Research
		Applied mathematics. Numerical analysis. Approximation theory. Computer aided geometric design. Splines on triangulations.
		
		Publications
		
			- 
			J. Grošelj, M. Knez.
			A family of C1 Clough–Tocher spline spaces on C0 piecewise quadratic domain.
			Mathematics and Computers in Simulation 234, 368–389, 2025.
			[doi, cobiss]
			
 
			- 
			J. Grošelj, A. Šadl Praprotnik.
			Rational C1 cubic Powell–Sabin B-splines with application to representation of ruled surfaces.
			Journal of Computational and Applied Mathematics 457, 2025.
			[doi, cobiss]
			
 
			- 
			J. Grošelj, H. Speleers.
			Using Geometric Symmetries to Achieve Super-Smoothness for Cubic Powell–Sabin Splines.
			In: M. Lanini, C. Manni, H. Schenck (eds). Approximation Theory and Numerical Analysis Meet Algebra, Geometry, Topology. INdAM 2022. Springer INdAM Series, vol 60. Springer, Singapore, 205–229, 2024.
			[doi, cobiss]
			
 
			- 
			E. Češek, J. Grošelj, A. Kolar-Požun, M. Lekše, G. D. Romih, A. Šadl Praprotnik, M. Šteblaj.
			A representation and comparison of three cubic macro-elements.
			Mathematics and Computers in Simulation 219, 527–543, 2024.
			[doi, cobiss]
			
 
			- 
			J. Grošelj, M. Kapl, M. Knez, T. Takacs, V. Vitrih.
			C1-smooth isogeometric spline functions of general degree over planar mixed meshes: The case of two quadratic mesh elements.
			Applied Mathematics and Computation 460, 2024.
			[doi, cobiss]
			
 
			- 
			J. Grošelj, H. Speleers.
			Extraction and application of super-smooth cubic B-splines over triangulations.
			Computer Aided Geometric Design 103, 2023.
			[doi, cobiss]
			
 
			- 
			J. Grošelj, A. Šadl Praprotnik.
			Exact sphere representations over Platonic solids based on rational multisided Bézier patches.
			Computer Aided Geometric Design 98, 2022.
			[doi, cobiss]
			
 
			- 
			M. Kuralt, A. Cmok Kučič, R. Gašperšič, J. Grošelj, M. Knez, A. Fidler.
			Gingival shape analysis using surface curvature estimation of the intraoral scans.
			BMC Oral Health 22, 2022.
			[doi, cobiss]
			
 
			- 
			J. Grošelj, M. Knez.
			Generalized C1 Clough–Tocher splines for CAGD and FEM.
			Computer Methods in Applied Mechanics and Engineering 395, 2022.
			[doi, cobiss]
			
 
			- 
			J. Grošelj, M. Knez.
			A construction of edge B-spline functions for a C1 polynomial spline on two triangles and its application to Argyris type splines.
			Computers & Mathematics with Applications 99, 329–344, 2021.
			[doi, cobiss]
			
 
			- 
			J. Grošelj, H. Speleers.
			Super-smooth cubic Powell–Sabin splines on three-directional triangulations: B-spline representation and subdivision.
			Journal of Computational and Applied Mathematics 386, 23 pages, 2021.
			[doi, cobiss]
			
 
			- 
			J. Grošelj, M. Kapl, M. Knez, T. Takacs, V. Vitrih.
			A super-smooth C1 spline space over planar mixed triangle and quadrilateral meshes.
			Computers & Mathematics with Applications 80(12), 2623–2643, 2020.
			[doi, cobiss]
			
 
			- 
			J. Grošelj.
			Argyris type quasi-interpolation of optimal approximation order.
			Computer Aided Geometric Design 79, 2020.
			[doi, cobiss]
			
 
			- 
			J. Grošelj, M. Knez.
			On stable representations of Bell elements.
			Computers & Mathematics with Applications 79(10), 2924–2941, 2020.
			[doi, cobiss]
			
 
			- 
			J. Grošelj, M. Knez.
			Interpolation with C2 quartic macro-elements based on 10-splits.
			Journal of Computational and Applied Mathematics 362, 143–160, 2019.
			[doi, cobiss]
			
 
			- 
			N. Bašić, J. Grošelj, B. Grünbaum, T. Pisanski.
			Splittable and unsplittable graphs and configurations.
			Ars Mathematica Contemporanea 16(1), 1–17, 2019.
			[doi, cobiss]
			
 
			- 
			J. Grošelj, H. Speleers.
			Three recipes for quasi-interpolation with cubic Powell–Sabin splines.
			Computer Aided Geometric Design 67, 47–70, 2018.
			[doi, cobiss]
			
 
			- 
			J. Grošelj, M. Knez.
			A B-spline basis for C1 quadratic splines on triangulations with a 10-split.
			Journal of Computational and Applied Mathematics 343, 413–427, 2018.
			[doi, cobiss]
			
 
			- 
			 J. Grošelj, H. Speleers.
			 Construction and analysis of cubic Powell–Sabin B-splines.
			 Computer Aided Geometric Design 57, 1–22, 2017.
			 [doi, cobiss]
			
 
			- 
			J. Grošelj, M. Krajnc.
			Quartic splines on Powell–Sabin triangulations.
			Computer Aided Geometric Design 49, 1–16, 2016.
			[doi,	cobiss]
			
 
			- 
			J. Grošelj, M. Krajnc.
			C1 cubic splines on Powell–Sabin triangulations.
			Applied Mathematics and Computation 272(1), 114–126, 2016.
			[doi, cobiss]
			
 
			- 
			J. Grošelj.
			A normalized representation of super splines of arbitrary degree on Powell–Sabin triangulations.
			BIT Numerical Mathematics 56(4), 1257–1280, 2016.
			[doi, cobiss]
			
 
		
		
		...