
THE UNIVERSAL FAMILY OF PUNCTURED RIEMANN SURFACES IS STEIN

FRANC FORSTNERIČ

ABSTRACT. We show that for any pair of integers g ≥ 0 and n ≥ 1 the universal family of n-punctured
compact Riemann surfaces of genus g is a Stein manifold. We describe its basic function theoretic
properties and pose several challenging questions.

The notion of a Teichmüller space originates in the papers [33, 34, 35] of Oswald Teichmüller, who
defined a complex manifold structure on the set of isomorphism classes of marked closed Riemann
surfaces of genus g. Ahlfors [2] showed in 1960 that this complex structure can be defined by periods
of holomorphic abelian differentials. In [35], Teichmüller also introduced the universal Teichmüller
curve – a space V over a Teichmüller space T whose fibre above t ∈ T is a Riemann surface (M,Jt)

representing that point, also called the universal family of Riemann surfaces over T – and showed that
it has the structure of a complex manifold. Teichmüller’s theory was developed by Ahlfors and Bers [3]
and by Grothendieck, who gave a series of lectures in Cartan’s seminar 1960–1961; see the discussion
and references in [1]. Grothendieck asked whether every finite dimensional Teichmüller space is a
Stein manifold [22, p. 14]. An affirmative answer was given by Bers and Ehrenpreis [8, Theorem
2] who showed that any finite dimensional Teichmüller space embeds as a domain of holomorphy in
a complex Euclidean space, hence is Stein. (Another proof was given by Wolpert [36]; see also the
surveys by Bers [7] and Nag [28].) The Teichmüller space T (M) of a Riemann surface M is finite
dimensional if and only if M = M̂ \ {p1, . . . , pn} is a compact Riemann surface M̂ of some genus
g ≥ 0 with n ≥ 0 punctures. Such M is said to be of finite conformal type and its Teichmüller space
is denoted T (g, n). The universal family π : V̂ (g, n) → T (g, n) is a holomorphic submersion whose
fibre over any point t ∈ T (g, n) is the compact Riemann surface (M̂, Jt) with the complex structure
Jt determined by t, and with n holomorphic sections s1, . . . , sn : T (g, n) → V̂ (g, n) with pairwise
disjoint images representing the punctures. (See Nag [28, pp. 322–323].) The open subset

(1) V (g, n) = V̂ (g, n) \
n⋃

i=1

si(T (g, n))

of V̂ (g, n) is the universal family of n-punctured compact Riemann surfaces of genus g. If 2g+n ≥ 3

then the Teichmüller family π : V (g, n) → T (g, n) is the universal object in the complex analytic
category of topologically marked holomorphically varying families of n-punctured genus g Riemann
surfaces (see [28, Theorem 5.4.3]). In this paper we prove the following result.

Theorem 1. If n ≥ 1 then the universal family V (g, n) is a Stein manifold.

This is a special case of Theorems 8 and 9 given in the sequel. The theorem is trivial if g = 0

and n ∈ {1, 2, 3} since T (0, n) is then a singleton and V (0, n) equals C, C∗ = C \ {0}, and
C \ {0, 1}, respectively. If 2g + n ≥ 3 then T (g, n) is biholomorphic to a bounded topologically
contractible Stein domain in C3g−3+n [28, p. 161], but it cannot be holomorphically realised as a
convex domain in C3g−3+n if g ≥ 2 (see Marković [27]). The n holomorphic sections s1, . . . , sn of
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the submersion π : V̂ (g, n) → T (g, n) in (1), corresponding to the punctures of V (g, n), are called
canonical sections. The problem of describing the global holomorphic sections of this fibration was
first considered by Hubbard, who showed in [25] that V (g, 0) → T (g, 0) has no holomorphic sections
if g ≥ 3 and six sections if g = 2. See also [26]. Earle and Kra proved in [10, p. 50] that for n ≥ 1,
π : V̂ (g, n) → T (g, n) has exactly n sections if g ≥ 3 and exactly 2n+ 6 sections if g = 2.

Theorem 1 has interesting consequences for function theory and complex geometry. By classical
results of Remmert, Bishop, and Narasiman (see [15, Theorem 2.4.1] and the references therein),
the Stein manifold V (g, n) for n ≥ 1 admits a proper holomorphic embedding in CN with N =

2dimV (g, n) + 1, which equals 6g − 6 + 2n + 1 if 2g + n ≥ 3. When dimV (g, n) ≥ 2, it also
embeds properly holomorphically in CN with N =

[3 dimV (g,n)
2

]
+ 1 (see Eliashberg and Gromov

[11] and Schürmann [31], or the exposition in [15, Secs. 9.3–9.4]). Since every fibre of V (g, n) is
biholomorphic to a closed affine algebraic curve in C3, the following question is natural.

Problem 2. Does V (g, n) for n ≥ 1 admit a proper holomorphic embedding in some CN which is
algebraic on every fibre?

Except in the trivial cases, T (g, n) is not affine algebraic, and it is not reasonable to expect that
V (g, n) is affine algebraic.

Since T (g, n) is contractible, the holomorphic submersion π : V (g, n) → T (g, n) is smoothly
trivial and the inclusion of any fibre of π in V (g, n) is a homotopy equivalence. It follows that for any
manifold Y , the restriction of a continuous map V (g, n) → Y to any fibre of V (g, n) lies in the same
homotopy class of maps M → Y , where M is the underlying n-punctured smooth compact surface of
genus g. The following is an immediate corollary to this observation, Theorem 1, and the main result
of Oka theory [15, Theorem 5.4.4]. For Oka manifolds, see [15, Chap. 5] and the surveys [13, 12, 17].

Corollary 3. Let π : V (g, n) → T (g, n) be as above, n ≥ 1, and let Y be an Oka manifold. There is a
holomorphic map V (g, n) → Y in every homotopy class. Furthermore, a holomorphic map Mt → Y ,
t ∈ T (g, n), from any fibre of V (g, n) extends to a holomorphic map V (g, n) → Y . More generally,
given a closed complex subvariety T ′ of T (g, n), every continuous map F0 : V (g, n) → Y which is
holomorphic on π−1(T ′) is homotopic to a holomorphic map F : V (g, n) → Y by a homotopy which
is fixed on π−1(T ′).

If n ≥ 1 and (g, n) ̸= (0, 1) then V (g, n) is not simply connected, and its homotopy type is that of
a finite bouquet of circles. In this case, homotopically nontrivial maps V (g, n) → Y exist whenever
the manifold Y is not simply connected. This gives the following corollary. The last statement follows
by taking the Oka manifold Y = C∗. The result obviously holds for g = 0, n = 1 since V (0, 1) = C.

Corollary 4. If n ≥ 1 and Y is an Oka manifold which is not simply connected, there is a holomorphic
map V (g, n) → Y which is nonconstant on every fibre. In particular, V (g, n) admits a nowhere
vanishing holomorphic function which is nonconstant on every fibre.

Another way to obtain fibrewise nonconstant holomorphic maps from V (g, n) to an Oka manifold
is to inductively use the Oka property with approximation on compact holomorphically convex subsets
of the Stein manifold V (g, n); see [15, Theorem 5.4.4]. The Oka principle can be used to obtain many
further properties of holomorphic universal families V (g, n) → Y in any Oka manifold.

The fact that V (g, n) for n ≥ 1 is homotopy equivalent to a bouquet of circles implies that every
complex vector bundle on V (g, n) is topologically trivial. Since V (g, n) is Stein, the Oka–Grauert
principle ([19] or [15, Theorem 3.2.1]) implies the following.

Proposition 5. Every holomorphic vector bundle on V (g, n) for n ≥ 1 is holomorphically trivial.
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Corollary 6. Assume that g ≥ 0 and n ≥ 1.

(a) There exists a nowhere vanishing holomorphic vector field ξ on V (g, n) which is tangent to the
fibres of the projection π : V (g, n) → T (g, n), that is, dπ(ξ) = 0.

(b) With ξ as in (a), there exists a holomorphic 1-form θ on V (g, n) satisfying ⟨θ, ξ⟩ = 1. In particular,
θ is nowhere vanishing on the tangent bundle to any fibre of π.

Proof. Part (a) follows by applying Proposition 5 to the holomorphic line bundle ker dπ → V (g, n),
the vertical tangent bundle of the holomorphic submersion π : V (g, n) → T (g, n). To see (b), consider
the following short exact sequence of vector bundles over V (g, n):

0 −→ ker dπ ↪−→ TV (g, n)
α−→ H := TV (g, n)/ kerπ −→ 0.

Here, TV (g, n) denote the tangent bundle of V (g, n). By Cartan’s Theorem B the sequence splits, i.e.
there is a holomorphic vector bundle injection σ : H ↪→ TV (g, n) such that α ◦ σ = IdH . Hence,
TV (g, n) = ker dπ ⊕ σ(H) = Cξ ⊕ σ(H), where ξ is as in part (a). The unique holomorphic 1-form
θ on V (g, n) satisfying ⟨θ, ξ⟩ = 1 and ξ = 0 on σ(H) clearly satisfies part (b). □

By the Gunning–Narasimhan theorem [23], every open Riemann surface M admits a holomorphic
immersion f : M → C. In view of Corollary 6 (b), the following is a natural question.

Problem 7. Let n ≥ 1. Does there exist a holomorphic function f : V (g, n) → C whose restriction to
any fibre of π : V (g, n) → T (g, n) is an immersion?

By [14, Theorem 1] there exists a holomorphic function f : V (g, n) → C without critical points.
The problem is to find a function f such that ker dfz is transverse to ker dπz at every point z ∈ V (g, n).
Note that [16, Corollary 8.3] gives a smooth function f : V (g, n) → C whose restriction to any fibre
of π : V (g, n) → T (g, n) is a holomorphic immersion. Problem 7 is related to the question whether a
holomorphic 1-form θ in Corollary 6 (b) can be made exact on every fibre of π by multiplying it with
a suitably chosen nowhere vanishing holomorphic function on V (g, n). However, this is not the only
problem. Since the submersion π : V (g, n) → T (g, n) does not admit a holomorphic section when
g ≥ 3, there is no natural way of choosing the initial point for computing the fibrewise integrals of θ,
which would give a holomorphic family of immersions on the fibres.

In [16] the Oka principle was established for families of maps from very general families of open
Riemann surfaces {(M,Jt)}t∈T to any Oka manifold Y , where M is a smooth open surface and Jt
are complex structures of some local Hölder class on M depending continuously or smoothly on the
parameter t ∈ T in a suitable topological space. The Riemann surfaces in such families need not
belong to the same Teichmüller space. For example, a punctured Riemann surface can be a member
of a family in which the punctures develop into boundary curves and vice versa. The Jt-holomorphic
maps Ft : (M,Jt) → Y (t ∈ T ) furnished by [16, Theorem 1.6] are merely continuous or smooth
in the parameter. In [18] these results were extended to maps from tame families of Stein manifolds
of arbitrary dimension to Oka manifolds. Here, a continuous family {Jt}t∈T of Stein structures on a
smooth manifold X said to be tame if the holomorphically convex hulls of any compact subset K ⊂ X

are upper semicontinuous with respect to the parameter t ∈ T . This is always the case in a family of
open Riemann surfaces but it fails general in higher dimensions, even on affine spaces.

Another interesting question is whether the Riemann surfaces Mt in the universal Teichmüller
family V (g, n), n ≥ 1, admit a representation as a family of conformal minimal surfaces in Rk, k ≥ 3,
whose (1, 0)-derivatives depends holomorphically on t ∈ T (g, n). For background, see [29] and [4].
By [16, Corollary 8.6] the answer is affirmative with continuous or smooth dependence on parameter.
It remains an open problem whether minimal surfaces in such families can be chosen to be complete
and with finite total curvature. Each single surface in the family can be made such by [6].
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In view of the description of the Teichmüller submersion π : V (g, n) → T (g, n), Theorem 1 is
an immediate consequence of the following result with arbitrary Stein manifold as the base. See also
Theorem 9 for a more general result.

Theorem 8. Assume that X is a Stein manifold, Z is a connected complex manifold with dimZ =

dimX + 1, π : Z → X is a surjective proper holomorphic submersion, and s1, . . . , sn : X → Z

are holomorphic sections with pairwise disjoint images for some n ≥ 1. Then, the domain Ω =

Z \
⋃n

i=1 si(X) is Stein.

The conclusion fails if the fibres of π have complex dimension > 1 or the sections si are not
holomorphic. In such case, the domain Ω in the theorem fails to be locally pseudoconvex at some
boundary point si(x), x ∈ X . Note that Stein complements of smooth complex hypersurfaces in
compact Kähler manifolds have recently been studied by Höring and Peternell [24] where the reader
can find references to earlier works. In our case, Z is not compact unless X is a point.

Proof of Theorem 8. Let π : Z → X be as in the theorem. Note that every fibre Zx = π−1(x), x ∈ X ,
is a compact Riemann surface, and the fibres are diffeomorphic but not necessarily biholomorphic
to each other. Hence, {Zx}x∈X is a holomorphic family of compact Riemann surfaces and Ωx =

Zx\
⋃n

i=1 si(x) (x ∈ X) is a holomorphic family of n-punctured Riemann surfaces. Each Hi = si(X)

is a closed complex hypersurface in Z whose ideal sheaf is a principal, that is, it is locally near each
point of Hi generated by a single holomorphic function.

Recall the following result (see Grauert and Remmert [21, Theorem 5, p. 129]): If Z is a Stein
space and H is a closed complex analytic hypersurface in Z (of pure codimension one) whose ideal
sheaf is a principal ideal sheaf, then Z \ H is also Stein. If Z is nonsingular (a complex manifold)
then the ideal sheaf of any closed complex hypersurface in Z is a principal ideal sheaf (see [21, Chap.
A.3.5]). Hence, is suffices to prove the theorem in the case n = 1, that is, to show that the complement
Z \ s(X) of a single holomorphic section s : X → Z is a Stein manifold.

By a theorem of Siu [32], the Stein hypersurface H = s(X) has a basis of open Stein
neighbourhoods U in Z. Since U \H is a Stein manifold by the aforementioned theorem [21, Theorem
5, p. 129], it admits a strongly plurisubharmonic exhaustion function ϕ : U \H → R+. To prove the
theorem, we shall construct a strongly plurisubharmonic exhaustion function Z \H → R+; a theorem
of Grauert [20] will then imply that Z \H is Stein.

Fix a point x0 ∈ X and set z0 = s(x0) ∈ H ⊂ Z. Since π : Z → X is a holomorphic
submersion with compact one-dimensional fibres, it is a smooth fibre bundle whose fibre M is a
compact smooth surface. In particular, there is a neighbourhood X0 ⊂ X of x0 such that the restricted
bundle Z|X0 = π−1(X0) → X0 can be smoothly identified with the trivial bundle X0 × M → X0.
In this identification, z0 = (x0, p0) with p0 ∈ M . Since ϕ tends to +∞ along H , there are small
smoothly bounded open discs D ⋐ D′ ⋐ M with p0 ∈ D such that

(2) inf
p∈bD

ϕ(x0, p) > max
p∈bD′

ϕ(x0, p).

The set O = M \ D is a compact bordered Riemann surface with smooth boundary bO = bD,
endowed with the complex structure inherited by the identification M ∼= Zx0 = π−1(x0). Note that
bD′ is contained in the interior of O. It follows from (2) and standard results that there is a smooth
strongly subharmonic function u0 : O → R+ such that

u0 < ϕ(x0, · ) on bO = bD and u0 > ϕ(x0, · ) on bD′.

Shrinking the neighbourhood X0 ⊂ X of x0 if necessary, the following conditions hold for every
x ∈ X0, where we use the smooth fibre bundle isomorphism Z|X0

∼= X0 ×M :
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(a) s(x) ∈ D,
(b) the function u(x, · ) = u0 is strongly subharmonic on O in the complex structure on Zx

∼= M ,
(c) u(x, · ) < ϕ(x, · ) on bO = bD, and
(d) u(x, · ) > ϕ(x, · ) on bD′.

Condition (b) holds since being strongly subharmonic on a compact subset is a stable property under
small smooth deformations of the complex structure. We define a function ρ0 : (X0 ×M) \H → R+

by taking for every x ∈ X0:

ρ0(x, p) =


ϕ(x, p), p ∈ D \ {s(x)};
max{ϕ(x, p), u(x, p)}, p ∈ D′ \D;

u(x, p), p ∈ M \D′.

Note that ρ0 is well defined, piecewise smooth, strongly subharmonic on each fibre Zx \ {s(x)}
(x ∈ X0), and it agrees with ϕ on (X0×D)\H . By using the regularised maximum in the definition of
ρ0 (see [15, Eq. (3.1), p. 69]), we may assume that ρ0 is smooth and enjoys the other stated properties.

This construction gives an open locally finite cover {Xj}∞j=1 of X with smooth fibre bundle
trivialisations Z|Xj

∼= Xj × M , discs Dj ⊂ M such that s(x) ∈ Dj for all x ∈ Xj , and smooth
functions ρj : (Z|Xj) \H = π−1(Xj) \H → R+ such that ρj is strongly subharmonic on each fibre
Zx \{s(x)} (x ∈ Xj) and it agrees with ϕ on (Xj ×Dj)\H . Let {χj}j be a smooth partition of unity
on X with compact supports supp(χj) ⊂ Xj for each j. Set

ρ =

∞∑
j=1

χjρj : Z \H → R+.

By the construction, the restriction of ρ to each fibre Zx \ {s(x)} (x ∈ X) is strongly subharmonic,
and there is an open neighbourhood U0 ⊂ U ⊂ Z of H such that ρ = ϕ holds on U0 \H . In particular,
ρ is strongly plurisubharmonic on U0 \H .

Note that for every compact set K ⊂ X , the set π−1(K) \ U0 ⊂ Z \ H is compact. Hence,
by choosing a strongly plurisubharmonic exhaustion function τ : X → R+ whose Levi form ddcτ

grows fast enough, we can ensure that ρ + τ ◦ π : Z \ H → R+ is a strongly plurisubharmonic
exhaustion function. Indeed, denoting by J the almost complex structure operator on Z and by dc the
conjugate differential defined by (dcρ)(z, ξ) = −dρ(z, Jξ) for z ∈ Z and ξ ∈ TzZ, ρ is strongly
plurisubharmonic at z ∈ Z if and only if (ddcρ)(z, ξ ∧ Jξ) > 0 for every tangent vector 0 ̸= ξ ∈ TzZ.
(Up to a positive factor this equals the Laplace of ρ on the 2-plane span(ξ, Jξ) ⊂ TzZ.) Since the
function ρ constructed above is strongly subharmonic on every fibre Zx \ {s(x)}, x ∈ X , we have that

(ddcρ)(z, ξ ∧ Jξ) > 0 if z ∈ Z \H and 0 ̸= ξ ∈ ker dπz .

Hence, the eigenvectors of the Levi form (ddcρ)(z, · ) associated to non-positive eigenvalues lie in a
closed cone Cz ⊂ TzZ which intersects ker dπz only in the origin. It follows that if τ : X → R is such
that ddcτ > 0 is sufficiently big on TxX , x = π(z), then ddcρ+ddc(τ ◦π) > 0 on TzZ. Furthermore,
the estimates are uniform on the compact set π−1(K) \ U0, where U0 ⊂ Z is a neighbourhood of H
as above such that ddcρ > 0 on U0 \H . To see that τ can be chosen such that ddcτ grows as fast as
desired, note that if h : R → R is a C 2 function then for each point x ∈ X and tangent vector ξ ∈ TxX

we have that

ddc(h ◦ τ)(x, ξ ∧ Jξ) = h′(τ(x)) (ddcτ)(x, ξ ∧ Jξ) + h′′(τ(x))
(
|dτ(x, ξ)|2 + |dτ(x, Jξ)|2

)
.

Hence, if τ is a strongly plurisubharmonic exhaustion function on X and the function h : R → R is
chosen such that h′′ ≥ 0 and h′ grows sufficiently fast, then ddc(h ◦ u) also grows as fast as desired.

This completes the proof of Theorem 8, and it also proves Theorem 1. □
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A minor modification of the proof of Theorem 8 gives the following more general result.

Theorem 9. Assume that X is a Stein manifold, Z is a connected complex manifold with dimZ =

dimX + 1, π : Z → X is a surjective proper holomorphic submersion, and H is a closed complex
subvariety of Z of pure codimension one which does not contain any fibre of π. Then, the domain
Ω = Z \H is Stein.

Proof. The restricted projection π : H → X is a proper holomorphic map whose fibres are compact
Riemann surfaces. Since H is of pure codimension one and does not contain any fibre of π, π : H → X

is a finite holomorphic map (a branched holomorphic cover). The proper mapping theorem of Remmert
[30] (see also Chirka [9, p. 29]) implies that π(H) is a closed complex subvariety of X of pure
dimension n, hence π(H) = X since X is connected, and H is Stein by [21, Theorem 1 (d), p.
125]. By Siu’s theorem [32], H admits a basis of open Stein neighbourhoods U ⊂ Z. By the argument
in the proof of Theorem 8, the ideal sheaf of H is a principal ideal sheaf, so U \ H is Stein for any
Stein neighbourhood U of H by [21, Theorem 5, p. 129]. The proof can now be completed by a similar
argument as in the proof of Theorem 8, and we leave further details to the reader. □

Acknowledgements. Research was supported by the European Union (ERC Advanced grant HPDR,
101053085) and grants P1-0291 and N1-0237 from ARIS, Republic of Slovenia. I wish to thank Finnur
Lárusson for posing the question answered by Theorem 1 in a private communication.

REFERENCES

[1] N. A’Campo, L. Ji, and A. Papadopoulos. On Grothendieck’s construction of Teichmüller space. In Handbook of
Teichmüller theory. Volume VI, pages 35–69. Zürich: European Mathematical Society (EMS), 2016.

[2] L. V. Ahlfors. The complex analytic structure of the space of closed Riemann surfaces. Princeton Math. Ser., 24:45–66,
1960.

[3] L. V. Ahlfors and L. Bers. Riemann’s mapping theorem for variable metrics. Ann. of Math. (2), 72:385–404, 1960.
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