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ABSTRACT. This introduction to the homotopy principle in complex analysis and geometry, better
known as the Oka theory, is aimed at wide mathematical audience. After a brief historical survey of the
h-principle in smooth analysis and geometry, I present the key notions of Oka manifolds and Oka maps,
which developed from the Oka–Grauert principle and Gromov’s theory of elliptic complex manifolds
and elliptic holomorphic submersions. I discuss recent and ongoing developments, open problems, and
mention some applications. The paper also includes a brief survey of the recently developed h-principles
in the classical theory of minimal surfaces.

1. INTRODUCTION.

The homotopy principle, or the h-principle for short, is said to hold in an analytic problem if
a solution exists in the absence of topological or homotopy theoretic obstructions. Most instances
concern solutions of underdetermined partial differential equations, PDEs, and more generally of
partial differential relations, PDRs. In the holomorphic case, we can talk of holomorphic partial
differential relations, HPDRs. A PDE or (H)PDR is said to satisfy the h-principle if any formal
(non-holonomic) solution can be deformed through formal solutions to a genuine solution. Thus in
the presence of the h-principle, a differential topological or a complex analytic problem reduces to a
homotopy theoretic problem. We speak of the basic h-principle, pertaining to individual solutions, and
of the parametric h-principle. The latter involves a pair of parameter spacesQ ⊂ P , which are typically
compact Hausdorff spaces, and a continuous family of formal solutions parametrised by points p ∈ P ,
which are genuine solutions for p ∈ Q. The parametric h-principle is said to hold if any such family
can be deformed to a family of genuine solutions while preserving the solutions for values p ∈ Q. This
implies that the inclusion of the space of genuine solutions in the space of formal solutions is a weak
homotopy equivalence, that is, it induces a bijection of path components and an isomorphism of k-th
homotopy groups of the two spaces for every k ∈ N = {1, 2, . . .}. Sometimes there is even a genuine
homotopy equivalence between the two spaces. On the other hand, the failure of the h-principle means
that the objects being studied have nontrivial geometry which cannot be reduced to purely topological
considerations.

The first known h-principle is the Whitney–Graustein theorem [128] which says that two
immersions of a circle in the plane are regularly homotopic (connected by a path of immersions) if
and only if they have the same winding number. Two decades later, Smale [122] classified regular
homotopy classes of immersions of the k-sphere Sk in the Euclidean space Rn for 1 ≤ k < n by
elements of the k-th homotopy group πk(Vk(Rn)) of the Stiefel manifold of k-frames in Rn. It turns
out that for n ∈ {2, 6} any two immersions Sn → Rn+1 are regularly homotopic, so one can turn these
spheres inside-out through immersions in Rn+1. Hirsch [84] proved the h-principle for immersions of
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smooth k-manifolds to Rn for k < n, and also for k = n in the case of open manifolds. Phillips
developed the h-principle for smooth submersions and foliations [116, 117, 118].

In another direction, Nash [112, 113] and Kuiper [97] proved that a smooth compact Riemannian
manifold (M, g) of dimension k which admits an embedding in Rn for some n > k also admits a C 1

isometric embedding in Rn with its Euclidean metric. In fact, every short embedding can be uniformly
approximated by isometric embeddings. This is false for C 2 isometric embeddings due to curvature
obstructions in low codimension.

A major conceptual development of the theory was made by Mikhail Gromov [79, 77], and the
term h-principle entered into general use following his work. Gromov formulated the h-principle in
very general terms and developed important new techniques for solving it, some of them together with
Yakov Eliashberg. We refer to the surveys [33, 77, 123] for these developments.

The h-principle in complex analysis. The first instance of the h-principle in complex analysis is
the result of Kiyoshi Oka [114] from 1939, saying that on a domain of holomorphy in Cn every
topological complex line bundle admits a compatible structure of a holomorphic line bundle, and
any two holomorphic lines bundles which are topologically isomorphic are also holomorphically
isomorphic. A far reaching generalisation was obtained by Hans Grauert [70, 71, 72] in 1958. Recall
that a Stein manifold is a complex manifold which admits many global holomorphic functions; see Sect.
2. A Stein space is a complex space (with singularities) which enjoys the analogous function-theoretic
properties as Stein manifolds. A domain in Cn is Stein if and only if it is a domain of holomorphy. A
Riemann surface is Stein if and only if it is not compact. Grauert proved that complex vector bundles
and, more generally, principal fibre bundles with complex Lie group fibres on Stein spaces have the
same classification in the topological and the holomorphic categories. See also the expositions by
Cartan [28] and Henkin and Leiterer [83, 109], and the subsequent works of Forster and Ramspott
[36, 37, 38, 39]. These results led to the heuristic Oka principle, a term coined by J-P. Serre stating
that analytic problems on Stein spaces which can be cohomologically formulated have only topological
obstructions.

A homotopy-theoretic viewpoint on Oka theory was initiated by Gromov [77, 78] in the late
1980s. Modern Oka theory focuses on properties of a complex manifold Y which imply that any
continuous map X → Y from a Stein space X is homotopic to a holomorphic map; the same
problem is considered for sections of holomorphic maps onto Stein spaces. (All Stein spaces will
be assumed reduced.) Adding the approximation and interpolation conditions modelled on properties
of holomorphic functions on Stein spaces, one obtains several Oka properties (see Def. 3.1) which
a given complex manifold may or may not have. One of Gromov’s main results in [78] is that
a geometric condition called ellipticity — the existence of a dominating holomorphic spray on the
manifold, see Def. 4.1 — implies all these Oka properties. The analogous result holds for sections of
elliptic submersions onto Stein spaces; see [78, 63] and [51, Theorem 6.2.2]. The Oka–Grauert theory
fits in this framework by considering maps to classifying spaces, which are complex homogeneous and
hence elliptic. However, Gromov’s theorem, with detailed presentations in [62, 63, 50] and [51, Chaps.
5–6], applies to a considerably wider class of problems.

Subsequent research was motivated by the question whether ellipticity is also a necessary condition
for the Oka principle, in finding new examples of elliptic manifolds and submersions, and in attempts
to unify the theory by finding simpler conditions characterising the Oka property. The first question
remained open until recently and we shall say more about it Sect. 4, where we also mention examples
of elliptic manifolds. The last question was resolved by the introduction of the following Runge-type
approximation property in [48].
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Definition 1.1. A complex manifold Y enjoys the Convex Approximation Property, CAP, if every
holomorphic map from an open neighborhood of a compact convex set K ⊂ Cn, n ∈ N, to Y can be
approximated uniformly on K by holomorphic maps Cn → Y .

The following is a cumulative result of [46, 48, 49, 50]; see also [51, Theorem 5.4.4 and Prop.
5.15.1].

Theorem 1.2. A complex manifold Y which enjoys CAP has all Oka properties in Def. 3.1 for maps
X → Y from any Stein space X . Furthermore, all these Oka properties are pairwise equivalent.

A complex manifold Y satisfying these equivalent conditions is called an Oka manifold [49, 105].
This gives an affirmative answer to Gromov’s problem [78, 3.4 (D)], asking whether the Oka property
can be characterised by a simple Runge-type approximation property. Every elliptic manifold in the
sense of Gromov (see Def. 4.1) enjoys CAP and hence is an Oka manifold; see Theorem 4.3. This
extends Grauert’s result that every complex homogeneous manifold is Oka. Essentially the same proof
shows the following; see [51, Theorem 5.4.4].

Theorem 1.3. If h : Z → X is a stratified holomorphic fibre bundle over a Stein spaceX whose fibres
are Oka manifolds, then sections X → Z of h satisfy all forms of the Oka principle.

It is also important to consider the Oka principle for lifting holomorphic maps in the following
diagram.
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A holomorphic map h : Y → Z of complex manifolds is said to be an Oka map if it is a topological
(Serre) fibration and it satisfies the following Oka property.

The Oka property for liftings: Given a holomorphic map f : X → Z from a Stein space X , any
continuous liftingX → Y of f is homotopic to a holomorphic lifting F : X → Y , with approximation
and interpolation conditions in Def. 3.1, and the corresponding result holds in the parametric setting.

We refer to [51, Definition 7.4.1] for the precise definition. A holomorphic fibre bundle with Oka
fibre is an Oka map (see [51, Corollary 7.4.8]). In particular, a holomorphic covering map is an Oka
map. The importance of Oka maps lies in the following result; see [40, Theorem 3.15].

Theorem 1.4. If Y → Z is an Oka map of connected complex manifolds, then Y is an Oka manifold
if and only if Z is an Oka manifold.

Lárusson [105, 106] constructed a model category in which Stein manifolds are cofibrant, Stein
inclusions are cofibrations, Oka manifolds are fibrant, and Oka maps are fibrations. It is thus fair to
say that Stein manifolds are the natural sources of holomorphic maps while Oka manifolds are their
natural targets.

Recently, Kusakabe showed in [99, Theorem 1.3] that the following property also characterises
Oka manifolds.

Definition 1.5. A complex manifold Y enjoys Convex Relative Ellipticity, CRE, if for every compact
convex set K ⊂ Cn, n ∈ N, and holomorphic map f : U ′ → Y from an open neighbourhood of K
there exist a neighbourhood U ⊂ U ′ of K and a holomorphic map F : U ×CN → Y for some N ∈ N
such that for every z ∈ U we have F (z, 0) = f(z) and the differential dF (z, · )|0 : T0CN → Tf(z)Y

at 0 ∈ CN is surjective.
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A map F as in the above definition is called a dominating holomorphic spray with the core
F (· , 0) = f . This condition, for maps from any Stein manifold in place of a convex domain U ⊂ Cn,
was introduced by Gromov [78] as condition Ell1 (see also [40, Definition 3.1]). It has also been called
relative ellipticity in the literature to emphasise that it concerns sprays of holomorphic maps to the
given manifold, as opposed to sprays on the manifold itself. It is easily seen that every holomorphic
map f : U ′ → Y in Def. 1.5 admits a local dominating spray F : U × B → Y with the core f |U ,
where K ⊂ U ⋐ U ′, U is convex, and B is a ball in some CN . The main point is to find a global
spray U ×CN → Y which agrees with F to the second order along U × {0}. This shows that relative
ellipticity, and hence CRE, is implied by the basic Oka property with jet interpolation (BOPJI); see
Def. 3.1 (iv’). By definition, every Oka manifold satisfies BOPJI and hence also CRE. To complete the
picture, Kusakabe proved in [99] that CRE implies CAP. (An exposition of his proof can also be found
in [40, Theorem 3.3].) Summarising, the following properties of a complex manifold are equivalent.

Theorem 1.6. OKA ⇐⇒ CAP ⇐⇒ CRE.

The characterisation of Oka manifolds by CRE is sometimes easier to apply then CAP. By using it,
Kusakabe showed in [99, Theorem 1.4] that the Oka property is Zariski local in the following sense.

Theorem 1.7. If every point in a complex manifold Y admits a Zariski open * Oka neighbourhood,
then Y is an Oka manifold.

This result has been an important source of new examples of Oka manifolds in recent times. In
[100], Kusakabe also characterised the Oka property of sections of holomorphic submersions by a
fibred version of CRE.

Oka manifolds have a number of special analytic properties. It is immediate that an Oka manifold
Y is dominable by the Euclidean space Cn with n = dimY at every point y ∈ Y , in the sense that
there exists a holomorphic map f : Cn → Y with f(0) = y such that df0 : T0Cn → TyY is an
isomorphism. Conversely, dominability at most points implies the Oka property for maps from open
Riemann surfaces (see Theorem 3.12), but it is not known whether it implies the full Oka property.
With some more work, one can see that a connected Oka manifold Y admits a surjective holomorphic
map f : Cn → Y , n = dimY , such that for every y ∈ Y there is a point z ∈ f−1(y) ∈ Cn such
that dfz : TzCn → TyY is an isomorphism (see [52, Theorem 1.1]). It follows that a connected
Oka manifold does not admit any nonconstant bounded plurisubharmonic function. Furthermore, all
pseudometrics on complex manifolds which are decreasing under holomorphic maps and vanish on
Euclidean spaces (such as the Kobayashi metric, the Caratheodory metric, the Eisenmann metrics,
the Sibony metric, to name some of the best known ones) also vanish on any Oka manifold. Since a
compact complex manifold of general type (i.e. of maximal Kodaira dimension equal to its complex
dimension) is not dominable by a Euclidean space (see Kobayashi and Ochiai [96]), no such manifold is
Oka. There are many examples of compact Oka manifolds among Fano manifolds (Kodaira dimension
−∞), although it is not known whether every Fano manifold is Oka. We refer to [51, Sect. 7.3] for a
review of known Oka manifolds among compact complex surfaces. For Riemann surfaces there is a
precise dichotomy — either the surface is Oka, and then it is one of the surfaces CP1, C, C∗ = C\{0}
or a torus, or it is Kobayashi hyperbolic and hence a quotient of the disc D = {z ∈ C : |z| < 1}.

Elliptic manifolds (see Def. 4.1) remain an important source of examples of Oka manifolds,
especially among the algebraic ones. The theory of algebraically elliptic manifolds is an active area of
contemporary research; see Sect. 4. We have recently shown with Lárusson [60] that every projective
Oka manifold is elliptic; see Theorem 4.5. This gives an affirmative answer to a conjecture of Gromov
[78, 3.2.A’]. On the other hand, due to Kusakabe [102] we now have many examples of noncompact

*A domain in a complex manifold Y is Zariski open if its complement is a closed complex subvariety of Y .
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Oka manifolds which are not elliptic; see Corollary 4.4. It remains an open question whether there
exist compact nonprojective Oka manifolds which fail to be elliptic.

There are several open problems concerning the relationship between the Oka property and
topological, analytical, and metrical properties of complex manifolds. A Stein manifold X has the
homotopy type of a CW complex of dimension at most dimCX = 1

2 dimRX . Conversely, given a
smooth almost complex manifold (X,J0) of real dimension 2n ̸= 4 with the homotopy type of a CW
complex of dimension ≤ n, J0 is homotopic to a Stein structure J on X; see Eliashberg [31]. The
analogous result holds if dimRX = 4 after a suitable change of the C∞ structure on X; see Gompf
[68, 69]. Furthermore, every continuous map f : X → Y from a Stein manifold X to an arbitrary
complex manifold Y is homotopic to a holomorphic map with respect to a Stein structure J onX which
is homotopic to the original one (and up to a change of the C∞ structure on X if dimRX = 4); see
[66, 65]. This is called the soft Oka principle. See also the monograph by Jöricke [91] which studies
this phenomenon in the context of braids. On the other hand, almost nothing is known concerning the
homotopy types of Oka manifolds. In particular, we do not know which groups arise as fundamental
groups of Oka manifolds. Another intriguing question concerns the geometric shape of Oka domains
in complex manifolds; see Problem 3.10.

A challenging problem is to understand the relationship between the Oka property and metrical
properties of complete hermitian and Kähler manifolds. Since negativity of the holomorphic sectional
curvature is related to Kobayashi hyperbolicity (see [74, 76, 23]), which is the very opposite of the Oka
property, one might expect that positivity together with completeness is related to the Oka property. An
important result in this direction is given by Mok’s solution of the generalised Frankel conjecture [111],
which implies that every compact Kähler manifold of nonnegative holomorphic bisectional curvature
is an Oka manifold [40, Theorem 11.4]. Our recent result with Kusakabe [55] on the Oka property of
disc tubes in semipositive ample line bundles on flag manifolds (see Theorem 3.11) also contributes to
the heuristic principle that metric positivity is related to the Oka property.

Another problem is the relationship between Oka manifolds and special manifolds in the sense of
Campana [24, 25]. It was shown by Campana and Winkelmann [26] that every projective manifold Y
which satisfies the basic Oka property (every continuous map from a Stein manifold to Y is homotopic
to a holomorphic map) is special. In particular, every projective Oka manifold is special but the
converse is an open problem.

There is a growing list of applications of Oka theory, some of which are discussed in my book
[51]. There are the dimensionwise optimal embedding and immersion theorems for Stein manifolds
into Euclidean spaces, due to Eliashberg and Gromov [32] and Schürmann [120], the h-principle for
holomorphic immersions of Stein manifolds Xn → CN for N > n (see Eliashberg and Gromov [80]
and [77, Sect. 2.1.5]), and the h-principle for holomorphic submersionsXn → Cq with n > q ≥ 1 (see
Forstnerič [44]). There exist proper holomorphic maps, immersions and embeddingsX → Cn of Stein
manifolds for suitable values of n > dimX whose images avoid any given unbounded strictly convex
set [30] and have small limit sets at infinity [41]. Kutzschebauch, Lárusson, and Schwarz developed
G-equivariant Oka theory and the notion of a G-Oka manifold, where G is a complex Lie group; see
their survey [104]. There are major recent developments on factorisation problems for holomorphic
matrix-valued functions on Stein spaces [88, 89, 86, 87], which rely on the Oka principle for sections
of stratified elliptic submersions onto Stein spaces; see [51, Theorem 6.2.2]. Oka theory combined
with methods of convex integration theory was used to establish h-principles in the classical theory of
minimal surfaces in Euclidean spaces (see [3, 58, 2, 8, 9] and the monograph [7]), and in the theory
of holomorphic Legendrian curves [57, 59]. A brief discussion of the h-principles in the theory of
minimal surfaces is included in Sect. 5.
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Another topic intimately related to Oka theory is the Andersén–Lempert theory and Varolin’s
density property concerning Stein manifolds with a large group of holomorphic automorphisms; see
Subsec. 3.2. Their main feature is the approximation theorem for isotopies of biholomorphic maps
between pseudoconvex Runge domains by isotopies of holomorphic automorphisms (see Forstnerič
and Rosay [64, Theorem 1.1], [51, Theorem 4.10.5]). Surprisingly, such highly symmetric objects
exist in big classes and were found by applying criteria developed by Kaliman, Kutzschebauch and
coauthors over the last two decades; see the surveys [42, 103] and [51, Chap. 4]. This theory had
a great impact on the solution of famous old problems, among them the holomorphic linearisation
problem, the embedding problem for Riemann surfaces, the h-principle for holomorphic submersions
of Stein manifolds to Euclidean spaces, and many others. A Stein manifold Y with the density property
is Oka at infinity (see Theorem 3.6 due to Kusakabe [102]), and it contains properly embedded copies
of any Stein manifold X with 2 dimX < dimY in every homotopy class of maps X → Y [13].
Arosio and Lárusson studied the dynamics of generic endomorphisms of Oka–Stein manifolds [15]
and of Stein manifolds with the density property [16, 17].

Reader, follow me to the continuation of this story.

2. STEIN MANIFOLDS.

In this section we recall the basic properties of Stein manifolds which are relevant for this survey,
referring to [81, 85, 75, 51] for more information. Stein manifolds were introduced in the literature by
Karl Stein in 1951 [124] under the name holomorphically complete manifolds by the following axioms.

(a) Holomorphic functions on X separate any distinct pair of points.
(b) For every point p ∈ X there is a holomorphic map f = (f1, . . . , fn) : X → Cn with n = dimCX

whose differential at p has complex rank n.
(c) For every compact set K in X , its holomorphically convex (or O(X)-convex) hull

(2.1) K̂ = {p ∈ X : |f(p)| ≤ max
x∈K

|f(x)| for all f ∈ O(X)}

is also compact. (By O(X) we denote the space of holomorphic functions X → C.)

A compact set K ⊂ X is said to be holomorphically convex in X , or O(X)-convex, if and only
if K = K̂. When X = Cn, such a set is called polynomially convex. The same axioms define Stein
spaces if (b) is replaced by the condition that holomorphic functions on X generate the ring OX,x of
germs of holomorphic functions at every point x ∈ X . In fact, (b) is a consequence of (a) and (c).
A complex space satisfying condition (c) is said to be holomorphically convex. A domain in Cn is
Stein if and only if it is holomorphically convex if and only if it is a domain of holomorphy. An open
Riemann surface is Stein according to Behnke and Stein [21].

Stein manifolds have a number of characterisations. A connected complex manifold X is Stein if
and only if it is biholomorphic to a closed complex submanifold of a Euclidean space CN ; we can take
N = 2dimX + 1. Equivalently, X admits a proper holomorphic embedding X ↪→ C2n+1. See [51,
Theorem 2.4.1] for a summary and references. Thus, Stein manifolds are complex analytic analogues
of affine algebraic manifolds. A more precise embedding theorem of Eliashberg and Gromov [32] and
Schürmann [120] is that a Stein manifold of dimension n > 1 embeds properly holomorphically in
CN with N =

[
3n
2

]
+ 1; this dimension is optimal by examples of Forster [35]. Similar embedding

results hold for Stein spaces with bounded local embedding dimension; see [51, Theorem 9.3.7]. The
proofs rely on Oka theory; see the detailed exposition in [51, Secs. 9.3–9.4]. The problem whether
every open Riemann surface embeds as a closed nonsingular complex curve in C2 is still wide open;
see the summary of known results in [51, Secs. 9.10–9.11] and the recent paper [29].

Another important characterisation is that a complex manifold X is Stein if and only if it admits
a smooth strongly plurisubharmonic exhaustion function ρ : X → [0,+∞), i.e., one satisfying
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ddcρ > 0; see Grauert [73]. The analogous condition characterises Stein spaces with singularities,
see Fornæss and Narasimhan [34].

One of the highlights of complex analysis on Stein spaces are Cartan’s Theorems A and B. Let F

be a coherent analytic sheaf on a Stein space X . Theorem A says that every stalk Fx for x ∈ X is
generated as an OX,x-module by germs of global sections of F , with Runge approximation of sections
on compact OX -convex subsets of X . Theorem B says that Hq(X,F ) = 0 for all q = 1, 2, . . ..
Furthermore, the Dolbeault cohomology groups of a Stein manifold vanish, that is, the Cauchy–
Riemann equation ∂u = α is solvable on X for any (p, q)-form α (p ≥ 0, q ≥ 1) with ∂α = 0.

An important role in Oka theory is played by the theorem of Siu [121] saying that a locally closed
Stein subvariety X in a complex space Z admits an open Stein neighbourhood. See also [51, Secs.
3.1–3.2] and the generalisation of Siu’s theorem in [51, Theorem 3.2.1]. A related result of Poletsky
[119] concerns Stein neighbourhoods of graphs of holomorphic mappings that are continuous up to the
boundary of a domain.

The following classical results on holomorphic functions on a Stein spaceX motivate the definition
of Oka properties and of Oka manifolds; see Def. 3.1 and Theorem 3.2.

(i) The Oka–Weil approximation theorem: If K is a compact O(X)-convex subset of X then any
holomorphic function U → C on a neighbourhood U ⊂ X of K is a uniform limit on K of
holomorphic functions X → C.(ii) The Cartan–Oka extension theorem: If X ′ is a closed complex subvariety of X then any
holomorphic function X ′ → C extends to a holomorphic function X → C.

(iii) If K ⊂ U ⊂ X and X ′ ⊂ X are as above and f : U ∪X ′ → C is a continuous function which
is holomorphic on U and on X ′, we can approximate f uniformly on K by functions F ∈ O(X)

satisfying F |X′ = f |X′ .
(iv) If a function f in (iii) is holomorphic on a neighbourhood of K ∪X ′, then F ∈ O(X) in (iii) can

be chosen to approximate f on K and to agree with f to any given finite order along X ′.

Note that (iii) is a combination of (i) and (ii), while (iv) upgrades the interpolation on X ′ to jet
interpolation. The analogous results hold in the parametric case; see [51, Theorem 2.8.4].

3. OKA MANIFOLDS.

Results (i)–(iv) above, and their parametric analogues in [51, Theorem 2.8.4], describe the essential
function-theoretic properties of Stein spaces. We now consider the analogous conditions for maps
X → Y from a Stein space X to a complex manifold Y .

3.1. Oka properties characterising Oka manifolds.

Definition 3.1. Let Y be a complex manifold.

(i’) Y has the basic Oka property with approximation, BOPA, if for any Stein space X , compact
holomorphically convex subset K ⊂ X , and continuous map f : X → Y which is holomorphic
on a neighbourhood of K there is a homotopy ft : X → Y (t ∈ I = [0, 1]) such that f0 = f ,
each map ft is holomorphic on a neighbourhood of K (independent of t ∈ I) and approximates
f uniformly on K and uniformly in t ∈ I to a given precision, and the map f1 is holomorphic
on X .

(ii’) Y has the basic Oka property with interpolation, BOPI, if for any Stein spaceX , closed complex
subvariety X ′ ⊂ X , and continuous map f : X → Y such that f |X′ is holomorphic there is
a homotopy ft : X → Y (t ∈ I) such that f0 = f , ft|X′ = f |X′ for every t ∈ I , and f1 is
holomorphic on X .

(iii’) Y has the basic Oka property with approximation and interpolation, BOPAI, if the combination
of BOPA and BOPI holds (cf. property (iii) in Sect. 2).
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(iv’) Y has the basic Oka property with approximation and jet interpolation, BOPAJI, if the analogue
of property (iv) in Sect. 2 holds for mapsX → Y . Omitting the approximation condition defines
the basic Oka property with jet interpolation, BOPJI.

In order to avoid topological obstructions, the initial continuous map f : X → Y (or a continuous
family of maps in the parametric case) is assumed to be defined on all of X . Note that CAP (see Def.
1.1) is a restricted version of BOPA, and CRE (see Def. 1.5) is a restricted version of BOPJI. Similarly
one defines the parametric versions of these properties called POPA, POPI, POPAI, POPAJI and POPJI,
respectively; see [51, Sect. 5.15]. This gives several ostensibly different Oka-type conditions on a
complex manifold. It turns out that they are pairwise equivalent [51, Proposition 5.15.1], although
several implications are highly nontrivial.

Theorem 3.2. Every Oka property mentioned above is equivalent to the Convex Approximation
Property (CAP) in Def. 1.1, and to Convex Relative Ellipticity (CRE) in Def. 1.5.

A complex manifold Y is said to be an Oka manifold if and only if it satisfies any and hence
all of these conditions. Oka manifolds appear in Gromov’s paper under the name Ell∞ manifolds
[78, 3.3.C’]. However, the mentioned equivalences were proved much later, and the notion of an Oka
manifold was introduced in [49].

The following is a well known consequence of the parametric h-principle.

Corollary 3.3. If X is a Stein space and Y is an Oka manifold then the inclusion O(X,Y ) ↪−→
C (X,Y ) of the space of holomorphic maps X → Y in the space of continuous maps (both endowed
with the compact-open topology) is a weak homotopy equivalence.

Lárusson showed in [107] that the above inclusion is a genuine homotopy equivalence if X is a
Stein manifold which admits a strongly plurisubharmonic exhaustion function ρ : X → [0,∞) with
only finitely many critical points. In this case, the space O(X,Y ) is a deformation retract of C (X,Y )

if Y is Oka. This holds in particular ifX is a strongly pseudoconvex domain in another Stein manifold,
or if it is an affine algebraic manifold.

More precise statements can be found in [51, Theorem 5.4.4 and Proposition 5.15.1]. The proof
of Theorem 3.2 (without considering CRE) takes up [51, Secs. 5.7–5.13]. The implication CRE =⇒
CAP is due to Kusakabe [99, Theorem 1.3]; see also the exposition in [40, Theorem 3.3].

The following result (see [40, Theorem 1.3]) gives a more precise control of the image of a
holomorphic map. It is particularly useful in conjunction with Theorem 3.6 and is often applied in
the constructions of proper holomorphic maps. It is obtained by following [51, proof of Theorem
5.4.4]. We only state the basic case.

Theorem 3.4. Assume that X is a Stein space, K is a compact O(X)-convex set in X , X ′ is closed
complex subvariety of X , Ω is an Oka domain in a complex manifold Y , and f : X → Y is a
continuous map which is holomorphic on a neighbourhood of K and on X ′ such that f(X \K) ⊂ Ω.

Then there is a homotopy ft : X → Y (t ∈ [0, 1]) connecting f = f0 to a holomorphic map
f1 : X → Y satisfying the conclusion of Theorem 3.2 such that ft(X \K) ⊂ Ω holds for all t ∈ [0, 1].

Note that every Oka property in Def. 3.1 includes an approximation or an interpolation condition.
A complex manifold Y is said to satisfy the basic Oka property, BOP, if every continuous mapX → Y

from a Stein manifold X is homotopic to a holomorphic map. Every Oka manifold clearly satisfies
BOP but the converse fails in general. Indeed, any holomorphically contractible complex manifold,
such as the disc, satisfies BOP but need not be Oka. Campana and Winkelmann proved in [26] that a
projective manifold Y satisfying BOP is Campana special [24, 25].
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Problem 3.5. Is every projective manifold satisfying BOP an Oka manifold?

A survey of examples of Oka manifolds which predates their characterisation by CRE can be found
in [51, Chaps. 5–7]. The recent survey [40] includes many new examples based on the equivalence CRE
⇐⇒ OKA, Theorem 1.7, and the use of the density property. We present some of them in the following
subsection.

3.2. Oka properties of complements of holomorphically convex sets. A complex manifold Y is
said to enjoy the density property (see Varolin [126, 127]) if every holomorphic vector field on Y
can be approximated uniformly on compacts by Lie combinations of C-complete holomorphic vector
fields. The Euclidean spaces Cn, n > 1, enjoy this property by Andersén and Lempert [12]. One of the
main results in this subject is that if Y is a Stein manifold with the density property then every isotopy
of biholomorphic maps Φt : Ω → Φt(Ω), t ∈ [0, 1], with Φ0 = IdΩ between pseudoconvex Runge
domains in Y can be approximated by isotopies of holomorphic automorphisms of Y (see Forstnerič
and Rosay [64], [51, Theorem 4.10.5]). Every Stein manifold with the density property is an Oka
manifold (see [92, Theorem 4]). Surveys can be found in [51, Chap. 4], [42], and [103].

In his seminal paper [102], Kusakabe applied the characterisation of Oka manifolds by CRE (see
Theorem 3.2) to establish the Oka property of complements of certain closed holomorphically convex
sets in Stein manifolds with the density property. This gives a plethora of new examples of Oka
manifolds, most of which are not Gromov elliptic. The following result combines Theorem 1.2 and
Corollary 1.3 in [102]. (See also [67].)

Theorem 3.6. If K is a compact polynomially convex set in Cn, n > 1, then Cn \ K is an Oka
manifold. More generally, if Y is a Stein manifold with the density property and K ⊂ Y is a compact
O(Y )-convex set then Y \K is an Oka manifold.

The idea of proof is that, given a set K ⊂ Y as in the theorem and a holomorphic map
f : U ′ → Y \K from a neighbourhood of a compact convex setL ⊂ CN , one can find a neighbourhood
U ⊂ U ′ of L and a holomorphic map F : U × Cn → Y \ K, with n = dimY , such that for every
z ∈ U the map Fz = F (z, · ) : Cn → Y is biholomorphic onto its image in Y \ K and satisfies
Fz(0) = f(z) (see [67, Theorems 1.1 and 3.1]). Thus, {Fz(Cn)}z∈U is a holomorphically varying
family of Fatou–Bieberbach domains in Y \K. Clearly, such F is a dominating spray with the core f ,
so Y \K satisfies CRE and hence is an Oka manifold. The construction of F uses the density property
of Y and the aforementioned approximation of isotopies of biholomorphic maps between Stein Runge
domains in Y by holomorphic automorphisms of Y (see [51, Theorem 4.10.5]).

A closed unbounded subset S of Cn is said to be polynomially convex if it is exhausted by an
increasing sequence of compact polynomially convex sets. For Y = Cn, n > 2, Theorem 3.6 is a
special case of the following result of Kusakabe [102, Theorems 1.6 and 4.2].

Theorem 3.7. If n > 2, c > 0 and S ⊂
{
(z, w) ∈ Cn−2 × C2 : |w| ≤ c(1 + |z|)

}
is a closed

polynomially convex set, then Cn \ S is an Oka manifold.

In [54], these techniques were used to prove that most concave domains in Cn for n > 1 are Oka.
In particular, the following holds; see [54, Theorem 1.8].

Theorem 3.8. If E is a closed convex set in Cn, n > 1, which does not contain any affine real line,
then Cn \ E is an Oka domain.

In particular, if ϕ : Cn−1 × R → R+ is a strictly convex function then the concave domain

(3.1) {z = (z′, zn) ∈ Cn : ℑzn < ϕ(z′,ℜzn)}
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below its graph is an Oka domain while the domain above the graph is Kobayashi hyperbolic. Note
that these domains can be arbitrarily close to a halfspace, the latter being neither Oka nor hyperbolic.

Consider Cn as an affine domain in the projective space CPn. Given a subset E ⊂ Cn, we denote
byE its topological closure in CPn. Theorem 3.8 is a special case of the following result [54, Theorem
1.1].

Theorem 3.9. If E is a closed subset of Cn for n > 1 and Λ ⊂ CPn is a complex hyperplane such
that E ∩ Λ = ∅ and E is polynomially convex in CPn \ Λ ∼= Cn, then Cn \ E is Oka.

Sections 4 and 5 of the survey [40] contains many further examples of Oka domains in Euclidean
and projective spaces. In particular, there are compact sets in Cn, n > 1, of the form L = K ∪ C,
where K is polynomially convex and C is a finite union of rectifiable curves, such that L fails to
be polynomially convex yet Cn \ L is an Oka domain (see [40, Theorem 4.12]). The set L in these
examples is rationally convex, and I do not know examples of non-rationally convex compact sets in
Cn with Oka complements.

It seems that all known examples of proper Oka domains in Stein manifolds are weakly
pseudoconcave. Since Stein domains in Stein manifolds are exactly the pseudoconvex ones and Oka
manifolds are dual to Stein manifolds in the sense explained in the Introduction, this seems natural.
However, few explicit results are known.

Problem 3.10. Let K be a closed subset of Cn, n > 1, with smooth boundary bK.
(a) (The inverse Levi problem.) Assuming that Cn \K is Oka, is bK necessarily pseudoconvex?
(b) Assuming that K is compact and bK is pseudoconvex, is Cn \K an Oka domain?
(c) Is every strongly pseudoconcave domain in Cn of the form (3.1) an Oka domain?

An affirmative answer to (a) is known for n = 2, see [40, p. 389]. Model examples of non-
pseudoconvex domains are Hartogs figures. For the closed Hartogs figure

H =
{
(z1, z

′) ∈ Cn : |z1| ≤ δ, |z′| ≤ 1
}
∪
{
(z1, z

′) : |z1| ≤ 1, 1− δ ≤ |z′| ≤ 1
}

with 0 < δ < 1, the complement Cn \H fails to be Oka [40, Example 4.23]. It is not known whether
the complement of the Hartogs triangle {(z1, z2) ∈ C2 : 0 ≤ |z1| ≤ |z2| ≤ 1} is an Oka domain [40,
Problem 4.24].

In a related direction, Forstnerič and Kusakabe [55] studied Oka properties of disc tubes in certain
hermitian holomorphic line bundles on compact complex manifolds. The following is their main result.

Theorem 3.11. Let E be a holomorphic line bundle on a compact complex manifold X . Assume that
for each point x ∈ X there exists a divisor D in the complete linear system |E| whose complement
X \D is a Stein neighbourhood of x with the density property. Given a semipositive hermitian metric
h on E, the disc bundle {e ∈ E : |e|h < 1} is a pseudoconcave Oka domain while {e ∈ E : |e|h > 1}
is Kobayashi hyperbolic. In particular, the zero section of E admits a basis of Oka neighbourhoods
{|e|h < c} with c > 0. This holds in particular ifE is an ample line bundle on a rational homogeneous
manifold X of dimension > 1.

When X is a complex Grassmannian, an ample line bundle E on X satisfies the conditions in the
theorem with divisors D ⊂ X such that X \ D ∼= Cn with n = dimX > 1. If h is a semipositive
hermitian metric on E then the intersection of the unit disc bundle {|e|h < 1} with any such chart is a
pseudoconcave Hartogs domain of the form Ω = {(z, t) ∈ Cn×C : |t| < ϕ(z)}, where ϕ is a positive
continuous function on Cn such that log ϕ is plurisubharmonic, and there is a constant c > 0 such that
ϕ(z) ≥ c |z| holds for all z ∈ Cn. By using Theorem 3.7 one can show that Ω is an Oka domain,
and the proof of Theorem 3.11 is then completed by applying the localisation Theorem 1.7. Similar
arguments apply when X is a rational homogeneous manifold.
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3.3. Oka-1 manifolds. A complex manifold Y is an Oka-1 manifold if it enjoys the Oka property
with approximation and jet interpolation for maps X → Y from any open Riemann surface X . In
other words, Y contains plenty of holomorphic curves parametrised by any open Riemann surface.
This class of manifolds was introduced and studied by Alarcón and the author in [5]. The following is
a special case of [5, Theorem 2.2].

Theorem 3.12. If Y is complex manifold of dimension n and E ⊂ Y is a closed subset with zero
Hausdorff (2n − 1)-measure such that Y is dominable by Cn at every point y ∈ Y \ E, then Y is an
Oka-1 manifold.

A complex manifold Y satisfying the condition in the above theorem is said to be densely
dominable by Cn; it is strongly dominable if the condition holds with E = ∅. It is not known
whether dense or strong dominability implies the Oka property for maps from higher dimensional
Stein manifolds. There are examples of noncompact Oka-1 manifolds which fail to be Oka, but we
do not know any such example among compact manifolds. In [5] we found many examples of Oka-1
manifolds among compact complex surfaces. In particular, every Kummer surface and every elliptic
K3 surface is Oka-1 (see [5, Sect. 8]). It is not known whether any or all of these surfaces are Oka
manifolds. (A survey of known Oka manifolds among compact complex surfaces can be found in [51,
Sect. 7.3].) It is conjectured that every projective rationally connected manifold is Oka-1 [5, Conjecture
9.1]. By Campana and Winkelmann [27], every such manifold admits holomorphic lines C → X with
dense images.

New examples and functorial properties of Oka-1 manifolds were presented by Lárusson and the
author in [61]. We also formulated and studied the algebraic version of the Oka-1 condition, called
aOka-1, which concerns approximation and interpolation of holomorphic maps from open subsets of
affine algebraic curves to algebraic manifolds by regular algebraic maps. Every aOka-1 manifold is also
an Oka-1 manifold. The aOka-1 property is a birational invariant for compact algebraic manifolds, and
it holds for all rational manifolds and all algebraically elliptic projective manifolds (see [61, Theorem
1.6]).

It is easily seen that every projective aOka-1 manifold is rationally connected [61, Proposition 1.7].
Conversely, Benoist and Wittenberg [22, Theorem 1.2] proved that every projective rationally simply
connected manifold is an aOka-1 manifold, and this class contains every smooth hypersurface of degree
d in CPn with n ≥ d2 − 1 (see [22, Corollary 1.3]). Note that their tight approximation property is
equivalent to the aOka-1 property.

3.4. The Oka principle on families of open Riemann surfaces. In [53], the Oka principle was
established for maps from very general families of open Riemann surfaces to Oka manifolds. Assume
that X is a smooth open orientable surface, B is a finite CW complex or a countable locally compact
CW-complex of finite dimension, and {Jb}b∈B is a continuous family of complex structures on X of
local Hölder class C α, 0 < α < 1. A continuous map f : B ×X → Y to a complex manifold Y is
said to be fibrewise holomorphic if the map f(b, · ) : X → Y is holomorphic from the open Riemann
surface (X,Jb) for every b ∈ B. The following Oka principle is a special case of [53, Theorem 1.6].

Theorem 3.13. (Assumptions as above.) If Y is an Oka manifold then every continuous map
f : B × X → Y is homotopic to a continuous fibrewise holomorphic map F : B × X → Y . If
in addition B is a manifold of class C l and the family of complex structures {Jb}b∈B is of local class
C l,(k,α)(X), where 0 ≤ l ≤ k + 1 and 0 < α < 1, then F can be chosen of local class C l,(k+1,α).

The statement concerning the map F in the second part of the theorem means that F has l
derivatives in the parameter b ∈ B followed by k + 1 derivatives in the space variable x ∈ X , and
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these derivatives are of local Hölder class C α in x ∈ X . The analogous definition applies to the family
{Jb}b∈B .

The more precise result [53, Theorem 1.6] includes approximation of fibrewise holomorphic
maps on suitable families of compact Runge subsets of X . Theorem 3.13 relates the Oka theory to
Teichmüller spaces. It was also used in the construction of families of immersed conformal minimal
surfacesX → Rn and holomorphic null curvesX → Cn, n ≥ 3, with a prescribed family of conformal
structures on the surface X; see [53, Sect. 8]. Further applications are expected.

The proof of Theorem 3.13 proceeds by inductively extending the domain in B × X on which
a given map is fibrewise holomorphic, using approximation on closed subsets with compact Runge
fibres to ensure convergence to a limit map. It also uses solutions of the Beltrami equation on an
open Riemann surface (X,J) to show that a small variation of the complex structure J on a smoothly
bounded domain Ω ⋐ X can be realised by a small variation of Ω in X with its original structure J .
This is special case of Hamilton’s theorem [82] but with more precise regularity of the maps. Finally,
the problem is reduced locally in the parameter b ∈ B and semiglobally in the space variable x ∈ X

to the Oka principle given by Theorem 3.2.

An important fact used in the proof of Theorem 3.13 is that the condition on a compact set K
in a surface X to be Runge is purely topological (its complement X \ K has no relatively compact
connected component), hence independent of the choice of the complex structure on X . This is no
longer the case if X is a smooth open manifold of dimension 2n > 2 endowed with a family of Stein
structures J = {Jb}b∈B . The following example shows that one must impose a suitable condition on
the family J to get an analogue of Theorem 3.13. The proof will appear in a subsequent publication
(in preparation).

Theorem 3.14. Given a compact set K ⊂ R2n (n > 1) with nonempty interior, there is a family of
smooth integrable complex structures {Jt}t∈R on R2n, depending smoothly on t ∈ R, such that J0 is
the standard complex structure on Cn, the manifold (R2n, Jt) is biholomorphic to Cn for every t ∈ R,
and for any neighbourhood U ⊂ R of 0 ∈ R the set

⋃
t∈U K̂Jt ⊂ R2n is unbounded.

This phenomenon excludes the possibility of any reasonable analysis on such a family of Stein
structures. The condition that one must impose to obtain positive results is that for any compact set
K in X , the Jb-convex hull K̂Jb ⊂ X (2.1) is an upper semicontinuous set-valued function of the
parameter b ∈ B. Equivalently, there is a continuous function ρ : B ×X → [0,∞) such that for every
b ∈ B, the function ρ(b, · ) : X → [0,∞) is a strongly Jb-plurisubharmonic exhastion. A paper on this
topic is in preparation.

4. ELLIPTIC AND SUBELLIPTIC MANIFOLDS.

Gromov introduced the following conditions in [78, 0.5, p. 855].

Definition 4.1. A complex manifold Y is elliptic if there is a holomorphic vector bundle π : E → Y

and a holomorphic map s : E → Y such that s restricts to the identity map on the zero section E(0)

of E, and for any point y ∈ Y the differential ds0y : T0yE → TyY maps the fibre Ey = π−1(y) onto
TyY . An algebraic manifold Y is algebraically elliptic if the vector bundle π : E → Y and the map
s : E → Y can be chosen algebraic.

Here, 0y denotes the origin of the vector space Ey = π−1(y). A map s with these properties is
called a dominating spray on Y . An ostensibly weaker condition, subellipticity (see [43, Def. 2]), asks
for the existence of a finite family of holomorphic sprays (Ej , πj , sj) on Y (j = 1, . . . ,m) which is
dominating in the sense that

(4.1) (ds1)0y(E1,y) + (ds2)0y(E2,y) + · · ·+ (dsm)0y(Em,y) = TyY for all y ∈ Y .
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An algebraic manifold Y is said to be algebraically subelliptic if the same condition holds with
algebraic sprays. See also [51, Def. 5.6.13]. Examples of elliptic and subelliptic manifolds can be
found in [78], [51, Sect. 6.4], and in the surveys [40, 56]. We recall a few.

Example 4.2. (A) Every complex homogeneous manifold is elliptic. Assume that a complex Lie
group G acts on a complex manifold Y transitively by holomorphic automorphisms. Let g ∼= Cp
denote the Lie algebra of G and exp : g → G the exponential map. The holomorphic map
s : Y × g ∼= Y × Cp → Y given by s(y, v) = exp v · y ∈ Y (y ∈ Y, v ∈ g) is a dominating
spray on Y . Such sprays were used by Grauert [70, 71, 72].

(B) If Y is a complex manifold whose tangent bundle is spanned by finitely many C-complete
holomorphic vector fields V1, . . . , Vm, then Y is elliptic. Indeed, let ϕtj , t ∈ C, be the flow of Vj .
The map s : Y × Cm → Y given by

(4.2) s(y, t) = s(y, t1, . . . , tm) = ϕt11 ◦ ϕt22 ◦ · · · ◦ ϕtmm (y)

clearly satisfies s(y, 0) = y and ∂
∂tj
s(y, 0) = Vj(y) for any y ∈ Y and j = 1, . . . ,m. Thus, s is

dominating precisely when the vectors V1(y), . . . , Vm(y) span the tangent space TyY for every y ∈ Y .

(C) Assume that π : E → Y is a holomorphic vector bundle and ϕ : E → E is a holomorphic map
which restricts to the identity on the zero section E(0) of E. Then, the map s = π ◦ ϕ : E → Y is
a spray on Y . Let us identify Y with E(0) and the restricted tangent bundle TE|Y with TY ⊕ E.
The spray s is dominating at y ∈ Y if for every v ∈ TyY there is a point e ∈ Ey such that
dsy(e) = (dπ)y ◦ (dϕ)y(e) = v.

The importance of ellipticity and subellipticity lies in the following result.

Theorem 4.3. (a) (Gromov [78, 0.6, p. 855]) Every elliptic manifold is an Oka manifold.
(b) ([43, Theorem 1.1]) Every subelliptic manifold is an Oka manifold.

The modern proof of Theorem 4.3 (see [51, Chap. 6]) consists of two parts. The first part is the
implication

(sub)elliptic =⇒ h-Runge approximation =⇒ CAP.

Here, a complex manifold Y is said to satisfy the h-Runge approximation condition if the following
holds. Given a pair K ⊂ L of compact O(X)-convex sets in a Stein space X and a homotopy of
holomorphic maps ft : U → Y , t ∈ I = [0, 1], of holomorphic maps from a neighbourhood of K
such that f0 extends to a holomorphic map from a neighbourhood of L in Y , we can approximate
the homotopy ft uniformly on K by a homotopy of holomorphic maps f̃t : L → Y , t ∈ I , such
that f̃0 = f0. This is a fairly elementary consequence of subellipticity and the parametric Oka–
Weil theorem for sections of vector bundles; see [51, Theorem 6.6.1]. Since a compact convex set
K ⊂ Cn is holomorphically contractible, every holomorphic map f from a convex neighbourhood
of K is homotopic to a constant map through holomorphic maps. Hence, the h-Runge approximation
property of Y implies that f is a limit of entire maps Cn → Y , which means that Y enjoys CAP.

The implication CAP =⇒ OKA is highly nontrivial; see [51, Chap. 5] for the proof.

The notion of (sub)ellipticity is also defined for holomorphic submersions h : Z → X , and it
implies the parametric Oka property for sections X → Z provided that X is Stein (see [78, Sect.
4], [63], and [51, Chap. 6]). An even more general case pertains to sections of stratified subelliptic
submersions over Stein spaces; see [50] and [51, Theorem 6.2.2]. There is also a relative Oka principle
for sections of ramified holomorphic maps onto Stein spaces; see [45] and [51, Sect. 6.14].

It is easily seen that every Stein Oka manifold is elliptic [78, 3.2.A]. Gromov asked whether every
Oka manifold is elliptic. The first counterexamples for noncompact manifolds were given by Kusakabe
in [98]. He showed in particular that if S is a closed tame countable set in Cn, n > 1, whose set of limit

13



points is discrete then Cn\S is an Oka domain (see [98, Theorem 1.2]) but there are nonelliptic domains
of this type. For example, taking Z = {0} ∪ {1/j : j ∈ N} ⊂ C, the domain Cn \ (Z2 × {0}n−2)

for n ≥ 3 is Oka but not elliptic or subelliptic [98, Corollary 1.4]. Theorem 3.6, together with results
of Andrist, Shcherbina and Wold [14], gives a much more abundant class of examples in the following
corollary.

Corollary 4.4. Let n ≥ 3. For every compact polynomially convex set K ⊂ Cn with infinitely many
limit points the complement Cn \K is Oka but not subelliptic. The analogous result holds for compact
holomorphically convex sets in any Stein manifold with the density property of dimension ≥ 3.

The following recent result of Forstnerič and Lárusson [60] confirms Gromov’s conjecture [78,
3.2.A’].

Theorem 4.5. Every projective Oka manifold is elliptic.

From Theorems 4.3 (b) and 4.5 we conclude the following.

Corollary 4.6. For a projective manifold, being Oka, elliptic, or subelliptic are equivalent conditions.

There are projective Oka manifolds which fail to be algebraically elliptic; for example, abelian
varieties. Hence, the algebraic counterpart to Theorem 4.5 is not true and Serre’s GAGA principle fails
in this problem.

The spray bundle E → Y in the proof of Theorem 4.5 is the direct sum of copies of the dual
of a sufficiently ample line bundle on the projective manifold Y (hence, E is Griffiths negative), and
the spray map s : E → Y is of the type described in Example 4.2 (C). The construction in [60] first
produces a local dominating spray s0 : U → Y defined on an open neighbourhood U ⊂ E of the
zero section E(0); this does not use any additional hypothesis on Y . Since E is negative, it is a 1-
convex manifold with the exceptional subvariety E(0) ∼= Y . Assuming that Y is an Oka manifold, the
existence of a global holomorphic map s : E → Y which agrees with s0 to the second order along
E(0) then follows from the Oka principle for maps from 1-convex manifolds to Oka manifolds, due to
Stopar [125]. Note that such s is a global dominating spray on Y , thus proving that Y is elliptic.

Algebraic analogues of Stein manifolds are affine algebraic manifolds. The properties of
holomorphic functions on Stein spaces (see (i)–(iv) in Sect. 2) also hold for (regular) algebraic
functions on affine algebraic varieties, and they can be used to define algebraic Oka properties of
algebraic manifolds. We discuss them briefly, referring to [40, Sect. 6] for a more comprehensive
presentation.

Recall that a complex algebraic manifold Y is said to be algebraically elliptic if it admits an
algebraic dominating spray s : E → Y on an algebraic vector bundle π : E → Y . Similarly, Y is said
to be algebraically subelliptic if it admits finitely many algebraic sprays (Ej , πj , sj) satisfying (4.1).
Gromov proved that algebraic subellipticity is a Zariski local property [78, 3.5 B], and it is stable with
respect to removing algebraic subvarieties of codimension > 1 [78, 3.5 C]. (Removal of hypersurfaces
is not allowed in general as it may lead to hyperbolic manifolds.) Examples and properties of such
manifolds, with further references, can be found in [51, Sect. 6.4] and [40, Sect. 6]. The following
recent result is due to Kaliman and Zaidenberg [94].

Theorem 4.7. Every algebraically subelliptic manifold is algebraically elliptic.

Hence these two properties are equivalent, so algebraic ellipticity is a Zariski-local condition. No
such result is known in the holomorphic category. See also [40, Theorem 6.2] for some other equivalent
properties.
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The main Oka-type property of algebraically elliptic manifolds is the algebraic homotopy
approximation theorem for maps from affine algebraic varieties; see [47, Theorem 3.1], [51, Theorem
6.15.1], and the recent generalisations in [2, Sect. 2]. In particular, we have the following result.

Theorem 4.8. Let X be an affine algebraic variety and Y be an algebraically elliptic manifold. Then,
every holomorphic map X → Y homotopic to an algebraic map is a limit of algebraic maps in the
compact-open topology.

It follows that every algebraically elliptic manifold Y satisfies the algebraic convex approximation
property, aCAP: every holomorphic map from a convex set U ⊂ Cn to Y is a limit of algebraic maps
Cn → Y uniformly on compacts. Theorem 4.8 can be used to prove the following result on algebraic
domination. The first part is a special case of [52, Theorem 1.6], while the second part is due to
Kusakabe [101, Theorem 1.2].

Theorem 4.9. Let Y be an algebraically elliptic manifold of dimension n. If Y is compact then
it admits an algebraic map f : Cn → Y satisfying f(Cn \ br(f)) = Y , where br(f) denotes
the branch locus of f . If Y is noncompact then it admits an algebraic map Cn+1 → Y satisfying
f(Cn+1 \ br(f)) = Y .

There are examples of holomorphic maps from an affine algebraic manifold X to an algebraically
elliptic manifold Y which are not homotopic to any algebraic map (see [51, Examples 6.15.7, 6.15.8]).
Thus, the algebraic basic Oka property, aBOP, fails in these examples. The following result of Lárusson
and Truong [108, Theorem 2] shows that this a rather common phenomenon, and Theorem 4.8 might
be the closest analogue of the Oka principle in the algebraic category.

Theorem 4.10. If Y is an algebraic manifold which contains a rational curve or is compact, then Y
does not have the algebraic basic Oka property, aBOP.

I am not aware of a single example of an algebraic manifold Y with nontrivial topology satisfying
aBOP. The simplest example to consider is C2 \ {0}, which is algebraically elliptic.

By [108, Theorem 3] of Lárusson and Truong, together with Theorem 4.7, every smooth
nondegenerate toric variety is algebraically elliptic. A result of Banecki [20] says that every rational
projective manifold is algebraically elliptic. This generalises the result of Arzhantsev et al. [19,
Theorem 1.3] that every uniformly rational projective manifold is algebraically elliptic. See also the
recent examples [93, 95] and the survey [129]. A major source of examples of algebraically elliptic
manifolds are flexible manifolds; see [18]. These are algebraic manifolds whose tangent space at every
point is spanned by algebraic vector fields with complete algebraic flows, so they admit dominating
algebraic sprays of type (4.2). A list of examples of such manifolds can be found in [40, p. 394].

5. THE H-PRINCIPLES FOR MINIMAL SURFACES IN Rn AND HOLOMORPHIC NULL CURVES IN Cn.

We begin by recalling the basic facts; see [7, 115]. Let M be a connected open Riemann surface.
A smooth immersion u = (u1, . . . , un) : M → Rn, n > 1, is conformal (angle preserving) if and
only if its (1, 0)-differential ∂u = (∂u1, . . . , ∂un) (the C-linear part of the differential du) satisfies the
nullity condition

(5.1) (∂u1)
2 + (∂u2)

2 + · · ·+ (∂un)
2 = 0.

Let n ≥ 3. A conformal immersion u :M → Rn is minimal, in the sense that it parametrizes a minimal
surface in Rn, if and only if it is harmonic, ∂∂u = 0; this holds if and only if ∂u is a holomorphic
(1, 0)-form. Such an immersion u is said to be nonflat if the image u(M) ⊂ Rn is not contained in an
affine 2-plane. We denote by M(M,Rn) the space of conformal minimal immersions M → Rn with
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the compact-open topology, and by Mnf(M,Rn) the subspace of M(M,Rn) consisting of all nonflat
conformal minimal immersions.

A holomorphic immersion F : M → Cn, n ≥ 3, is said to be a null curve if the differential
dF = ∂F = (dF1, . . . , dF1) satisfies the nullity condition (5.1). Such F is said to be nonflat if
F (M) is not contained in an affine complex line. Denote by N(M,Cn) the spaces of null holomorphic
immersions M → Cn with the compact-open topology, and by Nnf(M,Cn) the subspace consisting
of all nonflat null holomorphic immersions M → Cn. Since dF = 2∂(ℜF ), the real part u = ℜF of
a (nonflat) null curve is a (nonflat) conformal minimal immersion M → Rn; the converse holds if M
is simply connected. Hence, we have natural inclusions

ℜN(M,Cn) ↪→ M(M,Rn), ℜNnf(M,Cn) ↪→ Mnf(M,Rn),

where ℜF denotes the space of real parts of maps in a space F .

Choose a nowhere vanishing holomorphic 1-form θ on M (such exists by the Oka–Grauert
principle [51, Theorem 5.3.1]). Given a conformal minimal immersion u : M → Rn, the map
f = 2∂u/θ = (f1, . . . , fn) : M → Cn is holomorphic since u is harmonic, and by (5.1) it has
range in A∗ = A \ {0} where A is the null quadric

(5.2) A = {(z1, . . . , zn) ∈ Cn : z21 + z22 + · · ·+ z2n = 0}.

Conversely, a holomorphic map f : M → A∗ such that the 1-form fθ has vanishing real periods
(i.e.,

∫
γ ℜ(fθ) = 0 holds for every closed curve γ in M ) determines a conformal minimal immersion

u : M → Rn by u(x) =
∫ xℜ(fθ), x ∈ M . If fθ has vanishing complex periods then it integrates to

a holomorphic null curve F (x) =
∫ x

fθ. This is the classical Weierstrass representation of minimal
surfaces and null curves; see [7, Sec. 2.3] or [115].

Consider the following commuting diagram where the first vertical arrow is the real part projection,
the map ϑ is given by F 7→ ∂F/θ, and ψ is given by u 7→ 2∂u/θ.

(5.3) Nnf(M,Cn) ϑ //

��

O(M,A∗)
� � // C (M,A∗)

ℜNnf(M,Cn) �
� // Mnf(M,Rn)

ψ

OO

The punctured null quadric A∗ = A \ {0} is a homogeneous space of the complex Lie group
C∗ × O(n,C), where O(n,C) = {A ∈ GL(n,C) : AAt = I} is the orthogonal group over C.
Hence, the inclusion O(M,A∗) ↪−→ C (M,A∗) of the space of holomorphic maps M → A∗ in the
space of continuous maps satisfies the Oka principle and so is a weak homotopy equivalence. By
using elements of the convex integration theory, one shows that every holomorphic map f : M → A∗
can be deformed to a map for which the 1-form fθ is exact holomorphic, so it integrates to a null
holomorphic immersion

∫
fθ : M → Cn. Ensuring only that ℜ(fθ) is exact yields a conformally

immersed minimal surface
∫
ℜ(fθ) : M → Rn. Furthermore, such deformations can be made in

families. This leads to the following result of Forstnerič and Lárusson [58, Theorems 1.1 and 4.1].

Theorem 5.1. All maps in the diagram (5.3) satisfy the parametric h-principle with approximation,
and hence they are weak homotopy equivalences.

The basic h-principles with approximation were proved in this context by Alarcón and Forstnerič
in [3] for the maps ϑ and ψ, and in [4, Theorem 1.1] for the inclusion ℜNnf(M,Cn) ↪→ Mnf(M,Rn).
It is not know whether the inclusion ℜN(M,Cn) ↪→ M(M,Rn) satisfies the h-principle.

Let ds2 denote the Euclidean metric on Rn. A minimal surface u : M → Rn is said to be
complete if the Riemannian metric g = u∗ds2 induces a complete metric on M . Completeness is an
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important and much studied property in the global theory of minimal surfaces. Alarcón and Lárusson
[10] proved that the inclusion Mc

nf(M,Rn) ↪→ Mnf(M,Rn) of the space of complete nonflat minimal
immersions M → Rn in Mnf(M,Rn) also satisfies the parametric homotopy principle, whence is
a weak homotopy equivalence. When M is of finite topological type, the inclusion is a genuine
homotopy equivalence. The following corollary (see [58, Corollary 1.6]) is seen by analysing the
path components of the space C (M,A∗), a purely topological issue.

Corollary 5.2. Let M be a connected open Riemann surface with H1(M ;Z) ∼= Zl, l ∈ Z+ ∪
{∞}. Then the path connected components of each of the spaces Mnf(M,R3), Mc

nf(M,R3), and
Nnf(M,C3) are in one-to-one correspondence with the elements of the abelian group (Z2)

l. If n ≥ 4

then these spaces are path connected.

The total curvature of a conformal minimal surface u :M → Rn is the integral TC(u) =
∫
M K dσ

of the Gaussian curvature function K : M → (−∞, 0] of u with respect to the area measure dσ on
M induced by the immersion u. A minimal surface u : M → Rn is said to have finite total curvature
if TC(u) > −∞. Complete minimal surfaces of finite total Gaussian curvature are among the most
intensively studied minimal surfaces which play an important role in the classical global theory; see
[115] and [7, Chap. 4], among other sources. In fact, most classical examples of minimal surfaces are
of this kind. Although this family of minimal surfaces has been a focus of interest since the seminal
work of Osserman in the 1960s, the theories of approximation and interpolation for complete minimal
surfaces of finite total curvature in Rn have been developed only recently; see [1, 11, 110]. The paper
[2] by Alarcón, Forstnerič, and Lárusson provides the first contributions to the homotopy theory of this
important class of minimal surfaces, which we now present.

The null quadric A (5.2) defines a holomorphic subbundle A of the vector bundle (T ∗M)⊕n with
fibre A∗ whose sections are n-tuples ϕ = (ϕ1, . . . , ϕn) of (1, 0)-forms on M without common zeros
such that the map [ϕ1 : · · · : ϕn] :M → CPn−1 takes values in the projective quadric

(5.4) Q =
{
[z1 : z2 : · · · : zn] ∈ CPn−1 : z21 + z22 + · · ·+ z2n = 0

}
.

If u : M → Rn is a conformally immersed minimal surface with finite total curvature, then M is
the complement in a compact Riemann surface M of a nonempty finite set E = {x1, . . . , xm} whose
points are called the ends of M (such M is called an affine Riemann surface), the bundle A → M

is algebraic (it is holomorphically trivial but not necessarily algebraically trivial), and ϕ = ∂u is a
meromorphic 1-form on M without zeros or poles on M , that is, an algebraic section of A over M .
Furthermore, the immersion u is complete if and only if ∂u has an effective pole at every point of
E = M \M . The surface u(M) is then properly immersed in Rn and has a fairly simple asymptotic
behaviour at every end of M , described by the Jorge–Meeks theorem [90]. Denote by A 1(M,A∗) the
space of meromorphic 1-forms ϕ = (ϕ1, . . . , ϕn) on M having no zeros or poles in M and satisfying
(5.1), that is, algebraic sections of the bundle A →M . Consider the diagram

(5.5) ℜN∗(M,Cn) �
� //

∂ ''PP
PPP

PPP
PPP

M∗(M,Rn)

∂
��

A 1(M,A∗)

where ∂ is the (1, 0)-differential, N∗(M,Cn) is the space of nonflat complete (proper) algebraic null
immersions M → Cn, and M∗(M,Rn) is the space of nonflat conformal minimal immersions of
finite total curvature. These spaces are endowed with the compact-open topology. The following is [2,
Theorem 1.1].

Theorem 5.3. If M is an affine Riemann surface then the maps in (5.5) are weak homotopy
equivalences.
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The proof in [2] builds upon that of Theorem 5.1, using a multiparameter extension of the algebraic
approximation theorem in Theorem 4.8, together with a method invented by Alarcón and Lárusson [9]
to ensure the existence of effective poles at the ends of M (to get completeness). For the inclusion
ℜN∗(M,Cn) ↪→ M∗(M,Rn), Theorem 5.3 says in particular that every complete nonflat conformal
minimal immersion M → Rn of finite total curvature can be deformed through maps of the same type
to the real part of a proper algebraic null curve M → Cn. In addition, one can control the flux along
an isotopy in M∗(M,Rn); see [2, Theorem 1.2].

The Gauss map of a conformal minimal immersion u = (u1, u2, . . . , un) : M → Rn is the
holomorphic map

G(u) = [∂u1 : ∂u2 : · · · : ∂un] :M → Q ⊂ CPn−1

in the projective hyperquadric (5.4). When n = 3, Q is a quadratic rational curve in CP2,
hence biholomorphic to the Riemann sphere CP1. In this case, the Gauss map is identified with a
meromorphic function on M , and it corresponds to the standard Gauss map when identifying CP1

with the 2-sphere. See [7, Sect. 2.5] for the details. The following result of Alarcón, Forstnerič, and
López [6] (see also [7, Theorem 5.4.1]) can be seen as an h-principle for the Gauss map of minimal
surfaces.

Theorem 5.4. Let M be an open Riemann surface and n ≥ 3 be an integer. For every holomorphic
map G : M → Q ⊂ CPn−1 into the quadric (5.4) there exists a conformal minimal immersion
u :M → Rn with the Gauss mapG(u) = G and vanishing flux (i.e., u is the real part of a holomorphic
null curve M → Cn). If G (M) is not contained in any proper projective subspace of CPn−1 then u
can be chosen to have arbitrary flux and to be an embedding if n ≥ 5 and an immersion with simple
double points if n = 4.

The theory of the Gauss map of minimal surfaces has a long and rich history, and it came as a
surprise that every natural candidate map is the Gauss map of some minimal surface. Further results
on the space of Gauss maps of complete minimal surfaces were obtained by Alarcón and Lárusson [8].
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[61] F. Forstnerič and F. Lárusson. Oka-1 manifolds: new examples and properties. Math. Z., 309(2):16, 2025. Id/No 26.
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[85] L. Hörmander. An introduction to complex analysis in several variables, volume 7 of North-Holland Mathematical

Library. North-Holland Publishing Co., Amsterdam, third edition, 1990.
[86] G. Huang, F. Kutzschebauch, and J. Schott. Factorization of holomorphic matrices and Kazhdan’s property (T). Bull.

Sci. Math., 190:14, 2024. Id/No 103376.
[87] G. Huang, F. Kutzschebauch, and P. Q. B. Tran. Untriangular factorization of holomorpic symplectic matrices.

Preprint, arXiv:2507.18963 [math.CV] (2025), 2025.
[88] B. Ivarsson and F. Kutzschebauch. Holomorphic factorization of mappings into SLn(C). Ann. of Math. (2), 175(1):45–

69, 2012.
[89] B. Ivarsson, F. Kutzschebauch, and E. Løw. Factorization of symplectic matrices into elementary factors. Proc. Am.

Math. Soc., 148(5):1963–1970, 2020.
[90] L. P. d. M. Jorge and W. H. Meeks, III. The topology of complete minimal surfaces of finite total Gaussian curvature.

Topology, 22(2):203–221, 1983.
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FRANC FORSTNERIČ, FACULTY OF MATHEMATICS AND PHYSICS, UNIVERSITY OF LJUBLJANA, JADRANSKA 19,
1000 LJUBLJANA, SLOVENIA
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