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ABSTRACT. Let X be a smooth open manifold of even dimension, T be a topological space, and
J = {Jt}t∈T be a continuous family of smooth integrable Stein structures on X . Under suitable
additional assumptions on T and J , we prove an Oka principle for continuous families of maps from the
family of Stein manifolds (X, Jt), t ∈ T , to any Oka manifold, showing that every family of continuous
maps is homotopic to a family of Jt-holomorphic maps depending continuously on t. We also prove the
Oka–Weil theorem for sections of J -holomorphic vector bundles on Z = T ×X and the Oka principle
for isomorphism classes of such bundles. The assumption on the family J is that the Jt-convex hulls
on any compact set in X are upper semicontinuous with respect to t ∈ T ; such a family is said to be
tame. For suitable parameter spaces T , we characterise tameness by the existence of a continuous family
ρt : X → R+ = [0,+∞), t ∈ T , of strongly Jt-plurisubharmonic exhaustion functions on X . Every
family of complex structures on an open orientable surface is tame. We give an example of a nontame
smooth family of Stein structures Jt on R2n (t ∈ R, n > 1) such that (R2n, Jt) is biholomorphic to Cn

for every t ∈ R. We show that the Oka principle fails on any nontame family.
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1. INTRODUCTION

Let X be a smooth manifold of dimension 2n ≥ 2. An almost complex structure J on X is
an endomorphism J : TX → TX of its tangent bundle satisfying J2 = −Id. When n = 1, i.e.,
X is a smooth surface, every such J of local Hölder class C α, 0 < α < 1, determines on X the
structure of a Riemann surface [2, Theorem 5.3.4]; if X is an open surface then (X, J) is a Stein
manifold according to Behnke and Stein [3]. In [14] the first named author showed that, under suitable
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regularity assumptions on the parameter space T and on a family J = {Jt}t∈T of complex structures
on a smooth open surface X , the Oka principle holds for families of Jt-holomorphic maps from X

to any Oka manifold Y , with continuous or smooth dependence on t ∈ T and with approximation on
suitable families of Runge subsets of X . The notion of an Oka manifold (see [11], [12, Sect. 5.4], and
[13]) developed from the classical Oka–Grauert–Gromov principle [46, 22, 25].

In this paper we study the mapping problem for families of Stein structures on smooth manifolds of
dimension 2n ≥ 4. Integrability is then a nontrivial condition; see Section 2. However, this is not the
only new issue. The construction in [14] strongly uses the fact that the holomorphic hull of a compact
set in a smooth surfaceX is independent of the choice of the complex structure onX . This is no longer
the case on higher dimensional manifolds. In Theorem 4.1 we give an example of a smooth family of
integrable Stein structures {Jt}t∈R on R2n for any n > 1 such that (R2n, Jt) is biholomorphic to Cn

for every t ∈ R but the Jt-convex hulls of the closed ball explode when t ∈ R \ {0} approaches
0. This phenomenon excludes the possibility of any reasonable analysis of global analytic problems.
Motivated by this example, we introduce a tameness condition on a family of Stein structures {Jt}t∈T
on a smooth manifold X which excludes this type of pathology. Such a family is said to be tame if the
Jt-convex hulls of any compact set inX are upper semicontinuous with respect to t ∈ T ; see Definition
5.1. Tameness is characterised by the existence of a continuous family of strongly Jt-plurisubharmonic
exhaustion functions ρt : X → R+; see Theorem 5.5. Every family of Riemann surface structures is
tame. We give several examples of tame families of Stein structures on higher dimensional manifolds.

The following Oka principle is a special case of our main result, Theorem 6.1.

Theorem 1.1. Assume that T is a finite CW complex,X is a smooth manifold, J = {Jt}t∈T is a tame
family of smooth Stein structures on X depending continuously on t, and Y is an Oka manifold. Then,
every continuous map f : Z = T × X → Y is homotopic to a J -holomorphic map F : Z → Y ,
i.e. such that F (t, · ) : X → Y is Jt-holomorphic for every t ∈ T and continuous in t. If f is
J -holomorphic on a neighbourhood of a closed subset K ⊂ Z with proper projection K → T and
Jt-convex fibres Kt (t ∈ T ), then F can be chosen to approximate f in the fine topology on K.

The special case when Y is the complex number field C is the Oka–Weil theorem for such families;
see Theorem 6.3. We show in Corollary 6.4 that the Oka principle fails on any nontame family, so
tameness is a necessary and sufficient condition for the Oka principle. The Oka–Weil theorem is also
proved for sections of fibrewise holomorphic vector bundles on tame families of Stein structures; see
Theorem 7.2. This is used to obtain global solutions of the ∂-equation for fibrewise smooth (p, q)-
forms in all bidigrees, see Theorem 8.1. We also prove the Oka principle for the classification of
complex vector bundles on such families, extending the classical results of Oka [46] and Grauert [22];
see Theorems 9.1 and 9.2 . Our results open a new direction in modern Oka theory.

An important ingredient in the proofs is a theorem of Hamilton [27], also called the global
Newlander–Nirenberg theorem, on representing small integrable deformations of the complex structure
on the closure of a smoothly bounded, relatively compact, strongly pseudoconvex domain Ω in a Stein
manifold X by small deformations of Ω in X . We need a version with continuous dependence on
parameters; see Theorem 3.1, which is obtained from the proof of Hamilton’s theorem by Greene
and Krantz [24, Theorem 1.13]. Unlike the original proof and its improvements [16, 21], which use
the Nash–Moser technique, the proof in [24] is based on stability of the canonical (Kohn) solution of
the ∂-equation with respect to perturbations of the complex structure, obtained in [24, Theorem 3.10]
by following the pioneering work of Kohn [32, 33] on the ∂-Neumann problem. A special case of
Hamilton’s theorem with parameters for smoothly bounded domains in Riemann surfaces, and under
considerably lower regularity assumptions on the family of complex structures, was obtained by the
first named author in [14, Theorem 4.3] using the Beltrami equation.
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2. ALMOST COMPLEX STRUCTURES AND INTEGRABILITY

In this section we recall the relevant background concerning almost complex structures.

Let X be a smooth manifold of real dimension 2n. An almost complex structure J on X is an
endomorphism J : TX → TX of its tangent bundle satisfying J2 = −Id. Every point x0 ∈ X has an
open coordinate neighbourhood U ⊂ X such that TX|U ∼= U ×R2n and J : TX|U → TX|U is given
by (x, ξ) 7→ (x,A(x)ξ), where the matrix A(x) ∈ GL2n(R) satisfies A(x)2 = −I with I ∈ GL2n(R)
the identity matrix. We say that J is of class C k if its matrix A(x) in any smooth local coordinate on
U ⊂ X is a C k map U → GL2n(R). Similarly one defines (local) Hölder classes C (k,α) with k ∈ Z+

and 0 < α < 1; see [17, Sect. 4.1]. An almost complex structure J extends to an endomorphism of the
complexified tangent bundle CTX = TX ⊗R C. Since J2

x = −Id holds for every x ∈ X , J induces
a decomposition CTX = H ⊕H into a direct sum of complex subbundles of rank n whose fibres Hx

and Hx over x ∈ X are, respectively, the +i =
√
−1 and −i eigenspaces of Jx on CTxX . This gives

complex vector bundle projections π1,0 : CTX → H and π0,1 : CTX → H satisfying

(2.1) π1,0 = π̄0,1, π1,0 + π0,1 = Id, π1,0 ◦ π0,1 = 0 = π0,1 ◦ π1,0.

Conversely, a pair of such projections determines an almost complex structure J on X . Note that π1,0
and π0,1 are as smooth as J . An almost complex structure J of class C 1 on X is said to be (formally)
integrable if the subbundle H = π1,0(CTX) satisfies the commutator condition [H,H] ⊂ H for its
sections, which are called vector fields of type (1, 0). Every such vector field is of the form v − iJv

where v is a real vector field on X . If n = 1 then the commutator condition is void, but integrability
is a nontrivial condition when n ≥ 2. For later reference, we state the following precise version of the
Newlander–Nirenberg integrability theorem.

Theorem 2.1. If X is a smooth manifold of dimension 2n and J is an integrable almost complex
structure on X of local Hölder class C (k,α), with k ≥ 1 an integer (or k ≥ 0 when X is a surface) and
0 < α < 1, then every point x0 ∈ X has a neighbourhood U ⊂ X with a J-holomorphic coordinate
map z : U → Cn of class C (k+1,α). Thus, (X,J) is a complex manifold, and the smooth structure on
X determined by J is C (k+1,α) compatible with the given smooth structure.

This result has a complex genesis. For surfaces (n = 1), see Korn [34], Lichtenstein [37], Chern
[6], and Astala et al. [2, Theorem 5.3.4]. For n > 1 the result is due to Newlander and Nirenberg
[42] under stronger regularity assumptions. Improvements were given by Nijenhuis and Woolf [43],
Kohn [32, Theorem 12.1], Malgrange [38], Webster [50, Theorem 3.1], Treves [49], and possibly
others. (See also Nirenberg [44] and Hörmander [29, Sect. 5.7].) The last statement concerning the
compatibility of smooth structures follows from the fact that the inverse of a diffeomorphism of local
Hölder class C (k,α) with k ≥ 1 is of the same class; see Norton [45] and Bojarski et al. [5, Theorem
2.1]. A 1-parametric version of the Newlander–Nirenberg theorem was proved by Gong [20].

Denote by Λl(CT ∗X) the l-th exterior power of the complexified cotangent bundle CT ∗X . Its
sections are complex differential l-forms on X . The projections π1,0 and π0,1 in (2.1) give rise to
projections πp,q : Λl(CT ∗X) → Λp,q(CT ∗X) onto complex vector subbundles of Λl(CT ∗X) for
0 ≤ p, q ≤ n, with p + q = l ∈ {1, . . . , 2n}, such that ⊕p+q=lΛ

p,q(CT ∗X) = Λl(CT ∗X). Sections
of Λp,q(CT ∗X) are differential forms of bidegree (p, q) with respect to the complex structure J on X .
Assuming that J is of class j ∈ {0, 1, . . . ,∞}, these subbundles are also of class C j . Let Dp,q

j (X)

denote the space of (p, q)-forms of class C j on X , and let d be the exterior differential on X . We have
the operators ∂ = ∂J and ∂ = ∂J defined by

∂ = πp+1,q ◦ d : Dp,q
j (X) → Dp+1,q

j−1 (X), ∂ = πp,q+1 ◦ d : Dp,q
j (X) → Dp,q+1

j−1 (X).
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Integrability of J is equivalent to each of the conditions ∂2 = 0, ∂
2
= 0, and d = ∂ + ∂ (see

[10, Proposition 1.2.1]). If J is integrable then the kernel of the operator ∂ (resp. ∂) on functions
are precisely the J-holomorphic (resp. the J-antiholomorphic) functions. We also have the conjugate
differential dc = dcJ = i(∂ − ∂) and the operator ddc = 2i∂∂. For a C 2 function ρ : X → R, ddcρ is
a (1, 1)-form called the Levi form of ρ. A function ρ is said to be (strongly) J-plurisubharmonic
if ddcρ ≥ 0 (resp. ddcρ > 0), in the sense that for any x ∈ X and 0 ̸= v ∈ TxX we have
⟨ddcρ(x), v ∧ Jv⟩ ≥ 0 (resp. > 0); see [12, Eq. (1.39), p. 30]. A complex manifold (X, J) is a
Stein manifold if and only if it admits a strongly J-plurisubharmonic exhaustion function ρ : X → R+

(see Grauert [23]). A necessary and sufficient topological condition for the existence of an integrable
Stein structure on a smooth manifold of dimension 2n ≥ 6 was given by Eliashberg [9, 7]. The
situation is more complicated on manifolds of dimension 4; see Gompf [18, 19] and [12, Chap. 10].

A domain D ⋐ X with C 2 boundary is said to be strongly pseudoconvex (or strongly J-
pseudoconvex if we wish to emphasise the choice of the complex structure J) if it admits a defining
function ρ : U → R on a neighbourhood U of D̄ such that D = {ρ < 0}, dρ ̸= 0 on bD = {ρ = 0},
and ddcρ(x) > 0 for every x ∈ bD. See Krantz [35] for the basic theory of such domains.

Fix a smooth Riemannian metric g on X . Such g extends to a field of C-bilinear forms on the
complexified tangent spaces CTxX , x ∈ X . Given an almost complex structure J on X determined
by the projections (2.1), write a vector u ∈ CTX in the form u = u1,0 + u0,1 where u1,0 = π1,0(u)

and u0,1 = π0,1(u). Then, g and J determine a field of inner products on the fibres of CTX by

(2.2) ⟨u, v⟩J = g(u1,0, v1,0) + g(u0,1, v0,1), u, v ∈ CTxX, x ∈ X

(cf. [10, p. 8]). This inner product is J-hermitian on the subbundle H ⊂ CTX on which J = i,
J-antihermitian on the conjugate subbundle H ⊂ CTX on which J = −i, the subbundles H and H
are ⟨· , · ⟩J -orthogonal, and for every u ∈ CTX we have

∥u∥2 = ⟨u, u⟩J = ∥ℜu1,0∥2g + ∥ℑu1,0∥2g + ∥ℜu0,1∥2g + ∥ℑu0,1∥2g.

Here, ℜ and ℑ denote the real and imaginary part. By duality and multilinear algebra, the field of inner
products ⟨· , · ⟩J in (2.2) extends to the bundles Λp,q(CT ∗X). If J is of class C j then so is ⟨· , · ⟩J , and
if an almost complex structure J ′ on X is C j close to J then ⟨· , · ⟩J ′ is C j close to ⟨· , · ⟩J . Given a
domain D ⋐ X with C 1 boundary, we have an inner product of forms ϕ, ψ ∈ Dp,q

j (D̄) given by

(2.3) (ϕ, ψ)J =

∫
D
⟨ϕ, ψ⟩J dV

where dV is the volume form on X determined by g. If {Jt}t∈T is a continuous family of almost
complex structures on X then the inner products (· , · )Jt also vary continuously, and the L2 norms
∥ϕ∥2Jt = (ϕ, ϕ)Jt are comparable for t in any compact subset of T .

We shall be dealing with families J = {Jt}t∈T of integrable complex structures on given smooth
manifoldX , where T is a topological space whose precise properties will be specified in the individual
results. A continuous map f : Z = T × X → Y to a complex manifold Y is said to be J -
holomorphic if the map f(t, · ) : X → Y is Jt-holomorphic for every t ∈ T . Such a family J

is said to be of class C 0,k, where k ∈ {0, 1, . . . ,∞}, if Jt admits partial derivatives of order up to
k in the space variable x ∈ X and these derivative depend continuously on t ∈ T . If k ∈ R+ is
fractional, k = [k] + α for 0 < α < 1, we ask that Jt is of local Hölder class C ([k],α) on X and it
depends continuously on t. More precisely, for every smoothly bounded relatively compact domain
Ω ⋐ X , Jt|TΩ ∈ Hom([k],α)(TΩ, TΩ) depends continuously on t ∈ T as an element of this space.
The analogous definition applies to functions or maps on T ×X . If T is a C l manifold then a function
is of class C l,k(T ×X) if it has l derivatives in t ∈ T followed by k derivatives in x ∈ X , and these
derivatives are continuous. Similarly one defines the Hölder classes C l,(k,α).
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3. A THEOREM OF HAMILTON FOR FAMILIES OF COMPLEX STRUCTURES

The main result of this section, Theorem 3.1, is a version of Hamilton’s theorem [27] (also called
the global Newlander–Nirenberg theorem) for a family of smooth integrable complex structures on a
compact strongly pseudoconvex domain in a Stein manifold. It is used in the proof of all main results
in the paper. Its proof uses stability of Kohn’s solution of the ∂-equation on such domains, obtained by
Greene and Krantz [24] and based on the work of Kohn [32, 33]; see Theorem 3.2.

Assume that (X, J) is a Stein manifold and D ⋐ X is a relatively compact, smoothly bounded,
strongly J-pseudoconvex domain. A theorem of Hamilton [27] says that for every sufficiently small
smooth integrable deformation J ′ of the complex structure J on D̄ there is a smooth diffeomorphism
F : D̄ → F (D̄) ⊂ X , close to the identity map on D̄, such that J ′ = F ∗J is the pullback of J by F .
Equivalently, the map F : D → F (D) is biholomorphic from (D,J ′) onto (F (D), J). (Hamilton’s
result applies to a wider class of domains but we shall restrict the attention to this case.) The proof in
[27] is nonlinear in nature and uses the Nash–Moser technique. Improvements in terms of the required
regularity of the almost complex structure and of the boundary of the domain were obtained by Gan
and Gong [16], Shi [47] (for strongly pseudoconvex domains in Cn), and Gong and Shi [21]. It was
shown by Hill [28] that the result fails in general for domains with Levi degenerate boundaries.

A simpler proof of Hamilton’s theorem on strongly pseudoconvex domains was given by Greene
and Krantz [24, Theorem 1.13] by using the ∂–Neumann method of Kohn [32, 33, 10] for solving the
∂-equation. Their approach, together with stability results for Kohn’s solutions of the ∂-equation with
respect to a family of complex structures (see [24, Sect. 3] and Theorem 3.2), will be used to give the
following parametric version of Hamilton’s theorem.

Theorem 3.1. Let (X, J) be a Stein manifold of complex dimension n. Let k ≥ 1 and r ≥ 2k+2n+9

be integers, and let D ⋐ X be a relatively compact, strongly pseudoconvex domain with boundary bD
of class C r. Assume that T is a topological space and J = {Jt}t∈T is a family of integrable complex
structures on D̄ of class C 0,r(D̄) such that for some t0 ∈ T , Jt0 is the restriction of J to D̄. Then there
exist a neighbourhood T0 ⊂ T of t0 and a family of diffeomorphisms Ft : D → Dt = Ft(D) ⊂ X in
C k(D,X), depending continuously on t ∈ T0, such that Ft is a biholomorphic map from (D,Jt) onto
(Dt, Jt0) for every t ∈ T0 and Ft0 is the identity on D. If bD ∈ C∞ and J is of class C 0,∞(T × D̄)

then the family F = {Ft}t∈T0 can be chosen to be of class C 0,∞ on T0 × D̄.

Theorem 3.1 is likely not optimal in terms of regularity. For relatively compact domains in open
Riemann surfaces, a more precise result [14, Theorem 4.3] was obtained via the Beltrami equation.

We begin with preliminaries. Choose a smooth Riemannian metric g on X and let dV be the
associated volume form. Fix a relatively compact domain D ⋐ X with C 1 boundary. Let L2(D)

denote the space of measurable functions f on D with ∥f∥2L2(D) =
∫
D |f |2dV < +∞. For s ∈ Z+ we

denote byHs(D) =W s,2(D) the Sobolev (Hilbert) space of functions onD whose derivatives of order
up to s belong to L2(D). In particular, H0(D) = L2(D). (For a discussion of Sobolev spaces for any
real s ∈ R, see Adams [1] or Folland and Kohn [10, Appendix].) When X = RN with the Euclidean
metric g, the norm onHs(D) is given by ∥f∥2Hs(D) =

∑
|α|≤s ∥Dαf∥2L2(D), whereDα for a multiindex

α ∈ ZN
+ denotes a partial derivative with respect to the coordinates on RN . On a smooth manifold

X we introduce these and other norms mentioned in the sequel by using a finite covering of D̄ by
smooth charts; see [10, Appendix, p. 122]. By C s(D) we denote the Banach space of functions having
continuous bounded partial derivatives of order ≤ s, with ∥f∥C s(D) =

∑
|α|≤s supx∈D |Dαf(x)| when

D ⊂ RN . Given an integrable almost complex structure J on X , we have the induced metrics on the
bundles Λp,q(X) of differential (p, q)-forms (see Section 2). We denote by Hp,q

s (D,J) the Sobolev
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space W s,2(D) of (p, q)-forms on D with respect to J , endowed with the inner product (2.3). The
norms on these space are introduced by a system of local charts covering D̄.

The following result is [24, Theorem 3.10] by Greene and Krantz. The regularity statements for a
single complex structure are due to Kohn [32]; see also [10, Proposition 3.1.15, p. 52].

Theorem 3.2. Assume that X is a smooth Riemannian manifold of real dimension 2n ≥ 2, s ≥ 1 is
an integer, D ⋐ X is a relatively compact domain with boundary of class C 2s+5, T is a topological
space, and J = {Jt}t∈T is a continuous family of integrable Stein structures of class C 2s+5 on D̄
(i.e., J is of class C 0,2s+5 on T × D̄) such that D is strongly Jt-pseudoconvex with Stein interior for
every t ∈ T . Then the following assertions hold.

(a) For every α ∈ Hp,q
0 (D,Jt) (p ≥ 0, q ≥ 1, t ∈ T ) with ∂Jtα = 0 there is a unique (Kohn) solution

Ktα ∈ Hp,q−1
0 (D,Jt) of the equation ∂Jt(Ktα) = α satisfying Ktα ⊥ ker(∂Jt) with respect to

the inner product (· , · )Jt given by (2.3).
(b) If α ∈ Hp,q

s (D,Jt) then Ktα ∈ Hp,q−1
s (D,Jt), and ∥Ktα∥s ≤ C∥α∥s for some C > 0 which can

be chosen independent of t in any compact subset of T .
(c) If the forms αt ∈ Hp,q

s (D,Jt) depend continuously on t ∈ T , then Ktαt ∈ Hp,q−1
s−1 (D,Jt) also

depend continuously on t ∈ T .
(d) If s > k+n+1 and the forms αt ∈ H0,1

s (D,Jt) depend continuously on t ∈ T , then the functions
Ktαt ∈ C k(D) depend continuously on t ∈ T .

(e) If bD is C∞ smooth, J is of class C 0,∞, and αt ∈ Dp,q
∞ (D̄, Jt) are smooth and continuous in t,

then Ktαt ∈ Dp,q−1
∞ (D̄, Jt) are also smooth and continuous in t ∈ T .

The Kohn solution ϕ = Ktα of the equation ∂Jtϕ = α, subject to ∂Jtα = 0, is given by
ϕ = ϑtNtα, where Nt is the ∂–Neumann operator associated to Jt and ϑt is the Hilbert space adjoint
of ∂Jt on D; see [10, Theorem 3.1.14]. The same result holds if D̄ is a compact smooth manifold with
boundary that is not necessarily embedded in an ambient manifold. Part (d) follows from (c) and the
following Sobolev embedding theorem; see Adams [1, p. 97ff] or Folland and Kohn [10, Proposition
A.1.2, p. 115] for X = RN ; the general case follows by using charts (see [10, p. 122]). Part (e) holds
because the forms Ktαt in (a) are independent of the smoothness class (see [24, p. 55]).

Proposition 3.3 (Sobolev embedding theorem). Let D be a relatively compact domain with C 1

boundary in a smooth manifold X of dimension N . Then, Hs(D) ⊂ C k(D) and ∥· ∥C k(D) ≤
C∥· ∥Hs(D) for some C > 0 if and only if s > k + N/2. If this holds then the weak derivatives
of u ∈ Hs(D) up to order k are, after correction on a set of measure zero, classical derivatives.

Proof of Theorem 3.1. We follow [24, proof of Theorem 1.13]. Choose a proper J-holomorphic
embedding f : X ↪→ C2n+1 (see [4] and [12, Theorem 2.4.1]). By Docquier and Grauert [8] (see also
[26, Theorem 8, p. 257] or [12, Theorem 3.3.3, p. 74]) there are an open neighbourhood U ⊂ C2n+1 of
f(X) and a holomorphic retraction τ : U → f(X). Set s = k+ n+2, so 2s+5 = 2k+2n+9 = r.
(If k = ∞, we take s = r = ∞.) Recall that J = {Jt}t∈T is of class C 0,r and Jt0 is the restriction of
J to D̄. Note that αt := ∂Jt(f |D̄) for t ∈ T is a C2n+1-valued (0, 1)-form with respect to Jt, of class
C r(D̄) and hence in H0,1

s (D̄, Jt), depending continuously on t ∈ T . By Theorem 3.2 (d), for every
t ∈ T close to t0 there is a unique solution ϕt of ∂Jtϕt = αt and ϕt ⊥ ker(∂Jt), with ϕt ∈ C k(D)

depending continuously on t ∈ T . The map ft = f − ϕt : D → C2n+1 is then Jt-holomorphic
and continuous t as an element of the space C k(D)2n+1. For t = t0 we have Jt0 = J and hence
αt0 = ∂Jf = 0, ϕt0 = 0, and ft0 = f |D. It follows that for t close enough to t0 the map ft is so close
to f |D in C k(D)2n+1 that its image belongs to U . For such t, the map Ft = f−1(τ(ft)) : D → X

is well-defined, (Jt, J)-holomorphic, it depends continuously on t as an element of C k(D,X), and
Ft0 = IdD. It follows that Ft is (Jt, J)-biholomorphic on D for t close to t0. □
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4. A WILD FAMILY OF COMPLEX STRUCTURES ON R4

In this section, we construct a smooth family {Jt}t∈R of integrable complex structures on R2n

for any n > 1 with wild behaviour of holomorphic hulls near t = 0. It is built by using a Fatou–
Bieberbach map C2 → C2 with non-Runge image, constructed by Wold [52]. This example motivates
the definition of a tame family of complex structures; see Definition 5.1.

A compact set K in a complex manifold (X,J) is said to be holomorphically convex or J-convex
if K equals its holomorphically convex hull (also called J-convex hull), defined by

K̂J =
{
p ∈ X : |f(p)| ≤ max

x∈K
|f(x)| for all f ∈ OJ(X)

}
.

Here, OJ(X) denotes the algebra of J-holomorphic functions on X . When J is the standard complex
structure on X = Cn then K̂J is the polynomial hull of K. See Hörmander [29, 30] and Stout [48] for
further information on holomorphic convexity.

If X is an open Riemann surface then a compact subset K ⊂ X is holomorphically convex if
and only if X \ K has no relatively compact connected components. This is a topological condition
independent of the choice of the complex structure. This fact plays an important role in the proof of
the Oka principle in [14, Theorem 1.6] for maps from families of complex structures on a smooth open
surface to an Oka manifold. When attempting to obtain analogous results for families of integrable
Stein structures {Jt}t∈T on a smooth open manifold X of dimension 2n ≥ 4, one of the problems
concerns the behaviour of Jt-convex hulls K̂Jt of a compact set K ⊂ X with respect to the parameter
t. The following result shows that when X = R2n, n > 1, the hulls can explode when t ∈ T

approaches a limit value t0 ∈ T .

Theorem 4.1. Given a compact set K ⊂ R2n (n > 1) with nonempty interior, there is a family of
integrable smooth complex structures {Jt}t∈R on R2n, depending smoothly on t ∈ R, such that J0 is
the standard structure on Cn, (R2n, Jt) is biholomorphic to (R2n, J0) ∼= Cn for every t ∈ R, and for
any neighbourhood U ⊂ R of 0 ∈ R the set

⋃
t∈U K̂Jt ⊂ R2n is unbounded.

Proof. It suffices to consider the case when K is the closed unit ball in R4 ∼= C2.

Let C∗ = C \ {0}. By Wold [52], there is an injective holomorphic map Φ : C2 ↪→ C2 such
that Φ(C2) ⊂ C∗ × C but the polynomial hull Φ̂(K) of Φ(K) contains the origin 0 ∈ C2. In
particular, Φ̂(K) ̸⊂ Φ(C2) and hence Φ(C2) is not Runge in C2. We shall construct a family of
smooth diffeomorphisms Ψt : C2 → C2, depending smoothly on t ∈ (−1, 1), such that Ψt = Φ holds
on a neighbourhood of t−1K for every t ̸= 0. Since the balls t−1K increase to C2 as t decreases to 0,
we obtain a smooth family {Ψt}t∈(−1,1) by setting Ψ0 = Φ. One can extend the parameter space to R
by applying a diffeomorphism from R onto (−1, 1).

Assume for a moment that such a family Ψt exists. Let Jt denote the complex structure on
R4 ∼= C2 obtained by pulling back by Ψt the standard complex structure Jst on C2. In other words,
Ψt : C2 → C2 is a biholomorphism from (C2, Jt) onto (C2, Jst). Note that Jt depends smoothly on t
since Ψt does, and it agrees with Jst on a neighbourhood of t−1K ⊃ K since on this set we have that
Ψt = Φ, which is Jst-holomorphic. Thus, the family Jt extends smoothly to the point t = 0 by taking
J0 = Jst. For t ̸= 0, the Jt-convex hull of K equals

(4.1) K̂Jt = Ψ−1
t (Ψ̂t(K)) = Ψ−1

t (Φ̂(K))

where the second equality follows from the fact that Ψt = Φ on t−1K ⊃ K. We claim that the set
K̂Jt \ t−1K is nonempty for every t ̸= 0. Indeed, if K̂Jt ⊂ t−1K then, since Φ = Ψt on t−1K, it
follows from (4.1) that Φ(K̂Jt) = Ψt(K̂Jt) = Φ̂(K), a contradiction to Φ̂(K) ̸⊂ Φ(C2). As t → 0,
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the sets t−1K increase to C2, and hence the hulls K̂Jt are not contained in any bounded subset of C2

for t in a neighbourhood of 0.

It remains to explain the construction of the family of diffeomorphisms Ψt : C2 → C2 with the
stated properties. It suffices to consider the parameter values t ∈ (0, 1). Choose a smooth isotopy of
injective holomorphic maps Φs : C2 → C2 for s ∈ [0, 1] such that Φ0 is the identity map on C2 and
Φ1 = Φ. Explicitly, we can take Φ0(z) = z and

Φs(z) = sΦ(0) + s−1As

(
Φ(sz)− Φ(0)

)
, s ∈ (0, 1],

where s 7→ As ∈ GL2(C) is a smooth path with A0 = Φ′(0)−1 and A1 = I . Note that {Φs}s∈[0,1] is
the flow of the holomorphic time-dependent vector field V on C2 defined on the open set

Σ =
{(
s,Φs(z)

)
: s ∈ [0, 1], z ∈ C2

}
⊂ [0, 1]× C2

(the trace of the isotopy {Φs}s∈[0,1]) by

V (s,Φs(z)) =
∂

∂u

∣∣∣
u=s

Φu(z).

For a fixed t ∈ (0, 1) consider the compact set

Σt =
{(
s,Φs(z)

)
: s ∈ [0, 1], z ∈ t−1K

}
⊂ [0, 1]× C2.

Pick a smooth function χ : (0, 1) × [0, 1] × C2 → [0, 1] such that for every t ∈ (0, 1) the function
χ(t, · , · ) : [0, 1] × C2 → [0, 1] equals 1 on a neighbourhood of Σt and has compact support. For
(t, s) ∈ (0, 1)× [0, 1] we define a vector field Wt,s on C2 by

Wt,s(z) = χ(t, s, z)V (s, z), z ∈ C2.

Note that Wt,s is smooth in all variables, it agrees with V (s, · ) on a neighbourhood of Σt, and has
compact support in [0, 1] × C2 for every fixed t ∈ (0, 1). It follows that the flow Ψt,s of Wt,s with
respect to the variable s ∈ [0, 1], with t ∈ (0, 1) as a parameter, solving the initial value problem

∂

∂u

∣∣∣
u=s

Ψt,u(z) =Wt,s(Ψt,s(z)), Ψt,0(z) = z,

exists for all s ∈ [0, 1] and z ∈ C2, it agrees with the flow of V for z ∈ t−1K (which is Φs(z)),
and is fixed near infinity in the z variable since Wt,s has compact support. It follows that every map
Ψt,s : C2 → C2 for t ∈ (0, 1), s ∈ [0, 1] is a diffeomorphism onto C2. Setting s = 1 gives a family of
diffeomorphisms Ψt = Ψt,1 : C2 → C2, t ∈ (0, 1), with the stated properties. □

The following implies that one cannot do any serious analysis for families of Jt-holomorphic
functions for J = {Jt}t∈R in Theorem 4.1. See Corollary 6.4 for a more general result.

Lemma 4.2. (Notation as above.) If f is a holomorphic function on Ω = Φ(C2) ⊂ C2 such that
f ◦Φ ∈ O(C2) extends to a continuous family ft ∈ OJt(C2) for t near 0, then f is bounded on the set
Φ̂(K) ∩ Ω, which is not relatively compact in Ω.

Proof. From (4.1) we get K̂Jt ∩ t−1K = Ψ−1
t (Φ̂(K))∩ t−1K. Since Ψt = Φ on t−1K, it follows that

Ψt(K̂Jt ∩ t−1K) = Φ̂(K) ∩ Φ(t−1K).

When t → 0, the set on the right hand side increases to Φ̂(K) ∩ Ω. Choose a point p ∈ Φ̂(K) ∩ Ω;
hence p ∈ Φ̂(K) ∩ Φ(t−1K) for all small enough t ̸= 0. Note that pt := Ψ−1

t (p) ∈ K̂Jt ∩ t−1K

converges to p0 = Φ−1(p) as t → 0. Let f ∈ O(Ω). Suppose that there is a continuous family
of holomorphic functions ft ∈ OJt(C2) for t near 0 such that f0 = f ◦ Φ. Since pt ∈ K̂Jt ,
we have |ft(pt)| ≤ maxK |ft|. Letting t → 0 gives |f0(p0)| ≤ maxK |f0|, which is equivalent to
|f(p)| ≤ maxΦ(K) |f |. This shows that f is bounded on the set Φ̂(K) ∩ Ω as claimed. □
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Remark 4.3. The construction in the proof of Theorem 4.1 works on any contractible Stein manifold
X which admits an injective holomorphic map Φ : X → X such that, for some compact subset
K ⊂ X with nonempty interior, we have that Φ̂(K) ̸⊂ Φ(X). Besides Cn, an example is any bounded
convex domain X in Cn for n > 1. Indeed, assume that X is such, and let K ⊂ X be a compact set
with nonempty interior. By translation we may assume that 0 ∈ K̊. Let Φ : Cn → Cn be an injective
holomorphic map as in the proof of Theorem 4.1, satisfying Φ̂(K) ̸⊂ Φ(Cn). Set L = Φ(K). For any
s > 0 we then have ŝL = s L̂ ̸⊂ sΦ(Cn). Replacing Φ by sΦ for a suitable s > 0 we ensure that
Φ(X) ⊂ X . It follows that Φ̂(K) ̸⊂ Φ(X). However, we do not know whether the phenomenon in
Theorem 4.1 can occur on every Stein manifold X with dimCX > 1.

5. TAME FAMILIES OF STEIN STRUCTURES

Assume that T is a topological space, X is a smooth open manifold of even dimension, π :

T × X → T is the projection π(t, x) = t, and J = {Jt}t∈T a continuous family of integrable
complex structures on X . We introduce a tameness condition on J which excludes the pathology in
Theorem 4.1; see Definition 5.1. If T is locally compact and Hausdorff then tameness is characterised
in terms of properness over T of the family of Jt-convex hulls of any compact set inX; see Proposition
5.2. Assuming that the complex structures Jt are Stein and sufficiently regular, tameness is equivalent
to local boundedness of the family of Jt-convex hulls of any compact set; see Proposition 5.3. If T
is locally compact, paracompact and Hausdorff then tameness is characterised by the existence of a
continuous family of strongly Jt-plurisubharmonic exhaustion functions on X; see Theorem 5.5. We
conclude the section with examples and constructions of tame families of Stein structures.

Definition 5.1. A family J = {Jt}t∈T of complex structures on X is tame at a point t0 ∈ T if for
every compact set K ⊂ X and open set U ⊂ X containing K̂Jt0

there is a neighbourhood T0 ⊂ T of
t0 such that K̂Jt ⊂ U holds for all t ∈ T0. The family J is tame if it is tame at every point t0 ∈ T .

Figure 1. An upper semicontinuous family of hulls K̂Jt .

Any family of complex structures on a smooth surface X is tame since the hull of a compact set
does not depend on the choice of a complex structure on X . The same holds if X is compact and
connected. Theorem 4.1 gives smooth nontame families of Stein structures on R2n for any n > 1.

Recall that a continuous map S → T of topological spaces is said to be proper if the preimage of
any compact set in T is compact.

9



Proposition 5.2. Assume that T is a locally compact Hausdorff space. The following conditions on a
continuous family J = {Jt}t∈T of complex structures on X are equivalent.

(a) The family J is tame.
(b) For every compact subset K ⊂ X , its J -convex hull

(5.1) K̂J =
⋃
t∈T

{t} × K̂Jt ⊂ T ×X

is such that the projection π : K̂J → T is proper.

Proof. Assume that J is tame. It is easily seen that K̂J is then closed in T × X . Let T ′ ⊂ T be
compact. Given t ∈ T ′, pick a neighbourhood Ut ⊂ X of K̂Jt with compact closure U t. Tameness
gives a compact neighbourhood Tt ⊂ T of t such that the π−1(Tt)∩ K̂J is a closed subset of Tt ×U t,
hence compact. The compact set T ′ is covered by finitely many sets Ttj obtained in this way, and it
follows that π−1(T ′) ∩ K̂J is compact. This proves (a) ⇒ (b). Conversely, assume that π : K̂J → T

is proper. Let t0 ∈ T and U ⊂ X be an open set containing K̂Jt0
. Choose a compact neighbourhood

T0 ⊂ T of t0. Then, π−1(T0) ∩ K̂J is compact, and hence closed in T0 × X . If the condition
in Definition 5.1 fails at t0, there is a net {(tj , xj)}j∈A ⊂ K̂J with limj tj = t0 such that the net
{xj}j∈A has an accumulation point x0 ∈ X \ U . Since π−1(T0) ∩ K̂J is closed, it contains (t0, x0)
which contradicts the initial assumption. Hence, J is tame. □

The nontame families J of Stein structures in Theorem 4.1 are such that the family of hulls K̂Jt of
some compactK is not locally bounded at some t0 ∈ T , and K̂J fails to be closed. If J is sufficiently
regular and the hulls of any compact set are locally bounded, we show that the family is tame.

Proposition 5.3. Let X be a smooth manifold of dimension 2n, J = {Jt}t∈T be a continuous family
of Stein structures of class C r on X where r ≥ n + 6, and K ⊂ X be a compact set. If for every
point t0 ∈ T there are a neighbourhood T0 ⊂ T of t0 and a relatively compact domain Ω ⋐ X such
that K̂Jt ⊂ Ω holds for all t ∈ T0, then K̂J is closed in T × X . If in addition T is locally compact
Hausdorff and the above condition holds for every compact set K ⊂ X , then J is tame.

Proof. Let (t0, x0) /∈ K̂J . Then there is a Jt0-holomorphic function f onX such that |f(x0)| > 1+3ε

and maxx∈K |f(x)| ≤ 1 − ε for some ε > 0. Let U ⊂ X be a compact neighbourhood of x0 such
that |f(x)| > 1 + 3ε for all x ∈ U . Let Ω ⋐ X and T0 ⊂ T be as in the proposition. Enlarging Ω,
we may assume that it is a smoothly bounded strongly Jt0-pseudoconvex domain which also contains
U . Shrinking T0 around t0 if necessary, Theorem 3.2 and Proposition 3.3 give a continuous family of
functions {ut}t∈T0 on Ω such that ∂Jtut = ∂Jtf and ut0 = 0. Then ft = f − ut is Jt-holomorphic on
Ω and continuous in t ∈ T0, with ft0 = f . Hence, there is a neighbourhood T1 ⊂ T0 of t0 such that
minx∈U |ft(x)| > 1 + 2ε and maxx∈K |ft(x)| ≤ 1 for all t ∈ T1. We claim that T1 × U is disjoint
from K̂J . If not, choose (t′, x′) ∈ (T1 × U) ∩ K̂J , so x′ ∈ K̂Jt′ ⊂ Ω. The Oka-Weil theorem gives
a Jt′-holomorphic function F on X such that |F − ft′ | < ε on K̂Jt′ ⊃ K ∪ {x′}, which implies
|F (x′)| > maxx∈K |F (x)|, a contradiction to x′ ∈ K̂Jt′ . This proves the claim and shows that K̂J is
closed. If T is locally compact Hausdorff, it follows that the projection π : K̂J → T is proper, so the
last statement follows from Proposition 5.2. □

In the remainder of the section, we assume that the parameter T is locally compact Hausdorff.
A closed subset K ⊂ T × X is called proper over T , or simply proper, if the restricted projection
π|K : K → T is proper. The proof of Proposition 5.2 shows that K is proper if and only if the
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fibres Kt = {x ∈ X : (t, x) ∈ K}, t ∈ T , are compact and upper semicontinuous. Given a subset
K ⊂ T ×X with compact fibres Kt, we define its J -convex hull by

(5.2) K̂J =
{
(t, x) ∈ T ×X : x ∈ (K̂t)Jt

}
.

(In (5.1) we used the same notation for K ⊂ X to mean (T̂×K)J , but this should not cause any
confusion.) A proper subset K ⊂ T ×X is said to be J -convex if K = K̂J .

Lemma 5.4. If K ⊂ T ×X is proper and J is tame then the hull K̂J (5.2) is also proper.

Proof. Fix t0 ∈ T and an open set U ⊂ X with (K̂t0)Jt0 ⊂ U . By [29, Theorem 5.1.6] there is a
strongly Jt0-plurisubharmonic exhaustion function ρ : X → R such that ρ < 0 on (K̂t0)Jt0 and ρ > 0

on X \ U . The compact set L = {ρ ≤ 0} is then Jt0-convex and satisfies Kt0 ⊂ L̊ ⊂ L ⊂ U . Since
K is proper, there is a neighbourhood T0 ⊂ T of t0 such that Kt ⊂ L for all t0 ∈ T . Since J is tame,
we have that (K̂t)Jt ⊂ L̂Jt ⊂ U for all t near t0, so K̂J is proper. □

Under a stronger regularity assumption on a family J = {Jt}t∈T of Stein structures on X , we
have the following characterisation of tameness in terms of families of strongly Jt-plurisubharmonic
exhaustion functions on X for t ∈ T .

Theorem 5.5. Assume that X is a smooth manifold, T is a locally compact Hausdorff space, and
J = {Jt}t∈T is a continuous family of integrable Stein structures on X of local Hölder class
C 0,(k,α)(T ×X) for some k ∈ N and 0 < α < 1. The following conditions are equivalent.

(a) The family J is tame.
(b) For every t0 ∈ T there are a neighbourhood T0 ⊂ T of t0 and a function ρ : T0 ×X → R of class

C 0,k+1 such that ρ(t, · ) is a strongly Jt-plurisubharmonic exhaustion on X for every t ∈ T0.

If in addition T is paracompact then (a) and (b) are also equivalent to the following:

(c) There is a function ρ : T × X → R of class C 0,k+1 such that ρt = ρ(t, · ) is a strongly Jt-
plurisubharmonic exhaustion function on X for every t ∈ T .

If T is a C l manifold and J is of local class C l,(k,α), then ρ can be chosen to be of class C l,k+1.

Note that the ±i-eigenspaces of Jt depend algebraically on the coefficients of Jt in a given smooth
frame on TX , and hence the operators ∂Jt , ∂Jt , and dcJt are as regular in t ∈ T as the family
J = {Jt}t∈T . In the operator ddcJt , the coefficients of dcJt get differentiated, and hence ddcJt depends
continuously on t ∈ T if the family J is of class C 0,1. This implies the following observation.

Lemma 5.6. Assume that the family of complex structures J = {Jt}t∈T on X is of local class
C 0,(1,α), 0 < α < 1. Let ϕ be a C 2 strongly Jt0-plurisubharmonic function on a domain V ⊂ X for
some t0 ∈ T . Given an open relatively compact subset U ⋐ V , there is a neighbourhood T0 ⊂ T of t0
such that ϕ is strongly Jt-plurisubharmonic on U for every t ∈ T0.

Proof of Theorem 5.5. For simplicity of notation we assume that k = 1 and l = 0; the proof is the
same in the general case.

We first prove that (b) ⇒ (a). Fix t0 ∈ T , a compact set K ⊂ X , and an open relatively compact
set U ⋐ X containing K̂Jt0

. Choose a neighbourhood T0 ⊂ T of t0 and a function ρ : T0 ×X → R
satisfying condition (b). By adding a constant to ρt0 we can ensure that ρt0 < −1 on K. Since ρt0
is an exhaustion function on X , there is a relatively compact domain V ⋐ X containing U such that
ρt0 > 1 on X \ V . Choose a strongly Jt0-plurisubharmonic function ψ : X → R such that ψ < 0 on
K̂Jt0

and ψ > 0 on X \ U (see [29, Theorem 5.1.6]). Replacing ψ by cψ for a suitable c > 0 we may
assume that −1 < ψ < 0 on K, ψ > 0 on X \ U , and ψ < ρt0 on bV . Since ρt is continuous in t, we
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can shrink T0 around t0 to ensure that for every t ∈ T0 we have ρt < −1 on K and ψ < ρt on bV . By
Lemma 5.6 we can further shrink T0 to ensure that ψ is strongly Jt-plurisubharmonic on V for every
t ∈ T0. For t ∈ T0 we define the function ϕt : X → R by

ϕt(x) =

{
max{ψ(x), ρt(x)}, x ∈ V ;

ρt(x), x ∈ X \ V.

Note that ϕt is a piecewise C 2 strongly Jt-plurisubharmonic exhaustion function on X satisfying

(5.3) ϕt = ψ < 0 on K and ϕt > 0 on X \ U .

(To obtain C 2 strongly plurisubharmonic exhaustion functions satisfying (5.3) we can use the
regularized maximum; see [12, p. 69]. However, this is inessential.) Since the holomorphic hull of
K equals its plurisubharmonic hull (see [29, Theorems 4.3.4 and 5.2.10]), it follows from (5.3) that
K̂Jt ⊂ U for all t ∈ T0. This shows that J is tame.

Next, we prove that (a) ⇒ (b). Since the statement in (b) is local in t, we may assume that T is
compact. Tameness of J and compactness of T imply that for every compact set K ⊂ X , the hull
K̂J (5.1) is also compact. Hence, we can find an exhaustion K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂

⋃∞
i=0K

i = X

by compact sets such that K̂i
J ⊂ T × K̊i+1 holds for every i = 0, 1, 2, . . .. Choose an increasing

sequence 0 < c1 < c2 < · · · with limi→∞ ci = +∞. We proceed inductively.

In the initial step, fix a neighbourhood U1 ⋐ X of K1 and choose an open subset Ũ1 ⋐ X such
that U1 ⊂ Ũ1. We shall find a function ρ1 : T × X → R+ of class C 0,2 such that ρ1t is strongly
plurisubharmonic on U1 for all t ∈ T , ρ1 has compact support contained in T × Ũ1, and ρ1 > c1
on T × K1. To do this, fix t ∈ T and pick a strongly Jt-plurisubharmonic function ϕt : X → R+

such that ϕt > c1 on K1. Lemma 5.6 gives a neighbourhood Tt ⊂ T of t such that ϕt is strongly
Js-plurisubharmonic on Ũ1 for every s ∈ Tt. By compactness of T we obtain a finite covering
T =

⋃m
j=1 Tj and for each j = 1, . . . ,m a C 2 function ϕj : Ũ1 → R+ such that ϕj > c1 on

K1 and ϕj is strongly Jt-plurisubharmonic for every t ∈ Tj . Let {χj}mj=1 be a continuous partition
of unity on T with suppχj ⊂ Tj . Also, let ξ : X → [0, 1] be a smooth function with compact
support contained in Ũ1 which equals 1 on U1. The function ρ1(t, x) = ξ(x)

∑m
j=1 χj(t)ϕj(x) is then

fibrewise strongly plurisubharmonic on T × U1 and has compact support contained in T × Ũ1.

In the second step, we pick a neighbourhood U2 ⋐ X ofK2 and find a function ρ2 : T ×X → R+

of class C 0,2 with compact support such that ρ2 = 0 on K̂0
J , ρ1 + ρ2 is fibrewise strongly

plurisubharmonic on T × U2, and ρ1 + ρ2 > c2 on T × (K2 \K1). (We also have ρ1 + ρ2 > c1 on
T ×K1.) To do this, fix t ∈ T and apply [29, Theorem 5.1.6] to find a smooth Jt-plurisubharmonic
function ϕt : X → R+ which vanishes on a neighbourhood of K̂0

Jt , it is positive strongly Jt-
plurisubharmonic on X \ K1 (recall that K̂0

Jt is contained in the interior of K1), and ρ1t + ϕt is
strongly Jt-plurisubharmonic on X and satisfies ρ1t + ϕt > c2 on K2 \K1. By tameness of J and
Lemma 5.6 there is a neighbourhood Tt ⊂ T of t such that the function ρ1s + ϕt : U

2 → R+ satisfies
the same conditions for all s ∈ Tt, and ϕt vanishes on a neighbourhood of K̂0

Js for all s ∈ Tt. As in
the first step, this gives a finite open covering T =

⋃m
j=1 Tj , functions ϕj : X → R+ (j = 1, . . . ,m),

a partition of unity {χj}mj=1 on T with suppχj ⊂ Tj , and a smooth cut-off function ξ : X → [0, 1]

such that the function ρ2(t, x) = ξ(x)
∑m

j=1 χj(t)ϕj(x) enjoys the stated properties.

This process can be continued inductively to yield a sequence of nonnegative functions ρ1, ρ2, . . .
of class C 0,2(T ×X) with compact supports such that their partial sums ρ̃i = ρ1+ · · ·+ρi are of class
C 0,2 and satisfy the following conditions for every i = 1, 2, . . .:

(i) ρ̃i is fibrewise strongly plurisubharmonic on a neighbourhood of T×Ki and has compact support.
(ii) ρ̃i > c1 on T ×K1 and ρ̃i > cj on T × (Kj \Kj−1) for j = 2, . . . , i.
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(iii) ρ̃i+1 = ρ̃i on K̂i
J .

Condition (iii) implies that the sequence is stationary on any compact subset of T ×X . It follows that
ρ =

∑∞
i=1 ρ

i : T ×X → R+ is a fibrewise strongly plurisubharmonic function of class C 0,2 satisfying
ρ > ci on T × (Ki \Ki−1) for every i = 1, 2, . . .. In particular, ρt = ρ(t, · ) is an exhaustion function
on X for every t ∈ T . It is easy to ensure that the Levi form of ρt with respect to Jt grows as fast as
desired uniformly in t ∈ T . This proves the implication (a) ⇒ (b).

Assume now that T is also paracompact. If (b) holds, we obtain a locally finite open cover
V = {Vi}i of T with compact closures Ti = V i and for every i a fibrewise strongly plurisubharmonic
exhaustion function ρi : Ti×X → R. Pick a partition of unity {χi}i on T subordinate to V . Then, the
function ρ =

∑
i χiρi : T ×X → R satisfies condition (c). The implication (c) ⇒ (b) is a tautology.

If T is a C l manifold, the same proof gives a function ρ of class C l,k+1(T ×X). □

The proof of Theorem 5.5 gives the following analogue of the classical result [29, Theorem 5.1.6]
for a tame family of Stein structures. We leave the details to the reader.

Theorem 5.7. Assume that X , T and J are as in Theorem 5.5. Given a proper J -convex subset
K = K̂J ⊂ T ×X and an open set U ⊂ T ×X containing K, there is a function ρ : T ×X → R as
in Theorem 5.5 (b) such that ρ < 0 on K and ρ > 0 on (T ×X) \ U . Conversely, if ρ is a function as
in Theorem 5.5 (b) then for every c ∈ R the sublevel set {ρ ≤ c} ⊂ T ×X is proper and J -convex.

We conclude the section with examples and constructions of tame families of Stein structures on
a smooth manifold X . The first observation is that every sufficiently regular family J = {Jt}t∈T ,
which is locally constant in t outside of a proper subset of T ×X , is tame. Hence, the phenomenon of
nontameness can only appear due to the behaviour of the complex structures near infinity in X .

Proposition 5.8. Let X and J = {Jt}t∈T be as in Theorem 5.5. If for every t0 ∈ T there are a
compact set K ⊂ X and a neighbourhood T0 ⊂ T of t0 such that Jt = Jt0 holds on X \ K for all
t ∈ T0, then the family J is tame.

Proof. Pick a strongly Jt0-plurisubharmonic exhaustion function ρ : X → R+. Lemma 5.6 gives a
neighbourhood T0 ⊂ T of t0 such that ρ is strongly Jt-plurisubharmonic on K for every t ∈ T0. Up
to shrinking T0, the same is true on X \K since Jt = Jt0 there. Hence, Theorem 5.5 shows that the
family {Jt}t∈T0 is tame. Since tameness is a local condition in the parameter t, J is tame. □

Proposition 5.9. If (X, J0) is a Stein manifold and Φt : X → Φt(X) ⊂ X is a continuous family of
diffeomorphisms onto Stein Runge domains in X , then the family of Stein structures Jt = Φ∗

tJ0 on X
is tame.

Proof. Let K ⊂ X be a compact set. Set Ωt = Φt(X) and Kt = Φt(K). Denote by J t
0 the restriction

of J0 to TΩt. Since Φt : (X,Jt) → (Ωt, J
t
0) is a biholomorphism, we have K̂Jt = Φ−1

t ((K̂t)Jt
0
). Since

Ωt is Runge in X , (K̂t)Jt
0

equals (K̂t)J0 , the hull of Kt in (X, J0). Since the family Kt is continuous

in t, the family of hulls (K̂t)J0 is upper semicontinuous in t, so the same is true for K̂Jt . □

Theorem 4.1 shows that Proposition 5.9 fails in general if the domains Φt(X) are not Runge in X .
In that example, X = Cn with n > 1, t ∈ R, Φt(Cn) = Cn for t ̸= 0, while Φ0(Cn) is not Runge
in Cn. It is easy to find an example of a tame family of Stein structures {Jt}t∈R on R2n such that
(R2n, J0) equals Cn while (R2n, Jt) for t ̸= 0 is biholomorphic to the unit ball in Cn.

Example 5.10. Assume that (Y, JY ) is a Stein manifold, X is a smooth manifold, T is a topological
space, and F : T × X → Y is a map of class C 0,∞ such that for every t ∈ T , the map Ft =
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F (t, · ) : X → Y is a proper immersion whose image Ft(X) is an immersed complex submanifold of
Y . Let Jt denote the unique complex structure on X such that the map Ft is (Jt, JY )-holomorphic.
Since Ft is proper, Jt is Stein. Then, the family J = {Jt}t∈T is tame. Indeed, choosing a smooth
strongly plurisubharmonic exhaustion function ρ : Y → R+, the function ρ ◦ F : T × X → R+

satisfies condition (c) in Theorem 5.5. This situation arises naturally if Ω ⋐ Y is a smoothly bounded
Stein domain and {Ft(Z)}t∈T is a continuous family of complex submanifolds of Y with a connected
parameter space T such that for every t ∈ T , Zt = {z ∈ Z : Ft(z) ∈ Ω} is relatively compact in Z
and Ft intersects bΩ transversely along bZt. In this case, the domains Zt have smooth boundaries and
are diffeomorphic to each other, so we can smoothly parametrise them by a fixed smooth manifold X .

Corollary 6.4 shows that tameness of a family J of sufficiently smooth Stein structures on X is
implied by, and hence equivalent to the one-fibre extension property for J -holomorphic functions.

6. THE OKA PRINCIPLE FOR TAME FAMILIES OF STEIN STRUCTURES

In this section, we state and prove the main result of the paper, Theorem 6.1. It gives a parametric
Oka principle with approximation for maps from tame families of Stein structures to any Oka manifold.
Except for the regularity assumptions and statements, this result extends the special case concerning
families of open Riemann surfaces in [14, Theorem 1.6].

Let T be a topological space, X be a smooth open manifold, and let π : T × X → T denote
the projection. Assume that J = {Jt}t∈T is a tame family of integrable Stein structures on X (see
Definition 5.1). Recall that a closed subsetK ⊂ T×X is called proper over T (or simply proper) if the
restricted projection π|K : K → T is proper, and is J -convex if K = K̂J (see (5.2)). A continuous
map f on an open U ⊂ T ×X is said to be J -holomorphic if the map ft = f(t, ·) is Jt-holomorphic
on Ut = {x ∈ X : (t, x) ∈ U} for every t ∈ T . A topological space is said to be σ-compact if it is the
union of countably many compact subspaces. Every locally compact and σ-compact Hausdorff space
is paracompact [39]. A topological space T is a Euclidean neighbourhood retract (ENR) if it admits a
topological embedding ι : T ↪→ RN for some N whose image ι(T ) ⊂ RN is a neighbourhood retract,
and is a local ENR if every point of T has an ENR neighbourhood. (See [14, Definition 1.5] and the
references therein.) In particular, every finite CW complex is an ENR, and every countable locally
compact CW-complex of finite dimension is an ENR.

Theorem 6.1 (The Oka principle for tame families of Stein structures). Assume the following:

(a) T is a σ-compact Hausdorff local ENR. In particular, T may be a finite CW complex or a countable
locally compact CW-complex of finite dimension.

(b) X is a smooth open manifold of real dimension 2n.
(c) r ≥ 2n+ 11 is an integer, or r = +∞.
(d) J = {Jt}t∈T is a tame family of Stein structures of class C 0,r on X (see Definition 5.1).
(e) K ⊂ T ×X is a proper (over T ) J -convex subset.
(f) Y is an Oka manifold with a distance function distY inducing the manifold topology.
(g) f : T ×X → Y is a continuous map, and there are an open subset U ⊂ T ×X containing K and

a closed subset Q ⊂ T such that f is J -holomorphic on U ∪ (Q×X).

Given a continuous function ϵ : T → (0,+∞), there exist a neighbourhood U ′ ⊂ U of K and a
homotopy fs : T ×X → Y (s ∈ I = [0, 1]) satisfying the following conditions.

(i) f0 = f .
(ii) The map fs is J -holomorphic on U ′ for every s ∈ I .

(iii) supx∈Kt
distY (fs(t, x), f(t, x)) < ϵ(t) for every t ∈ T and s ∈ I .

(iv) The map F = f1 is J -holomorphic on T ×X .
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(v) The homotopy fs(t, · ) (s ∈ I) is fixed for every t ∈ Q, so F = f on Q×X .

Remark 6.2. The choice of the integer r in condition (c) is dictated by Theorem 3.1. If k ≥ 1 and
r ≥ 2k + 2n + 9 are integers or k = r = +∞, it follows from Theorem 3.1 that every continuous
J -holomorphic map f : U → Y on an open subset U ⊂ T × X is of class C 0,k. Approximation
in the fine C 0,0 topology (see (iii) in the theorem) can then be upgraded to approximation in the fine
C 0,k topology; see the last paragraph in [14, Theorem 1.6]. We shall not formally state or prove this
generalisation since it follows easily from the proof of [14, Theorem 1.6].

We first explain the special case of Theorem 6.1 with Y = C. In the following version of the
Oka–Weil theorem for tame families of Stein structures, the parameter space T is more general than in
Theorem 6.1. The special case when X is an open surface is given by [14, Theorem 1.1].

Theorem 6.3 (The Oka–Weil theorem for tame families of Stein structures). Assume that X is a
smooth manifold of dimension 2n, T is a locally compact and paracompact Hausdorff space, k ≥ 1

and r ≥ 2k + 2n+ 9 are integers or k = r = +∞,J = {Jt}t∈T is a tame family of Stein structures
of class C 0,r on X , K ⊂ T × X is a proper over T and J -convex subset, U ⊂ T × X is an open
set containing K, and f : U → C is a J -holomorphic function. Then, f ∈ C 0,k(U) and it can be
approximated in the fine C 0,k topology on K by J -holomorphic functions F : T × X → C. If in
addition Q is a closed subset of T and f is also J -holomorphic on Q × X , then F can be chosen
such that F = f on Q×X .

Theorem 6.3 has the following corollary which shows that tameness of J is implied by, and hence
equivalent to the one-fibre extension property for J -holomorphic functions.

Corollary 6.4. Assume that T is a locally compact and paracompact Hausdorff space, X is a smooth
manifold, and J = {Jt}t∈T is a continuous family of smooth Stein structures on X .

(a) If J is tame then every J -holomorphic function on Q × X , where Q is a closed subset of T ,
extends to a J -holomorphic function on T ×X .

(b) Conversely, if for every f ∈ O(X,Jt0) (t0 ∈ T ) there are a neighbourhood T0 ⊂ T of t0 and a
J -holomorphic function F : T0 ×X → C such that F (t0, · ) = f , then the family J is tame.

Proof of Corollary 6.4. Note that (a) is a part of Theorem 6.3. We prove (b) by contradiction. Assume
for simplicity that T is first countable; in the general case the same argument works with sequences
replaced by nets. Assume that J is not tame. Then there are a point t0 ∈ T , a compact Jt0-convex set
K ⊂ X , a neighbourhood U ⋐ X ofK, and a sequence tj ∈ T with limj→∞ tj = t0 such that the hull
K̂Jtj

is not contained in U for any j. It follows that K̂Jtj
∩ bU ̸= ∅. Pick a point xj ∈ K̂Jtj

∩ bU for
every j. Since bU is compact, passing to a subsequence we may assume that xj converges to a point
x0 ∈ bU as j → ∞. Assume that F : T0 × X → C is a J -holomorphic function, where T0 ⊂ T

is a neighbourhood of t0. Let f = F (t0, · ). For every sufficiently big j we have tj ∈ T0 and hence
|F (tj , xj)| ≤ maxx∈K |F (tj , x)|. Taking the limit as j → ∞ gives |f(x0)| ≤ maxx∈K |f(x)|. Since
x0 ̸∈ K̂Jt0

= K, there exists a function f ∈ OJt0
(X) violating the above inequality, and hence such f

does not admit a J -holomorphic extension to T0 ×X for any neighbourhood T0 of t0. □

For a tame family J , Corollary 6.4 also implies the following characterisation of J -convex sets
by J -holomorphic functions.

Corollary 6.5. Assume that T , X , and J = {Jt}t∈T are as in Corollary 6.4. If J is tame then a
proper over T subsetK ⊂ Z = T×X is J -convex if and only if for every point z0 = (t0, x0) ∈ Z\K
there exists a J -holomorphic function f : Z → C such that |f(z0)| > supz∈K |f(z)|.
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Proof. If K is not J -convex then at least one of its fibres Kt (t ∈ T ) is not Jt-convex, so a function
with the stated property does not exist. Assume now thatK is J -convex and let z0 = (t0, x0) ∈ Z\K.
Then, x0 ∈ X \ (K̂t0)Jt0 , so there exists ft0 ∈ OJt0

(X) with |ft0(x0)| > maxx∈Kt0
|ft0(x)|. By

Corollary 6.4 (a) there exists a J -holomorphic function F : Z → C with F (t0, · ) = ft0 . Since J is
tame, there is a neighbourhood T0 ⊂ T of t0 such that |F (t0, x0)| > maxx∈Kt |F (t, x)| holds for all
t ∈ T0. If χ : T → [0, 1] is a continuous function with χ(t0) = 1 and suppχ ⊂ T0 then the function
f : Z → C given by f(t, x) = χ(t)F (t, x) satisfies the conclusion of the corollary. □

Proof of Theorem 6.3. We first consider the case when T is compact and Q = ∅. Since the set
K ⊂ T × X is proper over the compact set T , K is compact as well. Choose a compact set L ⊂ X

such that K ⊂ T ×L and set L′ = T̂ × LJ (5.1). It suffices to show that the function f in the theorem
can be approximated as closely as desired in C 0,k(K) by J -holomorphic functions F : U ′ → C on
an open neighbourhood U ′ ⊂ T ×X of L′. If this holds then the conclusion follows by an induction
with respect to an exhaustion of T ×X by an increasing sequence of compact J -convex sets.

Consider the problem for t ∈ T near a fixed t0 ∈ T . We denote by Kt ⊂ X the fibre of K over
t ∈ T , and likewise for the other sets. For a subset T0 ⊂ T we also write KT0 = K ∩ (T0 ∩X) and
UT0 = U ∩ (T0 ×X). Choose a relatively compact strongly Jt0-pseudoconvex domain Ω ⋐ X with
smooth boundary such that L′

t0 = L̂Jt0
⊂ Ω. Theorem 3.1 furnishes a neighbourhood T0 ⊂ T of t0

and a map Φ : T0 × Ω → T0 ×X of class C 0,k such that Φ(t, x) = (t,Φt(x)) and

(6.1) Φt : Ω → Φt(Ω) ⊂ X is a (Jt, Jt0)-biholomorphism for every t ∈ T0,

with Φt0 = IdΩ. Choose Jt0-Stein domains V, V ′ in X such that L′
t0 ⊂ V ⋐ V ′ ⋐ Ω. Shrinking U

around K and T0 around t0 if necessary, the following inclusions hold for every t ∈ T0 (see Fig. 2):

(6.2) Ut ⊂ Ω, Φt(Kt) ⊂ V ⊂ V ′ ⊂ Φt(Ω), L′
t ⊂ V ⊂ Φ−1

t (V ′).

Figure 2. The shaded areas depict the sets Φt(Kt) ⊂ Φt(Ω) for t ∈ T0.

Let f : U → C be as in the theorem, so ft = f(t, · ) is Jt-holomorphic on Ut ⊃ Kt for every
t ∈ T . The function f ◦ Φ−1 : Φ(UT0) → C is then continuous and fibrewise Jt0-holomorphic,
hence of class C 0,∞. Since Kt is Jt-convex in Ω and the map Φt (6.1) is (Jt, Jt0)-biholomorphic,
Φt(Kt) is Jt0-convex in Φt(Ω) (and hence in V ′ ⊂ Φt(Ω), see (6.2)) for every t ∈ T0. Hence, the
set K ′ := Φ(KT0) ⊂ T0 × X is proper over T0 and its fibres are Jt0-convex in the Stein manifold
(V ′, Jt0). By [14, Lemma 5.3] there is a function F ′ : T0 × V ′ → C of class C 0,∞ which is fibrewise
Jt0-holomorphic and approximates f ◦ Φ−1 as closely as desired in C 0,k(K ′). Since Φt(V ) ⊂ V ′ by
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the third inclusion in (6.2), the function F := F ′ ◦Φ : T0 × V → C is well-defined, of class C 0,k, and
it approximates f in C 0,k(KT0). By the fifth inclusion in (6.2) we have that L′ ∩ (T0 ×X) ⊂ T0 × V .

This gives a finite open cover {Tj}j of T and open sets Vj ⊂ X such that {Tj × Vj}j is a cover
of L′, and J -holomorphic functions Fj : Tj × Vj → C approximating f in C 0,k(KTj ) for every
j. Choose a partition of unity 1 =

∑
j χj on T with suppχj ⊂ Tj for every j. The function

F (t, x) =
∑

j χj(t)Fj(t, x) is then well-defined and J -holomorphic on a neighbourhood of L′ in
T ×X and it approximates f in C 0,k(K). To conclude the proof, it remains to apply an induction with
respect to a normal exhaustion of T ×X by an increasing family of compact J -convex sets.

Suppose now that T is compact and Q ⊂ T is nonempty. Let K ⊂ L′ ⊂ T × X be as above.
Choose a strongly pseudoconvex domain Ω ⋐ X such that L′ ∩ (Q × X) ⊂ Q × Ω. We claim that
there is a neighbourhood T ′ ⊂ T of Q and a J -holomorphic function f ′ : T ′ ×Ω → C which agrees
with f onQ×Ω. If the complex structure Jt is independent of t ∈ T ′, this follows from the parametric
Oka–Weil theorem [12, Theorem 2.8.4]. In the case at hand, we choose a pair of smoothly bounded
strongly pseudoconvex domain Ω1 ⋐ Ω2 ⋐ X such that Ω ⊂ Ω1, and we cover Q by finitely many
open sets T1, . . . , Tm ⊂ T with points tj ∈ Tj such that Theorem 3.1 applies on T j × Ω2 for every
j = 1, . . . ,m. This gives maps Φj : T j × Ω2 → T j × X of class C 0,k and of the form (6.1) such
that Φj,t : Ω2 → Φj,t(Ω2) is a (Jt, Jtj )-biholomorphism for every t ∈ T j . Choosing the sets Tj small
enough we may assume that the following inclusions hold for j = 1, . . . ,m:

(6.3) T j × Ω ⊂ Φ−1
j (T j × Ω1), T j × Ω1 ⊂ Φj(T j × Ω2).

We apply [12, Theorem 2.8.4] to each function f ◦ Φ−1
j : (T j ∩ Q) × Ω1 → C (see the second

inclusion in (6.3)), which is fibrewise Jtj -holomorphic, to find a fibrewise Jtj -holomorphic function
f̃j : T j × Ω1 → C which agrees with f ◦ Φ−1

j on (T j ∩ Q) × Ω1. The function f̃j ◦ Φj is then
well-defined and J -holomorphic on T j × Ω (see the first inclusion in (6.3)), and it agrees with f on
(T j ∩Q)×Ω. Choose a partition of unity {χj}mj=1 on a neighbourhood of Q with suppχj ⊂ Tj . The
function f ′ =

∑m
j=1 χj(f̃j ◦Φj) has the desired properties. We now replace f by (1−ξ)f+ξf ′ where

ξ : T → [0, 1] is a continuous function with compact support contained in a small neighbourhood
Q′ ⊃ Q such that ξ = 1 on a neighbourhood of Q. This new function is J -holomorphic on U ⊃ K

and on T ′ × Ω, and it is close to the original function f on K if the neighbourhood Q′ ⊃ Q was
chosen small enough. We apply the previously explained construction to this new function, working
on the complement ofQ in T to find a J -holomorphic function F on a neighbourhood U ′ of L′ which
approximates f on K and agrees with f on (Q×X) ∩ U ′. This completes the induction step.

When T is a locally compact and paracompact Hausdorff space, the above proof gives an open
locally finite cover T = {Tj}j of T (not necessarily countable) and functions Fj : T j × X → C
which approximate f as closely as desired in the C 0,k topology on K ∩ (T j × X) and agree
with f on (T j ∩ Q) × X . Choosing a partition of unity {ξj}j on T subordinate to T and setting
F =

∑
j ξjFj : T ×X → C gives functions satisfying the theorem. □

We now turn to the Oka principle in Theorem 6.1 where the target Y is an arbitrary Oka manifold.
We shall use the following special case of [14, Lemma 6.3] which we restate in the notation of this
paper. In this lemma, the Stein structure on X is independent of the parameter t.

Lemma 6.6. Assume that P ′′ ⊂ RN is a neighbourhood retract and P0 ⊂ P1 ⊂ P ⊂ P ′ are
compact subsets of P ′′, each contained in the interior of the next one. Let X be a Stein manifold,
π : CN ×X → CN be the projection, and K ⊂ CN ×X be a compact subset such that π(K) ⊂ P

and the fibre Kt = {x ∈ X : (t, x) ∈ K} is O(X)-convex for every t ∈ P . (The fibre Kt may be
empty for some t.) Assume that U is an open neighbourhood of K in P ′ ×X , Y is an Oka manifold
endowed with a distance function distY , and f : P ′ ×X → Y is a continuous map such that for every
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t ∈ P the map ft = f(t, · ) : X → Y is holomorphic on Ut = {x ∈ X : (t, x) ∈ U}. Fix ϵ > 0. After
shrinking the open set U ⊃ K if necessary, there is a homotopy fs : P × X → Y (s ∈ I = [0, 1])

satisfying the following conditions.

(a) f0 = f |P×X .
(b) fs(t, · ) : X → Y is holomorphic on Ut for every s ∈ I and t ∈ P .
(c) max(t,x)∈K distY (fs(t, x), f(t, x)) < ϵ for every s ∈ I .
(d) fs(t, · ) = f(t, · ) for all t ∈ P \ P1 and s ∈ I .
(e) The map f1(t, · ) : X → Y is holomorphic for every t in a neighbourhood of P0.

Proof of Theorem 6.1. Let the integers k ≥ 1 and r ≥ 2k+2n+9 be as in Remark 6.2. We shall follow
[14, proof of Theorem 1.6], which treats the case when X is a smooth open surface. The adjustment
we have to make is that the Jt-convex hull of a compact set in X may now change with the parameter
t. Unlike in the proof of Theorem 6.3, we can not glue partial approximants by partitions of unity on
T since the target Y is a manifold, so the problem is nonlinear. Instead, we make all deformations by
homotopies and use cut-off functions in the parameters of the homotopy at every inductive step.

The conditions on T imply that it is locally compact, σ-compact and Hausdorff. Choose a normal
exhaustion T1 ⊂ T2 ⊂ · · · ⊂

⋃∞
j=1 Tj = T by compact sets (that is, each Tj is contained in the

interior of Tj+1). Tameness of J provides an increasing sequence L1 ⊂ L2 ⊂ · · · ⊂
⋃∞

j=1 Lj = X

of compact sets forming a normal exhaustion of X such that for all j = 1, 2, . . . we have that

K ∩ (Tj ×X) ⊂ Tj × Lj and ̂(Tj × Lj)J ⊂ Tj × Lj+1.

Figure 3. An illustration of the choice of the set L2.

Define an increasing sequence of subsets K = K0 ⊂ K1 ⊂ · · · ⊂
⋃∞

j=0K
j = T ×X by

(6.4) Kj = ̂(Tj×Lj)J ∪K, j = 1, 2, . . . .

Note that each Kj is proper over T and J -convex. Let f0 = f : T × X → Y be the given map
in the theorem which is J -holomorphic on a neighbourhood of K = K0 and on Q × X . We may
assume that the distance function distY is complete. Let ϵ : T → (0,+∞) be the continuous function
in the theorem. We shall find a sequence of continuous maps f j : T × X → Y and homotopies
f js : T ×X → Y (s ∈ I = [0, 1]) satisfying the following conditions for every j = 1, 2, . . ..

(A) f j is J -holomorphic on a neighbourhood of the set Kj (6.4).
(B) f j0 = f j−1 and f j1 = f j .
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(C) f js is J -holomorphic on a neighbourhood of Kj−1 for every s ∈ I , where the neighbourhood
does not depend on s ∈ I .

(D) max
x∈Kj−1

t
distY (f

j−1(t, x), f js (t, x)) < 2−jϵ(t) for all s ∈ I and t ∈ T .

(E) The homotopy f js (t, · ), s ∈ I , is fixed for all t ∈ Q.

These conditions clearly imply that the homotopies f js (j ∈ N, s ∈ I) can be assembled into a single
homotopy fs : T×X → Y (s ∈ I) from the initial map f0 = f = f0 to the limit J -holomorphic map
f1 = F = limj→∞ f j : T ×X → Y (condition (iv)) such that for every s ∈ I , fs is J -holomorphic
on a neighbourhood of K (condition (ii)), it approximates f to precision ϵ on K (condition (iii)), and
the homotopy is fixed over Q (condition (v)).

Every step in the induction is of the same kind, so it suffices to show the initial step with j = 1.
This is accomplished by a finite induction which we now explain.

If the subset Q ⊂ T in condition (v) is nonempty, we choose a small neighbourhood Q1 ⊂ T

of Q and deform f0 = f by a homotopy which is fixed for t ∈ Q ∪ (T \ Q1) to another map
f̃0 : Z → Y which approximates f0 in the fine topology on K0 such that f̃0(t, · ) is holomorphic on
a neighbourhood of K1

t for every t in a closed neighbourhood Q̃ ⊂ Q1 of Q and the other properties
of f0 remain in place. This modification can be done in a similar way as in the last part of the proof of
Theorem 6.3 but using the gluing technique in [12, Proposition 5.13.1] instead of partitions of unity.
To simplify the notation, we replace f0 by f̃0 and drop the tilde. Define the set

(6.5) K̃0 :=
[
(Q̃×X) ∩K1

]
∪K0 ⊂ T ×X.

Note that K0 ⊂ K̃0 ⊂ K1, K̃0 is proper over T and J -convex, and f0 is J -holomorphic on a
neighbourhood of K̃0. If Q = ∅, we take Q̃ = ∅ and K̃0 = K0.

Fix a point t0 ∈ T1. Since T2 is compact, there are a smoothly bounded strongly Jt0-pseudoconvex
domain Ω ⋐ X and Jt0-Stein domains V, V ′ in X such that

(6.6)
⋃
t∈T2

K1
t ⋐ V ⋐ V ′ ⋐ Ω.

The conditions on T imply that there is a neighbourhood P ′′ ⊂ T of t0 which is an ENR, so we may
assume that P ′′ ⊂ RN ⊂ CN is a neighbourhood retract. Theorem 3.1 gives a compact neighbourhood
P ′ ⊂ T2 of t0, contained in the interior of P ′′, and a map Φ : P ′ × Ω → X of class C 0,k and of the
form Φ(t, x) = (t,Φt(x)) such that Φt : Ω → Φt(Ω) ⊂ X is a (Jt, Jt0)-biholomorphism for every
t ∈ P ′ and Φt0 = IdΩ. Shrinking P ′ around t0 we may assume that for every t ∈ P ′ we have

(6.7) Ut ⊂ Ω, Φt(K̃
0
t ) ⊂ V ⊂ V ′ ⊂ Φt(Ω), K1

t ⊂ V ⊂ Φ−1
t (V ′).

(These are analogues of conditions (6.2).) Pick a compact neighbourhood P ⊂ T of t0, contained in
the interior of P ′, and consider the continuous family of maps

f ′t := ft ◦ Φ−1
t : Φt(Ω) → Y, t ∈ P.

Since the map Φ−1
t : (Φt(Ω), Jt0) → (Ω, Jt) is biholomorphic and ft is Jt-holomorphic on a

neighbourhood of K̃0
t , the map f ′t is Jt0-holomorphic on a neighbourhood of Φt(K̃

0
t ) for every t ∈ P

(see the second set of inclusions in (6.7)). Pick a pair of smaller neighbourhoods P0 ⊂ P1 ⊂ P of
t0, each contained in the interior of the next one. Lemma 6.6, applied to the family of Jt0-convex sets
Φt(K̃

0
t ) in the Jt0-Stein domain V ′ ⊂ X , gives a homotopy

f ′s,t : V
′ → Y for t ∈ P and s ∈ I

such that f ′s,t = f ′0,t = f ′t holds for t ∈ P \ P1 and s ∈ I , the map f ′s,t is Jt0-holomorphic on
a neighbourhood of Φt(K̃

0
t ) and approximates f ′t uniformly on Φt(K̃

0
t ) to arbitrary precision for all

19



t ∈ P and s ∈ I , and f ′1,t is Jt0-holomorphic on V ′ for t in a neighbourhood of P0. By the third set of
inclusions in (6.7) we have that Φt(V ) ⊂ V ′ for t ∈ P . It follows that the maps

(6.8) fs,t := f ′s,t ◦ Φt : V → Y for s ∈ I and t ∈ P

are Jt-holomorphic on a neighbourhood of K̃0
t , fs,t approximates ft uniformly on K̃0

t (and uniformly
in s ∈ I) to arbitrary precision, we have fs,t = f0,t = ft for s ∈ I and t ∈ P \ P1, and the map
f1t := f1,t : V → Y is Jt-holomorphic for all t in a neighbourhood of P0. We extend the family of
homotopies to all t ∈ T by setting fs,t = f0,t = ft for t ∈ T \ P1 and s ∈ I .

Note that for t ∈ P1 the map fs,t in (6.8) is still defined only on V ⊂ X . In order to extend the
homotopy to all of X also for t ∈ P1, choose a smooth cut-off function χ1 : X → [0, 1] such that
χ1 = 1 in a neighbourhood of the compact set

⋃
t∈P K

1
t and suppχ1 ⊂ V . If the sets Q ⊂ Q̃ are

nonempty, we choose a second cut-off function χ2 : T → [0, 1] such that χ2 = 1 on T \ Q̃ and χ2 = 0

on a neighbourhood of Q. If Q is empty we simply take χ2 = 1 on T . We can now extend the maps
fs,t = fs(t, · ) in (6.8) to all of X without changing their values on a neighbourhood of K1 by setting

f̃s,t(x) := fsχ1(x)χ2(t),t(x) for t ∈ T , x ∈ X , and s ∈ I.

For t in a neighbourhood of Q we have χ2 = 0 and hence f̃s,t = f0,t = ft.

Since T1 is compact, we can find a finite family of triples P j
0 ⊂ P j

1 ⊂ P j (j = 1, 2, . . . ,m)

of compact sets in T such that T1 ⊂
⋃m

j=1 P
j
0 and the construction described above can be made on

each of these triples. The induction proceeds as follows. In the first step, we perform the procedure
explained above on the first triple (P 1

0 , P
1
1 , P

1) with the set K0 and the map g0 := f0 = f . We obtain
a homotopy from g0 to g1 : T ×X → Y such that every map in the homotopy is J -holomorphic on
a neighbourhood of K0, it approximates g0 = f0 on K0 to precision ϵ/2m, and the homotopy is fixed
for t in a neighbourhood of T \ P 1

1 ∪Q. The resulting map g1 is J -holomorphic on a neighbourhood
of the compact J -convex set

S1 :=
[
(P 1

0 ×X) ∩K1
]
∪K0 ⊂ T ×X.

Similary we define compact J -convex sets Sℓ for ℓ = 2, . . . ,m by

Sℓ =
[
((P 1

0 ∪ · · · ∪ P ℓ
0)×X) ∩K1

]
∪K0 ⊂ T ×X.

(See Fig. 4.) In step ℓ ∈ {2, . . . ,m} the same argument is applied to the map gℓ−1 on the triple
(P ℓ

0 , P
ℓ
1 , P

ℓ) with respect to the set Sℓ−1. The resulting map gℓ : T × X → Y is J -holomorphic
on a neighbourhood of Sℓ. We also obtain a homotopy from gℓ−1 to gℓ consisting of maps which are
J -holomorphic on a neighbourhood of Sℓ−1, they approximate gℓ−1 on Sℓ−1 to precision ϵ/2m, and
the homotopy is fixed for t in a neighbourhood of T \ P ℓ

1 ∪Q.

After m steps we obtain a map gm : T ×X → Y which is J -holomorphic on a neighbourhood
of Sm, which contains K1 (see (6.4)). We define f1 := gm. Furthermore, the homotopies between the
subsequent maps gℓ and gℓ+1 for ℓ = 0, 1, . . . ,m − 1 can be assembled into a homotopy f1s (s ∈ I)

from the initial map f10 = f0 = g0 to f11 = f1 = gm such that f1s satisfies (i)–(v) for j = 1. This
explains the inductive step and thereby concludes the proof. □

7. THE OKA–WEIL THEOREM FOR SECTIONS OF FIBREWISE HOLOMORPHIC VECTOR BUNDLES

In this section, we assume that T is a locally compact and paracompact Hausdorff space, X is a
smooth manifold, and J = {Jt}t∈T is a tame family (see Def. 5.1) of Stein structures on X of class
C 0,∞. The main result of this section, Theorem 7.2, is an Oka–Weil approximation theorem for J -
holomorphic sections of J -holomorphic vector bundles on Z = T ×X . It generalises Theorem 6.3,
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Figure 4. The set S2.

which pertains to sections of a trivial vector bundle. Theorem 7.2 will be used in the following section
to obtain global solvability of the ∂-equation on tame families of Stein manifolds; see Theorem 8.1.

We endow each fibreZt = {t}×X , t ∈ T , with the complex structure Jt. Denote by C 0,∞ = C 0,∞
Z

the sheaf of germs of continuous fibrewise smooth functions on Z, and by O = OZ the sheaf of germs
of J -holomorphic functions on Z. These are sheaves of unital abelian rings, with OZ a subsheaf of
C 0,∞
Z . For a complex Lie group G, OG

Z ⊂ C 0,∞,G
Z denote the sheaves of germs of maps Z → G of

respective classes; these are sheaves of groups.

Definition 7.1. Let T , X and J be as above, and let GLr(C) denote the complex Lie group of
invertible r × r matrices. A complex vector bundle π : E → Z = T × X of rank r is said to be
J -holomorphic if it is defined on an open covering {Ui}i of Z by a 1-cocycle g = (gi,j) consisting
of J -holomorphic maps gi,j : Ui,j → GLr(C).

Explicitly, E is obtained by gluing the trivial bundles Ui × Cr on the overlaps Ui,j = Ui ∩ Uj by
identifying a point (z, v) ∈ Uj × Cr (where z = (t, x) ∈ Ui,j) with (z, gi,j(z)v) ∈ Ui × Cr.

Theorem 7.2. Let T , X and J be as above and E → Z = T × X be a J -holomorphic vector
bundle. Given a proper J -convex subset K ⊂ Z (see (5.2)), an open subset U ⊂ Z containing K,
a closed subset Q ⊂ T , a J -holomorphic section f : U ∪ (Q × X) → E|U ∪ (Q × X), and an
integer k ∈ Z+, we can approximate f in the fine C 0,k topology on K by J -holomorphic sections
F : Z → E such that F = f on Q×X .

Proof. We shall assume that T is compact and Q = ∅; the general case can be dealt with as in the
proof of Theorem 6.3, which pertains to sections of trivial bundles.

SinceK is proper over the compact set T , it is compact. It suffices to show that, given a J -convex
subset L ⊂ Z with K ⊂ L, we can approximate f in the C 0,k topology on K by J -holomorphic
sections of E over a neighbourhood of L. The conclusion of the theorem then follows by induction
with respect to an increasing sequence of J -convex subsets exhausting Z. Furthermore, since the
problem is linear, we may use partitions of unity on T . This reduces the proof to the approximation
problem for parameter values t in a neighbourhood of a given point t0 ∈ T .

Fix t0 ∈ T and smoothly bounded strongly Jt0-pseudoconvex domains Ωi ⋐ X for i = 1, 2, 3

such that Lt0 ⊂ Ω1 ⋐ Ω2 ⋐ Ω3. Theorem 3.1 gives a compact neighbourhood T0 ⊂ T of t0 and a map
Φ : T0 ×Ω3 → T0 ×X of class C 0,∞ such that Φ(t, x) = (t,Φt(x)) and Φt : Ω3 → Φt(Ω3) ⊂ X is a
(Jt, Jt0)-biholomorphism for every t ∈ T0, with Φt0 = IdΩ. Shrinking T0 around t0, we may assume
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that the following inclusions hold for every t ∈ T0:

(7.1) Lt ⊂ Ω1 ⊂ Φ−1
t (Ω2), Ω2 ⋐ Φt(Ω3).

Since the map Φt is (Jt, Jt0)-biholomorphic, the push-forward vector bundle Φ∗(E|(T0 × Ω)) is
continuous in t ∈ T0 and fibrewise Jt0-holomorphic. Denote by E′ the restriction of this bundle
to the domain T0 × Ω2 ⊂ Φ(T0 × Ω3) (see (7.1)). Its restriction E′

t to the fibre {t} × Ω2 is a Jt0-
holomorphic vector bundle, smooth up to the boundary of Ω2 and depending continuously on t ∈ T0.
Assuming as we may that T0 is chosen small enough, the stability result of Leiterer [36, Theorem 2.7]
gives a family of Jt0-holomorphic vector bundle isomorphisms over Ω2,

(7.2) Ψt : E
′
t

∼=−→ E′
t0 , t ∈ T0,

smooth up to the boundary and depending continuously on t ∈ T0. (The cited result is stated in terms of
Jt0-holomorphic transition cocycles gt = {gti,j} for E′

t for t ∈ T0, defined on a fixed open cover of Ω2

and continuous up to the boundary of the respective domains, and there are cohomological condition
(i), (ii) on the endomorphism bundle Ad(Et0) of Et0 . As explained in [36, Remark 2.11] and [36,
proof of Theorem 2.12], the two cohomology groups appearing in the hypothesis of [36, Theorem 2.7]
vanish when the base is a compact strongly pseudoconvex domain with C 2 boundary.) The upshot is
that the bundle E′ → T0 ×Ω2 is fibrewise isomorphic to the trivial (independent of t) extension of the
vector bundle E′

t0 := E′|({t0} × Ω2).

Denote by Et the restriction of the initial vector bundle E → Z to the fibre over t ∈ T . We are
given a continuous family of Jt-holomorphic sections ft : Ut → Et|Ut, t ∈ T . For every t ∈ T0,
the map f̃t := ft ◦ Φ−1

t is a Jt0-holomorphic section of the push-forward bundle E′
t = (Φt)∗Et over

the domain Φt(Ut), depending continuously on t ∈ T0. By using the isomorphisms Ψt in (7.2), we
may consider {f̃t}t∈T0 as a family of Jt0-holomorphic sections of E′

t0 over the family of domains
Φt(Ut) ⊃ Φt(Kt). (Here, Kt is the fibre of the set K in the theorem.) Note that for every t ∈ T0 the
set Φt(Kt) is Jt0-convex in Φt(Ω3), hence in Ω2; furthermore Φ(K ∩ (T0 ×X)) is proper over T0.

By the parametric Oka–Weil theorem for sections of holomorphic vector bundles over Stein
manifolds (see [12, Theorem 2.8.4]), we can approximate f̃t in the C k topology on Φt(Kt), uniformly
in t ∈ T0, by Jt0-holomorphic sections F ′

t of the bundleE′
t0 over the Stein domain Ω2. (Approximation

on variable fibres Φt(Kt) is reduced to the case of constant fibres by the same technique as in the
proof of Theorem 6.3, using a continuous partition of unity on T0.) Applying again the vector bundle
isomorphisms (7.2), we may consider F ′

t as a Jt0-holomorphic section of the bundle E′
t over Ω2.

Finally, Ft := F ′
t ◦Φt is a Jt-holomorphic section of the original bundle Et over the domain Φ−1

t (Ω2),
and these sections depend continuously on t ∈ T0. By (7.1) we have Lt ⊂ Ω1 ⊂ Φ−1

t (Ω2) for all
t ∈ T0, so F (t, x) = (t, Ft(x)) is a J -holomorphic section of E|(T0 ×Ω1) which approximates f on
K ∩ (T0 ×X). Note that L ∩ (T0 ×X) ⊂ T0 × Ω1.

Since T is compact, this gives a finite open cover {Wj = Tj×Ωj}j of L such that T = {Tj}j is an
open cover of T , and J -holomorphic sections Fj of E|Wj approximating f in the C 0,k topology on
K∩Wj as closely as desired for every j. If {χj}j is a continuous partition of unity on T subordinate to
T thenF =

∑
j χjFj is a J -holomorphic section ofE over a neighbourhood ofL inZ approximating

f in the fine C 0,k topology on K. As explained at the beginning, this concludes the proof. □

8. GLOBAL SOLUTION OF THE ∂-EQUATION ON TAME FAMILIES OF STEIN MANIFOLDS

In this section, we assume that T is a locally compact and paracompact Hausdorff space, X is a
smooth manifold, and J = {Jt}t∈T is a tame family of Stein structures on X (see Def. 5.1) of class
C 0,∞. Write Z = T × X . Every fibre Zt = {t} × X ∼= X is endowed with the Stein structure Jt.
For each pair of integers p ≥ 0, q ≥ 1 we denote by Dp,q(Z) the space of (p, q)-forms on the fibres
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(X,Jt) of Z of class C 0,∞. The following is a corollary to Theorems 3.2 and 7.2. A related result for
p = 0, q = 1 on families of open Riemann surfaces is [15, Corollary 1.2].

Theorem 8.1. Let p ≥ 0 and q ≥ 1. Given a continuous family α = {αt}t∈T ∈ Dp,q(Z) of smooth
(p, q)-forms αt ∈ Dp,q(X, Jt) with ∂Jtαt = 0 for all t ∈ T , there exists β = {βt}t∈T ∈ Dp,q−1(Z)

satisfying

(8.1) ∂Jtβt = αt on X for every t ∈ T .

In the sequel, we shall often write the equation (8.1) in the form ∂J β = α on Z = T ×X .

Proof. We begin by showing that the equation (8.1) is solvable on a neighbourhood of any proper
J -convex subset K ⊂ Z (see (5.2)).

Denote by Kt the fibre of K over t ∈ T . Fix a point t0 ∈ T and a smoothly bounded strongly
Jt0-pseudoconvex neighbourhood D ⋐ X of Kt0 . By tameness of J and Lemma 5.6, there is a
neighbourhood T0 ⊂ T of t0 such that D is a strongly Jt-pseudoconvex neighbourhood of Kt for all
t ∈ T0. By Theorem 8.1 (e), there exists β ∈ Dp,q−1(T0 ×D) solving ∂J β = α on T0 ×D. In this
way, we obtain an open locally finite cover T = {Ti}i∈I of T , smoothly bounded domains Di ⋐ X

such that K ⊂
⋃

i∈I Ti × Di, and solutions βi ∈ Dp,q−1(Ti × Di) to ∂J βi = α on Ti × Di. Let
{χi}i∈I be a partition of unity on T subordinate to T . Then, β =

∑
i∈I χiβi is a solution to (8.1) in a

neighbourhood of K.

Choose an exhaustion K1 ⊂ K2 ⊂ · · · of Z by proper J -convex sets (see (5.2)). We shall
inductively find solutions βj to (8.1) in neighbourhoods of Kj such that βj approximates the solution
βj−1 from the previous step on a neighbourhood of Kj−1 (if q = 1), or agrees with it (if q > 1).

Denote by Ωp the sheaf of germs of J -holomorphic (p, 0)-forms on the fibres of Z = T × X .
In particular, Ω0 = O is the sheaf of germs of J -holomorphic functions on Z. Since the complex
structures Jt ∈ J are smoothly compatible, Ωp is a subsheaf of the sheaf E p,0 of fibrewise smooth
(p, 0)-forms on the fibres of Z. The elements β ∈ Dp,0(Z) satisfying ∂J β = 0 are precisely the
global sections of Ωp over Z. Equivalently, they are holomorphic sections of the J -holomorphic
vector bundle on Z (see Definition 7.1) whose restriction to Zt = (X,Jt) is Λp T ∗(1,0)(X, Jt), the p-th
exterior power of the (1, 0)-cotangent bundle of (X, Jt) (see Section 2).

Let βj be as above, solving ∂J βj = α on a neighbourhood of Kj for j = 1, 2, . . .. Then,

(8.2) ∂J (βj − βj−1) = 0 holds on a neighbourhood U of Kj−1.

If q = 1, this means that βj − βj−1 is a section of the sheaf Ωp on U . By Theorem 7.2, we can
approximate it in the fine C 0,j topology on Kj−1 by a global section γ of Ωp. Replacing βj by βj − γ

ensures that βj solves ∂J βj = α on a neighbourhood of Kj and it approximates βj−1 on Kj−1.
Performing this construction inductively gives a sequence βj converging in the fine C 0,∞-topology to
a solution β ∈ Dp,0(Z) of the equation (8.1).

Assume now that q > 1. As explained earlier, (8.2) implies that βj − βj−1 = ∂J γ on a
neighbourhood U of Kj−1 for some γ ∈ Dp,q−2(U). Let χ : Z → [0, 1] be a function of class
C 0,∞ with supp(χ) ⊂ U which equals 1 in a neighbourhood of Kj−1. Replacing βj by βj − ∂J (χγ)

gives a solution to ∂J βj = α in a neighbourhood ofKj such that βj = βj−1 holds in a neighbourhood
of Kj−1. Hence, the sequence βj is stationary and hence converges to a global solution of (8.1). □

Theorem 8.2. (Assumptions as above.) Hq(Z,Ωp) = 0 for all q = 1, 2, . . ..

The groups Hq(Z,Ωp) are classically called Dolbeault cohomology groups, although Dolbeault’s
opinion was that they should in fact be called Grothendieck groups.
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Proof. Let E p,q denote the sheaf of fibrewise smooth (p, q)-forms on Z = T×X which are continuous
in t ∈ T (i.e. of class C 0,∞). Consider the sequence of homomorphisms of sheaves of abelian groups

(8.3) 0 −→ Ωp ↪−→ E p,0 d0−→ E p,1 d1−→ E p,2 d2−→ · · ·

where each dj is the ∂J operator which equals ∂Jt on Zt = (X, Jt) for every t ∈ T . By Theorem
8.1 the sequence (8.3) is exact. All sheaves in (8.3) except Ωp are fine sheaves, so their cohomology
groups of order ≥ 1 vanish. (See e.g. [26, Chapter VI] or [51] for sheaf cohomology.) Hence, (8.3) is
an acyclic resolution of the sheaf Ωp. It follows that

Hq(Z,Ωp) =
Ker{dq : Γ(Z,E p,q) → Γ(Z,E p,q+1)}
Im{dq−1 : Γ(Z,E p,q−1) → Γ(Z,E p,q)}

=
{α ∈ Dp,q(Z) : ∂Jα = 0}
{∂J β : β ∈ Dp,q−1(Z)}

.

Here, Γ denotes the space of sections. The group on the right hand side vanishes by Theorem 8.1. □

9. THE OKA PRINCIPLE FOR VECTOR BUNDLES ON TAME FAMILIES OF STEIN MANIFOLDS

Assume that T is a topological space, X is a smooth manifold, and J = {Jt}t∈T is a tame
family of Stein structures on X . The notion of a J -holomorphic vector bundle on Z = T ×X was
introduced in Definition 7.1. In this section, we prove the Oka principle for J -holomorphic vector
bundles on tame families of Stein manifolds. We begin with line bundles. Denote by Pic(Z) the set
of isomorphism classes of J -holomorphic line bundles on Z = T ×X . We have the following Oka
principle which was proved for line bundles on Stein manifolds (with T a singleton) by Oka [46].

Theorem 9.1. Assume that T is a locally compact and paracompact Hausdorff space and J =

{Jt}t∈T is a tame family of class C 0,∞ of Stein structures on a smooth manifold X . Then, every
topological complex line bundle on Z = T ×X is isomorphic to a J -holomorphic line bundle, and
any two J -holomorphic line bundles on Z which are topologically isomorphic are also isomorphic
as J -holomorphic line bundles. Furthermore, Pic(Z) ∼= H2(Z,Z).

The proof of this result follows the standard cohomological argument for the exponential sheaf
sequence on Z, using that H1(Z,O) = 0 and H2(Z,O) = 0 (see Theorem 8.2) and H1(Z,O∗) =

Pic(Z). We refer to [12, Sect. 5.2] for the classical case of line bundles on Stein manifolds, and to [15,
Theorem 2.3] for line bundles on families of open Riemann surfaces.

For vector bundles of arbitrary rank, we have the following Oka principle.

Theorem 9.2. Assume that T , J = {Jt}t∈T and X are as in Theorem 6.1, with J of class C 0,∞.
Then, every topological vector bundle on Z = T × X is isomorphic to a J -holomorphic vector
bundle, and every pair of J -holomorphic vector bundles which are topologically isomorphic are also
isomorphic as J -holomorphic vector bundles.

Proof. The proof of the first statement follows that of [15, Theorem 2.4], which gives an analogous
result on families on open Riemann surfaces. LetGrr(CN ) denote the Grassmann manifold of complex
r-dimensional subspaces of CN , and let U → Grr(CN ) denote the universal bundle whose fibre
over Λ ∈ Grr(CN ) consists of all vectors v ∈ Λ ⊂ CN . Every topological vector bundle of
rank r on Z is obtained as the pullback by a continuous map f : Z → Grr(CN ) of the universal
bundle U for a sufficiently big N ; furthermore, homotopic maps induce isomorphic vector bundles,
and J -holomorphic maps induce J -holomorphic vector bundles. Since Grr(CN ) is a complex
homogeneous manifold, and hence an Oka manifold, every continuous map Z → Grr(CN ) is
homotopic to a J -holomorphic map by Theorem 6.1. This proves the first part.

To prove the second statement, let E → Z and E′ → Z be J -holomorphic vector bundles
of rank r. There is an open cover {Uj}j of Z and J -holomorphic vector bundle isomorphisms
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θj : E|Uj → Uj × Cr and θ′j : E
′|Uj → Uj × Cr. Set Ui,j = Ui ∩ Uj and let

gi,j : Ui,j → GLr(C), g′i,j : Ui,j → GLr(C)

denote the J -holomorphic transition maps of the two bundles, so that

θi ◦ θ−1
j (z, v) =

(
z, gi,j(z)v

)
, z ∈ Ui,j , v ∈ Cr,

and likewise for E′. A complex vector bundle isomorphism Φ : E → E′ is given by a collection of
complex vector bundle isomorphisms Φj : Uj × Cr → Uj × Cr of the form

Φj(z, v) =
(
z, ϕj(z)v

)
, z ∈ Uj , v ∈ Cr,

with ϕj(z) ∈ GLr(C) for z ∈ Uj , satisfying the compatibility conditions

(9.1) ϕi = g′i,jϕjg
−1
i,j = g′i,jϕjgj,i on Ui,j .

Let P = δ(E,E′) → Z denote the J -holomorphic fibre bundle with fibre GLr(C) and transition
maps (9.1), so a collection of maps ϕj : Uj → GLr(C) satisfying (9.1) is a section of P over Z.
Thus, complex vector bundle isomorphisms E → E′ correspond to sections of P → Z, with J -
holomorphic isomorphisms corresponding to J -holomorphic sections. This reduces the problem to
proving that every continuous section f : Z → P is homotopic to a J -holomorphic section.

We proceed as in the proof of Theorem 7.2. By Theorem 3.1, for every t0 ∈ T and smoothly
bounded strongly pseudoconvex domain Ω ⋐ X there are a neighbourhood T0 ⊂ T of t0 and a map
Φ : T0 × Ω → T0 ×X of class C 0,∞ such that Φ(t, x) = (t,Φt(x)) and Φt : Ω → Φt(Ω) ⊂ X is a
(Jt, Jt0)-biholomorphism for every t ∈ T0, with Φt0 = IdΩ. The push-forward bundles

Ẽ = Φ∗(E|(T0 × Ω)), Ẽ′ = Φ∗(E
′|(T0 × Ω))

are fibrewise Jt0-holomorphic and depend continuously on t ∈ T0. Choose a pair of strongly Jt0-
pseudoconvex domain Ω1 ⋐ Ω2 ⋐ X such that

T0 × Ω2 ⊂ Φ(T0 × Ω) and T0 × Ω1 ⊂ Φ−1(T0 × Ω2).

After shrinking T0 around t0, the stability theorem of Leiterer [36, Theorem 2.7] gives a family of Jt0-
holomorphic vector bundle isomorphisms Ψt : Ẽt

∼=−→ Et0 over Ω2 (see (7.2)) depending continuously
on t ∈ T0. We get similar isomorphisms Ψ′

t : Ẽ′
t

∼=−→ E′
t0 for the bundle Ẽ′ over T0 × Ω2. The

upshot is that the vector bundles Ẽ|(T0 × Ω2) and Ẽ′|(T0 × Ω2) are fibrewise Jt0-isomorphic to the
trivial (independent of t) extensions of the vector bundles Et0 |Ω2 and E′

t0 |Ω2, respectively. In this
local picture, a topological isomorphism E → E′ is given by a family of topological isomorphisms
Et0 |Ω2

∼=−→ E′
t0 |Ω2 depending continuously on t ∈ T0, and a J -holomorphic isomorphism E → E′

is given by a family of Jt0-holomorphic isomorphisms. Such isomorphisms correspond to sections of
a Jt0-holomorphic fibre bundle H → Ω2 with fibre GLr(CN ) defined as above, see (9.1).

By the parametric Oka principle for sections of holomorphic fibre bundles with Oka fibres over
Stein manifolds, a family of topological sections of H → Ω2 is isomorphic to a family of holomorphic
sections, with approximation on compact holomorphically convex subsets of Ω2. Going back to the
original vector bundlesE, E′ and P = δ(E,E′), we see that any continuous section of P is homotopic
over T0 × Ω1 to a J -holomorphic section, with approximation on a J -convex subset where the
section is already holomorphic. The globalisation scheme in the proof of Theorem 6.1 then applies and
shows that every continuous section of P → Z is homotopic to a J -holomorphic section. □
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10. OPEN PROBLEMS

In this final section we collect some open problems for future investigation. The first problem of
technical nature is related to the stability of canonical solutions of the ∂-equation.

Problem 10.1. Does Theorem 3.2 have an analogue with smooth dependence of solutions on the
parameter t ∈ T when T is a smooth manifold and the family of complex structures J = {Jt}t∈T is
smooth in (t, x) ∈ T ×X?

We are not aware of results in the literature concerning Problem 10.1, except when X is a surface
(see [14, 15]). An affirmative answer would give a similar generalisation of the parametric Hamilton’s
theorem (see Theorem 3.1), and hence of all our main results. The corresponding analogue of Theorem
6.3 would show that if J = {Jt}t∈T is a smooth tame family of Stein structures then the manifold
Z = T ×X , with the complex structure Jt on {t} ×X for every t ∈ T , is a Cartan manifold in the
sense of Jurchescu [31, Sect. 6]; see also the discussion and references in [14, Remark 1.2]. Cartan
manifolds are analogues of Stein manifolds in the category of smooth CR manifolds with integrable
complex tangent subbundle. For real analytic Cartan manifolds with CR codimension one, the function
theory and the Oka principle for vector bundles were treated by Mongodi and Tomassini [40, 41].

Our main result, Theorem 6.1, shows that tame families J of smooth Stein structures on a given
manifold X admit many J -holomorphic maps to any Oka manifold. Theorem 6.3 gives a similar
result for functions with more general parameter spaces. Which additional properties can these maps
have? The following problem is of particular interest; see [12, Theorem 2.4.1] for the summary of the
classical results for Stein manifolds and references to the original papers.

Problem 10.2. Assume that T , X , and J are as in Theorem 6.3. Is there a J -holomorphic map
F : Z = T × X → CN for a suitable N ∈ N such that for every t ∈ T the Jt-holomorphic map
F (t, · ) : X → CN is proper, an immersion, an embedding? In particular, taking N = 2dimCX + 1,
is there an F such that F (t, · ) : X → CN is a proper Jt-holomorphic embedding for every t ∈ T ?

The Oka principle in Theorem 6.1 only pertains to maps to Oka manifolds. In light of the classical
results for a single Stein manifold (see [12, Theorem 5.4.4]), the following is a natural question.

Problem 10.3. Let T , X and J be as in Theorem 6.1, and let E → Z = T × X be a topological
J -holomorphic fibre bundle with an Oka fibre. Does the Oka principle hold for sections Z → E?

We expect that this holds true, but the proof would require a suitable reworking of all basic tools
used in the proof of the Oka principle for a single Stein manifold; see [12, Chap. 5].
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[14] F. Forstnerič. Runge and Mergelyan theorems on families of open Riemann surfaces. arXiv e-prints, 2024. https:

//arxiv.org/abs/2412.04608.
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