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Abstract

It is proved that a bipartite 2-connected plane graph in which the common
boundary of adjacent faces is a simple curve is 1-cycle resonant if and only if
the outer face of G is alternating and each inner vertex has degree two. This
extends a result from [X. Guo, F. Zhang, k-cycle resonant graphs, Discrete
Math. 135 (1994) 113-120] that a hexagonal system is 1-cycle resonant if and
only if it is catacondensed.
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1. Introduction1

The concept of resonance is an important topic in mathematical chemistry2

with a rapidly growing literature. Its origin lies in the work of Clar [1] on3

the aromatic sextet theory and the work of Randić on conjugated circuit4

model [2, 3]. Among recent related investigations let us mention the studies of5

resonance in toroidal polyhexes (alias toroidal graphitoids) [4, 5], in fullerene6
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graphs [6], in cubic bipartite polyhedral graphs [7], and in boron-nitrogen7

fullerenes [8].8

When dealing with chemical planar graphs it is implicitly assumed that9

they are plane, that is, equipped with a drawing in the plane. Many chemical10

planar graphs are 3-connected in which case their embedding into the plane11

is unique (with respect to the face structure) so the assumption of being12

plane is granted. On the other hand, several important chemical planar13

graphs are not 3-connected, for instance (chemical) trees, hexagonal graphs,14

and phenylenes. However, for such graphs most often a standard chemical15

representation in the plane is implicitly assumed. For instance, hexagonal16

graphs are usually defined as a class of subgraphs of a regular hexagonal17

lattice in the plane.18

In this note we are interested in characterizing 1-cycle resonant graphs19

among bipartite 2-connected plane graphs. In 1994, Guo and Zhang [9]20

proved a characterization of k-cycle resonant graphs among 2-connected21

graphs. The following revised phrasing from 2003 of this latter characteriza-22

tion is due to the same authors [10]:23

Theorem 1.1 ([9]). Let G be a 2-connected graph containing (at least) k24

pairwise disjoint cycles. Then G is k-cycle resonant if and only if G is25

bipartite and for every 1 ≤ t ≤ k and for every set C = {C1, C2, . . . , Ct} of t26

pairwise disjoint cycles in G, G −∪t

i=1Ci has no odd component.27

Recall a folklore mathematical meta theorem “it is easy to generalize.” On28

the other hand a specialization of a general result can bring additional insight29

into the problem considered. As we already said, we are interested in bipartite30

2-connected plane graphs and our aim is to give a characterization of 1-cycle31

resonant graphs among them that is as simple as possible. In particular, this32

characterization should be simple enough to be used by working chemists.33

The rest of the paper is organized as follows. In the rest of the section we34

define concepts needed in this note. In the subsequent section the main the-35

orem is presented and some of its consequences discussed. The final section36

contains a proof of the main result (Theorem 2.1).37

For basic graph theory terminology, the reader is referred to the books [11,38

12].39

A graph is planar if it can be embedded into the plane such that no two40

edges cross and is plane if it is planar and furthermore is equipped with a41

fixed embedding into the plane.42
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A hexagonal system is a 2-connected plane graph in which each inner face43

is a regular hexagon of side length 1. A hexagonal system is catacondensed44

if each vertex lies on the boundary of the outer face, i.e., if it has no inner45

vertices.46

A set of cycles C in a graph G is said to be resonant if the cycles in C47

are pairwise disjoint and there exists a perfect matching M of G such that48

each cycle in C is M-alternating. Let k be a positive integer. A graph G is49

said to be k-cycle resonant or k-cycle extendable [9], if it contains (at least)50

k pairwise disjoint cycles and for every 1 ≤ t ≤ k, and for every set C of t51

pairwise disjoint cycles in G, C is resonant.52

2. Main result and its consequences53

To formulate our result, we need the following technical definition. Let G54

be a 2-connected plane graph. Then we will say that the plane embedding of55

G is simple if for each inner faces F and F ′ of G the intersection graph F∩F ′
56

is either a path or is empty. In less formal words, in a simple embedding the57

common boundary of two adjacent faces is a simple curve. Now our main58

result reads as follows:59

Theorem 2.1. Let G be a bipartite 2-connected plane graph whose embed-60

ding is simple. Then G is 1-cycle resonant if and only if the outer face of G61

is alternating and each inner vertex of G has degree two.62

Note that the outer cycle of a catacondensed hexagonal system is a Hamil-63

ton cycle of even length, hence it is resonant. In 1994, Guo and Zhang [9]64

showed that a hexagonal system is 1-cycle resonant if and only if it is catacon-65

densed [9], a result that was rediscovered by one of the present authors [13].66

Hence, Theorem 2.1 can be seen as a generalization of this result.67

Figure 1 illustrates the conditions of Theorem 2.1. All the four graphs68

are bipartite (their bipartitions are indicated with black and white vertices),69

2-connected and plane. The abstract graphs from figures (a) and (b) are70

isomorphic as the figure indicate. The embedding of the plane graph from71

figure (a) is not simple. (On the other hand, the embedding of the plane72

graph from figure (b) is simple.) It is easy to see that the graph contains73

six cycles and that each of them is alternating, that is, the graph is 1-cycle74

resonant. However, not all inner vertices of the plane graph from figure75

(a) are of degree 2. This example shows that the assumption that G has a76
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simple embedding cannot be dropped. The plane graph from figure (c) has a77

simple embedding, all inner vertices are of degree 2, but the outer cycle is not78

alternating. Finally, the graph from figure (d) has a simple embedding. Its79

outer cycle is alternating, but its inner vertices are not of degree 2. The graph80

is not 1-cycle resonant. For instance, the indicated cycle is not alternating.81

Figure 1: Bipartite, 2-connected, plane graphs

Theorem 2.1 has several consequences, the following is obvious:82

Corollary 2.2. Let G be a bipartite, 2-connected, outerplane graph. Then83

G is 1-cycle resonant.84

Now, let G be a bipartite, 3-connected, planar graph and consider its85

unique embedding in the plane. This embedding is simple. By 3-connectivity,86

G does not contain vertices of degree 2. This implies that G is not outerplane,87

but then it contains inner vertices (that are of degree at least 3). Hence,88

Theorem 2.1 implies that G is not 1-cycle resonant. Thus, we have:89

Corollary 2.3. Let G be a bipartite, 3-connected, planar graph. Then G is90

not 1-cycle resonant.91
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In view of Corollary 2.3, it is natural to define a plane graph to be k-92

resonant if each set of at most k disjoint faces is resonant. For research in93

this direction see the work of H. Zhang and his co-workers [5, 6, 7, 8].94

3. Proof of Theorem 2.195

For the proof of our main result we recall several concepts and known96

results.97

Let e be an edge. Join the two vertices of e by an odd path P1, the first98

ear. A sequence of bipartite graphs can be built as follows: For each r ≥ 1,99

assume that e+P1+· · ·+Pr := Gr has already been constructed. Join any two100

vertices in different color classes of Gr by an odd path Pr+1, an ear, having101

no other vertex in common with Gr. The decomposition e + P1 + · · ·+ Pr is102

called an ear decomposition of Gr [14, 15].103

A graph is elementary if it is connected and the union of all its perfect104

matchings is a connected subgraph. It can be shown that a graph is elemen-105

tary bipartite if and only if it has an ear decomposition [14, 15].106

Let G be a plane elementary bipartite graph other than K2. (It can be107

shown that an elementary bipartite graph other than K2 is necessarily 2-108

connected [15].) An ear decomposition of G, say e + P1 + · · · + Pr = G, is109

called a reducible face decomposition if e + P1 := G1 is the boundary of an110

inner face of G and for each 1 ≤ i ≤ r − 1, Pi+1 lies in the outer face of111

e + P1 + · · · + Pi = Gi. It is easy to see that the number of ears equals the112

number of inner faces of G.113

We will apply the following results from [16]:114

Theorem 3.1. Let G be a bipartite 2-connected plane graph. Then G is115

elementary if and only if each face of G is alternating.116

Theorem 3.2. Let G be a bipartite 2-connected plane graph. If G has a117

perfect matching and all the inner vertices of G have the same degree then118

the following statements are equivalent:119

(i) the graph G is elementary,120

(ii) each inner face of G is alternating,121

(iii) the outer face of G is alternating.122

Theorem 3.3. Let G be a plane elementary bipartite graph other than K2.123

Then G has a reducible face decomposition.124
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Now everything is ready for the proof of Theorem 2.1.125

Let G be 1-cycle resonant. Then in particular the outer face is alternating.126

It remains to prove that each inner vertex of G has degree 2. Assume that127

there exists an inner vertex v0 whose degree is not equal to 2. The degree128

of v0 is at least 3 since G is 2-connected. Let v1, v2, . . . , vk be the neighbors129

of v0 in the clockwise order with respect to the embedding, where k ≥ 3.130

For i = 1, 2, . . . , k, let Fi be the face of G that contains the edges v0vi and131

v0vi+1, where the indices are taken modulo k throughout. For i = 1, 2, . . . , k,132

let Pi+1 := Fi ∩ Fi+1. As the embedding is simple, Pi+1 is a path.133

Case 1: There exists i ∈ {1, 2, . . . , k} such that the number of inner vertices134

of Pi+1 is odd.135

Let C be the cycle of G obtained from Fi∪Fi+1 by deleting the inner vertices136

of Pi+1. It is clear that G−C has an odd component, the path obtained from137

Pi+1 by deleting its ends. Hence, by Theorem 1.1, G is not 1-cycle resonant,138

a contradiction.139

Case 2: Case: For each i ∈ {1, 2, . . . , k}, the number of inner vertices of140

Pi+1 is even.141

Let C be the cycle obtained from F1 ∪ F2 ∪ · · · ∪ Fk by deleting v0 and the142

inner vertices of P1, P2, . . . , Pk. It is clear that G−C has an odd component.143

Hence, by Theorem 1.1, G is not 1-cycle resonant, a contradiction.144

For the converse let the outer face of G be alternating and let each inner145

vertex of G be of degree two. We proceed by induction on r, the number of146

inner faces of G, to show that G is 1-cycle resonant. The result is trivially147

true for r = 1.148

Assume that the result is true for r = s, s ≥ 1, and let r = s+1. By The-149

orem 3.2, G is elementary. Theorem 3.3 implies that G has a reducible face150

decomposition. Let e+P1+ · · ·+Ps+1 = G be a reducible face decomposition151

of G. (Recall that G has s + 1 inner faces.) Delete the inner vertices of Ps+1152

(and their incident edges) from G, thus, obtaining e + P1 + · · · + Ps := G′.153

This plane graph G′ is an elementary bipartite graph (by the ear decomposi-154

tion) other than K2, hence, is 2-connected. The embedding of G′ is simple.155

Theorem 3.1 implies that the outer face of G′ is alternating and it is clear156

that each inner vertex of G′ has degree 2. Hence, by the inductive assump-157

tion, G′ is 1-cycle resonant. Consider a cycle C of G. If Ps+1 has length ≥ 3,158

denote by M̂ the unique perfect matching of the path obtained from Ps+1159

by deleting its ends, otherwise, i.e., if Ps+1 has length 1, denote by M̂ the160
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empty set.161

Case 1: C does not contain an edge of Ps+1.162

In this case C is a cycle of G′, hence, is alternating in G′, i.e., there exists163

a perfect matching of G′, M ′ say, such that C is M ′-alternating. It is clear164

that M ′∪M̂ is a perfect matching of G such that C is (M ′∪M̂)-alternating.165

Case 2: C contains an edge of Ps+1.166

Then C contains Ps+1. The union of the path Ps+1 and an odd path of the167

boundary of G′, P ′ say, is a cycle, the boundary of an inner face of G.168

Case 2.1: C contains an edge of P ′.169

Since each inner vertex of G has degree two, it follows that C contains the170

whole path P ′. Hence, C = Ps+1 ∪ P ′. The outer face of G′ is alternating171

in G′. Hence, there exists a perfect matching M ′ of G′ such that P ′ is M ′-172

alternating and the edge(s) of P ′ incident with the ends of P ′ is (are) in M ′.173

Again, note that M ′∪ M̂ is a perfect matching of G such that C = Ps+1 ∪P ′
174

is (M ′ ∪ M̂)-alternating.175

Case 2.2: C does not contain an edge of P ′.176

Let P ′′ be the path obtained by removing the inner vertices of Ps+1 (and the177

incident edges) from C. Thus, C = Ps+1 ∪ P ′′. It is clear that P ′ ∪ P ′′ is a178

cycle in G′, hence, is alternating in G′. Thus, there exists a perfect matching179

of G′, M ′ say, such that the edge(s) of P ′′ incident with the ends of P ′′ is180

(are) in M ′. It is clear that M ′ ∪ M̂ is a perfect matching of G such that181

C = Ps+1 ∪ P ′′ is (M ′ ∪ M̂)-alternating.182

This proves Theorem 2.1.183
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