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Bipartite graph

1. Introduction

Let G = (V(G), E(G)) be a graph, S C V(G), let d and p be nonnegative integers, and let d(-, -) denote the standard
shortest-path distance. Then S is a d-distance dominating set of G if for every vertex u € V(G)\ S there exists a vertex w € S
such that d(u, w) <d, and S is a p-packing of G if d(w, w’) > p+1 for every two different vertices w, w’ € S. The d-distance
p-packing domination number ydp(G) of G is the minimum size of a set S which is at the same time d-distance dominating
set and p-packing. (If for some parameters d and p such a set does not exist, set ydp (G) =00.)

The d-distance p-packing domination number was introduced by Beineke and Henning [1] under the name (p,d)-
domination number and with the notation i, 4(G). With the intention of placing it within the trends of contemporary graph
domination theory, the notation ydp (G) was recently proposed in [2] and we follow it here. In [2] it is proved that for every
two fixed integers d and p with 2 <d and 0 < p <2d — 1, the decision problem whether ydp(G) <k holds is NP-complete

for bipartite planar graphs. Several bounds on ydp (T), where T is a tree on n vertices with £ leaves and s support vertices

are also proved, including )/20

from the literature.

(T) > % and ydz(T) < ”72“/?%‘“, d > 2. These results improve or extend earlier results
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In this paper, our focus is on the invariants ydo and yd1. For the first one we will simplify the notation to 4 because it
has been investigated under the name of d-distance domination number of G with the notation y,4(G), see the survey [8]. We
also refer to [3] for algorithmic aspects. For the total version of this concept see [4]. The second invariant y[} deals with
d-distance dominating sets which are 1-packings. Note that a set of vertices is a 1-packing if and only if it is an independent
set, hence in this case we will say that )/d] (G) is the d-distance independent domination number of G, cf. [5,7,8].

Meierling and Volkmann [10], and independently Raczek, Lemaiiska, and Cyman [12], proved that if d > 1, and T is a
tree on n vertices and with ¢ leaves, then y,4(T) > “E‘éﬁzd. On the other hand, Meir and Moon [11] proved that if d > 1
and T is a tree of order n >d + 1, then y4(T) < #. About twenty years later, in 1991, Topp and Volkmann [13] gave a
complete characterization of the graphs G with y,4(G) = d”?. In 1994, Beineke and Henning [1] proved that if d € {1, 2, 3}

and T is a tree of order n >d + 1, then ydl(T) < %. Moreover, they closed their paper with the following:

Conjecture 1.1 [1]Ifd > 1 and T is a tree of order n > d + 1, then y,} (T) < FEn g

We point out here that in the book’s chapter [8], Conjecture 1.1 is stated as [8, Theorem 71] with the explanation that
the above-mentioned bound on y4(T) due to Meir and Moon [11] is proved in such a way, that the d-distance dominating
set is also independent. Anyhow, in the next section we prove that the bound holds for all bipartite graphs. In Section 3

we then characterize trees T of order n for which y; (T) = ﬁ holds. In Section 4, we prove that if T has ¢ leaves, then

yd1 (T) < % (provided that n — £ > d), and yd] (T) < % (provided that n > d). In both cases, the trees that attain the

equality are characterized. Using the fact that y4(T) < yd](T), we also derive analogous bounds for y4(T) and characterize
trees attaining those bounds. In particular, if T is a tree with ¢ leaves and of order n > d + ¢, then

=
~

, ifn<d+1),
ya(T) <y (M) <3 . ifn=d+1)e,

ML ifn>d+ 1),

=g

and the upper bounds are best possible. We conclude the paper with a conjecture.

In the rest of the introduction additional definitions necessary for understanding the rest of the paper are given. For
a positive integer n we will use the convention [n] = {1,...,n}. Let G be a graph. The degree of u € V(G) is denoted by
degq (u) or deg(u) for short. Further, diam(G) is the diameter of G and L(G) is the set of its leaves, that is, vertices of
degree 1. We call a d-distance p-packing dominating set of G of size ydp(G) a ydp(G)-set. When G is clear from the context,
we may shorten it to ydp -set. A double star D; s is a tree with exactly two vertices that are not leaves, with one adjacent to
r > 1 leaves and the other to s > 1 leaves. When we say that a path P is attached to a vertex v of a graph G, we mean that P
is disjoint from G and that we add an edge between v and an end vertex of P.

2. Bounding y, for bipartite graphs
For the main result of this section, we first prove the following.

Theorem 2.1. If d > 1 is an integer and G is a connected bipartite graph of order at least d + 1, then V (G) can be partitioned into
d + 1 d-distance independent dominating sets.

Proof. Set Z =diam(G).

If Z <d, then each vertex is a d-distance dominating set of G. Since G is bipartite, a required partition of V(G) can be
constructed by considering a bipartition (X, Y) of G and partitioning X and Y into d + 1 parts appropriately. Hence assume
in the rest that Z >d + 1.

Let P be a diametrical path of G, let x and y be its end-vertices, and root G at x. Let I';, 0 <i < Z, be the distance levels
with respect to x, that is, I'; = {u € V(G) : d(x,u) =i}. Consider now the sets

Si= Urk(d+1)+,’, ie{0,1,...,d}.
k>0

We claim that {Sg, S, ..., Sq} is a partition of V(G) as stated in the theorem.

Since distance levels of a bipartite graph form independent sets and as d > 1, each set S; is independent. Hence it
remains to prove that these sets are d-distance dominating sets.

Let u be an arbitrary vertex of G and assume that u € I's, where 0 <s < Z. If s > d, then there exists a path of length
d between u and a vertex from I's_4. This already implies that u is d-distance dominated by each of the sets S;, i €
{0,1,...,d}. Hence assume in the rest that s < d. Then by a parallel argument, u is d-distance dominated by each of the sets
Si,ie€{0,1,...,s}. It remains to verify that u is d-distance dominated by each of the sets S;, i € {s+1,...,d}. For this sake
consider an arbitrary, fixed t e {s+1,...,d}. Let Q be a shortest u, y-path and recall that by our assumption, d(u, y) < Z.
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Pq

o4 5

Fig. 1. The P4-corona H o P4 of a graph H.

Since every edge of G connects two vertices from consecutive distance levels T';, the path Q necessarily contains a vertex
w € I't. We claim that d(u, w) <d. Suppose on the contrary that d(u, w) > d. Since Q is a shortest path, d(w, y) > Z —t.
Using these facts together with t <d, we get

Z<d+(Z—-t) <du,w)+dw,y)=du,y)<Z,

which is not possible. We can conclude that d(u, w) < d. This means that u is d-distance dominated by S; and we are
done. 0O

In connection with Theorem 2.1 we add that Zelinka [14] proved that if d > 1 and G is a connected graph of order at
least d + 1, then V(G) can be partitioned into d + 1 disjoint d-distance dominating sets. In this general case, however, the
partition need not be into independent sets.

The following is an immediate consequence of Theorem 2.1.

Corollary 2.2. Let d > 1 be an integer. If G is a bipartite graph of order n > d + 1, then yﬂ,l G) < #.

Corollary 2.2 generalizes [8, Theorem 71]. On the other hand, the upper bound in Corollary 2.2 may not hold if G is not
bipartite. For example, for n >d + 2 and k > 2, let G, x4 be the complete graph K, with k copies of Py attached to each
vertex. Clearly, |V (Gp k,q)| =n(dk+1). While y4(Gp r.4) =n, a d-distance independent domination needs much more vertices,

and it is not hard to deduce that yd] (Gnkd) =14+ m—1k. Asn>d+2 and k > 2, we infer that )/d] (Gnkd) > W

3. Trees that attain equality in Corollary 2.2

Let d > 1 be an integer. The Pg-corona H o P4 of a graph H is the graph obtained from H and |V (H)| disjoint copies of
P4, by attaching a copy of P4 to each vertex of H, see Fig. 1.
If d > 2, then let B; be the family of P4-coronas of bipartite graphs, that is,

Bg={Ho Py:H isabipartite graph}.

Note that P41 € By4. Observe also that each G € By, where G = H o Py, is a bipartite graph with |V (G)| = (d + 1)|V(H)|.
The following proposition shows that the upper bound in Corollary 2.2 is best possible.

Proposition 3.1. If G € B is of order n, then y (G) = 717.

Proof. Let G = H o P4 for some bipartite graph H. By the definition of H o Py, the set L(G) is a d-distance independent
dominating set of G. Thus, ydl G) <|L(G)|=|V(H)| = ﬁ.

Conversely, for each u € V(H), let G, be the subgraph of G induced by u and the vertices of the copy of P4 attached to
u. Clearly, Gy = Pgyq. If D is a ] (G)-set, then |[D NV (Gy)| = 1. Thus, ¥/ (G) =|D| > |V (H)| = i O

Note that if G is a connected bipartite graph of order n =d + 1, then y; G)=1= #, and y; (Cogq2) =2 = ﬁ—““f.
Moreover, if d =1, then yf(Kr,r) =r= % = % In 2004, Ma and Chen gave an equivalent description of the bipartite
graphs G of order n with yll G) = % see [9, Theorem 1]. They also proved an explicit characterization of such a family for
the case of trees. To state the result, let ¢; be a family of trees defined by the following recursive construction.
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t>1

Fig. 2. A tree T from the family ¢;, where T’ is the double star induced by the black vertices.

(i) Ky € 1.
(ii) If T" € ¢4, and T is obtained by joining the center of a new copy of K1 (t > 1) to a support vertex v of T' and adding
t — 1 leaves at v, then T € ¢.

See Fig. 2 for an illustration.!
The result of Ma and Chen for trees now reads as follows.

Theorem 3.2. ([9, Corollary 1]) If T is a tree of order n, then yf (T)= % ifand only if T € ¢1.

We shall focus on the general case for d > 2, and give a complete characterization of the trees achieving equality in the
upper bound of Corollary 2.2. Set

Tq={T*oP4:T* is anon-trivial tree}.

Note that 7y does not contain the path Pg.q. Since 74 C 8By, and by Proposition 3.1, ydl(T) = T for each tree T € T4 of

a+1
order n. Moreover, if T is a tree of order n =d + 1, then we also have yd1 (MH=1= #.

In a tree T and for a vertex v € V(T), let L(v) be the set of leaves of T that are neighbors of v in T. Root T at some
vertex. Let T, be the subtree induced in T by v and its descendants, and let T — T, =T — V(T). A vertex of T is called a
Pg4-support vertex if it is attached to a copy of Pg4. For each H € 7y, every vertex of H* is a Py-support vertex of H, where
H = H* o P4 for some non-trivial tree H*. In particular, a P1-support vertex of T is just a support vertex of T. A vertex of
T is a (P;, Pj)-support vertex if both a copy of P; and a copy of P; are attached to it. In particular, a (P;, P;)-support vertex
has at least two copies of P; attached. The d-subdivision of T is the tree obtained from T by subdividing each edge d-times.
Then the 1-subdivision of T is just the subdivision of T.

Before proving the announced characterization of trees of order n with yd](T) = #, we state the following lemma
which will also be used in the subsequent section.

Lemma 3.3. Let d > 2 and let T be a tree with s = diam(T) > 2d + 1. Suppose that P := v1vy...vsy1 is a diametrical pathin T and
the tree is rooted at vs 1. If there is no Py q-support vertex and no (P;, Pj)-support vertex in T withi € [d — 1] and j € [d], then the
following statements hold.

(i) Ifke{2,...,d}U{s—d+2,...,s}, then deg(vy) = 2.
(ii) Ifk € {d +1,s — d + 1}, then deg(vy) > 3.
(iii) For every v € V(T), if v is the only vertex with degr (v) > 3 in the subtree T, then T, is isomorphic to the (d — 1)-subdivision
of a star Ky ¢ witht > 2.
(iv) The subtree Ty, is isomorphic to the (d — 1)-subdivision of a star Ky ¢ with t > 2.
(v) If s=2d + 1, then T is obtained by taking the (d — 1)-subdivisions of two stars Ky ¢, with t; > 2 and K1, with t; > 2, and
adding an edge between the centers.

Proof. (i)-(ii) According to the conditions, there is no (Pq, P1)-support vertex in T. That is, every vertex of T is adjacent
to at most one leaf, and in particular, deg(v,) = 2. Further, if d > 3, then deg(vs) = 2, since otherwise v3 would be a

! For the definition of ¢1, we note that both vertices of a K, are support vertices. Then, (ii) can be applied to K3, and this step results in the double star
D, for every r > 1. It shows that the family ¢; is the same as {K,}U ¢ in [9].



C. Bujtds, V. Irsi¢ Chenoweth, S. KlavZar et al. Discrete Mathematics 349 (2026) 114972

(P;, P)-support vertex with 1 <i <2 <d — 1 contradicting the condition. Similarly, deg(v,) =2 holds for all k € {2, ...,d}.
By symmetry, the same is true for vy if ke {s—d+2,...,s}. This proves (i). The assumption that there is no pendant P
in T directly implies (ii).

(iii) If degr(v) > 3 and degr, (u) <2 for every further vertex u from V(Ty), then at least two pendant paths are attached
to v. Then, by the conditions in the lemma, every path attached is isomorphic to Pg.

(iv)-(v) As P is a diametrical path, a vertex u € V(Ty,,,) different from vg4,; cannot be a Py-support vertex. Part (iii)
then implies (iv). If we re-root T at the vertex v, the same property holds for the subtree induced by vs_g4q and its
descendants in the re-rooted tree. This directly implies (v) for the case of s=2d+1. O

Theorem 3.4.[fd > 2 and T is a tree of order n, then yd1 (T) = ﬁ holdsifandonlyifn=d+1orT € T4.

Proof. If T is of order n =d + 1, then, clearly, yd1 (M=1= #, and if T € 74, then by Proposition 3.1, we have yd] (T) =
71+ The proof of the necessity is by induction on n. If ydl(T) = 71, then n = (d + 1)q for some integer ¢>1.If g =1,
then n=d + 1. So, we may assume that ¢ > 2 and n > 2(d + 1). If diam(T) < 2d, then ydl(T) =1<2@D o n_ | the

d+1 = d+1-
continuation, we assume that diam(T) > 2d + 1 and yd] (T) = #.

Claim A.Ifi € [d — 1] and j € [d], then there is no (P;, P j)-support vertex in T.

Proof. Suppose, to the contrary, that v is a (P;, Pj)-support vertex in T and i < j. Let P':=x1x2...x; and P":=y1y,...y;
be two copies of P; and P; attached to v in T, where x;v,y;v € E(T). Note that d(x;,v) =i < j =d(y1,v). Consider
T"=T—-V(P). Thenn' = |V(T)|=n—-i>2(d+1)—(d—-1)=d+ 3. Let D’ be a y;(T/)—set. If veD’, then D’ is also
a d-distance independent dominating set of T. If v ¢ D/, then |D’| = ydl(T’) implies |D’ N V(P”)| < 1. For the subcase
D’ NV (P")| =1, we may assume that y; € D’. Then d(x, y;) <d for each k € [i]. For the subcase |[D’ NV (P")| =0, in
order to d-distance dominate yq in T’, there exists a vertex u € D’ such that dr/(u, y1) <d. Since i < j, it holds that
dr(xg, u) <dr(u,yq1) =dr(u,y;) <d for each k € [i]. Thus, D’ is always a d-distance independent dominating set of T.
Corollary 2.2 then implies

! n

<
d+1 d+1
which contradicts the assumption yd] (T = %. This proves Claim A. (o)

Yi(M) <D=y (T <

)

Claim B. If T has a P41-support vertex v, then T € 7.

Proof. Let P’ :=x1X3...X411 be a copy of P4, attached to v, where x4, 1v € E(T). Then deg(x;) =2 for all k e [d+ 1]\ {1}
and deg(x1) = 1. Consider T"=T — V(P’). Thenn' = |V(T")|=n—(d+1)>2(d+1)—d—1=d+1. Let D’ be a yd](T’)—set.
Then D’ U {x1} is a d-distance independent dominating set of T. By Corollary 2.2,
4
1 , 1 n n—d+1) n
T)<|D|+1= TH+1< +1l=—+1= ,
va (D =D va (1) ~d+1 d+1 d+1

and the equality holds if and only if yd] (T) = yd] (T"y + 1 and yd] (T = %. The induction hypothesis therefore implies
n=d+1orT €7y

Suppose n’ =d + 1. Then n=2(d + 1) and T is the tree obtained from a copy of P4, and a tree T’ of order d + 1 by
joining x4,1 to a vertex v of T’. Note that diam(T’) < d with equality if and only if T' = P4, 4. Unless T' = P4, 1 and v is a
leaf of T, {xd+.1} is a d-distance independent dominating set of T, implying that ydl (M=1< 2(;:11) = ﬁ, a contradiction.
For the exception, we observe T = P41y € 74-

Suppose T’ € T4. Let T' =T/ o P4 for some non-trivial tree T,. If v € V(T,), then T =T* o Py € 74, where T* is the tree
obtained from T) by adding a new vertex x4.1 and the edge xq1v to it. If v ¢ V(T}), then let u; be the P4-support vertex
of T/, such that the attached copy of P4 contains v. Since |V (T})| > 2, there exists a neighbor u; € V(T}) of uy. Let u and
u), be the leaves of T’ corresponding to u; and uj, respectively. Note that v = u} is possible, and D = (L(T") \ {u},u5}) U
{X4+1, u2} is a d-distance independent dominating set of T. Thus,

¢ n

<

d+1 d+1

that contradicts our assumption on T and finishes the proof of Claim B. (o)

Y4 (T) < D = |L(T)| = |V(T))| =

Claim B shows that if yd1 (T) = % and T contains a pendant path Py,1, then T € 74. The remaining part of the proof
verifies that there is no tree T with |V(T)| >d+ 1 and yd](T) = # that does not contain a pendant Py4,1. From now on,

we suppose that there is no Pg4y1-support vertex in T and that y;(T) = #.

5
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Let s =diam(T) >2d+ 1 and P :=vqvy...Vsy1 be a diametrical path in T. Then deg(vi) = deg(vs+1) = 1. Root T
at vs4q. Our assumption on the non-existence of Pg.q-support vertices and Claim A imply that the properties stated in
Lemma 3.3 (i)-(v) are valid for T.

If s =diam(T) =2d + 1 then, by Lemma 3.3 (v), the tree T can be obtained from the (d — 1)-subdivisions of two stars
K1, and Ky, with 1 >t > 2 by joining the centers with an edge. Then N(vg44,) is a d-distance independent dominating
set of T. Since d > 2, it gives the following contradiction:

(tr+Dd+ty+1 - 2dty + 2 <d(t1+t2)+2_ n
d+1 d+1 ~ d+1 T d+1

So, we may assume that diam(T) > 2d +2 and n > 2d + 3. Regarding v, we divide the rest of the proof into two cases
and prove that in both we get a contradiction.

Vi (M) < IN(vgs) =t +1=

Case 1. Each vertex v in N(v4y2) \ {Vg+1, V4+3} is of degree at least 3.
By Lemma 3.3 (iii) and since P is a diametrical path, for each v € N(v442) \ {v4+3}, the subtree T, is isomorphic to the
(d — 1)-subdivision of a star Ky, with t, > 2. Clearly, Ty, , is contained in Ty, ,, and therefore, |V (Ty,,,)| > 2d + 2.
Let T'=T —Ty,,,. Since {v443,...,Vaa43} € V(T'), we obtain

d+1<n'=|V(T)|<n—-2d-2.

Let D’ be a y(}(T’)—set. Then D = D’ U (N(vgy2) \ {v4y3}) is a d-distance independent dominating set of T. Let
p = deg(vgyo). Observe that p > 2 and n’ <n—(2d+1)(p — 1) — 1. By Corollary 2.2, we get the following contradiction:

Yi(M <D=y (T +p-1
I

<
—d+1
<n—(2d+1)(p—1)—1+
- d+1
_n—d(p—l)—l
- d+1

+p-1

p—1

n
Case 2. There is a vertex v in N(vg42) \ {Vd+1, V4+3} with deg(v) < 2.
If deg(v) =2 and T, contains a vertex u with deg(u) > 3, then Lemma 3.3 (iii) implies the existence of a leaf w €
V(Ty) with d(w, u) =d. It follows then that d(w, vg13) >d+ 2 and d(w, vs41) > s+ 1 =diam(T) + 1, a contradiction.
Therefore, deg(v) <2 implies that T, is a path and v4,, is a P;-support vertex for some i > 1. By our assumption,
i <d. Further, by Claim A, we have the following properties.
e If vy, is a P;j-support vertex of T for some i € [d — 1], then there is only one pendant path attached to v4;;, and it
is clearly of order i.
e If vq, is a Py-support vertex of T, then v4, is not a P;-support vertex of T for any i € [d — 1], and there is at least
one copy of Py attached to vg4).
Case21. L(vgip) #0.
In this case v4,, is a Pi-support vertex of T. Let x € L(v4,2) and T’ =T — x. Now for each vertex v € N(v4y2) \ {V443},
the subtree T/, is isomorphic to the Py4-subdivision of a star K;, for t, > 2. Clearly, ' = |[V(T")|=n—1>2d +2.
Let D’ be a yd] (T’)-set. If vq4,5 € D/, then D’ is also a d-distance independent dominating set of T. If v4., ¢ D’, then

since |D' N V(T(,M)l > 1, we may assume that vg4.1 € D’. The set D’ is also a d-distance independent dominating set

of T. For any subcase, y/(T) < |D'| =y} (T') < % = % < g5 by Corollary 2.2.
Case 2.2. L(vgqn)=0.

In this case, v44, is a P;-support vertex of T for some i € [d] \ {1} (where if i =d, then there could be multiple copies
of P4 attached to vg4,3). Let P’ :=x1x,...x; be the (selected) copy of P; attached to v4.,, where x;v4,, € E(T). Then
deg(xy) =2 for all k € [i]\ {1} and deg(x1) =1. Consider T"=T — Ty, — Ty,. Then ' = |V(T")|=n—d—i<n—-d—2
and n’ >d+ 3 since v4y1, Vdi2, ..., Vades € V(T).

Let D’ be a )/d](T’)-set. Then |D’ N {vgy1, Vaio}l < 1. If vgy1 € D’ and vy, ¢ D/, then let D = D' U {x;}. If vq 1 ¢ D’
and vg4.p € D/, then let D = D’ U {vq}. If v44q,vgs2 ¢ D, then since v4,q is attached to at least two copies of Py,
we have D' N (V(Tyg D\ V(Tyy) #0. Let D= DU {vgq1, xi} \ (V(Tyy,,) \ V(Ty,)). For any subcase, D is a d-distance

independent dominating set of T, and yd] (M <|D|+1= ydl(T/) +1< % +1< ”Ejﬁz +1< # by Corollary 2.2.

This completes the proof of Theorem 3.4. O
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4. Upper bounds on y; and yd‘ of trees in terms of the order and the number of leaves

For any tree T of order n and with ¢ leaves, the set of non-leaves is a dominating set of T. Hence, y1(T) <n — £. Note
that the equality holds if and only if each vertex of T is either a leaf or a support vertex. If there exists a vertex u € V(T)
that is neither a leaf nor a support vertex, then V(T) \ ({u} UL(T)) is a dominating set of T, implying that y1(T) <n — £.
On the other hand, the upper bound yf (T) <n— ¢ is not true for every tree T. For example, let T' =T* o P1 € 77 for some
tree T*, and let T be the tree obtained from T’ by adding r > 2 leaves to each vertex of T'. It can be checked that

Vi (T) = V(T + 1V (T*)| > 2|V(T*)] =200+ DIV (TH)| = 2r|V(T")| =n — ¢.

Set now

Fo={T:T—-L(T)et},
and if d > 3, then set

Fa={T: T —L(T) is a tree of order d or belongs to 741 } .
Note that each graph from #y4, d > 2, is a tree, and the following property is equivalent to the definition of .

(x) If d >3, a tree T belongs to ¥4 if and only if it can be obtained from some tree T’, which satisfies |V (T")| =d or
T’ € T4_1, by adding at least one pendant vertex to each leaf of T/, and some number (possibly zero) to other vertices
of T'. For d =2, a tree T belongs to ¥ if and only if it can be obtained similarly from a tree T’ € ¢;.

For d > 2, we prove the following result.

Theorem 4.1. Let d > 2 be an integer and T be a tree of order n and with ¢ leaves. Ifn — £ > d, then ydl (T) < % with equality if and
onlyif T € Fy.

Proof. Consider the tree T" =T — L(T). Let n’ = |V(T")|=n— ¢ >d. Let D’ be a ydlil(T/)-set. By Corollary 2.2, |D'| =
ydl_1 (T < %. Moreover, D’ is also a d-distance independent dominating set of T, implying that

’
W =pi=yl, =T ="25 ()

Assume that y, (T) = 5% holds for a tree T. Inequalities in (1) therefore imply y} (T) =y} ,(T") = %. By Theorems 3.2
and 3.4, we know that T’ € ¢y when d =2, and T’ is a tree of order d or T’ € 74_1 when d > 3. Since T' =T — L(T), we
conclude T € Fy.

It remains to prove that ydl(T) > % holds for every T € F4. Consider first a tree T from 3 and let T' =T — L(T).
Hence T’ € £1. We will prove the inequality by induction on T’ according to the recursive definition of ¢;. If T' = K3, then
T is a double star and y;(T) =1= % If "= D;,, for r > 1, then any yf (T')-set is a smallest 2-distance independent
dominating set of T, implying that

2r+2 n n—¢
1 1,77/

T) = THh=r+1= = — =

V> (T) =y, (T") ) 3 )

Assume next that T'=T — L(T) is a tree from ¢; which is neither K> nor a double star. Let T) =T’ and let T{ be the
tree from ¢; such that T/ is obtained from T; by the recursive construction of ¢;, that is, T/ can be obtained by joining the
center u of a new copy of Ky (t > 1) to a support vertex v of T7, and adding ¢t — 1 leaves at v. For i € [2], let T; be a tree
from %3, which is obtained from T/ according to (x). Moreover, let n; = |V(T))|, n; = |V (T;)|, and ¢; = |L(T})|, i € [2].

Assume that y21 (T1) = % We are going to prove that yzl (Ty) > "2562. Note that n; =n; — ¢; and ny, =n} + 2t. Let D>
be a y21 (T7)-set that contains as few leaves from T, as possible and let D1 = D, N V(Ty). If v € Dy, then u ¢ D, and, by
the minimality of |D; N L(T3)|, we have LTé (u) € D3. Now D1 =Dj \ LTé (u) is a 2-distance independent dominating set of
Tq, implying that y21 (T1) <|D1] =|D3| —t. If v ¢ D5, then we may assume that u € D;. Also, LTé W)\ LT; (v) C D3 holds by
the minimality of |D N L(T>)|. Further, @ LT; (v) € D1, and v and the leaves added to LT; (v) in T1 will be independently
dominated by LTQ (v). Hence, D1 = Dy \ {u}\ (LTé(v) \ LT{ (v)) is a 2-distance independent dominating set of Ty, implying
that yzl(T1) <|D1|=|D;| —t. Hence no matter whether v belongs to D, or not, we have

1 1 ny —41 n/z —n/l n’2 ny — 4
Vs (T2) =2 5 (T1) + 3 + 3 ) )
Assume now that T € 3 and d > 3. For T'=T — L(T), let n' = |V(T")| =n— ¢ > d. If n’ =d, then y/(T) > 1= %~ If

T’ € T4—1, then let T" =T* o P4_; for some non-trivial tree T*. For each u € V(T*), let T, be the subtree of T’ induced

7
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by u and the vertices of the copy of P4_; attached to u, and let T, be the subtree of T induced by V(T,) and the leaves
added to V(T;) in T.If D is a y(}(T)—set, then |D NV (Ty)| > 1 for every u € V(T*). Thus, we have

)= D= v(h =L ==t
vt =1E= 4T a

This completes the proof of Theorem 4.1. O

We note that the condition of n > d + ¢ is necessary in Theorem 4.1. Let T’ be a tree of order at most d — 1. Consider
the tree T obtained from T’ by adding at least one pendant vertex to each leaf of T" and some number to other vertices of
T'. Then n’ =|V(T')|]=n—¢ <d—1 and we may infer ydl(T) >1> d;l > %.

Favaron [6] proved that if T is a tree of order n > 2 and with ¢ leaves, then y, (T) < M, and gave the full list of

extremal trees for this bound. Our next theorem extends Favaron’s result to all d > 2.

Theorem 4.2. Let d > 2 be an integer and T a tree of order n and with € leaves. If n > d, then yd] (T) < Ziz with equality if and only
if T € {Pg}UTg.

Proof. The proof is similar to that of Theorem 3.4, the only difference lies in the fact that here, while proving the upper
bound, we simultaneously detect the extreme trees. First, we prove the sufficiency of the equality. If T = Py, then ydl(T) =

_n+
1= 92 = L If T € 7y, then by Proposition 3.1, ] (T) = 7% = djgl e
To prove the upper bound and that the equality implies T € {P4} U 74, we will clarify the structure of T in two claims.
On the other hand, we will consider the diameter of T, and pay special attention to the two terminals of a diametrical path
(by then we will be able to use the two proved claims). We proceed with the proof by induction on n. If diam(T) < 2d,

then ¥} (T) =1= 42 < L. The equality holds if and only if n=d and ¢ = 2, implying that T = P4. So, we may assume

n+t

a2 = d+2°
that diam(T) > 2d + 1 and n > 2d + 2. Note that if £ > d+1, then by Corollary 2.2, yd (T < d+l < gj:g
Claim C.Leti e [d — 1] and j € [d] withi < j. If T has a vertex v that is a (P;, P j)-support vertex, then yd] (T) < g%.

Proof. Let P’ :=x1xy...x; and P”:=yq1y,...y; be a copy of P; and Pj, respectively, attached to v in T, where x;v, y;v €
E(T). Since n>2d + 2 and |V (P")| < |V(P")| <d, we have deg(v) > 3. Consider T'"=T — V(P’). Then ¢' = |[L(T")|=¢ — 1
and n’ = |V(T’)|=n—i>d+ 3. As in the proof of Claim A it can be proved that there exists a y;(T/)-set D’ that is a
d-distance independent dominating set of T. Using the induction hypothesis, we have

N+l n—i+l—1 n+¢
Ty <= = < .
d+2 d+2 d+2

vi (M <ID'|=y,

This proves Claim C. (o)

Claim D. If T has a P41-support vertex v, then yd1 (T) < giﬁ and if equality holds, then T € Ty.

Proof. Let P’ :=x1x2...X411 be a copy of Pgyq attached to v, where x4.1v € E(T). Then degy (x,) =2 for all k € [d+ 1]\ {1}
and degr (x1) = 1. Consider T =T — V (P’). Since n > 2d + 2, we have deg;(v) > 2. Then ¢ = |L(T’)| = ¢ if degr(v) =2 and
¢/ =1¢—1 if degr(v) > 3. We observe that n’ = |V(T’)|=n—(d+1) >d+ 1 and consider two cases according to the degree
of v.

Case D1. degr(v) > 3.
Let D’ be a y; (T')-set. The set D’ U {x1} is a d-distance independent dominating set of T. By the induction hypothesis,

n+¢ n—d+1)+£-1 n+¢
< +1= +1= ,
d+2 d+2 d+2

and the equality holds if and only if yd (T) = yd (T') +1 and yd](T’) = "d’_té/. Note that n’ >d + 1, so T’ % P4 and
T €T4.

Let T’ =T, o P4 for some non-trivial tree T. Then ¢' = d+1 Since deg(v) > 3, we infer that v ¢ L(T"). If v e V(T}),
then T =T, 0Py € T4, where T, is the tree obtained from T by adding a new vertex x4 to it such that xg4qv € E(T,).
If v¢ V(T,)UL(T’), then let u be the P4-support vertex of T, attached to the copy of P4 containing v, and u’ be the
leaf of T’ corresponding to u. Note that v # v’ and D = (L(T’) \ {u’}) U {x441} is a d-distance independent dominating
set of T. Thus,

V(M) <D Uk} =y (T +1<

n’ n+¢ n—Wd+D+£—-1 n+4
= = < .
d+1 d+2 d+2 d+2

¥4 (T) < |D| = |L(T)| =
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Case D2. degy(v)=2.
Let P”:=Xx1X2...Xq41V be a copy of P4, attached to v/, where vv’ € E(T). Consider T =T — V(P”) =T’ — v. Then
n" =|V(T")l=n—-(d+2)>d, and ¢ = |L(T")| < ¢ with equality if and only if deg;(v') =2. Let D” be a y; (T")-set.
The set D” U {x,} is a d-distance independent dominating set of T. By the induction hypothesis,

" "
1 ” . 1o n" +¢ n—d+2)+¢ n+¢
T)<|D"U{x}|=|D"|+1= T +1< +1< — ,
Ve (T) <] {x2}| =|D"| va (T =9 < 12 i1z
and the equality holds if and only if y; (T) =/ (T")+ 1, ¢"=¢, and y;(T") = ";If”, ie, T” e {Pg}UTq.
Note that degy(v’) =2 and degr(v') = 1. If T” = Py, then T = Pyq.5 € T4. Suppose that T” € T4. Let T" =T} o Py
for some non-trivial tree T. Then ¢” = %. Clearly, v’ € L(T"). Let u’ € V(T}) be the P4-support vertex in T”, which

is attached to the copy of Py containing v’. Since |V(T})| > 2, there exists a neighbor u}, € V(T}) of uj. It is clear
that v’ is the leaf of T” corresponding to u}. Let u) be the leaf of T’ corresponding to u). Since d > 2, the set D =
(L(T")\ {v', u3}) U {u)), X441} is a d-distance independent dominating set of T. Thus, we have

n n"+¢" n—(d+2)+€ n+¢

1 "
T) <|D|=|L(T")| = = = .
va (M = IDI=ILT0I= 7= == d+2 Sd+2

This completes the proof of Claim D. (o)

In the continuation, we may suppose that there is no Py,q-support vertex in T and also that if v is a (P;, P)-support
vertex, then i = j =d. Let s =diam(T) > 2d+1 and let P :=vqv3...Vvs;11 be a diametrical path in T. Root T at vs,1. Hence,
by Lemma 3.3, deg(vy) <2 for each k € [d]U ([s+ 1]\ [s —d + 1]), and deg(vy) > 3 for each ke {d + 1,5 —d + 1}. It also
follows that the subtree Ty,,, is isomorphic to the (d — 1)-subdivision of a star K1, for some t > 2.

If s =diam(T) = 2d + 1, then by Lemma 3.3 (v), T is obtained from the (d — 1)-subdivision of a star K1 and the
(d — 1)-subdivision of a star K1, by joining the centers v41; and vgip. We may assume that t1 >t > 2. Then N(vg4y2) is
a d-distance independent dominating set of T. Since d > 2, we have

d+Dta+d+t2+2

Y4 (T) <IN(va2)| =deg(vaia) =t +1=

d+2
- d+ Dty +dty +t2+2 _ 2d+ Dty +2
d+2 d+2
_dti+t)+2+ i +) nte
- d+2 d+2’
So, we may assume that diam(T) > 2d +2 and n > 2d + 3. Regarding vy, we divide the rest of the proof into two cases

and prove that the strict inequality )/dl (T) < g% holds in each case.

Case 1. Every vertex v in N(vg442) \ {Vdy1. Va4+3} is of degree at least 3.
For each vertex v € N(vg42) \ {v4+3} we have deg(v) > 3, and the subtree T, is isomorphic to the (d — 1)-subdivision
of a star Ky, fort, >2. Let T'=T — Ty,,, and p =deg(vq4y2). It holds that
d+1<n'=|V(T)|<n—-1-Qd+1)(p-1).

Moreover, we have

O=|L(TH|<t—2(p—1)+1=¢—2p—1,

with equality if and only if deg(vg43) =2, and for each v € N(v442) \ {Vays}, tv =2.
Let D’ be a )/d] (T')-set. Then D = D’ U (N(v442) \ {v443}) is a d-distance independent dominating set of T. Since
d>2 and p > 2, by the induction hypothesis we get

/ /

vaM=IDI=ID|+p=1=y{(T)+p-1= = +p—1
n—-1—-QRd+1H(p-1D+¢-—-2p—1
< -1
= d+2 +p
n+f—dip—1)—p—-3 n+¢
= < .
d+2 d+2

Case 2. There is a vertex v in N(vg42) \ {Vda+1, Va+3} with deg(v) < 2.
Since vg4 is not a Pyy1-support vertex and P is a diametrical path, Lemma 3.3 (iii) implies that T, is a pendant path
P; for some i € [d]. Moreover, we have the following.
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e If v4,o is a Pj-support vertex of T for some i € [d — 1], then there is no other pendant path attached to vg.
e If vg, is a Py-support vertex of T, then v4y is not a P;-support vertex of T for any i € [d — 1], and there is at least
one copy of Py attached to vg4;.
Case 2.1. L(vgyp) #0.
Let x € L(v442) and T/ = T —x. Clearly, degr (v412) > 3 and degr/(vg442) > 2. Then ¢/ = |[L(T")|=¢—1and n’ = |V(T')| =
n—1>2d+2. Let D' be a y;(T’)—set. By considering whether v4., is in D’ or not, we observe that D’ can be
chosen such that it is also a d-distance (independent) dominating set of T. By the induction hypothesis, we have
Y (D) < ID| =y (T) < S = Bt < i
Case 2.2. L(vgqp)=9.
Let P’ :=x1xy...x; be a copy of P; attached to v4,, where x;v4,, € E(T). Then i € [d] \ {1}, and deg(x) = 2 for all
k e [i1\ {1}, while deg(x1) = 1. Consider T' =T — Ty, — Tx,. By Lemma 3.3 (ii), deg(v4+1) > 3 and, by our condition,
deg(vgi2) > 3. Therefore, ¢/ = |L(T’)| = £ — 2. We also know that n’ = |V(T")|]=n—d—i<n—-d—2and n' >d+3.
Let D’ be a yd] (T’)-set. Then |D’ N {vg4y1, V4aa}| < 1. As in Case 2.2 of Theorem 3.4, let

D’ U {x;}, if vgy1 € D’ and vgyp ¢ D/,
D={D'U{vq}, ifvgy1 ¢ D and vy, 5 € D/,
DU {vgi1, X} \ (V(Tvg, )\ V(Tv,), ifvayr,va2 ¢ D

For any subcase, D is a d-distance independent dominating set of T. By the induction hypothesis, we have ydl(T) <

D <ID|+1=y](T)+1 < TEE 41 < 0282 4 g 1l

This completes the proof of Theorem 4.2. O

Now we set

Fy={T: T—L(T) e {K2} UT1},

and if d > 3, then set

Ti=Ta.
By Theorems 4.1 and 4.2, we have the following two corollaries, respectively.

Corollary 4.3. Let d > 2 be an integer and T be a tree of order n and with ¢ leaves. Ifn — £ > d, then y4(T) < ”d;‘z with equality if and

only if T € 7.

Corollary 4.4. Let d > 2 be an integer and T be a tree of order n and with ¢ leaves. If n > d, then y4(T) < % with equality if and
onlyif T € {P4} UTg.

Combining the above results with Corollary 2.2, we obtain

Corollary 4.5. Ifd > 2, and T is a tree with £ leaves and of order n > d + ¢, then

it ifn < d+ 1),
va(M <y (M <325, ifn=d+ 1L,

ML ifn>d+ 1)L

Moreover, these bounds are best possible.

5. A conjecture

Recall that Ma and Chen [9] described equivalently bipartite graphs G of order n with )/1] G)= % For d > 2 we pose:

Conjecture 5.1. If d > 2 and G is a connected bipartite graph of order n, then ydl (G) ifandonly if G € {Cyg42}UBgorn=d+1.

__n
T d+1

Since yll Krp)y=r= % = % the condition of d > 2 of the conjecture above is necessary. If Conjecture 5.1 holds true,
then it generalizes Theorem 3.4. Moreover, the result [13, Theorem 3] due to Topp and Volkmann, restricted to bipartite
graphs, gives exactly the same characterization for graphs G with y4(G) = ;= as we pose in Conjecture 5.1 for the d-

a+1
distance independent domination.

10
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