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CROSSING GRAPHS AS JOINS OF GRAPHS AND CARTESIAN
PRODUCTS OF MEDIAN GRAPHS∗

BOŠTJAN BREŠAR† AND SANDI KLAVŽAR‡

Abstract. For a partial cube G its crossing graph G# is the graph whose vertices are the
Θ-classes of G, two classes being adjacent if they cross on some cycle in G. The following problem
posed in [S. Klavžar and H. M. Mulder, SIAM J. Discrete Math., 15 (2002), pp. 235–251, Problem
7.1] is considered: What can be said about the partial cube G if G# is the join A⊕ B of graphs A
and B with at least one edge? It is proved that for arbitrary graphs A and B, where at least one of
them contains an edge, there exists a Cartesian prime partial cube G such that G# = A⊕B. On the
other hand, if G is a median graph, then G# = A⊕B if and only if G = H �K, where H# = A and
K# = B. Along the way some new facts about partial cubes are obtained; for instance, a bipartite
graph of radius 2 is a partial cube if and only if it is K2,3-free.
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1. Introduction. Intersection concepts in graph theory have been extensively
studied [16]. Although some of the intersection operations yield all graphs (for in-
stance, every graph is the intersection graph of some set system), their importance
is due to their usefulness in the characterization of particular classes of graphs, thus
leading to a deeper structural understanding. Here we study a nonstandard inter-
section operation where vertices of the intersection graph (called crossing graph) are
equivalence classes of a certain equivalence relation Θ defined on the edge-set of a
graph. Hence the edges of the crossing graph are not defined in the standard way
(by intersections of subsets). The graphs that we are interested in are isometric sub-
graphs of hypercubes, and the relation Θ is of great importance for understanding the
structure of these graphs. So before presenting the preliminary work on these graphs
and the crossing graph operation, let us recall necessary definitions.

The distance dG(u, v) between vertices u and v of a graph G is the length of a
shortest u, v-path in G. A subgraph U of G is isometric if dU (u, v) = dG(u, v) for all
u, v ∈ U . The interval IG(u, v) is the set of vertices that lie on shortest paths between
u and v in G. A subgraph U is convex if IG(u, v) ⊆ U for all u, v ∈ U. (Indices in the
above definitions are omitted when the graph is understood from the context.) Recall
that the hypercube Qk, or k-cube, is the graph with the vertex set {0, 1}k, where two
vertices are adjacent whenever they differ in exactly one position.

Partial cubes are isometric subgraphs of hypercubes. This class of graphs has
been extensively investigated; see, for instance, [3, 5, 6, 7, 8, 21]. A well-known
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characterization of partial cubes is by the relation Θ on the edge-set of a graph. Two
edges e = xy and f = uv of a graph G are in the Djoković–Winkler [7, 21] relation
ΘG, Θ for short, if dG(x, u)+dG(y, v) �= dG(x, v)+dG(y, u). Winkler [21] proved that
a bipartite graph is a partial cube if and only if Θ is transitive. Letting R∗ denote
the transitive closure of a relation R, Winkler’s result reads as follows: A connected
bipartite graph G is a partial cube if and only if Θ = Θ∗. Hence in partial cubes the
relation Θ is an equivalence relation on E(G), and the classes of the corresponding
partition will be called Θ-classes.

For a partial cube G its crossing graph G# was introduced in [15] as follows. The
vertices of G# are the Θ-classes of G, two vertices being adjacent if the respective
Θ-classes meet (or cross) on some cycle (that is, there is a cycle C that contains
edges of both Θ-classes). In fact, in the class of median graphs the same concept was
introduced earlier by Bandelt and Chepoi under the name incompatibility graph [1].

In this paper we address the problem of what can be said about the partial cube
G if G# = A ⊕ B, where A and B have at least one edge. Here A ⊕ B denotes the
join of graphs A and B, that is, the graph obtained from the disjoint union of A
and B by joining every vertex of A with every vertex of B by an edge. In the next
section we state important properties of the Cartesian product of graphs and median
graphs that are needed later. In section 3 we prove that for arbitrary graphs A and
B, where at least one of them contains an edge, there exists a Cartesian prime partial
cube G such that G# = A⊕B. Then we restrict our attention to median graphs and
prove that the crossing graph of a median graph G is the join of two graphs A and
B if and only if G is a Cartesian product graph. In due course we also characterize
partial cubes of radius 2 and observe that a partial cube contains no nontrivial convex
subgraph that meets all of its Θ-classes.

2. Cartesian products and median graphs. The Cartesian product G�H
of the graphs G and H is the graph with the vertex set V (G) × V (H) in which two
vertices (a, x) and (b, y) are adjacent whenever ab ∈ E(G) and x = y, or a = b and
xy ∈ E(H). The Cartesian product is associative and commutative with K1 as its
unit. It is easy to see that the Cartesian product of k copies of K2 is the hypercube
Qk. A graph G is called prime (with respect to the Cartesian product) if it cannot
be represented as the product of two nontrivial graphs; that is, G = G1 �G2 implies
that G1 or G2 is the one-vertex graph K1.

The well-known prime factorization theorem, proved by Sabidussi [19] and in-
dependently by Vizing [20], states that every connected graph has a unique prime
factor decomposition with respect to the Cartesian product. This decomposition can
be made explicit in the following way: Edges uv and uw are said to be in relation
τG, or τ for short, if u is the unique common neighbor of v and w. Feder [9] proved
(cf. also [11, Theorem 4.8] and [13]) that (Θ ∪ τ)∗ is the Cartesian product relation
of a connected graph. This actually means that the equivalence classes of the relation
(Θ∪τ)∗ determine the prime factor decomposition of a graph—every equivalence class
yields one factor of the decomposition. The following consequence of this theorem will
be useful for us.

Corollary 1. A connected graph G is prime if and only if (ΘG∪τG)∗ = E(G).

We will also need the following result (in a way part of the folklore) on the
Cartesian product; see [4].

Lemma 2. A subgraph C of the Cartesian product G1 � · · · �Gm of connected
graphs is convex if and only if C = p1(C) � · · · � pm(C), where pi(C) is convex in
Gi, 1 ≤ i ≤ m. (Here pi is the projection map from G onto Gi.)
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The most important subclass of partial cubes are median graphs. They have been
rediscovered several times, and a rich theory of these graphs and related structures has
been developed; cf. the survey [14]. The most common definition is the following: G is
a median graph if for every triple of vertices u, v, w ∈ V (G) : I(u, v)∩I(u,w)∩I(v, w)
consists of precisely one vertex (which is called the median of the triple u, v, w). One of
the most well-known characterizations of median graphs involves a certain expansion
procedure, a result due to Mulder [17]. (By the way, it inspired Chepoi [5] to prove a
similar characterization of partial cubes.) In this note we will make use of a variation
of the expansion procedure that involves peripheral subgraphs of a median graph [18];
see also [2].

Let G be a connected graph and G0 a convex subgraph. Then the peripheral
expansion of G is the graph G′ obtained as follows. Take the disjoint union of a copy
of G and a copy of G0. Join each vertex u in the copy of G0 with the vertex that
corresponds to u in the copy of G (actually in the subgraph G0 of G). We say that
the resulting graph G′ is obtained by a (peripheral) expansion from G along G0. We
also say that we expand G0 in G to obtain G′. Note that in a peripheral expansion
one new Θ-class appears. It is easy to prove that expanding a convex subgraph of a
median graph yields again a median graph. It is more surprising that the converse is
also true, as proved by Mulder in [18].

Theorem 3. A graph G is a median graph if and only if it can be obtained from
K1 by a sequence of peripheral expansions.

Hence each median graph contains a peripheral subgraph, that is, a subgraph H
whose vertices are all incident with a particular Θ-class F in G, such that H is a
connected component of G−F (the graph obtained from G by removal of edges from
F ). Even more is known [18], as stated in the following proposition.

Proposition 4. Let G be a median graph and F any Θ-class in G. Then both
connected components of G− F contain a peripheral subgraph of G.

It is easy to see that median graphs are closed under Cartesian multiplication
and that, conversely, if a median graph is not prime, all of the factors also must be
median graphs.

3. Partial cubes whose crossing graphs are joins. Crossing graphs of Carte-
sian products have a simple structure [15, Proposition 6.1].

Proposition 5. Let H and K be partial cubes. Then (H �K)# = H# ⊕K#.
Let A and B be graphs. Clearly, A ⊕ B is a complete bipartite graph if and

only if both A and B have no edges. In [15] it has also been proved that G# is a
complete bipartite graph if and only if G is the Cartesian product of two trees. In
this section we show, a bit surprisingly, that any other join of graphs can be realized
as the crossing graph of a partial cube that is prime with respect to the Cartesian
product.

Recall that the radius of a connected graph G is minu∈V (G) maxv∈V (G) dG(u, v)
and that G is called K2,3-free if it contains no induced subgraph isomorphic to K2,3.
Note that partial cubes are K2,3-free, as follows readily from the fact that Θ is not
transitive on K2,3.

For the main result of this section we first state the following lemma, which might
be of independent interest.

Lemma 6. Let G be a bipartite graph of radius 2. Then G is a partial cube if and
only if G is K2,3-free.

Proof. We only need to show that if G is bipartite of radius 2 and K2,3-free, then
G is a partial cube. Let u be a vertex that realizes the radius of G and let v1, . . . , vk be
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its neighbors. As G is bipartite, v1, . . . , vk is an independent set of G. Let w1, . . . , wr

be the remaining vertices of G; then they are all at distance 2 from u. Again, there
is no edge between wi and wj .

Note that a graph is a partial cube if and only if the graph obtained from it by
removing a pendant vertex is a partial cube. Hence we may without loss of generality
assume that G has no pendant vertex. Since G is K2,3-free, it follows that every
vertex wi is of degree 2. Moreover, no two vertices wi and wj , i �= j, have the same
pair of neighbors. Therefore every edge of the form wivj lies in precisely one square.

No two edges uvi and uvj , i �= j, are in relation Θ. We claim that G isometrically
embeds into Qk and construct edge-subsets E1, . . . , Ek of E(G) as follows. For i =
1, . . . , k put uvi in Ei. Consider an edge wivj and let wivjuv� be the unique square
containing this edge. Then wivj is in relation Θ with uv�. Put wivj ∈ E�. We claim
that E1, . . . , Ek form the Θ = Θ∗-classes of G.

Clearly, E1, . . . , Ek is a partition of E(G). Suppose wivj and wi′vj′ are two
distinct edges of E�. Note first that i �= i′, for otherwise wi would have three neighbors
at distance 1 from u; see Figure 1(i). The case j = j′ leads to another K2,3; see Figure
1(ii). Hence i �= i′ and j �= j′ and we have the situation as shown in Figure 1(iii).
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Fig. 1. Cases in the proof of Lemma 6.

Then wiv� ∈ E(G) and wi′v� ∈ E(G), which implies that wivj is in relation Θ
with wi′vj′ . Thus all pairs of edges from E� are in relation Θ. Now assume wivj ∈ E�

and wi′vj′ ∈ E�′ , where � �= �′. If i = i′ or j = j′, then clearly wivj and wi′vj′

are not in relation Θ. Next, if � = j′, then d(wi, wi′) + d(vj , vj′) = 2 + 2 is equal
to d(wi, vj′) + d(wi′ , vj) = 1 + 3; hence they are again not in relation Θ (the case
�′ = j is analogous). Otherwise we get d(wi, wi′) + d(vj , vj′) = 4 + 2 = 3 + 3 =
d(wi, vj′) + d(wi′ , vj). Hence we conclude that Θ = Θ∗ and thus G is a partial cube
by Winkler’s theorem.

Theorem 7. Let A and B be arbitrary graphs, where at least one of them contains
an edge. Then there exists a Cartesian prime partial cube G such that G# = A⊕B.

Proof. For a graph H let ˜H be the graph obtained from H by subdividing all
edges of H and adding a new vertex u joined to all the original vertices of H. (This
construction has been introduced in [12] to establish a connection between median

graphs and triangle-free graphs.) We claim that G = ˜A⊕B does the job.
Let V (A) = {a1, . . . , an} and V (B) = {b1, . . . , bm}, so that in G the vertex u

is adjacent to a1, . . . , an and to b1, . . . , bm. Let xij be the vertex of G obtained by
subdividing the edge aibj , 1 ≤ i ≤ n, 1 ≤ j ≤ m.

We first observe that G is a partial cube by Lemma 6. Let Ei be the Θ-classes of
G with the representative uai, 1 ≤ i ≤ n, and let Fi be the Θ-classes of G with the
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representative ubi, 1 ≤ i ≤ m. Consider the square uaixijbj to infer that Ei and Fj

cross. Similarly, Ei and Ej (resp., Fi and Fj) cross if and only if aiaj ∈ E(A) (resp.,
bibj ∈ E(B)). Hence G# = A⊕B.

It remains to show that G is prime with respect to the Cartesian product. Assume
without loss of generality that n ≥ 2 and that a1a2 ∈ E(A). Let ai, aj , i �= j, be
arbitrary vertices of A and bk a vertex of B. Then we have xikbk ∈ Ei and xjkbk ∈ Ej .
By the construction of G (recall that xik and xjk are of degree 2) we infer that
the edges xikbk and xjkbk are in relation τ . As i and j were arbitrary, it follows
that E1, . . . , En belong to the same equivalence class of (ΘG ∪ τG)∗. Analogously,
F1, . . . , Fm belong to the same equivalence class of (ΘG ∪ τG)∗. Let y be the vertex
of G obtained by subdividing the edge a1a2. Then we have a1y ∈ E2 and a1x11 ∈ F1.
Moreover, a1y is in relation τ with a1x11, which implies that (ΘG ∪ τG)∗ consists of
a single equivalence class. By Corollary 1 we conclude that G is a Cartesian prime
graph.

Other constructions that yield joins of graphs as crossing graphs can also be
obtained. Let A be a graph and let G be the graph that is obtained from ˜A by
the Chepoi expansion (cf. [5]) with covering sets A and the star induced by u and
its neighbors. Then G is a partial cube with G# = K1 ⊕ A. This construction is
illustrated in Figure 2 for the case when A is the graph on four vertices and five
edges. The new Θ-class of G that yields the K1 in the join decomposition is denoted
with thick lines.

A

G

Fig. 2. Expanding ˜A into G, so that G# = K1 ⊕A.

4. The case of median graphs. Crossing graphs of median graphs are easier
to study than those of general partial cubes, since if two Θ-classes of a median graph
cross on some cycle, then there exists a square in which they cross. This fact can be
easily seen by using the expansion procedure and induction.

In [15] it is proved that every graph is the crossing graph of some median graph.
However, it was erroneously mentioned that there are prime median graphs whose
crossing graphs are joins of two graphs. The graph presented in Figure 7.2 of [15] is a
Cartesian product graph, namely P3 �G, where G is the graph obtained from C4 and
another vertex joined to one of the vertices of C4. In this section we prove that the
above remark is indeed wrong by proving that a median graph whose crossing graph
is the join of two graphs is necessarily the Cartesian product of two graphs. Note
that this is in surprising contrast to the situation from the previous section. We will
need the following lemma that might be of independent interest. It follows from the



CROSSING GRAPHS AND MEDIAN GRAPHS 31

R' R P

M

E' F
Fig. 3. Case |A| = 1 in the proof of Theorem 9.

Convexity Lemma from [10], which asserts that an induced connected subgraph H of
a bipartite graph G is convex if and only if no edge with one endvertex in H and the
other not in H is in relation Θ to an edge in H.

Lemma 8. Let G be a partial cube and H a convex subgraph of G. If H intersects
all Θ-classes of G, then H = G.

Proof. Suppose H is a proper subgraph of G. Then, since H is convex and hence
induced, there exists an edge uv of G such that u ∈ H and v /∈ H. By the Convexity
Lemma, uv is in relation Θ to no edge of H. But then H does not intersect the Θ-class
of uv, a contradiction.

We can now state the main result of this section.
Theorem 9. Let G be a median graph. Then G# = A ⊕ B if and only if

G = H �K, where H# = A and K# = B.
Proof. By Proposition 5 one direction is proved: The crossing graph of the Carte-

sian product of median graphs is the join of the crossing graphs of the factors. Hence
it remains to prove the converse of this statement, for which we will use induction on
the number of Θ-classes of a median graph G. Clearly the smallest graph that is the
join of two graphs and the crossing graph of a median graph is K2. It is obvious that
the only median graph with exactly two Θ-classes that cross is C4, and C4 = K2 �K2,
providing the basis of the induction.

Assume the statement holds for median graphs with fewer than k Θ-classes. Let
G be a median graph with k Θ-classes and G# = A ⊕ B. By Theorem 3, G can
be obtained by the peripheral expansion from a median graph M along its convex
subgraph R. Denote by R′ the corresponding peripheral subgraph (isomorphic to R),
that is, R′ = G−M . As M has one Θ-class less than G, M# is an induced subgraph
of G#. More precisely M# = G# − u, where u corresponds to the peripheral Θ-class
E′ of G. Without loss of generality we may assume that u ∈ A.

Assume first that |A| = 1. By Proposition 4 both connected components of
G−E′ contain a peripheral subgraph. One component clearly induces the peripheral
subgraph R′. Let P be a peripheral subgraph in the other component of G − E′.
Denote by F the Θ-class such that P is a component of G − F and denote by v the
vertex of G# that corresponds to F (see Figure 3). If F �= E′, then F and E′ do not
cross, for otherwise P would lie in both components of G−E′. Hence, in G# vertices
u and v are not adjacent, which means that they must both be in A, but this is a
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contradiction with |A| = 1. The remaining case is E′ = F , which implies P = R.
Hence G = K2 �R, where R# = B.

Now, let |A| > 1. Then M# = (A − u) ⊕ B, and by the induction hypothesis,
M = U �K, where U# = A − u and K# = B. Note that Θ-classes of M consist of
Θ-classes of U and of Θ-classes of K. More precisely, if F is a Θ-class of U (resp., K),
then F × V (K) (resp., V (U)×F ) is a Θ-class of U �K; cf. [11, Lemma 4.3]. Denote
by u1, . . . , up the vertices of A−u that correspond to Θ-classes of U , and by v1, . . . , vr
the vertices of B that correspond to Θ-classes of K. By Lemma 2, R = U ′ �K ′, where
U ′ is a convex subgraph of U and K ′ is a convex subgraph of K.

Suppose K ′ is a proper subgraph of K. By Lemma 8 there exists a Θ-class of K
that does not intersect with R, and thus it does not cross with E′. This implies that
there is a vertex vi ∈ B which is not adjacent to u ∈ A, a contradiction. Hence K ′ = K
and R = U ′ �K, where U ′ is a convex subgraph of U . We deduce that G = H �K,
where H is the graph obtained from U by expanding U ′. Clearly H# = A and
K# = B, which completes the proof.
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[15] S. Klavžar and H. M. Mulder, Partial cubes and crossing graphs, SIAM J. Discrete Math.,
15 (2002), pp. 235–251.

[16] T. A. McKee and F. R. McMorris, Topics in Intersection Graph Theory, SIAM Monogr. Dis-
crete Math. Appl. 2, SIAM, Philadelphia, 1999.

[17] H. M. Mulder, The structure of median graphs, Discrete Math., 24 (1978), pp. 197–204.
[18] H. M. Mulder, The expansion procedure for graphs, in Contemporary Methods in Graph

Theory, R. Bodendiek, ed., B.I.-Wissenschaftsverlag, Mannheim, Wien, Zürich, 1990, pp.
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