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g Departamento de Matemáticas, Universidad de Cádiz, Algeciras Campus, Spain

a r t i c l e  i n f o

Article history:
Received 1 May 2025
Received in revised form 16 October 2025
Accepted 22 October 2025

Keywords:
General position set
Mobile general position set
Mobile general position number
Robot navigation
Cartesian product graph

 a b s t r a c t

The general position problem asks for large sets of vertices such that no three vertices
of the set lie on a common shortest path. Recently a dynamic version of this problem
was defined, called the mobile general position problem, in which a collection of robots
must visit all the vertices of the graph whilst remaining in general position. In this paper
we investigate this problem in the context of Cartesian products, corona products and
joins, giving upper and lower bounds for general graphs and exact values for families
including grids, cylinders, Hamming graphs and prisms of trees.
© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The general position problem originated as a geometric puzzle of Dudeney [14], but was first investigated in the context 
of graph theory in [9,26]. A survey of the problem is given in [7]. The arXiv version [25] of the paper [26] gave the following 
motivation for the problem. Suppose that a collection of robots is stationed on the vertices of a graph. They communicate 
with each other by sending signals along shortest paths. To avoid their communication being disrupted, we wish that no 
robot lies on a shortest path between two other robots. Subject to this condition, what is the greatest possible number 
of robots that we can place on the graph? In fact, the related mutual-visibility problem was initially researched in terms 
of its applications in robotic navigation and communication (see [2,3,12] for a partial overview) and was only recently 
considered in a pure mathematics context [13].

However, this picture lacks an important feature of real world robotic navigation: the general position problem is 
‘static’, whereas in applications the robots will typically need to move around the network. Watching the mobile delivery 
robots created by Starship Technologies®  [1] inspired the authors of [17] to consider a dynamic version of the general 
position problem, in which robots move through the vertices of a graph whilst remaining in general position, and such 
that every vertex is visited by a robot at least once (it is assumed that one robot moves to an adjacent vertex at each 
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Fig. 1. A (non-optimal) general position set (left) and a gp-set (right) of the Petersen graph are shown in red. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.)

step and no vertex can contain more than one robot). The paper [17] considered this problem for block graphs, rooted 
products, Kneser graphs, unicyclic graphs, complete multipartite graphs and line graphs of complete graphs. A mobile 
version of the closely related mutual-visibility problem was recently treated in [11]. In addition, the paper [4] considers 
the version of the mobile general position problem with the stricter condition that every vertex must be visited by every 
robot.

The general position problem has been investigated for a wide variety of graphs, but there is a particularly extensive 
literature on general position sets in Cartesian products, see [19–21,31,32]. General position sets in other graph products 
were discussed in [15]. Cartesian products have also been considered in the setting of variants of the general position 
number, such as the lower general position number [22], the mutual-visibility number [10,13], the monophonic position 
number [8], the lower mutual-visibility number [5], general position polynomials [16], edge general position numbers [28], 
total mutual-visibility [24], the variety of general position problems [30] and general position and mutual-visibility 
colourings [6,18]. In this paper, we examine the mobile general position problem in Cartesian products, together with 
the coronas and joins of graphs.

The plan of the paper is as follows. In Section 1.1 we introduce the formal definitions of the main concepts that we 
shall use in our exposition. In Section 2 we give bounds for the mobile general position number of Cartesian products and 
discuss their sharpness. In Section 3 we determine this number for Cartesian products involving paths, including grids, 
some cylinders and prisms of trees. Section 4 discusses the mobile general position problem for corona products and joins 
of graphs. We conclude with some open problems in Section 5.

1.1. Formal definitions and preliminaries

We will write [n] for {1, . . . , n} and [m, n] for {m,m+ 1, . . . , n− 1, n} when m ≤ n. A graph G = (V (G), E(G)) consists 
of a set V (G) of vertices that are connected by a set of edges E(G). All graphs that we consider are simple and undirected. 
We will write u ∼ v to indicate that u and v are adjacent in G, and will denote the set of neighbours of u by NG(u), or 
simply by N(u) if the graph is clear from the context. The degree deg(u) of a vertex u is |N(u)|. A vertex of degree one is 
a leaf, and the number of leaves in a graph G will be denoted by ℓ(G). A complete graph with n vertices will be written 
as Kn and a complete bipartite graph with partite sets of size n and m as Kn,m.

A path Pr  in G is a sequence u1, u2, . . . , ur  of distinct vertices such that ui ∼ ui+1 for i ∈ [r − 1] and the length of this 
path is r − 1. A cycle Cr  is a sequence u1, u2, . . . , ur  such that ui ∼ ui+1 for i ∈ [r − 1] and also u1 ∼ ur . The distance
between vertices u, v ∈ V (G) is the length of a shortest u, v-path in G. We will typically identify the vertices of a cycle Cn
with Zn and the vertices of a path Pn with [n] in the natural manner. A subgraph X of G is convex if for any u, v ∈ V (X)
we have V (P) ⊆ V (X) for any shortest u, v-path P in G. The subgraph G[X] induced by a subset X ⊆ V (G) is the subgraph 
with vertex set X such that u, v ∈ X are adjacent in G[X] if and only if they are adjacent in G.

If S ⊆ V (G) has the property that no three vertices of S lie on a common shortest path of G, then we say that S is a 
general position set of G. The largest possible number of vertices in a general position set of G is the general position number
of G, denoted by gp(G). Any largest general position set is referred to as a gp-set. Fig.  1 shows two general position sets 
in the well-known Petersen graph. The red vertices on the left form a maximal but non-optimal general position set of 
order four, whilst the six red vertices on the right constitute a gp-set of the Petersen graph, and so the Petersen graph 
has general position number six. Note that in both cases no shortest path between any pair of red vertices passes through 
a third red vertex.

If a robot is located at a vertex u and u ∼ v, then we indicate the movement of the robot from u to v along the edge 
uv by u ⇝ v and refer to this as a move. Suppose that we assign exactly one robot to each vertex of a general position 
set S. If a robot is stationed at a vertex u of S, then the move u ⇝ v is called a legal move if (i) v /∈ S (thereby avoiding 
having more than one robot per vertex at any stage) and (ii) the new set (S \ {u}) ∪ {v} is also a general position set. 
769



S. Klavžar, A. Krishnakumar, D. Kuziak et al. Discrete Applied Mathematics 379 (2026) 768–780
Fig. 2. A sequence of legal moves (shown by red arrows) for a Mobgp-set of the Petersen graph. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.)

A configuration of robots on a general position set of G is called a mobile general position set if there is a sequence of 
legal moves starting from S such that every vertex of G is visited at least once by some robot. The mobile general position 
number, written Mobgp(G), is the largest number of robots in a mobile general position set of G. We will refer to a largest 
possible configuration of robots in mobile general position as a Mobgp-set.

Fig.  2 shows a few configurations of a Mobgp-set for the Petersen graph. The red arrows indicate the legal moves that 
lead from one configuration to the next. Notice that the last configuration is equivalent to the first up to symmetry. By 
repeating (symmetrical equivalents of) this sequence of legal moves every vertex of the Petersen graph can be visited. 
It is shown in [17] that this mobile general position has the largest possible cardinality amongst all such sets, i.e. it is a 
Mobgp-set.

In [30] the variety of general position problems in graphs was introduced, including general position sets, outer 
general position sets, dual general position sets, and total general position sets. For our purposes we recall the following 
definitions. If X ⊆ V (G), then u, v ∈ V (G) are X-positionable if for any shortest u, v-path P we have V (P) ∩ X ⊆ {u, v}. 
Hence X is a general position set if all pairs u, v ∈ X are X-positionable. If it also holds that every pair u, v with u ∈ X and 
v ∈ V (G)\X is X-positionable, then X is an outer general position set. The cardinality of a largest outer general position set 
of G is denoted by gpo(G) and is called the outer general position number. It is shown in [30] that outer general position 
sets coincide with sets of mutually maximally distant vertices. (The latter concept was introduced in [29], see also the 
related survey [23].) In particular, in a block graph the outer general position sets are the sets of simplicial vertices; in 
the case of a tree this yields gp(T ) = gpo(T ) = ℓ(T ).

2. Bounds for Cartesian products

Recall that the Cartesian product G□H of graphs G and H satisfies V (G□H) = V (G)×V (H) and (g, h)(g ′, h′) ∈ E(G□H)
if either gg ′

∈ E(G) and h = h′, or g = g ′ and hh′
∈ E(H). A G-layer is a subgraph of G□H induced by V (G)×{h} for some 

h ∈ V (H), which will be denoted by Gh, with a similar definition for H-layers gH , where g ∈ V (G). Likewise, if P is a path 
u1, . . . , ur  in G and h ∈ V (H), then we will denote the path (u1, h), (u2, h), . . . , (ur , h) in G□H by Ph (with an analogous 
definition of gQ  for a path Q  in H and g ∈ V (G)).

We begin by deriving some bounds on Mobgp(G□H). A trivial upper bound is Mobgp(G□H) ≤ gp(G□H). Proposition 
2.1 gives two lower bounds in terms of the mobile and outer general position numbers of the factors.

Proposition 2.1.  For any connected graphs G and H of order at least two, the following hold.
(i) Mobgp(G□H) ≥ max{Mobgp(G),Mobgp(H)}.
(ii) Mobgp(G□H) ≥ max{gpo(G), gpo(H)}.

Proof. (i) Let S be a Mobgp-set of G and let h ∈ V (H). We first position the robots at the vertices of the set S×{h}. As Gh is 
a convex subgraph of G□H , robots initially stationed at the vertices of S × {h} can visit every vertex of Gh by a sequence 
of legal moves, all the time remaining inside Gh and in general position in G□H . Now, whenever a robot visits a vertex 
(g, h) in this layer, this robot can visit all the vertices in the H-layer gH corresponding to g by a sequence of legal moves 
and then return to (g, h). Hence Mobgp(G□H) ≥ Mobgp(G). By symmetry, Mobgp(G□H) ≥ Mobgp(H).

(ii) Let S = {u1, . . . , ur} be an outer general position set of G of cardinality gpo(G) and start with robots positioned 
at each vertex of S × {h} for some h ∈ V (H). Let Ri be the robot at (ui, h) for i ∈ [r]. Also, for each i ∈ [r], let Gi be the 
connected component containing ui in G \ (S \ {ui}).

Let h′
∈ V (H) \ {h} and let Q  be a shortest h, h′-path in H . The robot Ri can follow the path uiQ  from (ui, h) to reach 

the vertex (ui, h′) by legal moves. At this point, Ri can visit all the vertices of V (Gi) × {h′
} by a sequence of legal moves. 

To see this, notice that the shortest paths between the robots remaining in Gh lie within the layer Gh, whilst the shortest 
paths from Ri to any Rj, i ̸= j, do not pass through a third robot by the outer general position property. Afterwards Ri
can return to (u , h) by performing these legal moves in the reverse order. As this holds for any of the robots and any 
i

770



S. Klavžar, A. Krishnakumar, D. Kuziak et al. Discrete Applied Mathematics 379 (2026) 768–780
h′
∈ V (H)\ {h}, this allows us to perform a sequence of legal moves so that any vertex of G□H outside Gh is visited, since ⋃r
i=1 V (Gi) = V (G). Having done this, we return all the robots to their original positions in S × {h} using legal moves.
Finally, let h′

∈ NH (h). For i ∈ [r] we move the robot Ri from (ui, h) to (ui, h′) in sequence; as S is in general position 
each of these moves is legal. Afterwards the robots will occupy the set S × {h′

}. The previous reasoning applied to Gh′

now shows that the robots can visit each vertex of V (G) × {h} by legal moves. Thus Mobgp(G□H) ≥ gpo(G) and, by a 
symmetric argument, Mobgp(G□H) ≥ gpo(H). □

We now show that both lower bounds in Proposition  2.1 are sharp by considering the Cartesian products Kr □ Ps. 
We recall that [31, Theorem 3.2] implies that gp(Kr □ Ps) = r + 1 for s ≥ 3. Observe that for r, s ≥ 2 it holds that 
max{Mobgp(Kr ),Mobgp(Ps)} = max{gpo (Kr ), gpo (Ps)} = r .

Proposition 2.2.  For all positive integers r, s ≥ 2,

Mobgp(Kr □ Ps) = r.

Proof.  Let r, s ≥ 2. By Proposition  2.1 we have Mobgp(Kr □ Ps) ≥ r . We now show that Mobgp(Kr □ Ps) ≤ r . Let V (Ps) = [s]
and suppose for a contradiction that there exists a mobile general position set S of Kr □ Ps with |S| > r . Then choose 
x ∈ V (Kr ), such that (x, i), (x, j) ∈ V (Kr □ Ps) are occupied by robots R1, R2, where i < j.

First, notice that for any y ∈ V (Kr ) and j ≤ k ≤ s the vertex (y, k) cannot be occupied by a robot in the initial 
configuration S, for otherwise (x, j) would lie on a shortest path between (x, i) and (y, k). Similarly, every other vertex 
(y, k) with k ≤ i is unoccupied. The same reasoning shows that any other Ps-layer can contain at most one robot, since 
if there are robots at (y, k) and (y, k′), where y ∈ V (Kr ) \ {x} and i < k < k′ < j, then (y, k′) would lie on a shortest 
(y, k), (x, j)-path. Thus, we must have |S| = r + 1 and each layer yPs contains exactly one robot for y ̸= x. Moreover, each 
of the remaining r − 1 robots different from R1 and R2 are located at vertices (y, k) such that i < k < j.

It now follows that neither R1 nor R2 can cross to another Ps-layer by a sequence of legal moves. Otherwise, suppose 
that robots R1 and R2 are stationed at (x, i′) and (x, j′) respectively just before R1 moves to a different Ps-layer by the legal 
move (x, i′) ⇝ (y, i′), y ∈ V (Kr )\{x}. Since there is a robot at some vertex (y, k′) with i′ < k′ < j′, after this move the robot 
at (y, k′) would lie on a shortest path from (y, i′) to (x, j′). As a result, no robot can visit any vertex in (V (Kn)\ {x})×{1, s}, 
a contradiction. Thus at most r robots can traverse Kr □ Ps in general position. □

To see that the lower bounds of Proposition  2.1 are independent in general, consider the following examples. If 
n ≥ 2, then Mobgp(Kn,n) = 2 and gpo(Kn,n) = n. Hence the bound (i) yields Mobgp(Kn,n □ Kn,n) ≥ 2, whilst (ii) yields 
Mobgp(Kn,n □ Kn,n) ≥ n. On the other hand, if n ≥ 7, then Mobgp(Cn) = 3 and gpo(Cn) = 2, hence the bound (i) is better for 
Mobgp(Cn □ Cn) if n ≥ 7. Moreover, just after Theorem  2.4 we will demonstrate that the mobile general position number 
of a graph can be arbitrarily larger than its outer general position number, so that bound (i) can also be arbitrarily larger 
than bound (ii).

From [15, Theorem 3.2] we recall that if n ≥ 2 and m ≥ 2, then gp(Kn □ Km) = n+m− 2. We now sharpen this result 
by demonstrating that a gp-set of Kn □ Km as constructed in [15, Theorem 3.2] is essentially unique as soon as n ≥ 3 and 
m ≥ 3.

Lemma 2.3.  Let n ≥ 3, m ≥ 3, V (Kn) = [n], V (Km) = [m], and let X be a gp-set of Kn □ Km. Then there exist i ∈ [n] and 
j ∈ [m] such that

X =
(
V ((Kn)j) ∪ V (i(Km))

)
\ {(i, j)}.

Proof.  Let X be a gp-set of Kn □ Km. Then, as stated above, |X | = n + m − 2. Note that the set X contains at most two 
vertices from every induced copy of C4 of Kn □ Km. This fact implies the following:

Claim A.  if (i, j), (i, j′) ∈ X, where j ̸= j′, then X ∩

(
V ((Kn)j) ∪ V ((Kn)j

′

)
)

= {(i, j), (i, j′)}.

If X contains all the vertices of some Kn-layer, then by Claim  A, X contains no other vertices, implying that |X | = n <
n + m − 2, which is not possible. Let j ∈ [m] be such that t = |X ∩ V ((Kn)j)| is as large as possible. Note that t ≥ 2, for 
otherwise we would have |X | ≤ m. Moreover, by the above, t ≤ n − 1. If t = n − 1 and i ∈ [n] is the index for which 
(i, j) /∈ X , then using Claim  A again, we have that X ⊆ V ((Kn)j) ∪ V (i(Km)). Since |X | = n + m − 2, we conclude that X
has the required structure in this case. Suppose finally that t = n − k ≥ 2, where k ≥ 2. We may assume without loss of 
generality that X ∩ V ((Kn)j) = {(1, j), . . . , (n − k, j)}. Then, using Claim  A once more,

X ∩

n−k⋃
ℓ=1

V ((Kn)ℓ) = {(1, j), . . . , (n − k, j)}.

Notice that the subgraph H of Kn □ Km induced by the vertex set
{n − k + 1, . . . , n} × {1, . . . , j − 1} ∪ {j + 1, . . . ,m}
( )
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Fig. 3. Canonical gp-set in K7 □ K5 .

is isomorphic to Kk □ Km−1. Since it is a convex subgraph of Kn □ Km, the intersection X ∩ V (H) is a general position set of 
H . Therefore,

|X ∩ V (H)| ≤ gp(Kk □ Km−1) = k + (m − 1) − 2 = k + m − 3.

By our assumption on t we have X ∩{(n−k+1, j), . . . , (n, j)} = ∅. Thus we can conclude that |X | ≤ (n−k)+ (k+m−3) =

n + m − 3, a contradiction.
We have thus proved that |X | = n+m−2 holds only in the case when t = n−1 and X has the structure as claimed. □

Lemma  2.3 is illustrated in Fig.  3, where the gp-set of K7 □ K5 corresponding to the vertex (i, j) is shown. We now use 
this result to find the mobile general position number of Kn □ Km.

Theorem 2.4.  If n ≥ m ≥ 1, then

Mobgp(Kn □ Km) =

{
n; m ∈ [2],
n + m − 3; m ≥ 3.

Proof.  If m = 1, then Kn □ K1 ∼= Kn, thus gp(Kn □ K1) = Mobgp(Kn □ K1) = n. The case m = 2 follows from Proposition  2.2.
Let m ≥ 3. By Lemma  2.3, every gp-set of Kn □ Km has the canonical form as illustrated in Fig.  3. It is straightforward 

to check that no robot placed in such a set can make a legal move. This implies that Mobgp(Kn □ Km) < gp(Kn □ Km) =

n + m − 2.
To complete the proof, we are going to show that there exists a mobile general position set of cardinality n + m − 3. 

Station n+m− 3 robots on the vertices of S = {(2, 1), (3, 1), . . . , (n, 1)} ∪ {(1, 3), (1, 4), . . . , (1,m)}. This set is a general 
position set, since it is a subset of the canonical gp-set of Kn □ Km, as illustrated in Fig.  3. Then we perform the following 
sequence of moves:

• (2, 1) ⇝ (2, 2), (3, 1) ⇝ (3, 2), . . ., (n, 1) ⇝ (n, 2),
• (1, 3) ⇝ (1, 1).

Observe that each of these moves is legal. Thus, the new set occupied by the robots is a general position set of Kn □ Km. 
Next, this process of legal moves can be repeated m − 2 times, i.e. for 2 ≤ j ≤ m − 1 perform the sequence

(2, j) ⇝ (2, j + 1), (3, j) ⇝ (3, j + 1), . . . , (n, j) ⇝ (n, j + 1), (1, j + 2) ⇝ (1, j − 1),

(skipping the final undefined move). In this way, the robots initially positioned at (2, 1), (3, 1), . . . , (n, 1) will visit the 
vertices of the set {2, 3, . . . , n} × [m] by legal moves, while the remaining vertices can be visited by legal moves by the 
robots initially positioned at (1, 3), (1, 4), . . . , (1,m). This concludes our argument for the existence of a mobile general 
position set of cardinality n + m − 3. □

By Theorem  2.4 we have Mobgp(Kn □ Kn) = 2n − 3, whilst it follows from [30, Corollary 4.4] that gpo(Kn □ Kn) = n, 
so that the mobile general position number of a graph can be arbitrarily larger than the outer general position number. 
Theorem  2.4 also demonstrates that the mobile general position number of a Cartesian product can be arbitrarily larger 
than both bounds in Proposition  2.1.

Finally, we give an example (Cartesian products of stars) that shows that the mobile general position number of a 
non-trivial Cartesian product can be arbitrarily smaller than its general position number.

Proposition 2.5.  For all r ≥ 1, there exist graphs G,H for which

gp(G□H) − Mobgp(G□H) = r.
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Proof.  For k ≥ 2, let V (K1,k) = {0} ∪ [k], with 0 being the vertex of degree k. It follows from [32, Theorem 1] that 
gp(K1,k □ K1,k) = 2k. We will show that Mobgp(K1,k □ K1,k) = k+ 1, so that gp(K1,k □ K1,k)−Mobgp(K1,k □ K1,k) = k− 1 and 
the result follows on setting k = r + 1.

Let S be any mobile general position set of K1,k □ K1,k. Any pair of adjacent vertices in the Cartesian product of trees is 
a maximal general position set [22], so if |S| > 2 the robots must always occupy an independent set. We can start at the 
stage that a robot is stationed at (0, 0). If there are robots at vertices (u1, v1) and (u2, v2) with u1, v1, u2, v2 ∈ [k], u1 ̸= u2
and v1 ̸= v2, then there would be a shortest (u1, v1), (u2, v2)-path through (0, 0); hence all the remaining robots lie in a 
set {i} × [k] or [k] × {j} for some i, j ∈ [k]. In either case, we have |S| ≤ k + 1.

Finally, we show that Mobgp(K1,k □ K1,k) ≥ k + 1. Consider the set S = {(0, 0)} ∪ ([k] × {1}). First, move (0, 0) ⇝ (0, 2), 
followed by (i, 1) ⇝ (i, 0) for i ∈ [2, k] and then (0, 2) ⇝ (1, 2). By relabelling as necessary, we see that each 
vertex except for (0, 1) may be visited using such a sequence. For the remaining vertex, from the initial configuration 
S = {(0, 0)} ∪ ([k] × {1}) perform (0, 0) ⇝ (0, 2), (i, 1) ⇝ (i, 0) for i ∈ [2, k], and finally (1, 1) ⇝ (0, 1). Therefore, S is a 
mobile general position set. □

3. Cartesian products with paths

In this section we continue our exposition with exact values of the mobile general position number for some Cartesian 
products involving paths, including prism graphs, i.e. products G□ P2. The result for prisms of complete graphs is contained 
in Proposition  2.2 and Theorem  2.4. We begin with the exact value of Mobgp(T □ K2), where T  is a tree. It follows from 
Proposition  2.1 that for any graph G the mobile general position number of a prism satisfies Mobgp(G) ≤ Mobgp(G□ K2) ≤

2 gp(G). Since the mobile general position number of a tree is just two, Theorem  3.1 shows that Mobgp(G□ K2) can be 
arbitrarily larger than Mobgp(G).

Theorem 3.1.  For any tree T  with order at least three, Mobgp(T □ K2) = ℓ(T ).

Proof.  By Proposition  2.2, we can assume that ℓ(T ) ≥ 3. As remarked in Section 1, gpo(T ) = ℓ(T ), so by Proposition 
2.1(ii) we have Mobgp(T □ K2) ≥ ℓ(T ). We label the vertices of K2 by 0,1. Suppose that at least ℓ(T )+1 robots can traverse 
T □ K2 in general position. Since gp(T ) = ℓ(T ) and each T -layer in T □ K2 is a convex subgraph, neither T -layer can contain 
> ℓ(T ) robots at any stage, that is, each layer V (T ) × {0} and V (T ) × {1} must contain at least one robot at any time. 
Trivially we can assume that at least one layer contains two or more robots.

Suppose that the layer T 1 contains at least two robots. If not all of the robots in T 1 are already stationed at leaves of 
T , then we may suppose that a robot is at a vertex (u, 1), where u is a cut-vertex of T . Let T1, . . . , Tk be the components 
of T − u. As the set of robots is in general position, one of the sets V (Ti) × {1} must contain the remaining robots of T 1; 
without loss of generality, suppose that these other robots are in V (T1)×{1}. Considering the shortest paths to the robots 
in V (T1) × {1}, we see that there cannot be robots positioned at any vertex from ({u} ∪

⋃k
i=2 V (Ti)) × {0}. Therefore, the 

robot at (u, 1) can be moved by a sequence of legal moves to (v, 1), where v is a leaf of T  lying in T2. In this fashion, if 
both layers T i, i ∈ {0, 1}, contained at least two robots, then all of these robots could be moved to vertices corresponding 
to leaves of T . However, if w is any leaf of T , then we cannot have robots at both (w, 0) and (w, 1), as this constitutes a 
maximal general position set of T □ K2. Therefore, in this case, we conclude that there are at most ℓ(T ) robots in T □ K2, 
a contradiction.

It follows that there must be a layer, say T 0, that contains just one robot R, and ℓ(T ) robots lie in T 1, which we can 
assume to start at the leaves of T 1. By the preceding argument, R cannot move to the layer T 1 and no robot in T 1 can 
move to T 0. If T  is a path Pn, then we are left with three robots: two positioned at vertices corresponding to leaves of the 
layer P1

n , and the third robot located at an internal vertex of the path layer P0
n . It is now readily observed that no robot 

can visit the vertices corresponding to leaves of P0
n . Hence, we may assume that T  is not a path. Let z be any vertex of T

with degree at least three. No robot in T 1 can visit (z, 1) without creating three-in-a-line within T 1, and robot R cannot 
leave T 0 to visit (z, 1), a contradiction. We conclude that T □ K2 can hold at most ℓ(T ) robots. □

By Theorem  3.1 we have Mobgp(Pn □ P2) = 2 for n ≥ 2. We next complement this result by considering products of 
two paths each of order at least three.

Theorem 3.2.  If n,m ≥ 3, then Mobgp(Pn □ Pm) = 3.

Proof.  Let V (Pk) = [k], so that V (Pn □ Pm) = [n]×[m]. Consider an arbitrary general position set S of Pn □ Pm with |S| = 4. 
Then from the proof of [19, Theorem 2.1] we deduce that none of the corner vertices (1, 1), (1,m), (n, 1) and (n,m) belongs 
to S. Hence, no sequence of legal moves for any configuration of four robots in general position in Pn □ Pm can visit any 
of the vertices (1, 1), (1,m), (n, 1) and (n,m). Thus, Mobgp(Pn □ Pm) ≤ 3.

To prove that Mobgp(Pn □ Pm) ≥ 3, we start with three robots positioned at the general position set
S = {(1, 1), (n, 1), (2,m)}. We next describe a sequence of legal moves for the three robots.

• (1, 1) moves to all the vertices from {1} × [m − 1] and returns back to (1, 1).
• (n, 1) moves to all the vertices from {n} × [m − 1] and returns back to (n, 1).
773



S. Klavžar, A. Krishnakumar, D. Kuziak et al. Discrete Applied Mathematics 379 (2026) 768–780
Fig. 4. The legal moves in the infinite grid.

• (2,m) moves to all the vertices from [2, n − 1] × [2,m] and returns back to (2,m).
• (n, 1) ⇝ (n, 2). After this, (1, 1) moves to vertices (2, 1), . . . , (n − 1, 1). Notice that at this point the robots are at 

vertices (2,m), (n−1, 1) and (n, 2). Moreover, by this stage, all the vertices apart from (1,m) and (n,m) have already 
been visited.

• (2,m) ⇝ (1,m) and (n, 2) ⇝ (n, 3) ⇝ · · · ⇝ (n,m).

Notice that all these moves are legal, which demonstrates that Mobgp(Pn □ Pm) ≥ 3 and hence Mobgp(Pn □ Pm) = 3 when 
n,m ≥ 3. □

By contrast, for infinite grids P∞ □ P∞ we have equality with the general position number.

Theorem 3.3.  If P∞ is the two-way infinite path, then Mobgp(P∞ □ P∞) = 4.

Proof.  We first recall from [27, Corollary 3.2] that gp(P∞ □ P∞) = 4. Hence, it remains to show that Mobgp(P∞ □ P∞) ≥ 4. 
To do so, set V (P∞) = Z and let (i, j) ∈ V (P∞ □ P∞). We claim that the set N(i, j) = {(i−1, j), (i+1, j), (i, j−1), (i, j+1)} is 
a mobile general position set of P∞ □ P∞. First, from the proof of [27, Corollary 3.2], we know that any such set N(i, j) is in 
general position. Next, observe that the sequence of moves (i+1, j) ⇝ (i+2, j), (i, j+1) ⇝ (i+1, j+1), (i, j−1) ⇝ (i+1, j−1)
and (i − 1, j) ⇝ (i, j) is a sequence of legal moves from robots positioned at the set N(i, j). This sequence moves the four 
robots one coordinate to the right, leaving robots at N(i+1, j). Fig.  4 shows a gp-set of the grid P∞ □ P∞, and one round of 
moves as just described. The order of the moves is shown by the numeric order in the figure. We can analogously move 
the four robots in each of the remaining three directions in the infinite grid. In this way, every vertex of the infinite grid 
is eventually occupied by some robot. Thus, the conclusion follows. □

We now find the exact value of the mobile general position number for some cylinder graphs Cr □ Ps. The general 
position numbers of the cylinder graphs are given in [19] as

gp(Cr □ Ps) =

{ 3; r = 3, s = 2,
5; r = 7 or r ≥ 9,  and s ≥ 5,
4; otherwise.

Note that Proposition  2.2 gives Mobgp(C3 □ Ps) = 3 for s ≥ 2. We begin with the prism graphs Cr □ P2.

Theorem 3.4.  If n ≥ 3, then

Mobgp(Cn □ K2) =

{ 3; n = 3,
2; n = 4,
4; otherwise.

Proof.  The case C3 □ K2 = K3 □ K2 has already been treated above. Up to symmetry, there are unique general position 
sets of C4 □ K2 of cardinalities three and four, both of which are independent sets. However, in both cases no robot can 
move whilst maintaining the independence property, so that Mobgp(C4 □ K2) ≤ 2, and the equality trivially holds.

We assume for the remainder of the proof that n ≥ 5. It follows from [19, Theorem 3.2] that gp(Cn □ K2) = 4. Set 
V (Cn) = {vi : i ∈ Zn} and V (K2) = [2]. We separate the argument into two cases.

Case 1: n is odd.
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Fig. 5. Moving robots in C5 □ K2 .

Fig. 6. Moving robots in C6 □ K2 .

Consider a set of four robots located at S = {(v0, 1), (v⌈n/2⌉, 1), (v1, 2), (v⌈n/2⌉+1, 2)} . Then S is a general position set. 
Moreover, consider the following sequence of four moves for the robots:

• (v1, 2) ⇝ (v2, 2);
• (v0, 1) ⇝ (v1, 1);
• (v⌈n/2⌉+1, 2) ⇝ (v⌈n/2⌉+2, 2);
• (v⌈n/2⌉, 1) ⇝ (v⌈n/2⌉+1, 1).

Fig.  5 shows this process for the case C5 □ K2.
Case 2: n is even.
Suppose now that the robots are positioned at S = {(v0, 1), (vn/2, 1), (v1, 2), (vn/2+1, 2)} . Again S is a general position 

set. Moreover, consider the following sequence of moves:

• (v1, 2) ⇝ (v2, 2);
• (vn/2+1, 2) ⇝ (vn/2+2, 2);
• (v0, 1) ⇝ (v1, 1);
• (vn/2, 1) ⇝ (vn/2+1, 1).

Fig.  6 shows this process for the case C6 □ K2.
In both cases above, we note that these four moves are legal. Since the obtained sets are symmetric with respect to 

the original ones, by repeating these procedures the robots will eventually visit all the vertices of Cn □ K2. It follows that 
each S is a mobile general position set, and hence Mobgp(Cn □ K2) ≥ 4. □

We now introduce a technical lemma that allows us to extend results on short cylinders to longer cylinders.

Lemma 3.5.  If H is a connected graph with girth at least 2r and radius at least r − 1, then for any graph G it holds that
Mobgp(G□H) ≥ Mobgp(G□ Pr ).

Proof.  Let Q  be any path v1, v2, . . . , vr  of length r −1 in H . The subgraph of G□H induced by V (G)×V (Q ) is isomorphic 
to G□ Pr , and as the girth of H is at least 2r , the subgraph is convex. Thus, Mobgp(G□ Pr ) robots can traverse the vertices of 
V (G)×V (Q ) in general position without leaving the subgraph. Now, let vr+1 ∈ NH (vr )\{vr−1}. Suppose that the robots have 
visited all the vertices of V (G)× V (Q ) by a sequence of legal moves. Next, move all robots in V (G)× {vr} to V (G)× {vr+1}

in turn by legal moves of the form (u, vr ) ⇝ (u, vr+1), where u ∈ V (G). Then repeat this process to move the robots in 
V (G) × {vj} to V (G) × {vj+1} for j = r − 1, r − 2, . . . , 1. As H has girth at least 2r , the robots remain in general position 
throughout this process. As H is connected and the radius of H is at least r −1, any layer Gh can be visited in this way. □

Notice that Lemma  3.5 generalises the inequality Mobgp(G) ≤ Mobgp(G□ K2). We first focus on cylinders with cycles 
of length four.

Proposition 3.6.  If s ≥ 3 is an integer, then Mob (C □ P ) = 3.
gp 4 s
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Proof.  Let s ≥ 3, V (C4) = Z4, and V (Ps) = [s]. We first show that Mobgp(C4 □ Ps) ≤ 3. Suppose for a contradiction that 
there exists a mobile general position set S of C4 □ Ps with |S| ≥ 4.

Clearly, no three robots from S can lie in the same Ps-layer. Suppose that two robots R1 and R2 in S lie in the same 
Ps-layer of C4 □ Ps; without loss of generality, R1 and R2 are stationed at vertices (0, i) and (0, j) respectively, where 
1 ≤ i < j ≤ s. There is a shortest path from any vertex (u, v) with v ∈ [i] to R2 through R1, and likewise for vertices 
with second coordinate at least j. Hence, there are no robots on Z4 × ([1, i] ∪ [j, s]) apart from R1 and R2. Call the other 
two robots R3 and R4. By the above analysis, R3 and R4 cannot have the same first coordinate. Hence we can assume that 
robot R3 lies at (1, k), where i < k < j. Any vertex in ({1, 2} × [i + 1, j − 1]) \ {(1, k)} has a shortest path to either R1 or 
R2 through R3, so R4 must be at a vertex (3, l), where i < l < j. However, in this configuration each robot is only free to 
move within its Ps-layer, and so no robot can visit any vertex in 2Ps, a contradiction. Consequently, there is one robot on 
each Ps-layer, and none of the robots can move to another Ps-layer.

Observe that any pair of adjacent vertices constitutes a maximal general position set of C4 □ Ps, so the robots must 
at all times occupy an independent set. Therefore, if we suppose that R1 is the robot located at the vertex with smallest 
second coordinate in the initial configuration, say at vertex (0, i), then no robot in the layers 1Ps or 3Ps can ever move to 
a position with second coordinate smaller than that of R1, and hence the vertices in {1, 3}×{1} cannot be visited by legal 
moves. Thus, Mobgp(C4 □ Ps) ≤ 3.

To show the lower bound, consider C4 □ P3. We start with robots at vertices (0, 1), (1, 2) and (0, 3). Then for i = 0, 1, 2
in succession we perform the sequence of three legal moves (i+ 1, 2) ⇝ (i+ 2, 2), (i, 3) ⇝ (i+ 1, 3) and (i, 1) ⇝ (i+ 1, 1)
in this order. Lemma  3.5 now gives the result for cylinders C4 □ Ps for s ≥ 4. □

Theorem  3.4 for prisms along with Lemma  3.5 implies that Mobgp(Cr □ Ps) ≥ 4 for r ≥ 5, s ≥ 2. Combined with the 
upper bound involving gp(Cr □ Ps) we see that Mobgp(Cr □ Ps) = 4 for r ∈ {5, 6, 8} and s ≥ 2, or for r ≥ 5 and s ≤ 4. In 
the cases r = 7 or r ≥ 9 and s ≥ 5 the mobile general position number of Cr □ Ps must be either four or five.

Proposition 3.7.  If r = 9 or r ≥ 11, and s ≥ 5, then Mobgp(Cr □ Ps) = 5.

Proof.  It is known from [19, Theorem 3.2] that gp(Cr □ Ps) = 5 for r = 9 or r ≥ 11, and s ≥ 5. It only remains to show 
that Mobgp(Cr □ Ps) ≥ 5. We show that the result is true for Cr □ P5, and the full claim then follows for larger values of s
by Lemma  3.5. Set V (Cr ) = Zr  and V (P5) = [5].

If r ≥ 11 and i ∈ Zr , then we consider the set
Si,0 = {(i + 1, 1), (i + 4, 2), (i + ⌊r/2⌋ + 2, 3), (i, 4), (i + 3, 5)}.

For i = 0, 1, . . . , r − 2 we define the following sequence of five moves:

• (i + 4, 2) ⇝ (i + 5, 2) to give Si,1,
• (i + 3, 5) ⇝ (i + 4, 5) to give Si,2,
• (i + ⌊r/2⌋ + 2, 3) ⇝ (i + ⌊r/2⌋ + 3, 3) to give Si,3,
• (i + 1, 1) ⇝ (i + 2, 1) to give Si,4,
• (i, 4) ⇝ (i + 1, 4).

The final move brings us to the configuration Si+1,0. We start with the five robots positioned at the set S0,0 and perform 
these sequences of moves for i = 0, 1, . . . r − 2. Each of these moves is legal. To see this, notice that the robots remain 
in general position at each stage, which is easily verified for S0,j, j ∈ [5], and by then observing that the automorphism 
that maps (u, v) to (u + i, v) for all u ∈ Zr , s ∈ [5] transforms S0,j to Si,j for j ∈ [5]. Moreover, by the end of the process, 
all vertices have been visited.

Similarly, for r = 9 we start with robots positioned at the set
{(1, 1), (4, 2), (⌊s/2⌋ + 2, 3), (0, 4), (3, 5)}

and perform the sequence of moves:

• (⌊s/2⌋ + 2, 3) ⇝ (⌊s/2⌋ + 3, 3),
• (1, 1) ⇝ (2, 1),
• (0, 4) ⇝ (1, 4),
• (4, 2) ⇝ (5, 2),
• (3, 5) ⇝ (4, 5).

By repeating these moves the robots visit all of the vertices of C9 □ P5 by legal moves. □

Hence, the only unknown values are Mobgp(C7 □ Ps) and Mobgp(C10 □ Ps) for s ≥ 5. We conjecture that the answer is 
four in these cases.

By combining Lemma  3.5 with Proposition  3.7 we obtain a lower bound for the mobile general position number of 
sufficiently large torus graphs. 
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Corollary 3.8.  For r = 9 or r > 10, and s ≥ 10, Mobgp(Cr □ Cs) ≥ 5.

It is shown in [21] that if r, s ≥ 7 and r and s do not both lie in {8, 10, 12}, then gp(Cr □ Cs) = 7. Computer search 
shows that the torus C9 □ C8 has mobile general position number seven, so this upper bound can be achieved.

4. Corona products and joins

In this section we consider moving robots in general position through corona products and joins. We first define these 
two graph operations.

Given two graphs G and H with V (G) = {v1, . . . , vn}, the corona product graph G ⊙ H is formed by taking one copy of 
G and n disjoint copies of H , call them H1, . . . ,Hn, and for each i ∈ [n] adding all the possible edges between vi ∈ V (G)
and every vertex of H i. For i ∈ [n] we will write ̃Hi for the subgraph of G⊙H induced by V (H i)∪ {vi}. Also, the join G∨H
of graphs G and H is obtained from the disjoint union of G and H by adding all possible edges between G and H .

4.1. Corona product graphs

The first paper [17] on the mobile general position problem briefly considered mobile general position sets in rooted 
products. This suggests investigating the problem in corona products, which can also be viewed as a kind of rooted product. 
The general position number of corona product graphs was studied in [15]. We now bound the value of the mobile general 
position number of the corona product G ⊙ H .

Theorem 4.1.  For any two graphs G and H,

max{Mobgp(G),Mobgp(H ∨ K1)} ≤ Mobgp(G ⊙ H) ≤ max{n(G), gp(H ∨ K1)}.

Proof.  Let S be a mobile general position set of H ∨ K1 and let S1 be its copy in ̃H1. We claim that S1 is a mobile general 
position set of G ⊙ H . As ̃H1 is an isometric subgraph of G ⊙ H , first the robots from S1 can visit each vertex of ̃H1. Next, 
as soon as one robot visits the vertex v1, this robot can visit all the vertices of V (G⊙H) \ V (H̃1) before returning to v1. It 
follows that Mobgp(G ⊙ H) ≥ Mobgp(H ∨ K1).

Now, let S be a mobile general position set of G and let S ′ be the copy of S in G⊙H . Then each vertex vi ∈ V (G) can be 
visited by a robot from S ′. Moreover, as soon as a robot moves to some vertex vi, this robot can visit all the vertices from 
H i and then return to vi. Hence S ′ is a mobile general position set of G ⊙ H and Mobgp(G ⊙ H) ≥ Mobgp(G). We conclude 
that Mobgp(G ⊙ H) ≥ max{Mobgp(H ∨ K1),Mobgp(G)}.

To prove the upper bound, let S be a mobile general position set of G ⊙ H . If |S| ≤ n(G), then there is nothing to 
prove. Assume next that |S| ≥ n(G) + 1. Then by the pigeonhole principle we have |S ∩ V (H̃i)| ≥ 2 for some i ∈ [n(G)]. 
Hence either at some point there is already a robot in H i and a second robot enters ̃Hi via vi, or else there are always at 
least two robots in V (Hi) and a further robot must visit vi. Denote the positions of the robots at this moment by S ′. In 
S ′ there is a robot R1 in V (H i) and a robot R2 at the cut-vertex vi. As any path from R1 to a robot on V (G ⊙ H) \ V (H̃i)
would pass through R2, it follows that S ′

⊆ V (H̃i) and S ′ is a general position set of ̃Hi. Hence, under the assumption that 
|S| ≥ n(G) + 1, we must have Mobgp(G ⊙ H) = |S ′

| ≤ gp(H ∨ K1). □
When both G and H are complete graphs, G⊙H is a block graph, hence the following consequence can also be deduced 

from [17, Theorem 2.3].

Corollary 4.2.  If r, s ≥ 1, then Mobgp(Kr ⊙ Ks) = max{r, s + 1}.

Note that Corollary  4.2 demonstrates the sharpness of all the bounds in Theorem  4.1. For another sharpness example, 
in which the upper and lower bounds do not coincide, consider G = K2 and H = C4. Then we have that Mobgp(K2) = 2, 
Mobgp(C4 ∨ K1) = 2, and gp(C4 ∨ K1) = 3. It can be noted that Mobgp(K2 ⊙ C4) = 3 = gp(C4 ∨ K1). For another infinite 
family, let G be an arbitrary tree, and H the edgeless graph of order at least two. Since in this case G ⊙ H is a tree, we 
have Mobgp(G ⊙ H) = 2 (see [17, Theorem 2.3]), which is also the value of the lower bound in Theorem  4.1.

We complete this section by presenting a result which shows that none of the bounds of Theorem  4.1 is sharp in 
general.

Theorem 4.3.  If n ≥ 3, then Mobgp(Cn ⊙ K1) =
⌈ n

2

⌉
+ 1.

Proof.  Set V (Cn) = Zn and, for each i ∈ Zn, let i′ be the leaf in Cn ⊙K1 attached to i. We first show that Mobgp(Cn ⊙K1) ≥⌈ n
2

⌉
+ 1. Set Yi = {i′, (i + 1)′, . . . ,

(⌈ n
2

⌉
+ i

)′
} for any i ∈ Zn. We claim that Y0 is a mobile general position set. It is easily 

seen that each Yi is a general position set of Cn ⊙ K1.
Starting from some fixed Yi, we move the robot R placed at 

(⌈ n
2

⌉
+ i

)′ through the vertices of the set [
(⌈ n

2

⌉
+ i

)
, (i−1)]

and their attached leaves, and finally leave the robot at (i − 1)′. After these moves we are left with the robots occupying 
the set Y  and at each stage the robots remained in general position, since the paths between robots in Y \ {

(⌈ n⌉
+ i

)′
}
i−1 i 2
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pass through [i,
⌈ n

2

⌉
+ i − 1]. Therefore starting at Y0 and repeating this process for i = 0, −1, . . . , −

⌈ n
2

⌉
 results in all 

vertices being visited by a robot and Y0 is a mobile general position set as claimed.
We now prove that Mobgp(Cn ⊙ K1) ≤

⌈ n
2

⌉
+ 1. Note that each set {i, i′}, i ∈ Zn, is a maximal general position set, so 

we must have |X ∩ {i, i′}| ≤ 1 for each i ∈ Zn and any Mobgp-set X . Consider the moment that a robot visits the vertex 0. 
Let j, k be the smallest and largest values in [1, n−1], respectively, such that there is a robot in {j, j′} and {k, k′

}. To avoid 
the robot in {k, k′

} having a shortest path to the robot in {j, j′} through the robot at 0 we must have k − j ≤
⌈ n

2

⌉
− 1. As 

each set {i, i′} contains at most one robot for i ∈ [j, k] ∪ {0} and no robots for i ∈ [k + 1, n − 1] ∪ [1, j − 1], this gives an 
upper bound of 

⌈ n
2

⌉
+ 1 robots in the graph. □

Notice that for Cn ⊙ K1, the lower bound of Theorem  4.1 is three if n ≥ 3 and n /∈ {4, 6}, and it is two if n ∈ {4, 6}, 
whereas the upper bound is n. Since Cn ⊙ K1 is a unicyclic graph, we may recall that mobile general position sets of 
unicyclic graphs were discussed in [17].

4.2. Joins of graphs

We now give bounds for the mobile general position number of joins G∨ H . Observe that if both G and H are cliques, 
then G ∨ H is also a clique and the question is trivial, so we will assume that at least one of G and H is not a clique.

Theorem 4.4.  If G and H are (not necessarily connected) graphs with clique number at least two, and G and H are not both 
cliques, then

min{ω(G), ω(H)} + 1 ≤ Mobgp(G ∨ H) ≤ ω(G) + ω(H) − 1.

For any graph G with order n ≥ 2,

2 ≤ Mobgp(G ∨ K1) ≤ ω(G) + 1.

Proof.  Assume that both G and H have clique number at least two and that at least two robots are traversing G ∨ H in 
general position. At some point there must be a robot in G and a robot in H . Hence, at this point, the set of occupied 
vertices in G and the occupied vertices in H must both be cliques in G and H , respectively, giving the upper bound 
Mobgp(G ∨ H) ≤ ω(G) + ω(H). However, if Mobgp(G ∨ H) = ω(G) + ω(H), then no robot has a legal move, since any 
move would result in a clique in one of G and H and a non-clique in the other, so in fact Mobgp(G∨H) ≤ ω(G)+ω(H)−1.

For the lower bound, assume that ω(H) ≤ ω(G). We can start with robots at a maximum clique WH of H and one robot 
in G. The robot in G can visit every vertex of G, since during this process the occupied vertices always form a clique in 
G∨H . At the end, this robot moves into a maximum clique WG of G. After that, all the robots from WH but one move into 
WG. At that time, only one robot remains in H and, by the same argument, it can visit every vertex of H .

The inequalities for G ∨ K1 can be derived in a similar manner. □

Note that if G and H both have clique number two, then the upper and lower bounds of Theorem  4.4 coincide. For a 
triangle-free graph G, Mobgp(G∨K1) could be either two or three. It is easily seen that for cycles we have Mobgp(C4∨K1) = 2
and Mobgp(Cn ∨ K1) = 3 for n ≥ 5. The first example shows that the lower bound for Mobgp(G ∨ K1) is tight, but it is an 
open question whether this can happen for graphs with large clique number.

Corollary 4.5.  If G and H both have clique number two, then Mobgp(G ∨ H) = 3.

To show that the upper bound in Theorem  4.4 is tight, consider the join K−
r ∨ K−

s , where K−
n  represents a complete 

graph minus one edge. If x1, x2 is the pair of non-adjacent vertices in K−
r  and y1, y2 is the pair of non-adjacent vertices of 

K−
s , then (V (K−

r ) \ {x2})∪ (V (K−
s ) \ {y1, y2}) is a mobile general position set, as the set of occupied vertices forms a clique 

in K−
r ∨ K−

s  and the robot at x1 can follow the route x1 ⇝ y1 ⇝ x2 ⇝ y2 to visit the remaining vertices. This matches the 
upper bound. More generally, the same argument works when G and H are both joins of cliques with empty graphs.

To demonstrate sharpness of the lower bound, for r ≥ 2 take the join Kr ∨ K+

r+1, where K+

r+1 is the complete graph 
Kr+1 with an added leaf x. Suppose that a set of at least r + 2 robots can traverse this graph in general position, and 
focus on the moment that there is a robot at x. As r + 2 robots cannot be stationed on K+

r+1, there must be a robot on 
Kr  and the positions occupied on Kr  and K+

r+1 must both induce cliques. Hence every vertex of Kr  must contain a robot 
and in K+

r+1 there is a robot at x and its support vertex x′. However, there are no legal moves in this configuration. Thus, 
Mobgp(Kr ∨ K+

r+1) ≤ r + 1 = min{ω(Kr ), ω(K+

r+1)} + 1.
For an example of graphs with arbitrarily large clique number that meet the upper bound in Mobgp(G∨K1) ≤ ω(G)+1, 

consider the birdcage graph Bn formed as follows. Let U be a clique on vertices {u1, . . . , un}, V  be an empty graph on 
vertices {v1, . . . , vn} and an additional vertex z, and add edges ui ∼ vi and vi ∼ z for i ∈ [n]. The graph Bn has clique 
number n and we show that n+ 1 robots can traverse Bn ∨ K1 in general position. Denote the vertex of the K1 by x. Start 
with robots at U ∪ {x} and make the move x ⇝ z. Then for each i ∈ [n] make the two moves ui ⇝ vi ⇝ ui. It is easily seen 
that the robots are always in general position and visit all the vertices of B ∨ K .
n 1
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5. Concluding remarks and open problems

We conclude with a few open problems.

• Is there a non-trivial upper bound on Mobgp(G□H), at least for the particular case Mobgp(G□ K2)?
• We have seen that Mobgp(P∞ □ P∞) = 4 = gp(P∞ □ P∞). In [20, Theorem 1] it was proven that gp(Pk,□

∞
) = 22k−1

, 
where Pk,□

∞
 is the k-tuple Cartesian product of the infinite path P∞. It is therefore of interest to determine whether 

Mobgp(Pk,□
∞

) = 22k−1  holds for larger values of k.
• Are there graphs G with arbitrarily large clique number such that Mobgp(G ∨ K1) = 2?
• In view of Proposition  3.7 and the preceding remarks, we ask what is the mobile general position number of cylinder 

graphs C7 □ Ps and C10 □ Ps for s ≥ 5?
• By Corollary  3.8, Mobgp(Cr □ Cs) ≥ 5 if r = 9 or r > 10 and s ≥ 10. It would be interesting to classify the mobile 

general position numbers of all torus graphs.
• What is the mobile general position number of strong and direct products?
• What is the mobile general position number of the hypercube?
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