J;}icr is a continuous family of almost
complex structures on X then the inner products (-, - ), also vary continuously, and the L? norms
16113, = (¢, ), are comparable for ¢ in any compact subset of 7.

We shall be dealing with families ¢ = {J; };cr of integrable complex structures on given smooth
manifold X, where T is a topological space whose precise properties will be specified in the individual
results. A continuous map f : Z = T x X — Y to a complex manifold Y is said to be _¢#-
holomorphic if the map f(t,-) : X — Y is Ji-holomorphic for every t € T. Such a family _#
is said to be of class €%, where k € {0,1,...,00}, if J; admits partial derivatives of order up to
k in the space variable x € X and these derivative depend continuously on ¢t € T. If £ € R is
fractional, k = [k] + a for 0 < a < 1, we ask that .J; is of local Holder class (%) on X and it
depends continuously on ¢t. More precisely, for every smoothly bounded relatively compact domain
Qe X, Jilra € Hom([F:e) (T2, T2) depends continuously on ¢ € 7" as an element of this space.
The analogous definition applies to functions or maps on 7' x X . If T'is a ©* manifold then a function
is of class €“%(T x X) if it has [ derivatives in t € T followed by k derivatives in z € X, and these

derivatives are continuous. Similarly one defines the Holder classes € (%),
4



3. A THEOREM OF HAMILTON FOR FAMILIES OF COMPLEX STRUCTURES

The main result of this section, Theorem [3.1] is a version of Hamilton’s theorem [27]] (also called
the global Newlander—Nirenberg theorem) for a family of smooth integrable complex structures on a
compact strongly pseudoconvex domain in a Stein manifold. It is used in the proof of all main results
in the paper. Its proof uses stability of Kohn’s solution of the d-equation on such domains, obtained by
Greene and Krantz [24] and based on the work of Kohn [32] [33]]; see Theorem [3.2]

Assume that (X, J) is a Stein manifold and D € X is a relatively compact, smoothly bounded,
strongly J-pseudoconvex domain. A theorem of Hamilton [27] says that for every sufficiently small
smooth integrable deformation .J’ of the complex structure .J on D there is a smooth diffeomorphism
F:D — F(D) C X, close to the identity map on D, such that .J’ = F*.J is the pullback of .J by F.
Equivalently, the map F' : D — F(D) is biholomorphic from (D, .J’) onto (F(D),J). (Hamilton’s
result applies to a wider class of domains but we shall restrict the attention to this case.) The proof in
[27] is nonlinear in nature and uses the Nash—Moser technique. Improvements in terms of the required
regularity of the almost complex structure and of the boundary of the domain were obtained by Gan
and Gong [[16], Shi [47] (for strongly pseudoconvex domains in C"), and Gong and Shi [21]]. It was
shown by Hill [28] that the result fails in general for domains with Levi degenerate boundaries.

A simpler proof of Hamilton’s theorem on strongly pseudoconvex domains was given by Greene
and Krantz [24] Theorem 1.13] by using the O-Neumann method of Kohn [32, 33} [10] for solving the
0-equation. Their approach, together with stability results for Kohn’s solutions of the d-equation with
respect to a family of complex structures (see [24) Sect. 3] and Theorem [3.2)), will be used to give the
following parametric version of Hamilton’s theorem.

Theorem 3.1. Let (X, J) be a Stein manifold of complex dimension n. Let k > 1 and r > 2k +2n+9
be integers, and let D € X be a relatively compact, strongly pseudoconvex domain with boundary bD
of class €. Assume that T is a topological space and ¢ = {J}icr is a family of integrable complex
structures on D of class € (D) such that for some to € T, Jy, is the restriction of J to D. Then there
exist a neighbourhood Ty C T of to and a family of diffeomorphisms F : D — Dy = Fy(D) C X in
€* (D, X), depending continuously on t € Tp, such that F} is a biholomorphic map from (D, J;) onto
(D¢, Jy,) for every t € Ty and Fy, is the identity on D. IfbD € €°° and ¢ is of class €>°(T x D)
then the family F = {F;}ieT, can be chosen to be of class €% on Ty x D.

Theorem is likely not optimal in terms of regularity. For relatively compact domains in open
Riemann surfaces, a more precise result [14, Theorem 4.3] was obtained via the Beltrami equation.

We begin with preliminaries. Choose a smooth Riemannian metric g on X and let dV be the
associated volume form. Fix a relatively compact domain D € X with €' boundary. Let L?(D)
denote the space of measurable functions f on D with || f||3, (D) = Jp |fI?dV < +o0. For s € Z4 we
denote by Hs(D) = W2 (D) the Sobolev (Hilbert) space of functions on D whose derivatives of order
up to s belong to L?(D). In particular, Ho(D) = L?(D). (For a discussion of Sobolev spaces for any
real s € R, see Adams [1]] or Folland and Kohn [10, Appendix].) When X = RN with the Euclidean
metric g, the norm on H(D) is given by HfH%IS(D) =2 |al<s HDO‘fH%Q(D), where D® for a multiindex
a € Zf denotes a partial derivative with respect to the coordinates on RY. On a smooth manifold
X we introduce these and other norms mentioned in the sequel by using a finite covering of D by
smooth charts; see [10, Appendix, p. 122]. By ¢’*(D) we denote the Banach space of functions having
continuous bounded partial derivatives of order < s, with || f{|¢s(p) = Z\al <5 SUPgep [D* f ()| when
D c RY. Given an integrable almost complex structure .J on X, we have the induced metrics on the

bundles AP9(X) of differential (p, ¢)-forms (see Section [2). We denote by HY(D, J) the Sobolev
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space W*2(D) of (p,q)-forms on D with respect to .J, endowed with the inner product (2:3). The
norms on these space are introduced by a system of local charts covering D.

The following result is [24, Theorem 3.10] by Greene and Krantz. The regularity statements for a
single complex structure are due to Kohn [32f]; see also [10, Proposition 3.1.15, p. 52].

Theorem 3.2. Assume that X is a smooth Riemannian manifold of real dimension 2n > 2, s > 1 is
an integer, D € X is a relatively compact domain with boundary of class €***°, T is a topological
space, and ¢ = {Ji}ier is a continuous family of integrable Stein structures of class ¢ 2545 on D
(i.e., fZ isof class €255 on T x D) such that D is strongly Jy-pseudoconvex with Stein interior for
everyt € T. Then the following assertions hold.

(a) Foreverya € HY (D, J;) (p >0, ¢ > 1, t € T) with 0, = 0 there is a unique (Kohn) solution
Kia € Hg’q_l(D, Ji) of the equation 0, (K;) = « satisfying K;oo | ker(9,) with respect to
the inner product (-, - ), given by (2.3).

(b) Ifa € HP(D, J;) then Kyoo € HPY(D, J}), and || Kya||s < C||ev|s for some C > 0 which can
be chosen independent of t in any compact subset of T

(c) If the forms oy € HYY(D, J;) depend continuously on t € T, then Ky € Hffl_l(D, Ji) also
depend continuously ont € T.

(d) If s > k+n-+1 and the forms oy € H 0 ’1(D, Ji) depend continuously on t € T, then the functions
Kioy € €%(D) depend continuously ont € T.

(e) IfbD is €°° smooth, ¢ is of class €%, and oy € D% (D, J;) are smooth and continuous in t,

then Ko € 9&‘1_1([), Ji) are also smooth and continuous int € T.

The Kohn solution ¢ = K;a of the equation ;¢ = «, subject to dj,a = 0, is given by
¢ = 9¢N;sa, where N; is the 0—Neumann operator associated to .J; and ¥; is the Hilbert space adjoint
of 0 J, on D; see [10, Theorem 3.1.14]. The same result holds if Disa compact smooth manifold with
boundary that is not necessarily embedded in an ambient manifold. Part (d) follows from (c) and the
following Sobolev embedding theorem; see Adams [1, p. 97ff] or Folland and Kohn [10, Proposition
A.1.2,p. 115] for X = R the general case follows by using charts (see [[10, p. 122]). Part (e) holds
because the forms K;a; in (a) are independent of the smoothness class (see [24, p. 55]).

Proposition 3.3 (Sobolev embedding theorem). Let D be a relatively compact domain with €*
boundary in a smooth manifold X of dimension N. Then, Hy(D) C €*(D) and |- lgrpy <
Cll- (D) for some C > 0 if and only if s > k + N/2. If this holds then the weak derivatives
of u € Hy(D) up to order k are, after correction on a set of measure zero, classical derivatives.

Proof of Theorem[3.1] We follow [24, proof of Theorem 1.13]. Choose a proper .J-holomorphic
embedding f : X — C?"*1 (see [4] and [12, Theorem 2.4.1]). By Docquier and Grauert [8]] (see also
[26, Theorem 8, p. 257] or [12, Theorem 3.3.3, p. 74]) there are an open neighbourhood U C C?"+! of
f(X) and a holomorphic retraction 7 : U — f(X).Sets =k+n+2,502s+5=2k+2n+9 =r.
(If k = oo, we take s = r = 00.) Recall that _# = {J; }scr is of class €% and J, is the restriction of
J to D. Note that oy := 9,(f|p) fort € T is a C*>"*1-valued (0, 1)-form with respect to .J;, of class
%" (D) and hence in HS’I(D, J¢), depending continuously on ¢ € T. By Theorem [3.2|(d), for every
t € T close to tq there is a unique solution ¢; of 9;,¢; = oy and ¢; L ker(dy,), with ¢; € €*(D)
depending continuously on ¢ € 7. The map f; = f — ¢; : D — C2"*1 is then .J;-holomorphic
and continuous ¢ as an element of the space €*(D)?"*!. For t = ty we have J;, = .J and hence
oy = 0;f =0, ¢, = 0, and f, = f|p. It follows that for ¢ close enough to ¢y the map f; is so close
to f|p in €*(D)?"*+! that its image belongs to U. For such ¢, the map F; = f~1(7(f;)) : D = X
is well-defined, (.J;, J)-holomorphic, it depends continuously on ¢ as an element of €*(D, X), and

F;, = Idp. It follows that F} is (.J;, J)-biholomorphic on D for ¢ close to tp. O
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4. A WILD FAMILY OF COMPLEX STRUCTURES ON R*

In this section, we construct a smooth family {.J; };cgr of integrable complex structures on R27
for any n > 1 with wild behaviour of holomorphic hulls near ¢ = 0. It is built by using a Fatou—
Bieberbach map C? — C? with non-Runge image, constructed by Wold [52]. This example motivates
the definition of a tame family of complex structures; see Definition

A compact set K in a complex manifold (X, J) is said to be holomorphically convex or J-convex
if K equals its holomorphically convex hull (also called .J-convex hull), defined by

Ky ={peX:|f(p)| <max|f(x) forall f € O;(X)}.

Here, 0 ;(X) denotes the algebra of J-holomorphic functions on X. When J is the standard complex
structure on X = C" then K ; is the polynomial hull of K. See Hérmander [29][30] and Stout [48]] for
further information on holomorphic convexity.

If X is an open Riemann surface then a compact subset K C X is holomorphically convex if
and only if X \ K has no relatively compact connected components. This is a topological condition
independent of the choice of the complex structure. This fact plays an important role in the proof of
the Oka principle in [14, Theorem 1.6] for maps from families of complex structures on a smooth open
surface to an Oka manifold. When attempting to obtain analogous results for families of integrable
Stein structures {J; };e7 on a smooth open manifold X of dimension 2n > 4, one of the problems
concerns the behaviour of J;-convex hulls & 7, of a compact set K C X with respect to the parameter
t. The following result shows that when X = R??, n > 1, the hulls can explode when ¢t € T
approaches a limit value tg € T'.

Theorem 4.1. Given a compact set K C R?" (n > 1) with nonempty interior, there is a family of
integrable smooth complex structures {J; }1cr on R?", depending smoothly on t € R, such that Jy is
the standard structure on C", (R?", .J;) is biholomorphic to (R*", Jy) = C" for every t € R, and for
any neighbourhood U C R of 0 € R the set | J,(; K 7, C R?" is unbounded.

Proof. Tt suffices to consider the case when K is the closed unit ball in R* = C2,

Let C* = C\ {0}. By Wold [52], there is an injective holomorphic map ® : C? < C? such
that ®(C?) c C* x C but the polynomial hull <I>/(I?) of ®(K) contains the origin 0 € C2. In
particular, (f(_[?) ¢ ®(C?) and hence ®(C?) is not Runge in C2. We shall construct a family of
smooth diffeomorphisms ¥; : C?> — C2, depending smoothly on ¢ € (—1, 1), such that ¥; = ® holds
on a neighbourhood of t ' K for every ¢ # 0. Since the balls ' K increase to C2 as ¢ decreases to 0,
we obtain a smooth family {‘Ijt}te(—l,l) by setting Wy = ®. One can extend the parameter space to R
by applying a diffeomorphism from R onto (—1,1).

Assume for a moment that such a family W, exists. Let J; denote the complex structure on
R* =2 C? obtained by pulling back by ¥; the standard complex structure Js; on C2. In other words,
U, : C2 — C?2 is a biholomorphism from (C?, J;) onto (C2, Jy). Note that .J; depends smoothly on ¢
since ¥; does, and it agrees with .J; on a neighbourhood of t~' K O K since on this set we have that
U, = ®, which is Jg-holomorphic. Thus, the family J; extends smoothly to the point £ = 0 by taking
Jo = Jgt. For t # 0, the J;-convex hull of K equals

@.1) Ky, = U, (U,(K)) = ¥; (B(K))

where the second equality follows from the fact that U; = ® on t~'K D K. We claim that the set
Kj, \ t 'K is nonempty for every t # 0. Indeed, if K; C t 'K then, since ® = ¥, on t 1K, it

follows from (@.1) that @(I?Jt) = \Iit(f(]t) = /(?), a contradiction to 5(?) ¢ ®(C?). Ast — 0,
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the sets ¢ LK increase to C2, and hence the hulls & J, are not contained in any bounded subset of C?
for ¢ in a neighbourhood of 0.

It remains to explain the construction of the family of diffeomorphisms W, : C2 — C? with the
stated properties. It suffices to consider the parameter values ¢ € (0,1). Choose a smooth isotopy of
injective holomorphic maps ® : C2 — C? for s € [0, 1] such that ®q is the identity map on C? and
®; = ®. Explicitly, we can take ®o(z) = z and

Dy(2) = sP(0) + s 1A (D(s2) — (0)), s € (0,1],
where s — A, € GL(C) is a smooth path with Ag = ®'(0)~! and A; = I. Note that {®@s}sepo,1) i
the flow of the holomorphic time-dependent vector field V on C? defined on the open set
2= {(s,®5(z)) : s €[0,1], z € C*} C [0,1] x C
(the trace of the isotopy {®s}sc(0,1)) by

Vs, ®s(2)) = %

D, (2).
For a fixed ¢t € (0, 1) consider the compact set
S ={(s5,24(2)) : s €[0,1], z€ t 'K} € [0,1] x C*.

Pick a smooth function x : (0,1) x [0,1] x C? — [0, 1] such that for every t € (0,1) the function
x(t,+,+) : [0,1] x C?> — [0,1] equals 1 on a neighbourhood of 3; and has compact support. For
(t,s) € (0,1) x [0, 1] we define a vector field W; s on C? by

Wis(z) = x(t,s,2)V(s,2), z¢€ C2.

Note that W  is smooth in all variables, it agrees with V'(s,-) on a neighbourhood of 3J;, and has
compact support in [0, 1] x C? for every fixed ¢t € (0,1). It follows that the flow ¥, s of W; 5 with
respect to the variable s € [0, 1], with ¢ € (0, 1) as a parameter, solving the initial value problem

] W) = Wes(Wia(2)), Waolz) = =

U lu=s

exists for all s € [0,1] and z € C2, it agrees with the flow of V for z € ¢t 1K (which is ®4(z)),
and is fixed near infinity in the z variable since W} s has compact support. It follows that every map
WU, s:C%— C?fort € (0,1), s €[0,1] is a diffeomorphism onto C?. Setting s = 1 gives a family of
diffeomorphisms ¥; = U, : C2 — C2, ¢ € (0, 1), with the stated properties. O

The following implies that one cannot do any serious analysis for families of J;-holomorphic
functions for ¢ = {Ji}+cr in Theorem See Corollaryfor a more general result.

Lemma 4.2. (Notation as above.) If f is a holomorphic function on 2 = ®(C?) C C? such that
fo® € O(C?) extends to a continuous family f; € 01,(C?) for t near 0, then f is bounded on the set

O (K) N, which is not relatively compact in €.

Proof. From @) we get Kj, Nt 'K = ‘11;1(<I>/(I?)) Nt 1K. Since ¥; = ® on t 'K, it follows that
Uy (K, Nt K) = B(K) Nt K).

—

When ¢ — 0, the set on the right hand side increases to al?) N Q. Choose a point p € ®(K) N Q;
hence p € /(I?) N ®(t~'K) for all small enough ¢ # 0. Note that p; := ¥; (p) € IA(Jt Nt 1K
converges to pg = ®1(p) ast — 0. Let f € €(Q). Suppose that there is a continuous family
of holomorphic functions f; € €, (C?) for ¢ near 0 such that fo = f o ®. Since p; € K Jis
we have |fi(p)| < maxg |f¢|. Letting t — 0 gives | fo(po)] < maxg | fol, which is equivalent to

| f(p)| < maxgf |f|- This shows that f is bounded on the set (/&) N as claimed. O
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Remark 4.3. The construction in the proof of Theorem [4.T| works on any contractible Stein manifold
X which admits an injective holomorphic map ¢ : X — X such that, for some compact subset
K C X with nonempty interior, we have that g(_l?) ¢ ®(X). Besides C", an example is any bounded
convex domain X in C" for n > 1. Indeed, assume that X is such, and let K’ C X be a compact set
with nonempty interior. By translation we may assume that 0 € K.Let®: C" — C" be an injective
holomorphic map as in the proof of Theorem satisfying /(I?) ¢ ®(C™). Set L = ®(K). For any
s > 0 we then have sL = s L ¢ s®(C™). Replacing ® by s for a suitable s > 0 we ensure that
®(X) C X. It follows that al?) ¢ ®(X). However, we do not know whether the phenomenon in
Theorem 4.1|can occur on every Stein manifold X with dim¢ X > 1.

5. TAME FAMILIES OF STEIN STRUCTURES

Assume that T is a topological space, X is a smooth open manifold of even dimension, 7 :
T x X — T is the projection 7(t,x) = t, and # = {J;}ser a continuous family of integrable
complex structures on X . We introduce a tameness condition on _¢ which excludes the pathology in
Theorem .1} see Definition If T is locally compact and Hausdorff then tameness is characterised
in terms of properness over 1" of the family of J;-convex hulls of any compact set in .X'; see Proposition
[5.2] Assuming that the complex structures J; are Stein and sufficiently regular, tameness is equivalent
to local boundedness of the family of .J;-convex hulls of any compact set; see Proposition [5.3] If T
is locally compact, paracompact and Hausdorff then tameness is characterised by the existence of a
continuous family of strongly .J;-plurisubharmonic exhaustion functions on X; see Theorem [5.5 We
conclude the section with examples and constructions of tame families of Stein structures.

Definition 5.1. A family ¢ = {J;};cr of complex structures on X is tame at a point ¢y € T if for
every compact set ' C X and open set U C X containing Ky, there is a neighbourhood 7y C T' of
to such that K 7, C U holds for all ¢ € Tp. The family _¢ is tame if it is tame at every point tg € 7T'.

Figure 1. An upper semicontinuous family of hulls K 7,

Any family of complex structures on a smooth surface X is tame since the hull of a compact set
does not depend on the choice of a complex structure on X. The same holds if X is compact and
connected. Theorem gives smooth nontame families of Stein structures on R?" for any n > 1.

Recall that a continuous map S — T of topological spaces is said to be proper if the preimage of

any compact set in 7" is compact.
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Proposition 5.2. Assume that T is a locally compact Hausdor(f space. The following conditions on a
continuous family ¢ = {J;}ier of complex structures on X are equivalent.

(@) The family 7 is tame.
(b) For every compact subset K C X, its ¢ -convex hull

(5.1) Ky =J{t}xK,cTxX
teT

is such that the projection T : I? ¢ — T is proper.

Proof. Assume that ¢ is tame. It is easily seen that IA( # 1s then closed in 7' x X. Let T C T be
compact. Given ¢t € T, pick a neighbourhood U; C X of K 7, withAcompact closure U;. Tameness
gives a compact neighbourhood 7; C T' of ¢ such that the n1 (T,) N K y is a closed subset of T} x Uy,
hence compact. The compact set 7" is covered by finitely many sets T}, obtained in this way, and it
follows that TI'_I(T, )N IA( # 18 compact. This proves (a) = (b). Conversely, assume that 7 : IA( =T
is proper. Let tg € T and U C X be an open set containing K Ji- Choose a compact neighbourhood
To C T of tg. Then, 7= H(Tp) N K 'y is compact, and hence closed in 7j x X. If the condition
in Definition [5.1| fails at ¢, there is a net {(¢;,2;)}jca C IA(/ with lim; t; = to such that the net
{2;} ;e has an accumulation point zg € X \ U. Since 71 (7p) N I? s is closed, it contains (to, 7o)
which contradicts the initial assumption. Hence, ¢ is tame. 0

The nontame families ¢ of Stein structures in Theorem@ are such that the family of hulls K J, of
some compact K is not locally bounded at some ¢y € 7', and K s fails to be closed. If _# is sufficiently
regular and the hulls of any compact set are locally bounded, we show that the family is tame.

Proposition 5.3. Let X be a smooth manifold of dimension 2n, ¢ = {Ji}ier be a continuous family
of Stein structures of class €" on X where r > n + 6, and K C X be a compact set. If for every
pomt to € T there are a neighbourhood T() C T of tg and a relatively compact domain Q) € X such
that K J, C QY holds for all t € Ty, then K g is closed in T x X. If in addition T' is locally compact
Hausdorff and the above condition holds for every compact set K C X, then ¢ is tame.

Proof. Let (to, o) ¢ IA( 7. Then there is a Jy,-holomorphic function f on X such that | f(xo)| > 143¢
and max,ecx |f(z)] < 1 — e for some e > 0. Let U C X be a compact neighbourhood of x( such
that [f(x)| > 1+ 3cforallz € U. Let Q € X and Ty C T be as in the proposition. Enlarging €2,
we may assume that it is a smoothly bounded strongly J;,-pseudoconvex domain which also contains
U. Shrinking Tp around ty if necessary, Theorem [3.2] and Proposition [3.3] give a continuous family of
functions {u; }¢e7, on €2 such that 9,u; = 9, f and uy, = 0. Then f; = f — u; is Ji-holomorphic on
2 and continuous in ¢t € Tp, with f;, = f. Hence, there is a neighbourhood 71 C Tj of ¢ such that
mingey [fe(2)| > 1+ 2¢ and maxgex [fe(x)| < 1forall ¢ € Ti. We claim that Ty x U is disjoint
from I/(\'/. If not, choose (t',2') € (Ty x U) N K/, soz’ € K], C 2. The Oka-Weil theorem gives
a Jy-holomorphic function F' on X such that |F' — fy| < € on K J, O K U {z'}, which implies
|F(2')| > max,cx |F(z)], a contradiction to 2/ € K. J,,- This proves the claim and shows that IA( 7 is
closed. If T is locally compact Hausdorff, it follows that the projection 7 : K "y — T'is proper, so the
last statement follows from Proposition[5.2] U

In the remainder of the section, we assume that the parameter 7" is locally compact Hausdorff.
A closed subset K C T' x X is called proper over T', or simply proper, if the restricted projection

7|k : K — T is proper. The proof of Proposition [5.2] shows that K is proper if and only if the
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fibres Ky = {z € X : (t,z) € K}, t € T, are compact and upper semicontinuous. Given a subset
K C T x X with compact fibres K;, we define its _# -convex hull by

(5.2) Ky={(t,e)eTx X :xe (K}

(In (3.1I) we used the same notation for X C X to mean (T/x?( )z but this should not cause any
confusion.) A proper subset K C 1" x X is said to be _# -convex if K = IA( -

Lemma 54. If K C T x X is proper and ¢ is tame then the hull K ¥4 (3.2)) is also proper.

Proof. Fix tg € T and an open set U C X with (IAQO) Jiy, C U. By [29] Theorem 5.1.0] there is a
strongly Jy,-plurisubharmonic exhaustion function p : X — R such that p < 0 on (K3,) Ji, and p >0
on X \ U. The compact set L = {p < 0} is then J;,-convex and satisfies K;, C L C L C U. Since
K is proper, there is a nelghbourhood To C T of tg such that K; C Lforalltg € T'. Since ¢ is tame,
we have that (Kt) J, C L J, C U for all ¢ near tg, so K 7 is proper. O

Under a stronger regularity assumption on a family # = {J; };cr of Stein structures on X, we
have the following characterisation of tameness in terms of families of strongly J;-plurisubharmonic
exhaustion functions on X for¢ € T.

Theorem 5.5. Assume that X is a smooth manifold, T is a locally compact Hausdor{f space, and
Z = {Jiler is a continuous family of integrable Stein structures on X of local Holder class
€0k (T % X) for some k € Nand 0 < o < 1. The following conditions are equivalent.

(@) The family 7 is tame.
(b) Foreveryty € T there are a neighbourhood Ty C T of tg and a function p : Ty x X — R of class
€OF L such that p(t,-) is a strongly Jy-plurisubharmonic exhaustion on X for every t € Tj.

If in addition T’ is paracompact then (a) and (b) are also equivalent to the following:

(c) There is a function p : T x X — R of class €%+ such that p; = p(t,-) is a strongly Ji-
plurisubharmonic exhaustion function on X for everyt € T.

If T is a €' manifold and J is of local class €52 then p can be chosen to be of class €“F+1.

Note that the +i-eigenspaces of J; depend algebraically on the coefficients of .J; in a given smooth
frame on T'X, and hence the operators dj,, dj,, and dj, are as regular in ¢ € T as the family
# = {Ji}ier. In the operator dd,, the coefficients of d, get differentiated, and hence dd¢, depends
continuously on ¢ € 7' if the family ¢ is of class %1, This implies the following observation.

Lemma 5.6. Assume that the family of complex structures ¢ = {Ji}ier on X is of local class
¢0(12) 0 < o < 1. Let ¢ be a €2 strongly Jto-plurisubharmonic function on a domain V-.C X for
some ty € T. Given an open relatively compact subset U € V, there is a neighbourhood Ty C T of tg
such that ¢ is strongly Jy-plurisubharmonic on U for every t € 1.

Proof of Theorem[5.5] For simplicity of notation we assume that & = 1 and [ = 0; the proof is the
same in the general case.

We first prove that (b) = (a). Fix t{g € T', a compact set K C X, and an open relatively compact
set U € X containing K Ji,- Choose a neighbourhood Ty C T of ¢p and a function p : 7o x X — R
satisfying condition (b). By adding a constant to p;, we can ensure that p;, < —1 on K. Since py,
is an exhaustion function on X, there is a relatively compact domain V' € X containing U such that
pt, > 1 on X \ V. Choose a strongly .J;,-plurisubharmonic function 1) : X — R such that ¢) < 0 on
K Jiy and ¢ > 0on X \ U (see [29, Theorem 5.1.6]). Replacing v by ¢y for a suitable ¢ > 0 we may

assume that —1 <1 < 0on K,¥ > 0on X \ U, and ¢ < p;, on bV. Since p; is continuous in ¢, we
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can shrink 7 around ¢ to ensure that for every ¢ € T we have p; < —1 on K and ¢ < p; on bV. By
Lemma 5.6 we can further shrink 7p to ensure that ¢ is strongly J;-plurisubharmonic on V' for every
t € Tp. For t € Ty we define the function ¢; : X — R by

_Jmax{y(z), pe(z)}, €V
o) = {pt<a:>, TEX\V.

Note that ¢; is a piecewise 4’ strongly .J;-plurisubharmonic exhaustion function on X satisfying
(5.3) ¢t =1 <0onK and ¢y >0on X \ U.

(To obtain € strongly plurisubharmonic exhaustion functions satisfying (5.3) we can use the
regularized maximum; see [12, p. 69]. However, this is inessential.) Since the holomorphic hull of
K equals its plurisubharmonic hull (see [29, Theorems 4.3.4 and 5.2.10]), it follows from (5.3) that
I/(\:]t C U for all t € Tj. This shows that _¢ is tame.

Next, we prove that (a) = (b). Since the statement in (b) is local in ¢, we may assume that 7" is
compact. Tameness of # and compactness of 7" imply that for every compact set K C X, the hull
Ky (31) is also compact. Hence, we can find an exhaustion K ¢ K' ¢ K* C --- Cc g  K' = X

by compact sets such that Ky C T x K1 holds for every ¢ = 0,1,2,.... Choose an increasing
sequence 0 < ¢; < ¢g < --- with lim;_,~, ¢; = +00. We proceed inductively.

In the initial step, fix a neighbourhood U! € X of K and choose an open subset U! € X such
that U1 C U'. We shall find a function p! : T x X — R, of class €*2 such that p! is strongly
plurisubharmonic on U! for all ¢ € T, p' has compact support contained in T x Uy, and pt > e
on T x K. To do this, fix ¢ € T and pick a strongly J;-plurisubharmonic function ¢; : X — R,
such that ¢; > ¢; on K!. Lemma gives a neighbourhood 73 C T of t such that ¢, is strongly
Js-plurisubharmonic on U! for every s € T;. By compactness of 7" we obtain a finite covering
T = U;"ZlTJ and for each j = 1,...,m a ¢? function o - Ul - Ry such that ¢; > ¢; on
K' and ¢; is strongly J;-plurisubharmonic for every ¢ € 7). Let {x; 1 be a continuous partition
of unity on 7" with suppy; C 7j. Also, let £ : X — [0, 1] be a smooth function with compact
support contained in U which equals 1 on U*. The function p! (¢, z) = &(x) > i1 xj(t)¢j(w) is then
fibrewise strongly plurisubharmonic on 7' x U; and has compact support contained in 1" X Ul

In the second step, we pick a neighbourhood U? € X of K? and find a function p? : T'x X — R
of class ©%2 with compact support such that p> = 0 on KUy, p! + p? is fibrewise strongly
plurisubharmonic on 7' x U2, and p' + p? > co on T' x (K2 \ K'). (We also have p! + p? > ¢; on
T x K'.) To do this, fix t € T and apply [29, Theorem 5.1.6] to find a smooth .J;-plurisubharmonic
function ¢; : X — R, which vanishes on a neighbourhood of KO 7., it is positive strongly J-
plurisubharmonic on X \ K! (recall that KO ;, is contained in the interior of K1), and p} + ¢ is
strongly J¢-plurisubharmonic on X and satisfies p; + ¢ > ¢z on K\ K'. By tameness of _¢ and
Lemma 5.6| there is a neighbourhood 7; C T of ¢ such that the function p} + ¢; : U? — R, satisfies
the same conditions for all s € T}, and ¢; vanishes on a neighbourhood of KO 7, forall s € T;. Asin
the first step, this gives a finite open covering T' = U;”zl Tj, functions ¢; : X = Ry (j =1,...,m),
a partition of unity {x;}72; on T" with suppx; C Tj, and a smooth cut-off function § : X — [0, 1]
such that the function p?(t, ) = ¢(x) >721 xj(t)¢;(x) enjoys the stated properties.

This process can be continued inductively to yield a sequence of nonnegative functions p', p?, ...
of class €%2(T x X) with compact supports such that their partial sums p* = p' +- - -+ p’ are of class
%92 and satisfy the following conditions for every i = 1,2, .. .:

(i) p'is fibrewise strongly plurisubharmonic on a neighbourhood of T x K* and has compact support.
(i) p" >cronT x K'and p* > cjonT x (KJ\ K/=1) forj =2,...,i.
12



(iii) 5™ = 5 on K.

Condition (iii) implies that the sequence is stationary on any compact subset of 7" x X. It follows that
p=> p': T x X — Ry is a fibrewise strongly plurisubharmonic function of class "2 satisfying
p>cionT x (K*\ Ki~!) foreveryi = 1,2,.... In particular, p; = p(t, - ) is an exhaustion function
on X forevery t € T'. Itis easy to ensure that the Levi form of p; with respect to .JJ; grows as fast as
desired uniformly in ¢ € T'. This proves the implication (a) = (b).

Assume now that 7' is also paracompact. If (b) holds, we obtain a locally finite open cover
V = {V;}; of T with compact closures T; = V; and for every i a fibrewise strongly plurisubharmonic
exhaustion function p; : T; x X — R. Pick a partition of unity {x;}; on 7" subordinate to ). Then, the
function p = >, x;pi : T x X — R satisfies condition (c). The implication (c) = (b) is a tautology.

If T'is a " manifold, the same proof gives a function p of class €“*T1(T x X). U

The proof of Theorem [5.5] gives the following analogue of the classical result [29, Theorem 5.1.6]
for a tame family of Stein structures. We leave the details to the reader.

Theorem 5.7. Assume that X, T and ¢ are as in Theorem|5.5| E Given a proper ¥ -convex subset
K= K/ C T x X and an open set U C T x X containing K, there is a function p : T'x X — R as
in Theorem(b) such that p < 0on K and p > 0 on (T x X) \ U. Conversely, if p is a function as
in Theorem( b) then for every c € R the sublevel set {p < c} C T x X is proper and _§ -convex.

We conclude the section with examples and constructions of tame families of Stein structures on
a smooth manifold X. The first observation is that every sufficiently regular family ¢ = {J;}cr,
which is locally constant in ¢ outside of a proper subset of 7' x X, is tame. Hence, the phenomenon of
nontameness can only appear due to the behaviour of the complex structures near infinity in X.

Proposition 5.8. Let X and ¢ = {Ji}tcr be as in Theorem If for every tq € T there are a
compact set K C X and a neighbourhood Ty C T of ty such that J, = Jy, holds on X \ K for all
t € Ty, then the family 7 is tame.

Proof. Pick a strongly J,-plurisubharmonic exhaustion function p : X — R,. Lemma gives a
neighbourhood Ty C T of ¢y such that p is strongly J;-plurisubharmonic on K for every ¢t € Tj. Up
to shrinking 7}, the same is true on X \ K since J; = Jy, there. Hence, Theorem shows that the
family {J; }+c7, is tame. Since tameness is a local condition in the parameter ¢, ¢ is tame. O

Proposition 5.9. If (X, Jy) is a Stein manifold and ®, : X — ®(X) C X is a continuous family of
diffeomorphisms onto Stein Runge domains in X, then the family of Stein structures J; = ®;Jy on X
is tame.

Proof. Let K C X be a compact set. Set Q; = ®,(X) and K; = ®,(K ). Denote by J§ the restriction
of Jo to T€Y. Since @, : (X, J¢) — (4, J§) is a biholomorphism, we have K 5, = CD;l((Kt)Jé). Since
Q, is Runge in X, (Kt) Jt equals (Kt) Jo» the hull of Ky in (X, Jp). Since the family K} is continuous

in ¢, the family of hulls (Kt) Jo 18 upper semicontinuous in ¢, so the same is true for K J;- O

Theorem shows that Proposition fails in general if the domains ®;(X') are not Runge in X.
In that example, X = C™" withn > 1,¢ € R, ®,(C") = C" for ¢ # 0, while ®o(C") is not Runge
in C™. It is easy to find an example of a tame family of Stein structures {.J; }scg on R?" such that
(R?" Jo) equals C™ while (R?", J;) for t # 0 is biholomorphic to the unit ball in C™.

Example 5.10. Assume that (Y, Jy) is a Stein manifold, X is a smooth manifold, 7" is a topological

space, and F' : T x X — Y is a map of class €% such that for every ¢t € T, the map F; =
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F(t,-) : X — Y is a proper immersion whose image F}(X) is an immersed complex submanifold of
Y. Let J; denote the unique complex structure on X such that the map F; is (.J;, Jy )-holomorphic.
Since F} is proper, J; is Stein. Then, the family ¢ = {J;}+cr is tame. Indeed, choosing a smooth
strongly plurisubharmonic exhaustion function p : ¥ — R, the function po F' : T'x X — R,
satisfies condition (c) in Theorem [5.5] This situation arises naturally if 2 € Y is a smoothly bounded
Stein domain and { F}(Z) }+er is a continuous family of complex submanifolds of Y with a connected
parameter space 7" such that forevery t € T', Z, = {z € Z : Fy(z) € Q} is relatively compact in Z
and F} intersects bS2 transversely along bZ;. In this case, the domains Z; have smooth boundaries and
are diffeomorphic to each other, so we can smoothly parametrise them by a fixed smooth manifold X.

Corollary shows that tameness of a family ¢ of sufficiently smooth Stein structures on X is
implied by, and hence equivalent to the one-fibre extension property for _# -holomorphic functions.

6. THE OKA PRINCIPLE FOR TAME FAMILIES OF STEIN STRUCTURES

In this section, we state and prove the main result of the paper, Theorem [6.1] It gives a parametric
Oka principle with approximation for maps from tame families of Stein structures to any Oka manifold.
Except for the regularity assumptions and statements, this result extends the special case concerning
families of open Riemann surfaces in [14, Theorem 1.6].

Let T" be a topological space, X be a smooth open manifold, and let 7 : 7" x X — T denote
the projection. Assume that ¢ = {J;}4c7 is a tame family of integrable Stein structures on X (see
Definition[5.T)). Recall that a closed subset X' C T'x X is called proper over T (or simply proper) if the
restricted projection 7| : K — 7T is proper, and is ¢ -convex if K = K s (see (3.2)). A continuous
map f onanopen U C T x X is said to be _# -holomorphic if the map f; = f(t,-) is J;-holomorphic
onU; ={x € X :(t,x) € U} forevery t € T. A topological space is said to be o-compact if it is the
union of countably many compact subspaces. Every locally compact and o-compact Hausdorff space
is paracompact [[39]]. A topological space T'is a Euclidean neighbourhood retract (ENR) if it admits a
topological embedding ¢ : T < RY for some N whose image +(T") C R" is a neighbourhood retract,
and is a local ENR if every point of 7" has an ENR neighbourhood. (See [14, Definition 1.5] and the
references therein.) In particular, every finite CW complex is an ENR, and every countable locally
compact CW-complex of finite dimension is an ENR.

Theorem 6.1 (The Oka principle for tame families of Stein structures). Assume the following:

(a) T is a o-compact Hausdorff local ENR. In particular, T may be a finite CW complex or a countable
locally compact CW-complex of finite dimension.

(b) X is a smooth open manifold of real dimension 2n.

(¢) 7 > 2n+ 11 is an integer, or v = +00.

(d) Z = {Ji}ter is a tame family of Stein structures of class € " on X (see Definition .

(e) K C T x X is aproper (overT) 7 -convex subset.

(f) Y is an Oka manifold with a distance function disty inducing the manifold topology.

(g) f:T xX —Y isa continuous map, and there are an open subset U C T x X containing K and
a closed subset Q) C T such that f is # -holomorphic on U U (Q x X).

Given a continuous function € : T — (0,+00), there exist a neighbourhood U' C U of K and a
homotopy fs: T x X =Y (s € I =0,1]) satisfying the following conditions.

@ fo=r.
(ii) The map fsis 7 -holomorphic on U’ for every s € I.
(iii) sup,cg, disty (fs(t,z), f(t,x)) < €(t) for everyt € T and s € 1.
(iv) The map F' = f1is _Z-holomorphic onT x X.
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(V) The homotopy fs(t,-) (s € I) is fixed for everyt € Q, so F = fon Q x X.

Remark 6.2. The choice of the integer r in condition (c) is dictated by Theorem Ifk > 1and
r > 2k 4+ 2n + 9 are integers or k = r = +o0, it follows from Theorem [3.1] that every continuous
_# -holomorphic map f : U — Y on an open subset U C T x X is of class €%k, Approximation
in the fine €"*** topology (see (iii) in the theorem) can then be upgraded to approximation in the fine
€Y topology; see the last paragraph in [14] Theorem 1.6]. We shall not formally state or prove this
generalisation since it follows easily from the proof of [14, Theorem 1.6].

We first explain the special case of Theorem [6.1) with Y = C. In the following version of the
Oka—Weil theorem for tame families of Stein structures, the parameter space 7' is more general than in
Theorem [6.1] The special case when X is an open surface is given by [14, Theorem 1.1].

Theorem 6.3 (The Oka—Weil theorem for tame families of Stein structures). Assume that X is a
smooth manifold of dimension 2n, T is a locally compact and paracompact Hausdorff space, k > 1
and r > 2k + 2n + 9 are integers or k = r = 400, # = {J; }1er is a tame family of Stein structures
of class €% on X, K C T x X is a proper over T and J -convex subset, U C T x X is an open
set containing K, and f : U — C is a ¢ -holomorphic function. Then, f € €Ok (U) and it can be
approximated in the fine €%F topology on K by Y -holomorphic functions F' : T'x X — C. Ifin
addition Q) is a closed subset of T' and f is also _# -holomorphic on QQ x X, then F' can be chosen
such that F = f on @Q x X.

Theoremhas the following corollary which shows that tameness of _¢# is implied by, and hence
equivalent to the one-fibre extension property for _¢# -holomorphic functions.

Corollary 6.4. Assume that T is a locally compact and paracompact Hausdorff space, X is a smooth
manifold, and ¢ = {Ji}icr is a continuous family of smooth Stein structures on X.

(a) If 7 is tame then every _# -holomorphic function on Q) x X, where @ is a closed subset of T,
extends to a ¥ -holomorphic function on T' x X.

(b) Conversely, if for every f € O(X, Jy,) (to € T) there are a neighbourhood Ty C T of to and a
J -holomorphic function F : Ty x X — C such that F(to,-) = f, then the family ¢ is tame.

Proof of Corollary Note that (a) is a part of Theorem[6.3] We prove (b) by contradiction. Assume
for simplicity that 7" is first countable; in the general case the same argument works with sequences
replaced by nets. Assume that ¢ is not tame. Then there are a point ¢y € 7', a compact J;,-convex set
K C X, aneighbourhood U € X of K, and a sequence t; € T withlim;_,, t; = to such that the hull
K Tt is not contained in U for any j. It follows that K Ji; N bU # . Pick a point x; € K gy N bU for
every j. Since bU is compact, passing to a subsequence we may assume that z; converges to a point
xog € bU as j — oo. Assume that F' : Top x X — Cis a _#-holomorphic function, where Ty C T’
is a neighbourhood of ty. Let f = F\(to,-). For every sufficiently big j we have ¢; € T and hence
|F(tj,z;)| < maxzer |F(tj, x)|. Taking the limit as j — oo gives | f(xo)| < maxgex |f(x)|. Since
xo & K J,, = XK, there exists a function f € 0y, (X) violating the above inequality, and hence such f
does not admit a _# -holomorphic extension to T x X for any neighbourhood T} of ty. g

For a tame family ¢, Corollary |6.4|also implies the following characterisation of ¢ -convex sets
by _#Z-holomorphic functions.

Corollary 6.5. Assume that T, X, and ¢ = {Ji}er are as in Corollary[6.4] If 7 is tame then a
proper over T subset K C Z =T x X is ¢ -convex if and only if for every point zy = (to,z0) € Z\K

there exists a 7 -holomorphic function f : Z — C such that | f(z)| > sup,cg | f(2)]-
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Proof. If K is not _# -convex then at least one of its fibres K; (¢ € T') is not J;-convex, so a function
with the stated property does not exist. Assume now that K is _#-convex and let 2y = (to, z0) € Z\ K.
Then, z9 € X \ (Ky,),,» so there exists fy, € O, (X) with |fi,(z0)| > maxzek,, |fi,(2)]. By
Corollary (a) there exists a _# -holomorphic function F' : Z — C with F'(tg,-) = fi,. Since # is
tame, there is a neighbourhood Ty C T of to such that |F'(tg, z¢)| > maxgek, |F(t, )| holds for all
t € Ty. If x : T — [0, 1] is a continuous function with x(¢y) = 1 and suppy C Tp then the function
f:Z — Cgivenby f(t,z) = x(t)F(t, ) satisfies the conclusion of the corollary. O

Proof of Theorem|[6.3] We first consider the case when T is compact and () = @. Since the set
K C T x X is proper over the compact set 7', K is compact as well. Choose a compact set L C X
suchthat K € Tx Landset ' =T x L .y (5.1). It suffices to show that the function f in the theorem
can be approximated as closely as desired in €%*(K) by _# -holomorphic functions F' : U’ — C on
an open neighbourhood U’ C T x X of L’. If this holds then the conclusion follows by an induction
with respect to an exhaustion of 7' x X by an increasing sequence of compact _# -convex sets.

Consider the problem for ¢ € T near a fixed g € T. We denote by K; C X the fibre of K over
t € T, and likewise for the other sets. For a subset 7y C T we also write K7, = K N (Tp N X) and
Ur, = UnN (Tp x X). Choose a relatively compact strongly J;,-pseudoconvex domain 2 € X with
smooth boundary such that L} = L Jiy C €2 Theorem (3.1| furnishes a neighbourhood Ty C T' of ¢y
and amap ® : Ty x Q — Ty x X of class €F such that ® (¢, ) = (¢, ®;(z)) and

(6.1) Oy Q) — D4(Q) C X isa(Jy, Jy, )-biholomorphism for every ¢ € Tp,

with ®;, = Idg. Choose .J;,-Stein domains V, V" in X such that Lj, C V € V' € Q. Shrinking U
around K and Ty around ¢ if necessary, the following inclusions hold for every t € Tj (see Fig. [2):

(6.2) U CQ, ®(K)CVCV cd(Q), L,cVcad (V).

Figure 2. The shaded areas depict the sets O (K;) C P4(Q2) for t € Tp.

Let f : U — C be as in the theorem, so f; = f(t,-) is Ji-holomorphic on Uy D K; for every
t € T. The function f o ®~! : ®(Ug,) — C is then continuous and fibrewise .J;,-holomorphic,
hence of class €%>°. Since K; is J;-convex in €2 and the map P, is (J¢, Jy, )-biholomorphic,
D, (Ky) is Jy,-convex in @4(€2) (and hence in V' C ®4(12), see (6.2)) for every ¢ € Tj. Hence, the
set K/ := ®(Kp,) C Tp x X is proper over Ty and its fibres are Jy,-convex in the Stein manifold
(V', Jy, ). By [14, Lemma 5.3] there is a function F” : Ty x V' — C of class %> which is fibrewise

Ji,-holomorphic and approximates f o ®~! as closely as desired in %% (K"). Since ®;(V) C V' by
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the third inclusion in (6.2), the function F := F' o ® : Ty x V — C is well-defined, of class €**, and
it approximates f in % (K7, ). By the fifth inclusion in (6.2) we have that L' N (Tp x X) C Ty x V.

This gives a finite open cover {7 }; of T and open sets V; C X such that {7} x V;}; is a cover
of L', and _# -holomorphic functions F; : T; x V; — C approximating f in el (K7;) for every
j. Choose a partition of unity 1 = > ; Xj on T with supp x; C 7Tj for every j. The function
F(t,z) = >, x;j(t)F;(t,x) is then well-defined and _#-holomorphic on a neighbourhood of L' in
T x X and it approximates f in %% (K). To conclude the proof, it remains to apply an induction with
respect to a normal exhaustion of 7" x X by an increasing family of compact ¢ -convex sets.

Suppose now that 7" is compact and Q C T is nonempty. Let K C L' C T x X be as above.
Choose a strongly pseudoconvex domain 2 € X such that L' N (Q x X) C @ x Q. We claim that
there is a neighbourhood 7 C T of @ and a _¢# -holomorphic function f : 7" x  — C which agrees
with f on @ x . If the complex structure .J; is independent of ¢ € T”, this follows from the parametric
Oka—Weil theorem [12, Theorem 2.8.4]. In the case at hand, we choose a pair of smoothly bounded
strongly pseudoconvex domain 2; € €23 € X such that Q C Qy, and we cover ) by finitely many
open sets 11,...,T,, C T with points ¢; € T} such that Theorem applies on T'j x Qy for every
j = 1,...,m. This gives maps ®; : Tj X o — Tj x X of class €% and of the form (6.1) such
that @, : Qy — ®;(Q2) is a (J;, J;,;)-biholomorphism for every ¢ € T;. Choosing the sets T small
enough we may assume that the following inclusions hold for j = 1,...,m:

(6.3) TixQC @ (Tjx M), T;x C®(T;x Q).

We apply [12| Theorem 2.8.4] to each function f o @;1 : (T; N Q) x Q1 — C (see the second
inclusion in (6.3)), which is fibrewise .J;;-holomorphic, to find a fibrewise .J;;-holomorphic function
fi : T; x Q1 — C which agrees with f o <I>j_1 on (T; N Q) x Q. The function f; o ®; is then
well-defined and _# -holomorphic on T'; x € (see the first inclusion in (6.3)), and it agrees with f on
(T; N Q) x Q. Choose a partition of unity {x; L1 on a neighbourhood of @ with suppy; C 7). The
function [/ = Z;”:l x;( fj o ®;) has the desired properties. We now replace f by (1—¢) f +£f where
¢ : T — [0,1] is a continuous function with compact support contained in a small neighbourhood
@' D @ such that £ = 1 on a neighbourhood of (). This new function is _# -holomorphic on U D K
and on 7" x €, and it is close to the original function f on K if the neighbourhood Q' O @ was
chosen small enough. We apply the previously explained construction to this new function, working
on the complement of () in 7" to find a _# -holomorphic function F' on a neighbourhood U’ of L’ which
approximates f on K and agrees with f on (@ x X) N U’. This completes the induction step.

When 7T is a locally compact and paracompact Hausdorff space, the above proof gives an open
locally finite cover 7 = {T}}; of T' (not necessarily countable) and functions Fj : T; x X — C
which approximate f as closely as desired in the ¥** topology on K N (T; x X) and agree
with f on (T, N Q) x X. Choosing a partition of unity {¢;}; on T" subordinate to 7 and setting
F=> ;& Fj : T x X — C gives functions satisfying the theorem. O

We now turn to the Oka principle in Theorem [6.1) where the target Y is an arbitrary Oka manifold.
We shall use the following special case of [14, Lemma 6.3] which we restate in the notation of this
paper. In this lemma, the Stein structure on X is independent of the parameter ¢.

Lemma 6.6. Assume that P" C RY is a neighbourhood retract and Py C P, C P C P’ are
compact subsets of P", each contained in the interior of the next one. Let X be a Stein manifold,
7 : CN x X — CN be the projection, and K € CN x X be a compact subset such that n(K) C P
and the fibre K; = {x € X : (t,x) € K} is O(X)-convex for every t € P. (The fibre K; may be
empty for some t.) Assume that U is an open neighbourhood of K in P’ x X, Y is an Oka manifold

endowed with a distance function disty, and f : P' x X — Y is a continuous map such that for every
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t € Pthemap f; = f(t,-) : X = Y is holomorphic on Uy = {x € X : (t,z) € U}. Fix e > 0. After
shrinking the open set U D K if necessary, there is a homotopy fs : P x X — Y (s € I = [0,1])
satisfying the following conditions.

@ fo= flpxx-

(b) fs(t,-): X — Y is holomorphic on Uy for every s € I and t € P.

(c) max ek disty (fs(t, ), f(t,x)) < e forevery s € I.

d) fs(t,-)= f(t,-)forallt € P\ Piands € I.

(€) The map f1(t,-): X — Y is holomorphic for every t in a neighbourhood of P,.

Proof of Theorem[6.1} Let the integers k > 1 and r > 2k+2n+9 be as in Remark[6.2] We shall follow
[[14} proof of Theorem 1.6], which treats the case when X is a smooth open surface. The adjustment
we have to make is that the J;-convex hull of a compact set in X may now change with the parameter
t. Unlike in the proof of Theorem[6.3] we can not glue partial approximants by partitions of unity on
T since the target Y is a manifold, so the problem is nonlinear. Instead, we make all deformations by
homotopies and use cut-off functions in the parameters of the homotopy at every inductive step.

The conditions on 7" imply that it is locally compact, o-compact and Hausdorff. Choose a normal
exhaustion 77 C 1 C --- C U;’;l T; = T by compact sets (that is, each 7} is contained in the
interior of T}, 1). Tameness of _# provides an increasing sequence L1 C Ly C --- C U;’il Ly=X
of compact sets forming a normal exhaustion of X such that forall 7 = 1,2, ... we have that

—

Kﬂ(T‘jXX)CT‘jXLj and (TjXLj)/CTjXLj_H.

Figure 3. An illustration of the choice of the set Lo.

Define an increasing sequence of subsets K = K C K' C --- C Uj2g K/ =T x X by

(6.4) Ki=(TjxL;), UK, j=12....

)s
Note that each K7 is proper over 7" and J -convex. Let fO = f:T x X — Y be the given map
in the theorem which is ¢ -holomorphic on a neighbourhood of K = K Oand on Q x X. We may
assume that the distance function disty is complete. Let € : T — (0, +00) be the continuous function
in the theorem. We shall find a sequence of continuous maps f/ : T x X — Y and homotopies
fl:T x X =Y (sel=]0,1]) satisfying the following conditions for every j = 1,2, .. ..

(A) f7is #-holomorphic on a neighbourhood of the set K7 (6.4).

(B) f3 = f7"Vand f{ = f.
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© fg is _#-holomorphic on a neighbourhood of K J=1 for every s € I, where the neighbourhood
does not depend on s € I. ‘

(D) max, ;-1 distg(fﬂ'—l(t,a;), fi(t,x)) <27 Je(t) foralls € Tandt € T.

(E) The homotopy fZ(t,-), s € I, is fixed for all t € Q.

These conditions clearly imply that the homotopies fg (7 € N, s € I) can be assembled into a single
homotopy fs : Tx X — Y (s € I) from the initial map fo = f = f° to the limit _# -holomorphic map
fi=F =lim;_, f7:T x X — Y (condition (iv)) such that for every s € I, f is _Z -holomorphic
on a neighbourhood of K (condition (ii)), it approximates f to precision € on K (condition (iii)), and
the homotopy is fixed over () (condition (v)).

Every step in the induction is of the same kind, so it suffices to show the initial step with j = 1.
This is accomplished by a finite induction which we now explain.

If the subset () C T in condition (v) is nonempty, we choose a small neighbourhood Q; C T
of Q and deform f° = f by a homotopy which is fixed for t € Q U (T \ Q1) to another map
f%: Z — Y which approximates f° in the fine topology on K° such that fO(¢, - ) is holomorphic on
a neighbourhood of K} for every ¢ in a closed neighbourhood @ C @1 of @ and the other properties
of £ remain in place. This modification can be done in a similar way as in the last part of the proof of
Theorem but using the gluing technique in [[12, Proposition 5.13.1] instead of partitions of unity.
To simplify the notation, we replace f° by fo and drop the tilde. Define the set

(6.5) K :=[(QxX)NK'|UK"c T x X.

Note that K ¢ K° ¢ K!, K°is proper over T and _#-convex, and f° is _#-holomorphic on a
neighbourhood of K. KO. 1f Q = 9, we take Q @ and K° = KO,

Fix a point ¢y € 1. Since T5 is compact, there are a smoothly bounded strongly J;,-pseudoconvex
domain Q € X and J;,-Stein domains V, V"’ in X such that

(6.6) UK eveveaq

teTn
The conditions on 7" imply that there is a neighbourhood P” C T of ¢y which is an ENR, so we may
assume that P ¢ RY ¢ C¥ is a neighbourhood retract. Theorem gives a compact neighbourhood
P’ C T, of tg, contained in the interior of P”, and a map ® : P’ x Q — X of class €%F and of the
form ®(¢,x) = (¢, P¢(x)) such that &; : Q — &,(Q) C X is a (J, Jy, )-biholomorphism for every
t € P’ and ®;, = Idg. Shrinking P’ around ¢, we may assume that for every ¢ € P’ we have

6.7) Uy cQ, OK)cVcV cd(), K cVvca (V).

(These are analogues of conditions (6.2).) Pick a compact neighbourhood P C T of ¢y, contained in
the interior of P’, and consider the continuous family of maps

fli=fio®1:®(Q) =Y, teP

Since the map @, : (P:(Q2),Jy,) — (€, J;) is biholomorphic and f; is Ji-holomorphic on a
neighbourhood of K. 0, the map f; is Jy,-holomorphic on a neighbourhood of <I>t(K 9) for every t € P
(see the second set of inclusions in (6.7)). Pick a pair of smaller neighbourhoods Py C P; C P of
to, each contained in the interior of the next one. Lemma[6.6} applied to the family of .J;,-convex sets
®,(KD) in the Ji,-Stein domain V'’ C X, gives a homotopy

fey: V' =Y forte Pands e[

such that f;, = fj, = f{ holds fort € P\ P and s € I, the map f;, is Jy,-holomorphic on

a neighbourhood of ®,(K?) and approximates f/ uniformly on ®,(K?) to arbitrary precision for all
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t € Pands € I, and fj , is Ji,-holomorphic on V' for ¢ in a neighbourhood of P. By the third set of
inclusions in we have that (V') C V' for ¢t € P. It follows that the maps

(6.8) fsp=fe; 0P :V =Y forselTandt € P

are J¢-holomorphic on a neighbourhood of K D, fs+ approximates f; uniformly on I?,? (and uniformly
in s € I) to arbitrary precision, we have fs+ = fo+ = f; fors € I andt € P\ P;, and the map
ft == fit : V = Y is Ji-holomorphic for all ¢ in a neighbourhood of Py. We extend the family of
homotopies to all t € T" by setting fs; = fo+ = fifort € T\ Py and s € I.

Note that for t € P; the map f,; in (6.8) is still defined only on V' C X. In order to extend the
homotopy to all of X also for ¢t € Pj, choose a smooth cut-off function y; : X — [0, 1] such that
x1 = 1 in a neighbourhood of the compact set UtE P Ktl and suppy1 C V. If the sets Q C @ are
nonempty, we choose a second cut-off function y2 : 7 — [0, 1] such that yo = 1on T\ Qand x2 =0
on a neighbourhood of Q. If @) is empty we simply take yo = 1 on 7. We can now extend the maps
fst = fs(t,-) in (6:8) to all of X without changing their values on a neighbourhood of K by setting

for(x) = foxi@pe(r) fort €T, x € X,ands € 1.

For ¢ in a neighbourhood of () we have x2 = 0 and hence f~s7t = fot = fi-

Since 77 is compact, we can find a finite family of triples Pg C Plj C P (j=12..,m)
of compact sets in 1" such that 77 C U;"Zl Pg and the construction described above can be made on
each of these triples. The induction proceeds as follows. In the first step, we perform the procedure
explained above on the first triple (Pol, Pll, P1) with the set K° and the map ¢° := f° = f. We obtain
a homotopy from ¢° to g' : T x X — Y such that every map in the homotopy is _# -holomorphic on
a neighbourhood of K7, it approximates g° = f° on K to precision ¢/2m, and the homotopy is fixed

for ¢ in a neighbourhood of 7'\ P} U Q. The resulting map g' is _# -holomorphic on a neighbourhood
of the compact _¢ -convex set

St=[P xX)NK' UK’ CT x X.
Similary we define compact ¢ -convex sets Stforl=2,...,mby

S = [(FU--URH) x X)NK' UK C T x X,

(See Fig. ) Instep £ € {2,...,m} the same argument is applied to the map ¢! on the triple

(Pg , Pf , P*) with respect to the set S‘~!. The resulting map ¢* : T x X — Y is _# -holomorphic
on a neighbourhood of S*. We also obtain a homotopy from g‘~! to ¢* consisting of maps which are
_# -holomorphic on a neighbourhood of S~ they approximate g‘~! on S~ to precision ¢/2m, and
the homotopy is fixed for ¢ in a neighbourhood of 7"\ Pf UaQ.

After m steps we obtain a map ¢ : T' x X — Y which is _#-holomorphic on a neighbourhood
of S™, which contains K (see (6.4)). We define f! := ¢g™. Furthermore, the homotopies between the

subsequent maps g¢ and g‘*! for £ = 0,1,...,m — 1 can be assembled into a homotopy ffsen
from the initial map f(} = f9=g%0 f{ = f! = g such that f! satisfies (i)~(v) for j = 1. This
explains the inductive step and thereby concludes the proof. 0

7. THE OKA—WEIL THEOREM FOR SECTIONS OF FIBREWISE HOLOMORPHIC VECTOR BUNDLES

In this section, we assume that 7" is a locally compact and paracompact Hausdorff space, X is a
smooth manifold, and # = {J;}+cr is a tame family (see Def. of Stein structures on X of class
%Y. The main result of this section, Theorem is an Oka—Weil approximation theorem for ¢ -

holomorphic sections of _# -holomorphic vector bundles on Z = T" x X. It generalises Theorem 6.3}
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Figure 4. The set S2.

which pertains to sections of a trivial vector bundle. Theorem[7.2] will be used in the following section
to obtain global solvability of the d-equation on tame families of Stein manifolds; see Theorem 8.1

We endow each fibre Z; = {t} x X, ¢t € T, with the complex structure .J;. Denote by ¢ = ng’(’o
the sheaf of germs of continuous fibrewise smooth functions on Z, and by & = &'z the sheaf of germs
of _Z-holomorphic functions on Z. These are sheaves of unital abelian rings, with &’z a subsheaf of
ng,oo‘ For a complex Lie group G, 0§ C %g’oo’G denote the sheaves of germs of maps Z — G of
respective classes; these are sheaves of groups.

Definition 7.1. Let 7', X and ¢ be as above, and let GL,(C) denote the complex Lie group of
invertible r X r matrices. A complex vector bundle 7 : E — Z = T x X of rank r is said to be
_7 -holomorphic if it is defined on an open covering {U;}; of Z by a 1-cocycle g = (g; j) consisting
of _#-holomorphic maps g; ; : U; j — GL,(C).

Explicitly, F is obtained by gluing the trivial bundles U; x C" on the overlaps U; ; = U; N U; by
identifying a point (z,v) € U; x C" (where z = (t,x) € U; ;) with (2, g; j(2)v) € U; x C".

Theorem 7.2. Let T, X and ¢ be as above and E — Z = T x X be a ¥ -holomorphic vector
bundle. Given a proper ¢ -convex subset K C Z (see (5.2))), an open subset U C Z containing K,
a closed subset Q C T, a ¢ -holomorphic section f : U U (Q x X) = E|U U (Q x X), and an
integer k € Z., we can approximate f in the fine €% topology on K by Y -holomorphic sections
F:Z — Esuchthat F = fon@Q x X.

Proof. We shall assume that 7" is compact and ) = &; the general case can be dealt with as in the
proof of Theorem [6.3] which pertains to sections of trivial bundles.

Since K is proper over the compact set 7', it is compact. It suffices to show that, givena _¢# -convex
subset L C Z with K C L, we can approximate f in the ¥** topology on K by _¥ -holomorphic
sections of F over a neighbourhood of L. The conclusion of the theorem then follows by induction
with respect to an increasing sequence of ¢ -convex subsets exhausting Z. Furthermore, since the
problem is linear, we may use partitions of unity on 7". This reduces the proof to the approximation
problem for parameter values ¢ in a neighbourhood of a given point tg € 7.

Fix ty € T and smoothly bounded strongly J;,-pseudoconvex domains §2; € X for: = 1,2,3
such that L;, C €1 € Qo € Q3. Theorem 3.1 gives a compact neighbourhood Ty C T of ¢y and a map
P : Ty x Q3 — Ty x X of class €% such that ®(¢,z) = (¢, ®;(x)) and ®; : Q3 — P4(3) C X isa
(Jt, Ji, )-biholomorphism for every ¢ € T, with &, = Idg. Shrinking Tp around ¢, we may assume
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that the following inclusions hold for every ¢ € Tj:
(7.1) Ly CQ CO7H(), Q€ 0(03).

Since the map ®; is (J¢, Jy, )-biholomorphic, the push-forward vector bundle ®.(E|(Tp x §2)) is
continuous in ¢ € Tp and fibrewise J;,-holomorphic. Denote by E’ the restriction of this bundle
to the domain Ty x Qy C ®(Tp x Q3) (see (7.1)). Its restriction Ej to the fibre {t} x Qy is a Jy,-
holomorphic vector bundle, smooth up to the boundary of €2, and depending continuously on ¢ € Tj,.
Assuming as we may that Tp is chosen small enough, the stability result of Leiterer [36, Theorem 2.7]
gives a family of .J;,-holomorphic vector bundle isomorphisms over 25,

(7.2) U, E S E|, teT,

0’
smooth up to the boundary and depending continuously on ¢t € Tj. (The cited result is stated in terms of
Ji,-holomorphic transition cocycles gt = { gf’ j} for E; for t € Tp, defined on a fixed open cover of Q5
and continuous up to the boundary of the respective domains, and there are cohomological condition
(i), (ii) on the endomorphism bundle Ad(Ey,) of Ey,. As explained in [36, Remark 2.11] and [36]
proof of Theorem 2.12], the two cohomology groups appearing in the hypothesis of [36, Theorem 2.7]
vanish when the base is a compact strongly pseudoconvex domain with 4’2 boundary.) The upshot is
that the bundle E' — Ty x ), is fibrewise isomorphic to the trivial (independent of ¢) extension of the
vector bundle Ej = E'|({to} x Q2).

Denote by E; the restriction of the initial vector bundle £ — Z to the fibre over ¢ € T. We are
given a continuous family of J;-holomorphic sections f; : Uy — E|U;, t € T. For every t € Ty,
the map ft = fro®, lisa Ji,-holomorphic section of the push-forward bundle E; = (®;).E; over
the domain ®,(U;), depending continuously on ¢ € T. By using the isomorphisms ¥, in (7.2), we
may consider {f;}ter, as a family of Jy,-holomorphic sections of Ey, over the family of domains
O, (Up) D Py(Ky). (Here, K, is the fibre of the set K in the theorem.) Note that for every ¢ € Tj the
set @;(K;) is Jy,-convex in ®4(£23), hence in y; furthermore (K N (Tp x X)) is proper over Tp.

By the parametric Oka—Weil theorem for sections of holomorphic vector bundles over Stein
manifolds (see [12, Theorem 2.8.4]), we can approximate f; in the €* topology on ®;(K;), uniformly
int € Ty, by Ji,-holomorphic sections F} of the bundle E} over the Stein domain ;. (Approximation
on variable fibres ®;(K;) is reduced to the case of constant fibres by the same technique as in the
proof of Theorem using a continuous partition of unity on 7y.) Applying again the vector bundle
isomorphisms (7.2), we may consider F} as a J;,-holomorphic section of the bundle E] over .
Finally, F; := F} o ®, is a J;-holomorphic section of the original bundle F; over the domain ®; ! (23),
and these sections depend continuously on ¢ € Ty. By we have Ly C  C &, 1(Qz) for all
t € Ty, s0 F'(t,x) = (t, Fy(x)) is a _# -holomorphic section of E|(Tp x €21) which approximates f on
Kn (To X X) Note that L N (TQ X X) C Ty x Q.

Since 7" is compact, this gives a finite open cover {IWW; = T}; x Q;}; of L such that 7 = {7}, is an
open cover of 7', and _# -holomorphic sections F; of E|W; approximating f in the ¢ 0% topology on
K NWj as closely as desired for every j. If { x;}; is a continuous partition of unity on 7" subordinate to
Tthen FF =) i x;Fjisa _# -holomorphic section of E over a neighbourhood of L in Z approximating
f in the fine €% topology on K. As explained at the beginning, this concludes the proof. (]

8. GLOBAL SOLUTION OF THE E—EQUATION ON TAME FAMILIES OF STEIN MANIFOLDS

In this section, we assume that 7" is a locally compact and paracompact Hausdorff space, X is a
smooth manifold, and _# = {J;}+cr is a tame family of Stein structures on X (see Def. of class
€%, Write Z = T x X. Bvery fibre Z, = {t} x X = X is endowed with the Stein structure .J;.

For each pair of integers p > 0, ¢ > 1 we denote by 2P4(Z) the space of (p, ¢)-forms on the fibres
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(X, J;) of Z of class €*>°. The following is a corollary to Theorems and A related result for
p =0, ¢ = 1 on families of open Riemann surfaces is [[15, Corollary 1.2].

Theorem 8.1. Let p > 0 and ¢ > 1. Given a continuous family o = {at}rer € DPU(Z) of smooth
(p, q)-forms oy € PP4(X, J;) with 0 5,cp = O for all t € T, there exists 3 = {B }ier € P11 (2)
satisfying

8.1) 01,8t = ay on X foreveryt € T.
In the sequel, we shall often write the equation (8.1)) in the form & )yB=aonZ =T x X.

Proof. We begin by showing that the equation (8.1) is solvable on a neighbourhood of any proper
¥ -convex subset K C Z (see (5.2)).

Denote by K; the fibre of K over ¢t € T'. Fix a point £y € T" and a smoothly bounded strongly
Jt,-pseudoconvex neighbourhood D € X of K;,. By tameness of # and Lemma there is a
neighbourhood Ty C T of ¢ such that D is a strongly J;-pseudoconvex neighbourhood of K for all
t € Tp. By Theorem(e), there exists 3 € 274~ (T x D) solving 5/5 = aon Ty x D. In this
way, we obtain an open locally finite cover 7 = {T;};c; of T, smoothly bounded domains D; € X
such that K C |J;c; T; x D;, and solutions j3; € 9P4~YT; x D;) to gfﬁi = aonT; x D;. Let
{Xi}icr be a partition of unity on T" subordinate to 7. Then, 5 = ), ; x;03; is a solution to .1 in a
neighbourhood of K.

Choose an exhaustion K! ¢ K2 C --- of Z by proper 7 -convex sets (see (5.2)). We shall
inductively find solutions 3/ to (8.1)) in neighbourhoods of K7 such that 37 approximates the solution
(7~1 from the previous step on a neighbourhood of K7~ (if ¢ = 1), or agrees with it (if ¢ > 1).

Denote by (2 the sheaf of germs of _# -holomorphic (p, 0)-forms on the fibres of Z = T x X.
In particular, Q° = & is the sheaf of germs of _# -holomorphic functions on Z. Since the complex
structures J; € _# are smoothly compatible, (7 is a subsheaf of the sheaf &7 of fibrewise smooth
(p, 0)-forms on the fibres of Z. The elements 8 € 2PY(Z) satisfying O )y B = 0 are precisely the
global sections of (2P over Z. Equivalently, they are holomorphic sections of the ¢ -holomorphic
vector bundle on Z (see Deﬁnition whose restriction to Z; = (X, J;) is AP T*(1.0)( X J,), the p-th
exterior power of the (1, 0)-cotangent bundle of (X, .J;) (see Section[2).

Let 37 be as above, solving gfﬁj = o on a neighbourhood of K7 for j = 1,2,.... Then,
(8.2) 3/(53' — #771) = 0 holds on a neighbourhood U of K7~ 1.

If ¢ = 1, this means that 3/ — 37~ is a section of the sheaf {2’ on U. By Theorem we can
approximate it in the fine ’°~ topology on K7~ by a global section - of QP. Replacing 37 by 37 — v
ensures that 37 solves 5; (7 = o on a neighbourhood of K/ and it approximates 3/~ on K71,
Performing this construction inductively gives a sequence 3/ converging in the fine €'%>-topology to
a solution 3 € 2P9(Z) of the equation (8.1).

Assume now that ¢ > 1. As explained earlier, implies that 3/ — g/—! = gf'y on a
neighbourhood U of K7~! for some v € 2P4=2(U). Let x : Z — [0,1] be a function of class
%> with supp() C U which equals 1 in a neighbourhood of K7~1. Replacing 3/ by 37 — Ej (xy)
gives a solution to 0 )y 37 = «in a neighbourhood of K7 such that 37 = 3~! holds in a neighbourhood
of K7~1. Hence, the sequence 37 is stationary and hence converges to a global solution of §.1). [

Theorem 8.2. (Assumptions as above.) H1(Z,QP) = 0 forallq=1,2,....

The groups H(Z, {¥) are classically called Dolbeault cohomology groups, although Dolbeault’s

opinion was that they should in fact be called Grothendieck groups.
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Proof. Let &P'7 denote the sheaf of fibrewise smooth (p, ¢)-forms on Z = T x X which are continuous
int € T (i.e. of class €’*>°). Consider the sequence of homomorphisms of sheaves of abelian groups

(8.3) 0— QP s &P0 0, op1 Dy op2 B

where each d; is the 0 ) operator which equals 9y, on Zy = (X, Jy) for every t € T. By Theorem
[8.1) the sequence (8.3)) is exact. All sheaves in (8.3) except Q” are fine sheaves, so their cohomology
groups of order > 1 vanish. (See e.g. [26, Chapter VI] or [51] for sheaf cohomology.) Hence, (8.3) is
an acyclic resolution of the sheaf (2P. It follows that

_ Ker{d, :T(Z,679) - T(Z,6P07)) {ae PPUZ): dpa =0}
 Im{dg1 :T(Z,6P47) = T(Z,6P9))  {9,58:8€ gra-1(Z)}
Here, I' denotes the space of sections. The group on the right hand side vanishes by Theorem 8.1} O

HY(Z,QP)

9. THE OKA PRINCIPLE FOR VECTOR BUNDLES ON TAME FAMILIES OF STEIN MANIFOLDS

Assume that T is a topological space, X is a smooth manifold, and # = {J;}scr is a tame
family of Stein structures on X. The notion of a _# -holomorphic vector bundle on Z = T" x X was
introduced in Definition In this section, we prove the Oka principle for _¢ -holomorphic vector
bundles on tame families of Stein manifolds. We begin with line bundles. Denote by Pic(Z) the set
of isomorphism classes of _# -holomorphic line bundles on Z = T" x X. We have the following Oka
principle which was proved for line bundles on Stein manifolds (with 7" a singleton) by Oka [46].

Theorem 9.1. Assume that T' is a locally compact and paracompact Hausdorff space and ¢ =
{Ji}ter is a tame family of class €*> of Stein structures on a smooth manifold X. Then, every
topological complex line bundle on Z =T x X is isomorphic to a 7 -holomorphic line bundle, and
any two _f -holomorphic line bundles on Z which are topologically isomorphic are also isomorphic
as _¥ -holomorphic line bundles. Furthermore, Pic(Z) = H?*(Z, 7).

The proof of this result follows the standard cohomological argument for the exponential sheaf
sequence on Z, using that H'(Z, &) = 0 and H*(Z, 0) = 0 (see Theorem[8.2) and H'(Z, 0*) =
Pic(Z). We refer to [12}, Sect. 5.2] for the classical case of line bundles on Stein manifolds, and to [13]
Theorem 2.3] for line bundles on families of open Riemann surfaces.

For vector bundles of arbitrary rank, we have the following Oka principle.

Theorem 9.2. Assume that T, ¢ = {Ji}ser and X are as in Theorem with ¢ of class €%.
Then, every topological vector bundle on Z = T x X is isomorphic to a ¢ -holomorphic vector
bundle, and every pair of ¥ -holomorphic vector bundles which are topologically isomorphic are also
isomorphic as _# -holomorphic vector bundles.

Proof. The proof of the first statement follows that of [[15, Theorem 2.4], which gives an analogous
result on families on open Riemann surfaces. Let Gr,.(C") denote the Grassmann manifold of complex
r-dimensional subspaces of CV, and let U — G7,.(C") denote the universal bundle whose fibre
over A € Gr.(CN) consists of all vectors v € A C CV. Every topological vector bundle of
rank 7 on Z is obtained as the pullback by a continuous map f : Z — Gr.(C") of the universal
bundle U for a sufficiently big /V; furthermore, homotopic maps induce isomorphic vector bundles,
and _¢ -holomorphic maps induce _¢#-holomorphic vector bundles. Since Gr.(CN) is a complex
homogeneous manifold, and hence an Oka manifold, every continuous map Z — Gr,.(CV) is
homotopic to a _# -holomorphic map by Theorem This proves the first part.

To prove the second statement, let £ — Z and E' — Z be _#-holomorphic vector bundles

of rank r. There is an open cover {U;}; of Z and _#-holomorphic vector bundle isomorphisms
24



0;: E|U; — Uj x C"and ¢ : E'|U;j — Uj x C". Set U; j = U; N Uj and let
g9ij:Uij = GL.(C), g;i;:Uyj = GL(C)
denote the _# -holomorphic transition maps of the two bundles, so that
0; o Hj_l(z,v) = (z,gi’j(z)v), ze U, veC,

and likewise for E’. A complex vector bundle isomorphism ® : & — E’ is given by a collection of
complex vector bundle isomorphisms ®; : U; x C" — U; x C" of the form

®;i(z,v) = (2,0j(2)v), z2€U;,veC,
with ¢;(z) € GL,(C) for z € Uj, satisfying the compatibility conditions
(CRY $i = ;3659 = 939395 onUi;.

Let P = §(E,E’) — Z denote the _# -holomorphic fibre bundle with fibre GL,(C) and transition
maps (9.1), so a collection of maps ¢; : U; — GL,(C) satisfying (0.1) is a section of P over Z.
Thus, complex vector bundle isomorphisms E — E’ correspond to sections of P — Z, with _#-
holomorphic isomorphisms corresponding to _# -holomorphic sections. This reduces the problem to
proving that every continuous section f : Z — P is homotopic to a _# -holomorphic section.

We proceed as in the proof of Theorem By Theorem for every ty € T and smoothly
bounded strongly pseudoconvex domain {2 € X there are a neighbourhood Ty C 1" of ¢y and a map
®: Ty x Q — Ty x X of class €% such that ®(¢,x) = (t,®4(z)) and ®; : Q — &(Q) C X isa
(Jt, Jy, )-biholomorphism for every ¢ € Ty, with ®;, = Idg. The push-forward bundles

E=®,(E|(Ty xQ)), E =&,(E|(Ty x Q)

are fibrewise Ji,-holomorphic and depend continuously on ¢ € Tj. Choose a pair of strongly Jy,-
pseudoconvex domain {21 € {2y € X such that

Tp X ﬁg C ‘I)(T() X Q) and Ty x ﬁl C (I)_l<T0 X QQ)

After shrinking T} around %, the stability theorem of Leiterer [36, Theorem 2.7] gives a family of Jy,-
holomorphic vector bundle isomorphisms Wy : Et = Ey, over 3 (see (7.2)) depending continuously
ont € Ty. We get similar isomorphisms ¥/ : E! =, Ey, for the bundle E' over Ty x Qs. The
upshot is that the vector bundles E|(Ty x €2) and E'|(Ty x €23) are fibrewise .J, -isomorphic to the
trivial (independent of t) extensions of the vector bundles £;,|Q22 and Ej |22, respectively. In this
local picture, a topological isomorphism F — E’ is given by a family of topological isomorphisms
E, Q9 = Ej, |22 depending continuously on ¢ € Tp, and a _# -holomorphic isomorphism E — £’
is given by a family of J;,-holomorphic isomorphisms. Such isomorphisms correspond to sections of
a Jy,-holomorphic fibre bundle H — Q5 with fibre G L,.(C") defined as above, see (9.1).

By the parametric Oka principle for sections of holomorphic fibre bundles with Oka fibres over
Stein manifolds, a family of topological sections of H — {25 is isomorphic to a family of holomorphic
sections, with approximation on compact holomorphically convex subsets of {22. Going back to the
original vector bundles E, E' and P = §(E, E’), we see that any continuous section of P is homotopic
over Ty x §}1 to a _Z-holomorphic section, with approximation on a _#-convex subset where the
section is already holomorphic. The globalisation scheme in the proof of Theorem|[6.1]then applies and

shows that every continuous section of P — Z is homotopic to a _# -holomorphic section. U
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10. OPEN PROBLEMS

In this final section we collect some open problems for future investigation. The first problem of
technical nature is related to the stability of canonical solutions of the 0-equation.

Problem 10.1. Does Theorem have an analogue with smooth dependence of solutions on the
parameter t € T' when 7 is a smooth manifold and the family of complex structures 7 = {J; }1er is
smoothin (t,z) € T x X?

We are not aware of results in the literature concerning Problem [10.1] except when X is a surface
(see [14}[15]). An affirmative answer would give a similar generalisation of the parametric Hamilton’s
theorem (see Theorem 3.1), and hence of all our main results. The corresponding analogue of Theorem
would show that if ¢ = {Ji}1er is a smooth tame family of Stein structures then the manifold
Z =T x X, with the complex structure J; on {¢t} x X for every t € T, is a Cartan manifold in the
sense of Jurchescu [31, Sect. 6]; see also the discussion and references in [14, Remark 1.2]. Cartan
manifolds are analogues of Stein manifolds in the category of smooth CR manifolds with integrable
complex tangent subbundle. For real analytic Cartan manifolds with CR codimension one, the function
theory and the Oka principle for vector bundles were treated by Mongodi and Tomassini [40, 4 1]].

Our main result, Theorem shows that tame families _# of smooth Stein structures on a given
manifold X admit many _#-holomorphic maps to any Oka manifold. Theorem gives a similar
result for functions with more general parameter spaces. Which additional properties can these maps
have? The following problem is of particular interest; see [12, Theorem 2.4.1] for the summary of the
classical results for Stein manifolds and references to the original papers.

Problem 10.2. Assume that 7', X, and ¢ are as in Theorem Is there a _# -holomorphic map
F:Z =T x X — CN for a suitable N € N such that for every ¢t € T the .J;-holomorphic map
F(t,-): X — CV is proper, an immersion, an embedding? In particular, taking N = 2dim¢ X + 1,
is there an F' such that F'(t,-) : X — C¥ is a proper .J;-holomorphic embedding for every t € T'?

The Oka principle in Theorem[6.1] only pertains to maps to Oka manifolds. In light of the classical
results for a single Stein manifold (see [[12, Theorem 5.4.4]), the following is a natural question.

Problem 10.3. Let 7', X and _# be as in Theorem [6.1} and let E — Z = T x X be a topological
_# -holomorphic fibre bundle with an Oka fibre. Does the Oka principle hold for sections Z — E?

We expect that this holds true, but the proof would require a suitable reworking of all basic tools
used in the proof of the Oka principle for a single Stein manifold; see [12, Chap. 5].
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