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The d-distance p-packing domination number γ p
d (G) of G is the minimum size of a set of 

vertices of G which is both a d-distance dominating set and a p-packing. In 1994, Beineke 
and Henning conjectured that if d ≥ 1 and T is a tree of order n ≥ d +1, then γ 1

d (T ) ≤ n 
d+1 . 

They supported the conjecture by proving it for d ∈ {1,2,3}. In this paper, it is proved that 
γ 1

d (G) ≤ n 
d+1 holds for any bipartite graph G of order n ≥ d + 1, and any d ≥ 1. Trees T for 

which γ 1
d (T ) = n 

d+1 holds are characterized. It is also proved that if T has ℓ leaves, then 
γ 1

d (T ) ≤ n−ℓ
d (provided that n − ℓ ≥ d), and γ 1

d (T ) ≤ n+ℓ 
d+2 (provided that n ≥ d). The latter 

result extends Favaron’s theorem from 1992 asserting that γ 1
1 (T ) ≤ n+ℓ

3 . In both cases, 
trees that attain the equality are characterized and relevant conclusions for the d-distance 
domination number of trees derived.

© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Let G = (V (G), E(G)) be a graph, S ⊆ V (G), let d and p be nonnegative integers, and let d( · , · ) denote the standard 
shortest-path distance. Then S is a d-distance dominating set of G if for every vertex u ∈ V (G) \ S there exists a vertex w ∈ S
such that d(u, w) ≤ d, and S is a p-packing of G if d(w, w ′) ≥ p +1 for every two different vertices w, w ′ ∈ S . The d-distance 
p-packing domination number γ

p
d (G) of G is the minimum size of a set S which is at the same time d-distance dominating 

set and p-packing. (If for some parameters d and p such a set does not exist, set γ p
d (G) = ∞.)

The d-distance p-packing domination number was introduced by Beineke and Henning [1] under the name (p,d)
domination number and with the notation ip,d(G). With the intention of placing it within the trends of contemporary graph 
domination theory, the notation γ p

d (G) was recently proposed in [2] and we follow it here. In [2] it is proved that for every 
two fixed integers d and p with 2 ≤ d and 0 ≤ p ≤ 2d − 1, the decision problem whether γ p

d (G) ≤ k holds is NP-complete 
for bipartite planar graphs. Several bounds on γ p

d (T ), where T is a tree on n vertices with ℓ leaves and s support vertices 
are also proved, including γ 0

2 (T ) ≥ n−ℓ−s+4
5 and γ 2

d (T ) ≤ n−2
√

n+d+1
d , d ≥ 2. These results improve or extend earlier results 

from the literature.
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In this paper, our focus is on the invariants γ 0
d and γ 1

d . For the first one we will simplify the notation to γd because it 
has been investigated under the name of d-distance domination number of G with the notation γd(G), see the survey [8]. We 
also refer to [3] for algorithmic aspects. For the total version of this concept see [4]. The second invariant γ 1

d deals with 
d-distance dominating sets which are 1-packings. Note that a set of vertices is a 1-packing if and only if it is an independent 
set, hence in this case we will say that γ 1

d (G) is the d-distance independent domination number of G , cf. [5,7,8].
Meierling and Volkmann [10], and independently Raczek, Lemańska, and Cyman [12], proved that if d ≥ 1, and T is a 

tree on n vertices and with ℓ leaves, then γd(T ) ≥ n−dℓ+2d
2d+1 . On the other hand, Meir and Moon [11] proved that if d ≥ 1

and T is a tree of order n ≥ d + 1, then γd(T ) ≤ n 
d+1 . About twenty years later, in 1991, Topp and Volkmann [13] gave a 

complete characterization of the graphs G with γd(G) = n 
d+1 . In 1994, Beineke and Henning [1] proved that if d ∈ {1,2,3}

and T is a tree of order n ≥ d + 1, then γ 1
d (T ) ≤ n 

d+1 . Moreover, they closed their paper with the following:

Conjecture 1.1. [1] If d ≥ 1 and T is a tree of order n ≥ d + 1, then γ 1
d (T ) ≤ n 

d+1 .

We point out here that in the book’s chapter [8], Conjecture 1.1 is stated as [8, Theorem 71] with the explanation that 
the above-mentioned bound on γd(T ) due to Meir and Moon [11] is proved in such a way, that the d-distance dominating 
set is also independent. Anyhow, in the next section we prove that the bound holds for all bipartite graphs. In Section 3
we then characterize trees T of order n for which γ 1

d (T ) = n 
d+1 holds. In Section 4, we prove that if T has ℓ leaves, then 

γ 1
d (T ) ≤ n−ℓ

d (provided that n − ℓ ≥ d), and γ 1
d (T ) ≤ n+ℓ 

d+2 (provided that n ≥ d). In both cases, the trees that attain the 
equality are characterized. Using the fact that γd(T ) ≤ γ 1

d (T ), we also derive analogous bounds for γd(T ) and characterize 
trees attaining those bounds. In particular, if T is a tree with ℓ leaves and of order n ≥ d + ℓ, then

γd(T ) ≤ γ 1
d (T ) ≤

⎧⎪⎨
⎪⎩

n−ℓ
d , if n < (d + 1)ℓ,
n 

d+1 , if n = (d + 1)ℓ,
n+ℓ 
d+2 , if n > (d + 1)ℓ,

and the upper bounds are best possible. We conclude the paper with a conjecture.
In the rest of the introduction additional definitions necessary for understanding the rest of the paper are given. For 

a positive integer n we will use the convention [n] = {1, . . . ,n}. Let G be a graph. The degree of u ∈ V (G) is denoted by 
degG(u) or deg(u) for short. Further, diam(G) is the diameter of G and L(G) is the set of its leaves, that is, vertices of 
degree 1. We call a d-distance p-packing dominating set of G of size γ p

d (G) a γ p
d (G)-set. When G is clear from the context, 

we may shorten it to γ p
d -set. A double star Dr,s is a tree with exactly two vertices that are not leaves, with one adjacent to 

r ≥ 1 leaves and the other to s ≥ 1 leaves. When we say that a path P is attached to a vertex v of a graph G , we mean that P
is disjoint from G and that we add an edge between v and an end vertex of P .

2. Bounding 𝜸 1
d for bipartite graphs

For the main result of this section, we first prove the following.

Theorem 2.1. If d ≥ 1 is an integer and G is a connected bipartite graph of order at least d + 1, then V (G) can be partitioned into 
d + 1 d-distance independent dominating sets.

Proof. Set Z = diam(G).
If Z ≤ d, then each vertex is a d-distance dominating set of G . Since G is bipartite, a required partition of V (G) can be 

constructed by considering a bipartition (X, Y ) of G and partitioning X and Y into d + 1 parts appropriately. Hence assume 
in the rest that Z ≥ d + 1.

Let P be a diametrical path of G , let x and y be its end-vertices, and root G at x. Let Γi , 0 ≤ i ≤ Z , be the distance levels 
with respect to x, that is, Γi = {u ∈ V (G) : d(x, u) = i}. Consider now the sets

Si =
⋃︂
k≥0

Γk(d+1)+i, i ∈ {0,1, . . . ,d} .

We claim that {S0, S1, . . . , Sd} is a partition of V (G) as stated in the theorem.
Since distance levels of a bipartite graph form independent sets and as d ≥ 1, each set Si is independent. Hence it 

remains to prove that these sets are d-distance dominating sets.
Let u be an arbitrary vertex of G and assume that u ∈ Γs , where 0 ≤ s ≤ Z . If s ≥ d, then there exists a path of length 

d between u and a vertex from Γs−d . This already implies that u is d-distance dominated by each of the sets Si , i ∈
{0,1, . . . ,d}. Hence assume in the rest that s < d. Then by a parallel argument, u is d-distance dominated by each of the sets 
Si , i ∈ {0,1, . . . , s}. It remains to verify that u is d-distance dominated by each of the sets Si , i ∈ {s + 1, . . . ,d}. For this sake 
consider an arbitrary, fixed t ∈ {s + 1, . . . ,d}. Let Q be a shortest u, y-path and recall that by our assumption, d(u, y) ≤ Z . 
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H

Pd

Fig. 1. The Pd-corona H ◦ Pd of a graph H . 

Since every edge of G connects two vertices from consecutive distance levels Γi , the path Q necessarily contains a vertex 
w ∈ Γt . We claim that d(u, w) ≤ d. Suppose on the contrary that d(u, w) > d. Since Q is a shortest path, d(w, y) ≥ Z − t . 
Using these facts together with t ≤ d, we get

Z ≤ d + (Z − t) < d(u, w) + d(w, y) = d(u, y) ≤ Z ,

which is not possible. We can conclude that d(u, w) ≤ d. This means that u is d-distance dominated by St and we are 
done. □

In connection with Theorem 2.1 we add that Zelinka [14] proved that if d ≥ 1 and G is a connected graph of order at 
least d + 1, then V (G) can be partitioned into d + 1 disjoint d-distance dominating sets. In this general case, however, the 
partition need not be into independent sets.

The following is an immediate consequence of Theorem 2.1.

Corollary 2.2. Let d ≥ 1 be an integer. If G is a bipartite graph of order n ≥ d + 1, then γ 1
d (G) ≤ n 

d+1 .

Corollary 2.2 generalizes [8, Theorem 71]. On the other hand, the upper bound in Corollary 2.2 may not hold if G is not 
bipartite. For example, for n ≥ d + 2 and k ≥ 2, let Gn,k,d be the complete graph Kn with k copies of Pd attached to each 
vertex. Clearly, |V (Gn,k,d)| = n(dk+1). While γd(Gn,k,d) = n, a d-distance independent domination needs much more vertices, 
and it is not hard to deduce that γ 1

d (Gn,k,d) = 1 + (n − 1)k. As n ≥ d + 2 and k ≥ 2, we infer that γ 1
d (Gn,k,d) >

|V (Gn,k,d)|
d+1 .

3. Trees that attain equality in Corollary 2.2

Let d ≥ 1 be an integer. The Pd-corona H ◦ Pd of a graph H is the graph obtained from H and |V (H)| disjoint copies of 
Pd , by attaching a copy of Pd to each vertex of H , see Fig. 1.

If d ≥ 2, then let ℬd be the family of Pd-coronas of bipartite graphs, that is,

ℬd = {H ◦ Pd : H is a bipartite graph}.
Note that Pd+1 ∈ ℬd . Observe also that each G ∈ ℬd , where G = H ◦ Pd , is a bipartite graph with |V (G)| = (d + 1)|V (H)|. 
The following proposition shows that the upper bound in Corollary 2.2 is best possible.

Proposition 3.1. If G ∈ℬd is of order n, then γ 1
d (G) = n 

d+1 .

Proof. Let G = H ◦ Pd for some bipartite graph H . By the definition of H ◦ Pd , the set L(G) is a d-distance independent 
dominating set of G . Thus, γ 1

d (G) ≤ |L(G)| = |V (H)| = n 
d+1 .

Conversely, for each u ∈ V (H), let Gu be the subgraph of G induced by u and the vertices of the copy of Pd attached to 
u. Clearly, Gu ∼ = Pd+1. If D is a γ 1

d (G)-set, then |D ∩ V (Gu)| ≥ 1. Thus, γ 1
d (G) = |D| ≥ |V (H)| = n 

d+1 . □
Note that if G is a connected bipartite graph of order n = d + 1, then γ 1

d (G) = 1 = n 
d+1 , and γ 1

d (C2d+2) = 2 = 2d+2
d+1 . 

Moreover, if d = 1, then γ 1
1 (Kr,r) = r = r+r

2 = n 
2 . In 2004, Ma and Chen gave an equivalent description of the bipartite 

graphs G of order n with γ 1
1 (G) = n 

2 , see [9, Theorem 1]. They also proved an explicit characterization of such a family for 
the case of trees. To state the result, let ζ1 be a family of trees defined by the following recursive construction.

3 
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v

r ≥ 1

t − 1

r ≥ 1

t ≥ 1

Fig. 2. A tree T from the family ζ1, where T ′ is the double star induced by the black vertices. 

(i) K2 ∈ ζ1.
(ii) If T ′ ∈ ζ1, and T is obtained by joining the center of a new copy of K1,t (t ≥ 1) to a support vertex v of T ′ and adding 

t − 1 leaves at v , then T ∈ ζ1.

See Fig. 2 for an illustration.1

The result of Ma and Chen for trees now reads as follows.

Theorem 3.2. ([9, Corollary 1]) If T is a tree of order n, then γ 1
1 (T ) = n 

2 if and only if T ∈ ζ1 .

We shall focus on the general case for d ≥ 2, and give a complete characterization of the trees achieving equality in the 
upper bound of Corollary 2.2. Set

𝒯d = {T ∗ ◦ Pd : T ∗ is a non-trivial tree}.
Note that 𝒯d does not contain the path Pd+1. Since 𝒯d ⊂ ℬd , and by Proposition 3.1, γ 1

d (T ) = n 
d+1 for each tree T ∈ 𝒯d of 

order n. Moreover, if T is a tree of order n = d + 1, then we also have γ 1
d (T ) = 1 = n 

d+1 .
In a tree T and for a vertex v ∈ V (T ), let L(v) be the set of leaves of T that are neighbors of v in T . Root T at some 

vertex. Let T v be the subtree induced in T by v and its descendants, and let T − T v = T − V (T v). A vertex of T is called a 
Pd-support vertex if it is attached to a copy of Pd . For each H ∈ 𝒯d , every vertex of H∗ is a Pd-support vertex of H , where 
H = H∗ ◦ Pd for some non-trivial tree H∗ . In particular, a P1-support vertex of T is just a support vertex of T . A vertex of 
T is a (Pi, P j)-support vertex if both a copy of Pi and a copy of P j are attached to it. In particular, a (Pi, Pi)-support vertex 
has at least two copies of Pi attached. The d-subdivision of T is the tree obtained from T by subdividing each edge d-times. 
Then the 1-subdivision of T is just the subdivision of T .

Before proving the announced characterization of trees of order n with γ 1
d (T ) = n 

d+1 , we state the following lemma 
which will also be used in the subsequent section.

Lemma 3.3. Let d ≥ 2 and let T be a tree with s = diam(T ) ≥ 2d + 1. Suppose that P := v1 v2 . . . vs+1 is a diametrical path in T and 
the tree is rooted at vs+1. If there is no Pd+1-support vertex and no (Pi, P j)-support vertex in T with i ∈ [d − 1] and j ∈ [d], then the 
following statements hold.

(i) If k ∈ {2, . . . ,d} ∪ {s − d + 2, . . . , s}, then deg(vk) = 2.
(ii) If k ∈ {d + 1, s − d + 1}, then deg(vk) ≥ 3.

(iii) For every v ∈ V (T ), if v is the only vertex with degT (v) ≥ 3 in the subtree T v , then T v is isomorphic to the (d − 1)-subdivision 
of a star K1,t with t ≥ 2.

(iv) The subtree T vd+1 is isomorphic to the (d − 1)-subdivision of a star K1,t with t ≥ 2.
(v) If s = 2d + 1, then T is obtained by taking the (d − 1)-subdivisions of two stars K1,t1 with t1 ≥ 2 and K1,t2 with t2 ≥ 2, and 

adding an edge between the centers.

Proof. (i)--(ii) According to the conditions, there is no (P1, P1)-support vertex in T . That is, every vertex of T is adjacent 
to at most one leaf, and in particular, deg(v2) = 2. Further, if d ≥ 3, then deg(v3) = 2, since otherwise v3 would be a 

1 For the definition of ζ1, we note that both vertices of a K2 are support vertices. Then, (ii) can be applied to K2, and this step results in the double star 
Dr,r for every r ≥ 1. It shows that the family ζ1 is the same as {K2} ∪ ζ in [9].

4 
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(Pi, P2)-support vertex with 1 ≤ i ≤ 2 ≤ d − 1 contradicting the condition. Similarly, deg(vk) = 2 holds for all k ∈ {2, . . . ,d}. 
By symmetry, the same is true for vk if k ∈ {s − d + 2, . . . , s}. This proves (i). The assumption that there is no pendant Pd+1
in T directly implies (ii).

(iii) If degT (v) ≥ 3 and degT v
(u) ≤ 2 for every further vertex u from V (T v ), then at least two pendant paths are attached 

to v . Then, by the conditions in the lemma, every path attached is isomorphic to Pd .
(iv)--(v) As P is a diametrical path, a vertex u ∈ V (T vd+1 ) different from vd+1 cannot be a Pd-support vertex. Part (iii) 

then implies (iv). If we re-root T at the vertex v1, the same property holds for the subtree induced by vs−d+1 and its 
descendants in the re-rooted tree. This directly implies (v) for the case of s = 2d + 1. □
Theorem 3.4. If d ≥ 2 and T is a tree of order n, then γ 1

d (T ) = n 
d+1 holds if and only if n = d + 1 or T ∈ 𝒯d.

Proof. If T is of order n = d + 1, then, clearly, γ 1
d (T ) = 1 = n 

d+1 , and if T ∈ 𝒯d , then by Proposition 3.1, we have γ 1
d (T ) =

n 
d+1 . The proof of the necessity is by induction on n. If γ 1

d (T ) = n 
d+1 , then n = (d + 1)q for some integer q ≥ 1. If q = 1, 

then n = d + 1. So, we may assume that q ≥ 2 and n ≥ 2(d + 1). If diam(T ) ≤ 2d, then γ 1
d (T ) = 1 <

2(d+1)
d+1 ≤ n 

d+1 . In the 
continuation, we assume that diam(T ) ≥ 2d + 1 and γ 1

d (T ) = n 
d+1 .

Claim A. If i ∈ [d − 1] and j ∈ [d], then there is no (Pi, P j)-support vertex in T .

Proof. Suppose, to the contrary, that v is a (Pi, P j)-support vertex in T and i ≤ j. Let P ′ := x1x2 . . . xi and P ′′ := y1 y2 . . . y j

be two copies of Pi and P j attached to v in T , where xi v, y j v ∈ E(T ). Note that d(x1, v) = i ≤ j = d(y1, v). Consider 
T ′ = T − V (P ′). Then n′ = |V (T ′)| = n − i ≥ 2(d + 1) − (d − 1) = d + 3. Let D ′ be a γ 1

d (T ′)-set. If v ∈ D ′ , then D ′ is also 
a d-distance independent dominating set of T . If v / ∈ D ′ , then |D ′| = γ 1

d (T ′) implies |D ′ ∩ V (P ′′)| ≤ 1. For the subcase 
|D ′ ∩ V (P ′′)| = 1, we may assume that y j ∈ D ′ . Then d(xk, y j) ≤ d for each k ∈ [i]. For the subcase |D ′ ∩ V (P ′′)| = 0, in 
order to d-distance dominate y1 in T ′ , there exists a vertex u ∈ D ′ such that dT ′ (u, y1) ≤ d. Since i ≤ j, it holds that 
dT (xk, u) ≤ dT (u, y1) = dT ′ (u, y1) ≤ d for each k ∈ [i]. Thus, D ′ is always a d-distance independent dominating set of T . 
Corollary 2.2 then implies

γ 1
d (T ) ≤ |D ′| = γ 1

d (T ′) ≤ n′

d + 1
<

n 
d + 1

,

which contradicts the assumption γ 1
d (T ) = n 

d+1 . This proves Claim A. (□)

Claim B. If T has a Pd+1-support vertex v, then T ∈ 𝒯d.

Proof. Let P ′ := x1x2 . . . xd+1 be a copy of Pd+1 attached to v , where xd+1 v ∈ E(T ). Then deg(xk) = 2 for all k ∈ [d + 1] \ {1}
and deg(x1) = 1. Consider T ′ = T − V (P ′). Then n′ = |V (T ′)| = n − (d + 1) ≥ 2(d + 1) − d − 1 = d + 1. Let D ′ be a γ 1

d (T ′)-set. 
Then D ′ ∪ {x1} is a d-distance independent dominating set of T . By Corollary 2.2,

γ 1
d (T ) ≤ |D ′| + 1 = γ 1

d (T ′) + 1 ≤ n′

d + 1
+ 1 = n − (d + 1)

d + 1 
+ 1 = n 

d + 1
,

and the equality holds if and only if γ 1
d (T ) = γ 1

d (T ′) + 1 and γ 1
d (T ′) = n′

d+1 . The induction hypothesis therefore implies 
n′ = d + 1 or T ′ ∈ 𝒯d .

Suppose n′ = d + 1. Then n = 2(d + 1) and T is the tree obtained from a copy of Pd+1 and a tree T ′ of order d + 1 by 
joining xd+1 to a vertex v of T ′ . Note that diam(T ′) ≤ d with equality if and only if T ′ ∼ = Pd+1. Unless T ′ ∼ = Pd+1 and v is a 
leaf of T ′ , {xd+1} is a d-distance independent dominating set of T , implying that γ 1

d (T ) = 1 <
2(d+1)

d+1 = n 
d+1 , a contradiction. 

For the exception, we observe T ∼ = P2(d+1) ∈ 𝒯d .
Suppose T ′ ∈ 𝒯d . Let T ′ = T ′∗ ◦ Pd for some non-trivial tree T ′∗ . If v ∈ V (T ′∗), then T = T ∗ ◦ Pd ∈ 𝒯d , where T ∗ is the tree 

obtained from T ′∗ by adding a new vertex xd+1 and the edge xd+1 v to it. If v / ∈ V (T ′∗), then let u1 be the Pd-support vertex 
of T ′∗ such that the attached copy of Pd contains v . Since |V (T ′∗)| ≥ 2, there exists a neighbor u2 ∈ V (T ′∗) of u1. Let u′

1 and 
u′

2 be the leaves of T ′ corresponding to u1 and u2, respectively. Note that v = u′
1 is possible, and D = (L(T ′) \ {u′

1, u′
2}) ∪

{xd+1, u2} is a d-distance independent dominating set of T . Thus,

γ 1
d (T ) ≤ |D| = |L(T ′)| = |V (T ′∗)| =

n′

d + 1
<

n 
d + 1

that contradicts our assumption on T and finishes the proof of Claim B. (□)

Claim B shows that if γ 1
d (T ) = n 

d+1 and T contains a pendant path Pd+1, then T ∈ 𝒯d . The remaining part of the proof 
verifies that there is no tree T with |V (T )| > d + 1 and γ 1

d (T ) = n 
d+1 that does not contain a pendant Pd+1. From now on, 

we suppose that there is no Pd+1-support vertex in T and that γ 1
d (T ) = n 

d+1 .
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Let s = diam(T ) ≥ 2d + 1 and P := v1 v2 . . . vs+1 be a diametrical path in T . Then deg(v1) = deg(vs+1) = 1. Root T
at vs+1. Our assumption on the non-existence of Pd+1-support vertices and Claim A imply that the properties stated in 
Lemma 3.3 (i)--(v) are valid for T .

If s = diam(T ) = 2d + 1 then, by Lemma 3.3 (v), the tree T can be obtained from the (d − 1)-subdivisions of two stars 
K1,t1 and K1,t2 with t1 ≥ t2 ≥ 2 by joining the centers with an edge. Then N(vd+2) is a d-distance independent dominating 
set of T . Since d ≥ 2, it gives the following contradiction:

γ 1
d (T ) ≤ |N(vd+2)| = t2 + 1 = (t2 + 1)d + t2 + 1

d + 1 
<

2dt2 + 2

d + 1 
≤ d(t1 + t2) + 2

d + 1 
= n 

d + 1
.

So, we may assume that diam(T ) ≥ 2d + 2 and n ≥ 2d + 3. Regarding vd+2, we divide the rest of the proof into two cases 
and prove that in both we get a contradiction.

Case 1. Each vertex v in N(vd+2) \ {vd+1, vd+3} is of degree at least 3. 
By Lemma 3.3 (iii) and since P is a diametrical path, for each v ∈ N(vd+2) \ {vd+3}, the subtree T v is isomorphic to the 
(d − 1)-subdivision of a star K1,tv with tv ≥ 2. Clearly, T vd+1 is contained in T vd+2 , and therefore, |V (T vd+2 )| ≥ 2d + 2. 
Let T ′ = T − T vd+2 . Since {vd+3, . . . , v2d+3} ⊆ V (T ′), we obtain

d + 1 ≤ n′ = |V (T ′)| ≤ n − 2d − 2.

Let D ′ be a γ 1
d (T ′)-set. Then D = D ′ ∪ (N(vd+2) \ {vd+3}) is a d-distance independent dominating set of T . Let 

p = deg(vd+2). Observe that p ≥ 2 and n′ ≤ n − (2d +1)(p −1)−1. By Corollary 2.2, we get the following contradiction:

γ 1
d (T ) ≤ |D| = γ 1

d (T ′) + p − 1

≤ n′

d + 1
+ p − 1

≤ n − (2d + 1)(p − 1) − 1

d + 1 
+ p − 1

= n − d(p − 1) − 1

d + 1 

<
n 

d + 1
.

Case 2. There is a vertex v in N(vd+2) \ {vd+1, vd+3} with deg(v) ≤ 2. 
If deg(v) = 2 and T v contains a vertex u with deg(u) ≥ 3, then Lemma 3.3 (iii) implies the existence of a leaf w ∈
V (Tu) with d(w, u) = d. It follows then that d(w, vd+2) ≥ d + 2 and d(w, vs+1) ≥ s + 1 = diam(T ) + 1, a contradiction. 
Therefore, deg(v) ≤ 2 implies that T v is a path and vd+2 is a Pi-support vertex for some i ≥ 1. By our assumption, 
i ≤ d. Further, by Claim A, we have the following properties.
• If vd+2 is a Pi -support vertex of T for some i ∈ [d − 1], then there is only one pendant path attached to vd+2, and it 

is clearly of order i.
• If vd+2 is a Pd-support vertex of T , then vd+2 is not a Pi -support vertex of T for any i ∈ [d − 1], and there is at least 

one copy of Pd attached to vd+2.
Case 2.1. L(vd+2) ≠ ∅. 

In this case vd+2 is a P1-support vertex of T . Let x ∈ L(vd+2) and T ′ = T − x. Now for each vertex v ∈ N(vd+2) \ {vd+3}, 
the subtree T ′

v is isomorphic to the Pd-subdivision of a star K1,tv for tv ≥ 2. Clearly, n′ = |V (T ′)| = n − 1 ≥ 2d + 2.
Let D ′ be a γ 1

d (T ′)-set. If vd+2 ∈ D ′ , then D ′ is also a d-distance independent dominating set of T . If vd+2 / ∈ D ′ , then 
since |D ′ ∩ V (T ′

vd+1
)| ≥ 1, we may assume that vd+1 ∈ D ′ . The set D ′ is also a d-distance independent dominating set 

of T . For any subcase, γ 1
d (T ) ≤ |D ′| = γ 1

d (T ′) ≤ n′
d+1 = n−1

d+1 <
n 

d+1 by Corollary 2.2.
Case 2.2. L(vd+2) = ∅. 

In this case, vd+2 is a Pi -support vertex of T for some i ∈ [d] \ {1} (where if i = d, then there could be multiple copies 
of Pd attached to vd+2). Let P ′ := x1x2 . . . xi be the (selected) copy of Pi attached to vd+2, where xi vd+2 ∈ E(T ). Then 
deg(xk) = 2 for all k ∈ [i] \ {1} and deg(x1) = 1. Consider T ′ = T − T vd − Txi . Then n′ = |V (T ′)| = n − d − i ≤ n − d − 2
and n′ ≥ d + 3 since vd+1, vd+2, . . . , v2d+3 ∈ V (T ′).

Let D ′ be a γ 1
d (T ′)-set. Then |D ′ ∩ {vd+1, vd+2}| ≤ 1. If vd+1 ∈ D ′ and vd+2 / ∈ D ′ , then let D = D ′ ∪ {xi}. If vd+1 / ∈ D ′

and vd+2 ∈ D ′ , then let D = D ′ ∪ {v1}. If vd+1, vd+2 / ∈ D ′ , then since vd+1 is attached to at least two copies of Pd , 
we have D ′ ∩ (V (T vd+1 ) \ V (T vd )) ≠ ∅. Let D = D ′ ∪ {vd+1, xi} \ (V (T vd+1 ) \ V (T vd )). For any subcase, D is a d-distance 
independent dominating set of T , and γ 1

d (T ) ≤ |D ′| + 1 = γ 1
d (T ′) + 1 ≤ n′

d+1 + 1 ≤ n−d−2
d+1 + 1 < n 

d+1 by Corollary 2.2.

This completes the proof of Theorem 3.4. □
6 
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4. Upper bounds on 𝜸d and 𝜸 1
d of trees in terms of the order and the number of leaves

For any tree T of order n and with ℓ leaves, the set of non-leaves is a dominating set of T . Hence, γ1(T ) ≤ n − ℓ. Note 
that the equality holds if and only if each vertex of T is either a leaf or a support vertex. If there exists a vertex u ∈ V (T )

that is neither a leaf nor a support vertex, then V (T ) \ ({u} ∪ L(T )) is a dominating set of T , implying that γ1(T ) < n − ℓ. 
On the other hand, the upper bound γ 1

1 (T ) ≤ n − ℓ is not true for every tree T . For example, let T ′ = T ∗ ◦ P1 ∈ 𝒯1 for some 
tree T ∗ , and let T be the tree obtained from T ′ by adding r ≥ 2 leaves to each vertex of T ′ . It can be checked that

γ 1
1 (T ) = |V (T ∗)| + r|V (T ∗)| > 2|V (T ∗)| = 2(r + 1)|V (T ∗)| − 2r|V (T ∗)| = n − ℓ.

Set now

ℱ2 = {T : T − L(T ) ∈ ζ1} ,

and if d ≥ 3, then set

ℱd = {︁
T : T − L(T ) is a tree of order d or belongs to 𝒯d−1

}︁
.

Note that each graph from ℱd , d ≥ 2, is a tree, and the following property is equivalent to the definition of ℱd .

(⋆) If d ≥ 3, a tree T belongs to ℱd if and only if it can be obtained from some tree T ′ , which satisfies |V (T ′)| = d or 
T ′ ∈ 𝒯d−1, by adding at least one pendant vertex to each leaf of T ′ , and some number (possibly zero) to other vertices 
of T ′ . For d = 2, a tree T belongs to ℱ2 if and only if it can be obtained similarly from a tree T ′ ∈ ζ1.

For d ≥ 2, we prove the following result.

Theorem 4.1. Let d ≥ 2 be an integer and T be a tree of order n and with ℓ leaves. If n − ℓ ≥ d, then γ 1
d (T ) ≤ n−ℓ

d with equality if and 
only if T ∈ ℱd.

Proof. Consider the tree T ′ = T − L(T ). Let n′ = |V (T ′)| = n − ℓ ≥ d. Let D ′ be a γ 1
d−1(T ′)-set. By Corollary 2.2, |D ′| =

γ 1
d−1(T ′) ≤ n′

d . Moreover, D ′ is also a d-distance independent dominating set of T , implying that

γ 1
d (T ) ≤ |D ′| = γ 1

d−1(T ′) ≤ n′

d 
= n − ℓ

d 
. (1)

Assume that γ 1
d (T ) = n−ℓ

d holds for a tree T . Inequalities in (1) therefore imply γ 1
d (T ) = γ 1

d−1(T ′) = n′
d . By Theorems 3.2

and 3.4, we know that T ′ ∈ ζ1 when d = 2, and T ′ is a tree of order d or T ′ ∈ 𝒯d−1 when d ≥ 3. Since T ′ = T − L(T ), we 
conclude T ∈ ℱd .

It remains to prove that γ 1
d (T ) ≥ n−ℓ

d holds for every T ∈ ℱd . Consider first a tree T from ℱ2 and let T ′ = T − L(T ). 
Hence T ′ ∈ ζ1. We will prove the inequality by induction on T ′ according to the recursive definition of ζ1. If T ′ ∼ = K2, then 
T is a double star and γ 1

2 (T ) = 1 = n−ℓ
2 . If T ′ ∼ = Dr,r , for r ≥ 1, then any γ 1

1 (T ′)-set is a smallest 2-distance independent 
dominating set of T , implying that

γ 1
2 (T ) = γ 1

1 (T ′) = r + 1 = 2r + 2

2 
= n′

2 
= n − ℓ

2 
.

Assume next that T ′ = T − L(T ) is a tree from ζ1 which is neither K2 nor a double star. Let T ′
2 = T ′ and let T ′

1 be the 
tree from ζ1 such that T ′

2 is obtained from T ′
1 by the recursive construction of ζ1, that is, T ′

2 can be obtained by joining the 
center u of a new copy of K1,t (t ≥ 1) to a support vertex v of T ′

1, and adding t − 1 leaves at v . For i ∈ [2], let Ti be a tree 
from ℱ2, which is obtained from T ′

i according to (⋆). Moreover, let n′
i = |V (T ′

i )|, ni = |V (Ti)|, and ℓi = |L(Ti)|, i ∈ [2].
Assume that γ 1

2 (T1) = n1−ℓ1
2 . We are going to prove that γ 1

2 (T2) ≥ n2−ℓ2
2 . Note that n′

i = ni − ℓi and n′
2 = n′

1 + 2t . Let D2

be a γ 1
2 (T2)-set that contains as few leaves from T2 as possible and let D1 = D2 ∩ V (T1). If v ∈ D2, then u / ∈ D2 and, by 

the minimality of |D2 ∩ L(T2)|, we have LT ′
2
(u) ⊂ D2. Now D1 = D2 \ LT ′

2
(u) is a 2-distance independent dominating set of 

T1, implying that γ 1
2 (T1) ≤ |D1| = |D2| − t . If v / ∈ D2, then we may assume that u ∈ D2. Also, LT ′

2
(v) \ LT ′

1
(v) ⊂ D2 holds by 

the minimality of |D2 ∩ L(T2)|. Further, ∅ ≠ LT ′
1
(v) ⊂ D1, and v and the leaves added to LT ′

1
(v) in T1 will be independently 

dominated by LT ′
1
(v). Hence, D1 = D2 \ {u} \ (LT ′

2
(v) \ LT ′

1
(v)) is a 2-distance independent dominating set of T1, implying 

that γ 1
2 (T1) ≤ |D1| = |D2| − t . Hence no matter whether v belongs to D2 or not, we have

γ 1
2 (T2) ≥ γ 1

2 (T1) + t = n1 − ℓ1

2 
+ n′

2 − n′
1

2 
= n′

2

2 
= n2 − ℓ2

2 
.

Assume now that T ∈ ℱd and d ≥ 3. For T ′ = T − L(T ), let n′ = |V (T ′)| = n − ℓ ≥ d. If n′ = d, then γ 1
d (T ) ≥ 1 = n−ℓ

d . If 
T ′ ∈ 𝒯d−1, then let T ′ = T ∗ ◦ Pd−1 for some non-trivial tree T ∗ . For each u ∈ V (T ∗), let T ′

u be the subtree of T ′ induced 
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C. Bujtás, V. Iršič Chenoweth, S. Klavžar et al. Discrete Mathematics 349 (2026) 114972 

by u and the vertices of the copy of Pd−1 attached to u, and let Tu be the subtree of T induced by V (T ′
u) and the leaves 

added to V (T ′
u) in T . If D is a γ 1

d (T )-set, then |D ∩ V (Tu)| ≥ 1 for every u ∈ V (T ∗). Thus, we have

γ 1
d (T ) = |D| ≥ |V (T ∗)| = n′

d 
= n − ℓ

d 
.

This completes the proof of Theorem 4.1. □
We note that the condition of n ≥ d + ℓ is necessary in Theorem 4.1. Let T ′ be a tree of order at most d − 1. Consider 

the tree T obtained from T ′ by adding at least one pendant vertex to each leaf of T ′ and some number to other vertices of 
T ′ . Then n′ = |V (T ′)| = n − ℓ ≤ d − 1 and we may infer γ 1

d (T ) ≥ 1 > d−1
d ≥ n−ℓ

d .

Favaron [6] proved that if T is a tree of order n ≥ 2 and with ℓ leaves, then γ 1
1 (T ) ≤ n+ℓ

3 , and gave the full list of 
extremal trees for this bound. Our next theorem extends Favaron’s result to all d ≥ 2.

Theorem 4.2. Let d ≥ 2 be an integer and T a tree of order n and with ℓ leaves. If n ≥ d, then γ 1
d (T ) ≤ n+ℓ 

d+2 with equality if and only 
if T ∈ {Pd} ∪𝒯d.

Proof. The proof is similar to that of Theorem 3.4, the only difference lies in the fact that here, while proving the upper 
bound, we simultaneously detect the extreme trees. First, we prove the sufficiency of the equality. If T ∼ = Pd , then γ 1

d (T ) =
1 = d+2

d+2 = n+ℓ 
d+2 . If T ∈ 𝒯d , then by Proposition 3.1, γ 1

d (T ) = n 
d+1 = n+ n 

d+1
d+2 = n+ℓ 

d+2 .
To prove the upper bound and that the equality implies T ∈ {Pd} ∪ 𝒯d , we will clarify the structure of T in two claims. 

On the other hand, we will consider the diameter of T , and pay special attention to the two terminals of a diametrical path 
(by then we will be able to use the two proved claims). We proceed with the proof by induction on n. If diam(T ) ≤ 2d, 
then γ 1

d (T ) = 1 = d+2
d+2 ≤ n+ℓ 

d+2 . The equality holds if and only if n = d and ℓ = 2, implying that T ∼ = Pd . So, we may assume 
that diam(T ) ≥ 2d + 1 and n ≥ 2d + 2. Note that if ℓ > n 

d+1 , then by Corollary 2.2, γ 1
d (T ) ≤ n 

d+1 < n+ℓ 
d+2 .

Claim C. Let i ∈ [d − 1] and j ∈ [d] with i ≤ j. If T has a vertex v that is a (Pi, P j)-support vertex, then γ 1
d (T ) < n+ℓ 

d+2 .

Proof. Let P ′ := x1x2 . . . xi and P ′′ := y1 y2 . . . y j be a copy of Pi and P j , respectively, attached to v in T , where xi v, y j v ∈
E(T ). Since n ≥ 2d + 2 and |V (P ′)| ≤ |V (P ′′)| ≤ d, we have deg(v) ≥ 3. Consider T ′ = T − V (P ′). Then ℓ′ = |L(T ′)| = ℓ − 1
and n′ = |V (T ′)| = n − i ≥ d + 3. As in the proof of Claim A it can be proved that there exists a γ 1

d (T ′)-set D ′ that is a 
d-distance independent dominating set of T . Using the induction hypothesis, we have

γ 1
d (T ) ≤ |D ′| = γ 1

d (T ′) ≤ n′ + ℓ′

d + 2 
= n − i + ℓ − 1

d + 2 
<

n + ℓ 
d + 2

.

This proves Claim C. (□)

Claim D. If T has a Pd+1-support vertex v, then γ 1
d (T ) ≤ n+ℓ 

d+2 and if equality holds, then T ∈ 𝒯d.

Proof. Let P ′ := x1x2 . . . xd+1 be a copy of Pd+1 attached to v , where xd+1 v ∈ E(T ). Then degT (xk) = 2 for all k ∈ [d +1] \ {1}
and degT (x1) = 1. Consider T ′ = T − V (P ′). Since n ≥ 2d + 2, we have degT (v) ≥ 2. Then ℓ′ = |L(T ′)| = ℓ if degT (v) = 2 and 
ℓ′ = ℓ − 1 if degT (v) ≥ 3. We observe that n′ = |V (T ′)| = n − (d + 1) ≥ d + 1 and consider two cases according to the degree 
of v .

Case D1. degT (v) ≥ 3. 
Let D ′ be a γ 1

d (T ′)-set. The set D ′ ∪ {x1} is a d-distance independent dominating set of T . By the induction hypothesis,

γ 1
d (T ) ≤ |D ′ ∪ {x1}| = γ 1

d (T ′) + 1 ≤ n′ + ℓ′

d + 2 
+ 1 = n − (d + 1) + ℓ − 1

d + 2 
+ 1 = n + ℓ 

d + 2
,

and the equality holds if and only if γ 1
d (T ) = γ 1

d (T ′) + 1 and γ 1
d (T ′) = n′+ℓ′

d+2 . Note that n′ ≥ d + 1, so T ′ ≇ Pd and 
T ′ ∈ 𝒯d .

Let T ′ = T ′∗ ◦ Pd for some non-trivial tree T ′∗ . Then ℓ′ = n′
d+1 . Since deg(v) ≥ 3, we infer that v / ∈ L(T ′). If v ∈ V (T ′∗), 

then T = T∗ ◦ Pd ∈ 𝒯d , where T∗ is the tree obtained from T ′∗ by adding a new vertex xd+1 to it such that xd+1 v ∈ E(T∗). 
If v / ∈ V (T ′∗) ∪ L(T ′), then let u be the Pd-support vertex of T ′∗ attached to the copy of Pd containing v , and u′ be the 
leaf of T ′ corresponding to u. Note that v ≠ u′ and D = (L(T ′) \ {u′}) ∪ {xd+1} is a d-distance independent dominating 
set of T . Thus,

γ 1
d (T ) ≤ |D| = |L(T ′)| = n′

d + 1
= n′ + ℓ′

d + 2 
= n − (d + 1) + ℓ − 1

d + 2 
<

n + ℓ 
d + 2

.
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Case D2. degT (v) = 2. 
Let P ′′ := x1x2 . . . xd+1 v be a copy of Pd+2 attached to v ′ , where v v ′ ∈ E(T ). Consider T ′′ = T − V (P ′′) = T ′ − v . Then 
n′′ = |V (T ′′)| = n − (d + 2) ≥ d, and ℓ′′ = |L(T ′′)| ≤ ℓ with equality if and only if degT (v ′) = 2. Let D ′′ be a γ 1

d (T ′′)-set. 
The set D ′′ ∪ {x2} is a d-distance independent dominating set of T . By the induction hypothesis,

γ 1
d (T ) ≤ |D ′′ ∪ {x2}| = |D ′′| + 1 = γ 1

d (T ′′) + 1 ≤ n′′ + ℓ′′

d + 2 
+ 1 ≤ n − (d + 2) + ℓ

d + 2 
+ 1 = n + ℓ 

d + 2
,

and the equality holds if and only if γ 1
d (T ) = γ 1

d (T ′′) + 1, ℓ′′ = ℓ, and γ 1
d (T ′′) = n′′+ℓ′′

d+1 , i.e., T ′′ ∈ {Pd} ∪𝒯d .
Note that degT (v ′) = 2 and degT ′′ (v ′) = 1. If T ′′ ∼ = Pd , then T ∼ = P2d+2 ∈ 𝒯d . Suppose that T ′′ ∈ 𝒯d . Let T ′′ = T ′′∗ ◦ Pd

for some non-trivial tree T ′′∗ . Then ℓ′′ = n′′
d+1 . Clearly, v ′ ∈ L(T ′′). Let u′

1 ∈ V (T ′′∗ ) be the Pd-support vertex in T ′′ , which 
is attached to the copy of Pd containing v ′ . Since |V (T ′′∗ )| ≥ 2, there exists a neighbor u′

2 ∈ V (T ′′∗ ) of u′
1. It is clear 

that v ′ is the leaf of T ′ corresponding to u′
1. Let u′′

2 be the leaf of T ′ corresponding to u′
2. Since d ≥ 2, the set D =

(L(T ′′) \ {v ′, u′′
2}) ∪ {u′

2, xd+1} is a d-distance independent dominating set of T . Thus, we have

γ 1
d (T ) ≤ |D| = |L(T ′′)| = n′′

d + 1
= n′′ + ℓ′′

d + 2 
= n − (d + 2) + ℓ

d + 2 
<

n + ℓ 
d + 2

.

This completes the proof of Claim D. (□)

In the continuation, we may suppose that there is no Pd+1-support vertex in T and also that if v is a (Pi, P j)-support 
vertex, then i = j = d. Let s = diam(T ) ≥ 2d + 1 and let P := v1 v2 . . . vs+1 be a diametrical path in T . Root T at vs+1. Hence, 
by Lemma 3.3, deg(vk) ≤ 2 for each k ∈ [d] ∪ ([s + 1] \ [s − d + 1]), and deg(vk) ≥ 3 for each k ∈ {d + 1, s − d + 1}. It also 
follows that the subtree T vd+1 is isomorphic to the (d − 1)-subdivision of a star K1,t for some t ≥ 2.

If s = diam(T ) = 2d + 1, then by Lemma 3.3 (v), T is obtained from the (d − 1)-subdivision of a star K1,t1 and the 
(d − 1)-subdivision of a star K1,t2 by joining the centers vd+1 and vd+2. We may assume that t1 ≥ t2 ≥ 2. Then N(vd+2) is 
a d-distance independent dominating set of T . Since d ≥ 2, we have

γ 1
d (T ) ≤ |N(vd+2)| = deg(vd+2) = t2 + 1 = (d + 1)t2 + d + t2 + 2

d + 2 

<
(d + 1)t2 + dt2 + t2 + 2

d + 2 
= 2(d + 1)t2 + 2

d + 2 

≤ d(t1 + t2) + 2 + (t1 + t2)

d + 2 
= n + ℓ 

d + 2
.

So, we may assume that diam(T ) ≥ 2d + 2 and n ≥ 2d + 3. Regarding vd+2, we divide the rest of the proof into two cases 
and prove that the strict inequality γ 1

d (T ) < n+ℓ 
d+2 holds in each case.

Case 1. Every vertex v in N(vd+2) \ {vd+1, vd+3} is of degree at least 3. 
For each vertex v ∈ N(vd+2) \ {vd+3} we have deg(v) ≥ 3, and the subtree T v is isomorphic to the (d − 1)-subdivision 
of a star K1,tv for tv ≥ 2. Let T ′ = T − T vd+2 and p = deg(vd+2). It holds that

d + 1 ≤ n′ = |V (T ′)| ≤ n − 1 − (2d + 1)(p − 1).

Moreover, we have

ℓ′ = |L(T ′)| ≤ ℓ − 2(p − 1) + 1 = ℓ − 2p − 1,

with equality if and only if deg(vd+3) = 2, and for each v ∈ N(vd+2) \ {vd+3}, tv = 2.
Let D ′ be a γ 1

d (T ′)-set. Then D = D ′ ∪ (N(vd+2) \ {vd+3}) is a d-distance independent dominating set of T . Since 
d ≥ 2 and p ≥ 2, by the induction hypothesis we get

γ 1
d (T ) ≤ |D| = |D ′| + p − 1 = γ 1

d (T ′) + p − 1 ≤ n′ + ℓ′

d + 2 
+ p − 1

≤ n − 1 − (2d + 1)(p − 1) + ℓ − 2p − 1

d + 2 
+ p − 1

= n + ℓ − d(p − 1) − p − 3

d + 2 
<

n + ℓ 
d + 2

.

Case 2. There is a vertex v in N(vd+2) \ {vd+1, vd+3} with deg(v) ≤ 2. 
Since vd+2 is not a Pd+1-support vertex and P is a diametrical path, Lemma 3.3 (iii) implies that T v is a pendant path 
Pi for some i ∈ [d]. Moreover, we have the following.

9 
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• If vd+2 is a Pi -support vertex of T for some i ∈ [d − 1], then there is no other pendant path attached to vd+2.
• If vd+2 is a Pd-support vertex of T , then vd+2 is not a Pi -support vertex of T for any i ∈ [d − 1], and there is at least 

one copy of Pd attached to vd+2.
Case 2.1. L(vd+2) ≠ ∅. 

Let x ∈ L(vd+2) and T ′ = T −x. Clearly, degT (vd+2) ≥ 3 and degT ′ (vd+2) ≥ 2. Then ℓ′ = |L(T ′)| = ℓ−1 and n′ = |V (T ′)| =
n − 1 ≥ 2d + 2. Let D ′ be a γ 1

d (T ′)-set. By considering whether vd+2 is in D ′ or not, we observe that D ′ can be 
chosen such that it is also a d-distance (independent) dominating set of T . By the induction hypothesis, we have 
γ 1

d (T ) ≤ |D ′| = γ 1
d (T ′) ≤ n′+ℓ′

d+2 = n−1+ℓ−1
d+2 < n+ℓ 

d+2 .
Case 2.2. L(vd+2) = ∅. 

Let P ′ := x1x2 . . . xi be a copy of Pi attached to vd+2, where xi vd+2 ∈ E(T ). Then i ∈ [d] \ {1}, and deg(xk) = 2 for all 
k ∈ [i] \ {1}, while deg(x1) = 1. Consider T ′ = T − T vd − Txi . By Lemma 3.3 (ii), deg(vd+1) ≥ 3 and, by our condition, 
deg(vd+2) ≥ 3. Therefore, ℓ′ = |L(T ′)| = ℓ − 2. We also know that n′ = |V (T ′)| = n − d − i ≤ n − d − 2 and n′ ≥ d + 3.

Let D ′ be a γ 1
d (T ′)-set. Then |D ′ ∩ {vd+1, vd+2}| ≤ 1. As in Case 2.2 of Theorem 3.4, let

D =

⎧⎪⎨
⎪⎩

D ′ ∪ {xi}, if vd+1 ∈ D ′ and vd+2 / ∈ D ′,
D ′ ∪ {v1}, if vd+1 / ∈ D ′ and vd+2 ∈ D ′,
D ′ ∪ {vd+1, xi} \ (V (T vd+1) \ V (T vd )), if vd+1, vd+2 / ∈ D ′.

For any subcase, D is a d-distance independent dominating set of T . By the induction hypothesis, we have γ 1
d (T ) ≤

|D| ≤ |D ′| + 1 = γ 1
d (T ′) + 1 ≤ n′+ℓ′

d+2 + 1 ≤ n−d−2+ℓ−2
d+2 + 1 < n+ℓ 

d+2 .

This completes the proof of Theorem 4.2. □
Now we set

ℱ ′
2 = {T : T − L(T ) ∈ {K2} ∪𝒯1} ,

and if d ≥ 3, then set

ℱ ′
d = ℱd.

By Theorems 4.1 and 4.2, we have the following two corollaries, respectively.

Corollary 4.3. Let d ≥ 2 be an integer and T be a tree of order n and with ℓ leaves. If n − ℓ ≥ d, then γd(T ) ≤ n−ℓ
d with equality if and 

only if T ∈ ℱ ′
d.

Corollary 4.4. Let d ≥ 2 be an integer and T be a tree of order n and with ℓ leaves. If n ≥ d, then γd(T ) ≤ n+ℓ 
d+2 with equality if and 

only if T ∈ {Pd} ∪𝒯d.

Combining the above results with Corollary 2.2, we obtain

Corollary 4.5. If d ≥ 2, and T is a tree with ℓ leaves and of order n ≥ d + ℓ, then

γd(T ) ≤ γ 1
d (T ) ≤

⎧⎪⎨
⎪⎩

n−ℓ
d , if n < (d + 1)ℓ,
n 

d+1 , if n = (d + 1)ℓ,
n+ℓ 
d+2 , if n > (d + 1)ℓ.

Moreover, these bounds are best possible.

5. A conjecture

Recall that Ma and Chen [9] described equivalently bipartite graphs G of order n with γ 1
1 (G) = n 

2 . For d ≥ 2 we pose:

Conjecture 5.1. If d ≥ 2 and G is a connected bipartite graph of order n, then γ 1
d (G) = n 

d+1 if and only if G ∈ {C2d+2}∪ℬd or n = d+1.

Since γ 1
1 (Kr,r) = r = r+r

2 = n 
2 , the condition of d ≥ 2 of the conjecture above is necessary. If Conjecture 5.1 holds true, 

then it generalizes Theorem 3.4. Moreover, the result [13, Theorem 3] due to Topp and Volkmann, restricted to bipartite 
graphs, gives exactly the same characterization for graphs G with γd(G) = n 

d+1 as we pose in Conjecture 5.1 for the d
distance independent domination.
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