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1. Introduction

The general position problem originated as a geometric puzzle of Dudeney [14], but was first investigated in the context
of graph theory in [9,26]. A survey of the problem is given in [7]. The arXiv version [25] of the paper [26] gave the following
motivation for the problem. Suppose that a collection of robots is stationed on the vertices of a graph. They communicate
with each other by sending signals along shortest paths. To avoid their communication being disrupted, we wish that no
robot lies on a shortest path between two other robots. Subject to this condition, what is the greatest possible number
of robots that we can place on the graph? In fact, the related mutual-visibility problem was initially researched in terms
of its applications in robotic navigation and communication (see [2,3,12] for a partial overview) and was only recently
considered in a pure mathematics context [13].

However, this picture lacks an important feature of real world robotic navigation: the general position problem is
‘static’, whereas in applications the robots will typically need to move around the network. Watching the mobile delivery
robots created by Starship Technologies® [1] inspired the authors of [17] to consider a dynamic version of the general
position problem, in which robots move through the vertices of a graph whilst remaining in general position, and such
that every vertex is visited by a robot at least once (it is assumed that one robot moves to an adjacent vertex at each
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Fig. 1. A (non-optimal) general position set (left) and a gp-set (right) of the Petersen graph are shown in red. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

step and no vertex can contain more than one robot). The paper [17] considered this problem for block graphs, rooted
products, Kneser graphs, unicyclic graphs, complete multipartite graphs and line graphs of complete graphs. A mobile
version of the closely related mutual-visibility problem was recently treated in [11]. In addition, the paper [4] considers
the version of the mobile general position problem with the stricter condition that every vertex must be visited by every
robot.

The general position problem has been investigated for a wide variety of graphs, but there is a particularly extensive
literature on general position sets in Cartesian products, see [19-21,31,32]. General position sets in other graph products
were discussed in [15]. Cartesian products have also been considered in the setting of variants of the general position
number, such as the lower general position number [22], the mutual-visibility number [10,13], the monophonic position
number [8], the lower mutual-visibility number [5], general position polynomials [ 16], edge general position numbers [28],
total mutual-visibility [24], the variety of general position problems [30] and general position and mutual-visibility
colourings [6,18]. In this paper, we examine the mobile general position problem in Cartesian products, together with
the coronas and joins of graphs.

The plan of the paper is as follows. In Section 1.1 we introduce the formal definitions of the main concepts that we
shall use in our exposition. In Section 2 we give bounds for the mobile general position number of Cartesian products and
discuss their sharpness. In Section 3 we determine this number for Cartesian products involving paths, including grids,
some cylinders and prisms of trees. Section 4 discusses the mobile general position problem for corona products and joins
of graphs. We conclude with some open problems in Section 5.

1.1. Formal definitions and preliminaries

We will write [n] for {1, ..., n} and [m, n] for {m,m+1,...,n—1,n} when m < n. A graph G = (V(G), E(G)) consists
of a set V(G) of vertices that are connected by a set of edges E(G). All graphs that we consider are simple and undirected.
We will write u ~ v to indicate that u and v are adjacent in G, and will denote the set of neighbours of u by Ng(u), or
simply by N(u) if the graph is clear from the context. The degree deg(u) of a vertex u is [N(u)|. A vertex of degree one is
a leaf, and the number of leaves in a graph G will be denoted by ¢(G). A complete graph with n vertices will be written
as K, and a complete bipartite graph with partite sets of size n and m as K, ;.

A path P, in G is a sequence uq, Us, ..., U, of distinct vertices such that u; ~ u; ¢ for i € [r — 1] and the length of this
path is r — 1. A cycle C; is a sequence uq, U, ..., U, such that u; ~ u;;q fori € [r — 1] and also u; ~ u,. The distance
between vertices u, v € V(G) is the length of a shortest u, v-path in G. We will typically identify the vertices of a cycle C,
with Z, and the vertices of a path P, with [n] in the natural manner. A subgraph X of G is convex if for any u, v € V(X)
we have V(P) C V(X) for any shortest u, v-path P in G. The subgraph G[X] induced by a subset X C V(G) is the subgraph
with vertex set X such that u, v € X are adjacent in G[X] if and only if they are adjacent in G.

If S C V(G) has the property that no three vertices of S lie on a common shortest path of G, then we say that S is a
general position set of G. The largest possible number of vertices in a general position set of G is the general position number
of G, denoted by gp(G). Any largest general position set is referred to as a gp-set. Fig. 1 shows two general position sets
in the well-known Petersen graph. The red vertices on the left form a maximal but non-optimal general position set of
order four, whilst the six red vertices on the right constitute a gp-set of the Petersen graph, and so the Petersen graph
has general position number six. Note that in both cases no shortest path between any pair of red vertices passes through
a third red vertex.

If a robot is located at a vertex u and u ~ v, then we indicate the movement of the robot from u to v along the edge
uv by u ~ v and refer to this as a move. Suppose that we assign exactly one robot to each vertex of a general position
set S. If a robot is stationed at a vertex u of S, then the move u ~ v is called a legal move if (i) v ¢ S (thereby avoiding
having more than one robot per vertex at any stage) and (ii) the new set (S \ {u}) U {v} is also a general position set.
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Fig. 2. A sequence of legal moves (shown by red arrows) for a Mobg,-set of the Petersen graph. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

A configuration of robots on a general position set of G is called a mobile general position set if there is a sequence of
legal moves starting from S such that every vertex of G is visited at least once by some robot. The mobile general position
number, written Mobg,(G), is the largest number of robots in a mobile general position set of G. We will refer to a largest
possible configuration of robots in mobile general position as a Mobg-set.

Fig. 2 shows a few configurations of a Mobg,-set for the Petersen graph. The red arrows indicate the legal moves that
lead from one configuration to the next. Notice that the last configuration is equivalent to the first up to symmetry. By
repeating (symmetrical equivalents of) this sequence of legal moves every vertex of the Petersen graph can be visited.
It is shown in [17] that this mobile general position has the largest possible cardinality amongst all such sets, i.e. it is a
Mobg,-set.

In [30] the variety of general position problems in graphs was introduced, including general position sets, outer
general position sets, dual general position sets, and total general position sets. For our purposes we recall the following
definitions. If X € V(G), then u, v € V(G) are X-positionable if for any shortest u, v-path P we have V(P)N X C {u, v}.
Hence X is a general position set if all pairs u, v € X are X-positionable. If it also holds that every pair u, v with u € X and
v € V(G)\ X is X-positionable, then X is an outer general position set. The cardinality of a largest outer general position set
of G is denoted by gp,(G) and is called the outer general position number. It is shown in [30] that outer general position
sets coincide with sets of mutually maximally distant vertices. (The latter concept was introduced in [29], see also the
related survey [23].) In particular, in a block graph the outer general position sets are the sets of simplicial vertices; in
the case of a tree this yields gp(T) = gp,(T) = €(T).

2. Bounds for Cartesian products

Recall that the Cartesian product GO H of graphs G and H satisfies V(GOH) = V(G) x V(H) and (g, h)(g’, h') € E(GOH)
if either gg’ € E(G) and h = h’, or g = g’ and hh’ € E(H). A G-layer is a subgraph of GOH induced by V(G) x {h} for some
h e V(H), which will be denoted by G", with a similar definition for H-layers €H, where g € V(G). Likewise, if P is a path
ui,...,u; in G and h € V(H), then we will denote the path (us, h), (us, h), ..., (ur, h) in GOH by P" (with an analogous
definition of £Q for a path Q in H and g € V(G)).

We begin by deriving some bounds on Mobg,(GOH). A trivial upper bound is Mobg,(GOH) < gp(GOH). Proposition
2.1 gives two lower bounds in terms of the mobile and outer general position numbers of the factors.

Proposition 2.1. For any connected graphs G and H of order at least two, the following hold.

(i) Mobg,(GOH) > max{Mob,(G), Mobg,(H)}.
(ii) Mobgy(GOH) > max{gp,(G), gp,(H)}.

Proof. (i) Let S be a Mobg,-set of G and let h € V(H). We first position the robots at the vertices of the set S x {h}. As G is
a convex subgraph of GO H, robots initially stationed at the vertices of S x {h} can visit every vertex of G" by a sequence
of legal moves, all the time remaining inside G" and in general position in GO H. Now, whenever a robot visits a vertex
(g, h) in this layer, this robot can visit all the vertices in the H-layer #H corresponding to g by a sequence of legal moves
and then return to (g, h). Hence Mobg,(GOH) > Mobg(G). By symmetry, Mobg,(GOH) > Mobgy(H).

(ii) Let S = {uy, ..., u,} be an outer general position set of G of cardinality gp,(G) and start with robots positioned
at each vertex of S x {h} for some h € V(H). Let R; be the robot at (u;, h) for i € [r]. Also, for each i € [r], let G; be the
connected component containing u; in G\ (S \ {u;}).

Let h' € V(H) \ {h} and let Q be a shortest h, h’-path in H. The robot R; can follow the path “Q from (u;, h) to reach
the vertex (u;, h’) by legal moves. At this point, R; can visit all the vertices of V(G;) x {h’} by a sequence of legal moves.
To see this, notice that the shortest paths between the robots remaining in G" lie within the layer G", whilst the shortest
paths from R; to any R;, i # j, do not pass through a third robot by the outer general position property. Afterwards R;
can return to (u;, h) by performing these legal moves in the reverse order. As this holds for any of the robots and any
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I e V(H)\ {h}, this allows us to perform a sequence of legal moves so that any vertex of GO H outside G" is visited, since
U;=1 V(G;) = V(G). Having done this, we return all the robots to their original positions in S x {h} using legal moves.

Finally, let " € Ny(h). For i € [r] we move the robot R; from (u;, h) to (u;, h’) in sequence; as S is in general position
each of these moves is legal. Afterwards the robots will occupy the set S x {h’}. The previous reasoning applied to G"
now shows that the robots can visit each vertex of V(G) x {h} by legal moves. Thus Mob,,(GOH) > gp,(G) and, by a
symmetric argument, Mobg,(GOH) > gp,(H). O

We now show that both lower bounds in Proposition 2.1 are sharp by considering the Cartesian products K; O P;.
We recall that [31, Theorem 3.2] implies that gp(K, OP;) = r + 1 for s > 3. Observe that for r,s > 2 it holds that
maX{MObgp(Kr)s MObgp(Ps)} = max{gpo (Kr)v gPo (Ps)} =T.

Proposition 2.2. For all positive integers r,s > 2,

Mob,, (K, OPs) = .

Proof. Letr,s > 2. By Proposition 2.1 we have Mobg(K, O Ps) > r. We now show that Mobg, (K, OP;) < r. Let V(P;) = [s]
and suppose for a contradiction that there exists a mobile general position set S of K. 0P with |S| > r. Then choose
x € V(K;), such that (x, i), (x, j) € V(K. OP;) are occupied by robots Ry, Ry, where i < j.

First, notice that for any y € V(K;) and j < k < s the vertex (y, k) cannot be occupied by a robot in the initial
configuration S, for otherwise (x, j) would lie on a shortest path between (x, i) and (y, k). Similarly, every other vertex
(y, k) with k < i is unoccupied. The same reasoning shows that any other Ps-layer can contain at most one robot, since
if there are robots at (y, k) and (y, k'), where y € V(K;) \ {x} and i < k < k' < j, then (y, k") would lie on a shortest
(y, k), (x, j)-path. Thus, we must have |S| = r 4+ 1 and each layer YP; contains exactly one robot for y # x. Moreover, each
of the remaining r — 1 robots different from R; and R, are located at vertices (y, k) such thati < k < j.

It now follows that neither Ry nor R, can cross to another Ps-layer by a sequence of legal moves. Otherwise, suppose
that robots R; and R, are stationed at (x, i) and (x, j’) respectively just before R; moves to a different Ps-layer by the legal
move (x,i') ~ (y,1), y € V(K;)\ {x}. Since there is a robot at some vertex (y, k') with i’ < k' < j, after this move the robot
at (y, k') would lie on a shortest path from (y, i') to (x, j'). As a result, no robot can visit any vertex in (V(K;)\ {x}) x {1, s},
a contradiction. Thus at most r robots can traverse K, O Ps in general position. O

To see that the lower bounds of Proposition 2.1 are independent in general, consider the following examples. If
n > 2, then Mobgy(K,n) = 2 and gp,(K; ) = n. Hence the bound (i) yields Mobgy(K, » 0Ky ) > 2, whilst (ii) yields
Mobg,(Ky,n Ky n) > n. On the other hand, if n > 7, then Mob,,(C,) = 3 and gp,(C,) = 2, hence the bound (i) is better for
Mobg,(C, OG,) if n > 7. Moreover, just after Theorem 2.4 we will demonstrate that the mobile general position number
of a graph can be arbitrarily larger than its outer general position number, so that bound (i) can also be arbitrarily larger
than bound (ii).

From [15, Theorem 3.2] we recall that if n > 2 and m > 2, then gp(K, OKy,) = n+ m — 2. We now sharpen this result
by demonstrating that a gp-set of K, O K;; as constructed in [15, Theorem 3.2] is essentially unique as soon as n > 3 and
m > 3.

Lemma 2.3. Letn > 3, m > 3, V(K,) = [n], V(K,) = [m], and let X be a gp-set of K, OKy,. Then there exist i € [n] and
j € [m] such that

X = (V((Ka)) U V(K )) \ G )}

Proof. Let X be a gp-set of K, OK;,. Then, as stated above, |X| = n + m — 2. Note that the set X contains at most two
vertices from every induced copy of C4 of K, O K,,. This fact implies the following:

Claim A. if (i,]), (i,j') € X, where j # j, then X N (V((I(n)i) U V((Kn)"/)) = {(i, ), (i, ")}

If X contains all the vertices of some K;-layer, then by Claim A, X contains no other vertices, implying that |[X| =n <
n 4+ m — 2, which is not possible. Let j € [m] be such that t = |X N V((K,))| is as large as possible. Note that t > 2, for
otherwise we would have |X| < m. Moreover, by the above,t <n— 1.Ift = n— 1 and i € [n] is the index for which
(i,j) ¢ X, then using Claim A again, we have that X € V((K,)) U V({(K;,)). Since |X| = n + m — 2, we conclude that X
has the required structure in this case. Suppose finally that t = n — k > 2, where k > 2. We may assume without loss of

generality that X N V((K,Y) = {(1,]), ..., (n — k, j)}. Then, using Claim A once more,
n—k

XN JV)) =110, - (0= k).

=1
Notice that the subgraph H of K, 0K, induced by the vertex set

fn—k+1,....,npx{1,...,j— 13U {j+1,...,m})
771



S. Klavzar, A. Krishnakumar, D. Kuziak et al. Discrete Applied Mathematics 379 (2026) 768-780

o o o e o o o
1

Fig. 3. Canonical gp-set in K; OKs.

is isomorphic to Ky O K;;,_1. Since it is a convex subgraph of K, 0K, the intersection X N V(H) is a general position set of
H. Therefore,

XNVH) <gp(KyOKp—1)=k+(m—1)—2=k+m—3.

By our assumption on t we have XN{(n—k+1,j), ..., (n,j)} = @. Thus we can conclude that |X| < (n—k)+(k+m—3) =
n+ m — 3, a contradiction.
We have thus proved that |X| = n+m—2 holds only in the case when t = n—1 and X has the structure as claimed. O

Lemma 2.3 is illustrated in Fig. 3, where the gp-set of K; O Ks corresponding to the vertex (i, j) is shown. We now use
this result to find the mobile general position number of K, O K,.

Theorem 2.4. Ifn > m > 1, then

] m m e [2],
Mobg, (K, OKn) = { n4m—3 m>3.
Proof. If m = 1, then K, OK; = K, thus gp(K, OK;) = Mobgy(K, OK;) = n. The case m = 2 follows from Proposition 2.2.

Let m > 3. By Lemma 2.3, every gp-set of K, 0K, has the canonical form as illustrated in Fig. 3. It is straightforward
to check that no robot placed in such a set can make a legal move. This implies that Mobg,(K, OKy) < gp(K, OKy) =
n+m-—2.

To complete the proof, we are going to show that there exists a mobile general position set of cardinality n +m — 3.
Station n + m — 3 robots on the vertices of S = {(2, 1), (3, 1), ..., (n, 1)} U{(1, 3),(1,4), ..., (1, m)}. This set is a general
position set, since it is a subset of the canonical gp-set of K, 0K, as illustrated in Fig. 3. Then we perform the following
sequence of moves:

0 (2,1)~(2,2), (3, 1)~ (3,2), ..., (0, 1)~ (n, 2),
o (1,3) ~ (1, 1).

Observe that each of these moves is legal. Thus, the new set occupied by the robots is a general position set of K, 0 K.
Next, this process of legal moves can be repeated m — 2 times, i.e. for 2 < j < m — 1 perform the sequence

2, 0)~ (2,J+ 1,0~ G+, ....(0 )~ (nj+1),(1,j+2)~ (1,j— 1),

(skipping the final undefined move). In this way, the robots initially positioned at (2, 1), (3, 1), ..., (n, 1) will visit the
vertices of the set {2, 3, ..., n} x [m] by legal moves, while the remaining vertices can be visited by legal moves by the
robots initially positioned at (1, 3), (1, 4), ..., (1, m). This concludes our argument for the existence of a mobile general
position set of cardinalityn+m —3. O

By Theorem 2.4 we have Mobg,(K, OK,) = 2n — 3, whilst it follows from [30, Corollary 4.4] that gp,(K, OK,) = n,
so that the mobile general position number of a graph can be arbitrarily larger than the outer general position number.
Theorem 2.4 also demonstrates that the mobile general position number of a Cartesian product can be arbitrarily larger
than both bounds in Proposition 2.1.

Finally, we give an example (Cartesian products of stars) that shows that the mobile general position number of a
non-trivial Cartesian product can be arbitrarily smaller than its general position number.

Proposition 2.5. For all r > 1, there exist graphs G, H for which
gp(GOH) — Mobg,(GOH) =r.
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Proof. For k > 2, let V(K;x) = {0} U [k], with O being the vertex of degree k. It follows from [32, Theorem 1] that
gp(K1,xk OKq k) = 2k. We will show that Mobgp(Ky x 0Ky k) = k+ 1, so that gp(K; x 0K k) — Mobg, (K1« OKy k) = k—1 and
the result follows on setting k = r + 1.

Let S be any mobile general position set of K; x 0K . Any pair of adjacent vertices in the Cartesian product of trees is
a maximal general position set [22], so if |S| > 2 the robots must always occupy an independent set. We can start at the
stage that a robot is stationed at (0, 0). If there are robots at vertices (uq, v1) and (uz, va) with uq, vy, tp, va € [k], Uy # Uy
and v # vy, then there would be a shortest (uq, vq), (U2, v2)-path through (0, 0); hence all the remaining robots lie in a
set {i} x [k] or [k] x {j} for some i, j € [k]. In either case, we have |S| < k + 1.

Finally, we show that Moby,(K; x 0Ky k) > k 4 1. Consider the set S = {(0, 0)} U ([k] x {1}). First, move (0, 0) ~ (0, 2),
followed by (i,1) ~ (i,0) for i € [2,k] and then (0,2) ~ (1,2). By relabelling as necessary, we see that each
vertex except for (0, 1) may be visited using such a sequence. For the remaining vertex, from the initial configuration
S = {(0,0)} U ([k] x {1}) perform (0, 0) ~ (0, 2), (i, 1) ~ (i, 0) for i € [2, k], and finally (1, 1) ~ (0, 1). Therefore, S is a
mobile general position set. O

3. Cartesian products with paths

In this section we continue our exposition with exact values of the mobile general position number for some Cartesian
products involving paths, including prism graphs, i.e. products G O P,. The result for prisms of complete graphs is contained
in Proposition 2.2 and Theorem 2.4. We begin with the exact value of Mobg,(T OK;), where T is a tree. It follows from
Proposition 2.1 that for any graph G the mobile general position number of a prism satisfies Mobgp(G) < Mobg,(GOK>) <
2gp(G). Since the mobile general position number of a tree is just two, Theorem 3.1 shows that Mobg,(GOK;) can be
arbitrarily larger than Mobgp(G).

Theorem 3.1. For any tree T with order at least three, Mobg,(T O K;) = £(T).

Proof. By Proposition 2.2, we can assume that ¢(T) > 3. As remarked in Section 1, gp,(T) = £(T), so by Proposition
2.1(ii) we have Mobg,(T OK,) > £(T). We label the vertices of K, by 0,1. Suppose that at least £(T)+ 1 robots can traverse
T OK, in general position. Since gp(T) = ¢(T) and each T-layer in T OKj is a convex subgraph, neither T-layer can contain
> [(T) robots at any stage, that is, each layer V(T) x {0} and V(T) x {1} must contain at least one robot at any time.
Trivially we can assume that at least one layer contains two or more robots.

Suppose that the layer T' contains at least two robots. If not all of the robots in T! are already stationed at leaves of
T, then we may suppose that a robot is at a vertex (u, 1), where u is a cut-vertex of T. Let Ty, ..., Ty be the components
of T — u. As the set of robots is in general position, one of the sets V(T;) x {1} must contain the remaining robots of T';
without loss of generality, suppose that these other robots are in V(T;) x {1}. Considering the shortest paths to the robots
in V(Ty) x {1}, we see that there cannot be robots positioned at any vertex from ({u} U U:(=2 V(T;)) x {0}. Therefore, the
robot at (u, 1) can be moved by a sequence of legal moves to (v, 1), where v is a leaf of T lying in T5. In this fashion, if
both layers T/, i € {0, 1}, contained at least two robots, then all of these robots could be moved to vertices corresponding
to leaves of T. However, if w is any leaf of T, then we cannot have robots at both (w, 0) and (w, 1), as this constitutes a
maximal general position set of T JK5. Therefore, in this case, we conclude that there are at most £(T) robots in T OK>,
a contradiction.

It follows that there must be a layer, say T°, that contains just one robot R, and £(T) robots lie in T', which we can
assume to start at the leaves of T!. By the preceding argument, R cannot move to the layer T! and no robot in T' can
move to TC. If T is a path P,, then we are left with three robots: two positioned at vertices corresponding to leaves of the
layer P!, and the third robot located at an internal vertex of the path layer PY. It is now readily observed that no robot
can visit the vertices corresponding to leaves of P°. Hence, we may assume that T is not a path. Let z be any vertex of T
with degree at least three. No robot in T! can visit (z, 1) without creating three-in-a-line within T!, and robot R cannot
leave TO to visit (z, 1), a contradiction. We conclude that T 0K, can hold at most £(T) robots. O

By Theorem 3.1 we have Mob,,(P,O0P;) = 2 for n > 2. We next complement this result by considering products of
two paths each of order at least three.

Theorem 3.2. Ifn, m > 3, then Mobgy(P, OPy,) = 3.

Proof. Let V(Py) = [k], so that V(P, OP,;) = [n] x [m]. Consider an arbitrary general position set S of P, 0P, with |S| = 4.
Then from the proof of [ 19, Theorem 2.1] we deduce that none of the corner vertices (1, 1), (1, m), (n, 1) and (n, m) belongs
to S. Hence, no sequence of legal moves for any configuration of four robots in general position in P, O Py, can visit any
of the vertices (1, 1), (1, m), (n, 1) and (n, m). Thus, Mobg,(P, OPy) < 3.

To prove that Mobg,(P,OPn) > 3, we start with three robots positioned at the general position set
S ={(1,1),(n, 1), (2, m)}. We next describe a sequence of legal moves for the three robots.

(1, 1) moves to all the vertices from {1} x [m — 1] and returns back to (1, 1).
1

[ ]
e (n, 1) moves to all the vertices from {n} x [m — 1] and returns back to (n, 1).
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Fig. 4. The legal moves in the infinite grid.

e (2, m) moves to all the vertices from [2, n — 1] x [2, m] and returns back to (2, m).

e (n,1) ~ (n, 2). After this, (1, 1) moves to vertices (2, 1), ...,(n — 1, 1). Notice that at this point the robots are at
vertices (2, m), (n—1, 1) and (n, 2). Moreover, by this stage, all the vertices apart from (1, m) and (n, m) have already
been visited.

e (2,m)~ (1,m)and (n,2) ~ (n,3) ~ -+ ~ (n, m).

Notice that all these moves are legal, which demonstrates that Mobg,(P, OPy) > 3 and hence Mobg,(P, OP,) = 3 when
nm>3. 0O

By contrast, for infinite grids P, O P,, we have equality with the general position number.
Theorem 3.3. If Py, is the two-way infinite path, then Mobgp(Psc OPso) = 4.

Proof. We first recall from [27, Corollary 3.2] that gp(P, O P ) = 4. Hence, it remains to show that Mobg,(Po O P) > 4.
To do so, set V(P ) = Z and let (i, j) € V(Po, 0Py ). We claim that the set N(i, j) = {(i—1,j), (i+1,j), (i,j— 1), (i, j+ 1)} is
a mobile general position set of P,, O P.. First, from the proof of [27, Corollary 3.2], we know that any such set N(i, j) is in
general position. Next, observe that the sequence of moves (i+1, j) ~ (i+2, ), (i, j+1) ~ (i4+1,j4+1), (i,j—1) ~ (i+1,j—1)
and (i — 1,j) ~ (i,j) is a sequence of legal moves from robots positioned at the set N(i, j). This sequence moves the four
robots one coordinate to the right, leaving robots at N(i+ 1, j). Fig. 4 shows a gp-set of the grid P, O P, and one round of
moves as just described. The order of the moves is shown by the numeric order in the figure. We can analogously move
the four robots in each of the remaining three directions in the infinite grid. In this way, every vertex of the infinite grid
is eventually occupied by some robot. Thus, the conclusion follows. O

We now find the exact value of the mobile general position number for some cylinder graphs C. OP;. The general
position numbers of the cylinder graphs are given in [19] as

3; r=3,5s=2,
gp(C;OP)=43 5, r=7o0rr>9, ands > 5,
4; otherwise.

Note that Proposition 2.2 gives Mob,,(C3 OPs) = 3 for s > 2. We begin with the prism graphs C, OP;.

Theorem 3.4. Ifn > 3, then

3; n=3,
Mobg,(C,OKp) =1 2, n=4,
4; otherwise.

Proof. The case (3 OK, = K3 OK; has already been treated above. Up to symmetry, there are unique general position
sets of C4 OK; of cardinalities three and four, both of which are independent sets. However, in both cases no robot can
move whilst maintaining the independence property, so that Mobg,(C4 OK>) < 2, and the equality trivially holds.

We assume for the remainder of the proof that n > 5. It follows from [19, Theorem 3.2] that gp(C,O0K;) = 4. Set
V(G,) = {vi : i € Zy} and V(K;) = [2]. We separate the argument into two cases.

Case 1: n is odd.
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PP LY

Fig. 5. Moving robots in Cs OK;.

SRR

Fig. 6. Moving robots in Cg O K.

Consider a set of four robots located at S = {(vo, 1), (vfn/27, 1), (v1, 2), (vfns214+1, 2)} . Then S is a general position set.
Moreover, consider the following sequence of four moves for the robots:

v1, 2) ~ (v2, 2);
Vo, 1) ~ (v17 1);
Vin/21+1, 2) ~ (V21425 2);

[ ]
[ ]
[ ]
® (vrny21, 1) ~ (V2141 1)

— o~ —~ —

Fig. 5 shows this process for the case Cs OKs.

Case 2: n is even.

Suppose now that the robots are positioned at S = {(vo, 1), (vy/2, 1), (v1, 2), (Vn/241, 2)} . Again S is a general position
set. Moreover, consider the following sequence of moves:

o (v1,2) ~ (v2,2);

® (Unj241, 2) ~ (Vnj242, 2);

e (vo, 1) ~ (v1, 1);

o (Uny2, 1) ~ (vnj241, 1)
Fig. 6 shows this process for the case Cs OK>.

In both cases above, we note that these four moves are legal. Since the obtained sets are symmetric with respect to
the original ones, by repeating these procedures the robots will eventually visit all the vertices of C, OK5. It follows that
each S is a mobile general position set, and hence Mobg,(C, OK;) > 4. O

We now introduce a technical lemma that allows us to extend results on short cylinders to longer cylinders.

Lemma 3.5. If H is a connected graph with girth at least 2r and radius at least r — 1, then for any graph G it holds that
Mobg,(GOH) > Mobg,(GOP;).

Proof. Let Q be any path vy, v, ..., v, of length r — 1 in H. The subgraph of GOH induced by V(G) x V(Q) is isomorphic
to GOP,, and as the girth of H is at least 2r, the subgraph is convex. Thus, Mobg,(G O P;) robots can traverse the vertices of
V(G)xV(Q) in general position without leaving the subgraph. Now, let v, 1 € Ny(v;)\ {vr_1}. Suppose that the robots have
visited all the vertices of V(G) x V(Q) by a sequence of legal moves. Next, move all robots in V(G) x {v:} to V(G) x {vy41}
in turn by legal moves of the form (u, v;) ~ (u, v;4+1), where u € V(G). Then repeat this process to move the robots in
V(G) x {vj} to V(G) x {vjs1} forj=r —1,r —2,..., 1. As H has girth at least 2r, the robots remain in general position
throughout this process. As H is connected and the radius of H is at least r — 1, any layer G" can be visited in this way. O

Notice that Lemma 3.5 generalises the inequality Mobg,(G) < Mobg,(GOK,). We first focus on cylinders with cycles
of length four.
Proposition 3.6. If s > 3 is an integer, then Mobg,(C4 OPs) = 3.
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Proof. Let s > 3, V(C4) = Z4, and V(Ps) = [s]. We first show that Mobg,(C4 O P;) < 3. Suppose for a contradiction that
there exists a mobile general position set S of C4 0P with |S| > 4.

Clearly, no three robots from S can lie in the same Ps-layer. Suppose that two robots Ry and R; in S lie in the same
Ps-layer of C,OPs; without loss of generality, Ry and R, are stationed at vertices (0, i) and (0, j) respectively, where
1 < i < j < s. There is a shortest path from any vertex (u, v) with v € [i] to R, through Ry, and likewise for vertices
with second coordinate at least j. Hence, there are no robots on Z4 x ([1, i] U [j, s]) apart from R; and R,. Call the other
two robots R3 and R4. By the above analysis, R3 and R4 cannot have the same first coordinate. Hence we can assume that
robot R3 lies at (1, k), where i < k < j. Any vertex in ({1,2} x [i+ 1,j — 1]) \ {(1, k)} has a shortest path to either R; or
R, through R3, so R4 must be at a vertex (3, I), where i < | < j. However, in this configuration each robot is only free to
move within its Ps-layer, and so no robot can visit any vertex in 2P;, a contradiction. Consequently, there is one robot on
each Ps-layer, and none of the robots can move to another Ps-layer.

Observe that any pair of adjacent vertices constitutes a maximal general position set of C4 P, so the robots must
at all times occupy an independent set. Therefore, if we suppose that R; is the robot located at the vertex with smallest
second coordinate in the initial configuration, say at vertex (0, i), then no robot in the layers 'P; or 3P, can ever move to
a position with second coordinate smaller than that of R;, and hence the vertices in {1, 3} x {1} cannot be visited by legal
moves. Thus, Mobg,(C4 OPs) < 3.

To show the lower bound, consider C, 00 P3. We start with robots at vertices (0,
in succession we perform the sequence of three legal moves (i + 1, 2) ~ (i+ 2, 2),
in this order. Lemma 3.5 now gives the result for cylinders C,OP; for s > 4. O

1), (1, 2) and (0, 3). Then fori =0, 1, 2
(i,3)~ (i+1,3)and (i, 1) ~ (i+ 1, 1)
Theorem 3.4 for prisms along with Lemma 3.5 implies that Mobg,(C, OP;) > 4 for r > 5,s > 2. Combined with the

upper bound involving gp(C, OPs) we see that Mobg,(C- OPs) = 4 forr € {5,6,8} and s > 2, or forr > 5and s < 4. In
the casesr =7 orr > 9 and s > 5 the mobile general position number of C. O P; must be either four or five.

Proposition 3.7. Ifr =9 orr > 11, and s > 5, then Mobg,(C: OP;) = 5.

Proof. It is known from [19, Theorem 3.2] that gp(C, OP;) =5 forr =9 or r > 11, and s > 5. It only remains to show
that Mobg,(C, OPs) > 5. We show that the result is true for G, OPs, and the full claim then follows for larger values of s
by Lemma 3.5. Set V(C,) = Z, and V(Ps) = [5].

If r > 11and i € Z,, then we consider the set

Sio={(i+1,1),(i+4,2),(i+ [r/2] +2,3),(,4),(i+3,5)}
Fori=0,1,...,r — 2 we define the following sequence of five moves:

i+4,2)~(i+5,2
i4+3,5)—(i+4,5

o ( to give S; 1,
o (

o (i+ [r/2] +2,3)~
o (

o (

to give S; 2,
i+ [r/2] + 3, 3) to give S; 3,
to give S; 4,

— N — —

i+1,1)—(i+2,1
i, 4) ~ (i+ 1, 4).

The final move brings us to the configuration S;y1,0. We start with the five robots positioned at the set Sy and perform
these sequences of moves fori = 0, 1,...r — 2. Each of these moves is legal. To see this, notice that the robots remain
in general position at each stage, which is easily verified for Sp;, j € [5], and by then observing that the automorphism
that maps (u, v) to (u 41, v) for all u € Z,;, s € [5] transforms Sy j to S;; for j € [5]. Moreover, by the end of the process,
all vertices have been visited.

Similarly, for r = 9 we start with robots positioned at the set

{(1,1),(4,2),(Ls/2] + 2, 3),(0, 4), (3, 5)}
and perform the sequence of moves:

(Ls/2] +2,3) ~ (ls/2] + 3, 3),
1,1)~ (2, 1),
~ (1, 4),

By repeating these moves the robots visit all of the vertices of Cg 0 P5 by legal moves. O

Hence, the only unknown values are Mob,,(C; O Ps) and Mobg,(Cio OPs) for s > 5. We conjecture that the answer is
four in these cases.

By combining Lemma 3.5 with Proposition 3.7 we obtain a lower bound for the mobile general position number of
sufficiently large torus graphs.

776



S. Klavzar, A. Krishnakumar, D. Kuziak et al. Discrete Applied Mathematics 379 (2026) 768-780

Corollary 3.8. Forr =9 orr > 10, and s > 10, Mobg,(C, OC) > 5.

It is shown in [21] that if r,s > 7 and r and s do not both lie in {8, 10, 12}, then gp(C; O C;) = 7. Computer search
shows that the torus Co 0 Cg has mobile general position number seven, so this upper bound can be achieved.

4. Corona products and joins

In this section we consider moving robots in general position through corona products and joins. We first define these
two graph operations.

Given two graphs G and H with V(G) = {vy, ..., vy}, the corona product graph G © H is formed by taking one copy of
G and n disjoint copies of H, call them H',. H” and for each i € [n] adding all the possible edges between v; € V(G)
and every vertex of H'. For i € [n] we will wrlte H for the subgraph of GO H induced by V(H') U {v;}. Also, the join G\ H
of graphs G and H is obtained from the disjoint union of G and H by adding all possible edges between G and H.

4.1. Corona product graphs

The first paper [17] on the mobile general position problem briefly considered mobile general position sets in rooted
products. This suggests investigating the problem in corona products, which can also be viewed as a kind of rooted product.
The general position number of corona product graphs was studied in [15]. We now bound the value of the mobile general
position number of the corona product G ® H.

Theorem 4.1. For any two graphs G and H,
max{Mobg,(G), Mobg,(H V K1)} < Mobg,(G © H) < max{n(G), gp(H Vv K1)}

Proof. Let S be a mobile general position set of H v K; and let S; be its copy in ﬁl. We claim that S; is a mobile general
position set of G © H. As H; is an isometric subgraph of G © H, first the robots from S; can visit each vertex of H;. Next,
as soon as one robot visits the vertex vy, this robot can visit all the vertices of V(G ® H) \ V(H;) before returning to v;. It
follows that Mobgp(G © H) > Mobgp(H V Kj).

Now, let S be a mobile general position set of G and let S’ be the copy of S in G® H. Then each vertex v; € V(G) can be
visited by a robot from S’. Moreover, as soon as a robot moves to some vertex v;, this robot can visit all the vertices from
H' and then return to v;. Hence S’ is a mobile general position set of G® H and Mobg,(G © H) > Mobg,(G). We conclude
that Mobg,(G © H) > max{Mobg,(H V K1), Mobg,(G)}.

To prove the upper bound, let S be a mobile general position set of G © H. If |S| < n(G), then there is nothing to
prove. Assume next that |S| > n(G) + 1. Then by the pigeonhole principle we have |S N V(H;)| > 2 for some i € [n(G)].
Hence either at some point there is already a robot in H' and a second robot enters H; via v;, or else there are always at
least two robots in V(H;) and a further robot must visit v;. Denote the positions of the robots at this moment by S'. In
S’ there is a robot R; in V(H') and a robot R, at the cut-vertex v;. As any path from R, to a robot on V(G © H) \ V(H;)
would pass through Ry, it follows that S C V(H;) and S’ is a general position set of H;. Hence, under the assumption that
IS| > n(G) + 1, we must have Mobg,(GO H) = |S'| < gp(H vV K;). O

When both G and H are complete graphs, GOH is a block graph, hence the following consequence can also be deduced
from [17, Theorem 2.3].

Corollary 4.2. Ifr,s > 1, then Mobg,(K: © Ks) = max({r,s+ 1}.

Note that Corollary 4.2 demonstrates the sharpness of all the bounds in Theorem 4.1. For another sharpness example,
in which the upper and lower bounds do not coincide, consider G = K, and H = C4. Then we have that Mobgy(K;) = 2,
Mobg,(C4 V K1) = 2, and gp(Cy4 Vv K;) = 3. It can be noted that Mobg,(K; © C4) = 3 = gp(Cs Vv K;). For another infinite
family, let G be an arbitrary tree, and H the edgeless graph of order at least two. Since in this case G ® H is a tree, we
have Mobg,(G © H) = 2 (see [17, Theorem 2.3]), which is also the value of the lower bound in Theorem 4.1.

We complete this section by presenting a result which shows that none of the bounds of Theorem 4.1 is sharp in
general.

Theorem 4.3. Ifn > 3, then Mobgy(C, @ Ky) = [ 5] + 1.

Proof. Set V(C,;) = Z, and, for each i € Z, let i’ be the leaf in C;, © K; attached to i. We first show that Mobg,(C, © K1) >
[2]+1.SetY;={i',(i+1) (|— ] +1i)’} for any i € Z,. We claim that Y is a mobile general position set. It is easily
seen that each Y; is a general posmon set of G, ©® K;.

Starting from some fixed Y;, we move the robot R placed at ([ 3] + i)’ through the vertices of the set [([3]+1).G—1)]
and their attached leaves, and finally leave the robot at (i — 1)'. After these moves we are left with the robots occupying
the set Y;_; and at each stage the robots remained in general position, since the paths between robots in Y; \ {(|—§-| + i)/}
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pass through [i, [ 4] + i — 1]. Therefore starting at Yo and repeating this process for i = 0, —1,..., — [ 4] results in all
vertices being visited by a robot and Yj is a mobile general position set as claimed.

We now prove that Mobg,(C, © K7) < [g-| + 1. Note that each set {i, '}, i € Zj, is a maximal general position set, so
we must have |X N {i, '}| < 1 for each i € Z, and any Mobg,-set X. Consider the moment that a robot visits the vertex 0.
Let j, k be the smallest and largest values in [1, n — 1], respectively, such that there is a robot in {j, j'} and {k, k'}. To avoid
the robot in {k, k'} having a shortest path to the robot in {j, j’} through the robot at 0 we must have k —j < [g—| —1.As
each set {i, i’} contains at most one robot for i € [j, k] U {0} and no robots fori € [k + 1,n — 1] U [1,j — 1], this gives an
upper bound of [ 3] + 1 robots in the graph. O

Notice that for C, ® Kj, the lower bound of Theorem 4.1 is three if n > 3 and n ¢ {4, 6}, and it is two if n € {4, 6},
whereas the upper bound is n. Since C, ® K; is a unicyclic graph, we may recall that mobile general position sets of
unicyclic graphs were discussed in [17].

4.2. Joins of graphs

We now give bounds for the mobile general position number of joins G vV H. Observe that if both G and H are cliques,
then G V H is also a clique and the question is trivial, so we will assume that at least one of G and H is not a clique.

Theorem 4.4. If G and H are (not necessarily connected) graphs with clique number at least two, and G and H are not both
cliques, then

min{w(G), w(H)} + 1 < Mobgy(G V H) < w(G) + w(H) — 1.
For any graph G with order n > 2,
2 < Mobgy(GV K7) < o(G) + 1.

Proof. Assume that both G and H have clique number at least two and that at least two robots are traversing G v H in
general position. At some point there must be a robot in G and a robot in H. Hence, at this point, the set of occupied
vertices in G and the occupied vertices in H must both be cliques in G and H, respectively, giving the upper bound
Mobg,(G VvV H) < o(G) + w(H). However, if Mob,(G vV H) = w(G) + «(H), then no robot has a legal move, since any
move would result in a clique in one of G and H and a non-clique in the other, so in fact Mobg,(GV H) < w(G)+w(H)— 1.

For the lower bound, assume that w(H) < w(G). We can start with robots at a maximum clique Wy of H and one robot
in G. The robot in G can visit every vertex of G, since during this process the occupied vertices always form a clique in
GV H. At the end, this robot moves into a maximum clique W; of G. After that, all the robots from Wy but one move into
We. At that time, only one robot remains in H and, by the same argument, it can visit every vertex of H.

The inequalities for G Vv K; can be derived in a similar manner. O

Note that if G and H both have clique number two, then the upper and lower bounds of Theorem 4.4 coincide. For a
triangle-free graph G, Mobg,(GVK; ) could be either two or three. It is easily seen that for cycles we have Mobgp(C4VK;) = 2
and Mobgp(C,, Vv K1) = 3 for n > 5. The first example shows that the lower bound for Mobg,(G Vv K7) is tight, but it is an
open question whether this can happen for graphs with large clique number.

Corollary 4.5. If G and H both have clique number two, then Mobg,(G Vv H) = 3.

To show that the upper bound in Theorem 4.4 is tight, consider the join K~ Vv K, where K~ represents a complete
graph minus one edge. If X1, X, is the pair of non-adjacent vertices in K~ and y1, y» is the pair of non-adjacent vertices of
K, then (V(K7)\ {x2}) U (V(K;7 )\ {¥1, ¥2}) is a mobile general position set, as the set of occupied vertices forms a clique
in K~ Vv K;~ and the robot at x; can follow the route x; ~~ y; ~» X, ~» y, to visit the remaining vertices. This matches the
upper bound. More generally, the same argument works when G and H are both joins of cliques with empty graphs.

To demonstrate sharpness of the lower bound, for r > 2 take the join K, v Ker, where Kr++1 is the complete graph
K:+1 with an added leaf x. Suppose that a set of at least r + 2 robots can traverse this graph in general position, and
focus on the moment that there is a robot at x. As r + 2 robots cannot be stationed on K, ;, there must be a robot on
K. and the positions occupied on K; and I(er must both induce cliques. Hence every vertex of K, must contain a robot
and in K;_“H there is a robot at x and its support vertex x'. However, there are no legal moves in this configuration. Thus,
Mobgy (K- V K/, 1) < 1+ 1 = minfw(K;), (K, )} + 1.

For an example of graphs with arbitrarily large clique number that meet the upper bound in Mobg,(GVK7) < w(G)+1,
consider the birdcage graph B, formed as follows. Let U be a clique on vertices {uq, ..., u,}, V be an empty graph on
vertices {v1, ..., vy} and an additional vertex z, and add edges u; ~ v; and v; ~ z for i € [n]. The graph B, has clique
number n and we show that n + 1 robots can traverse B, V K; in general position. Denote the vertex of the K; by x. Start
with robots at U U {x} and make the move x ~ z. Then for each i € [n] make the two moves u; ~ v; ~ u;. It is easily seen

that the robots are always in general position and visit all the vertices of B, V Kj.
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5. Concluding remarks and open problems

We conclude with a few open problems.

e Is there a non-trivial upper bound on Mob,,(G O H), at least for the particular case Mobgy(GOK3)?

e We have seen that Mobg,(Po OPy) = 4 = gp(Poc O Pw). In [20, Theorem 1] it was proven that gp(PL‘éD) = 22k_1,

where P&D is the k-tuple Cartesian product of the infinite path P... It is therefore of interest to determine whether

Mobg,(PXE) = 22" holds for larger values of k.

Are there graphs G with arbitrarily large clique number such that Mob,,(G Vv K;) = 2?

e In view of Proposition 3.7 and the preceding remarks, we ask what is the mobile general position number of cylinder
graphs C; OP; and CyoOPs for s > 5?

e By Corollary 3.8, Mobgp (G OG) > 5if r =9 or r > 10 and s > 10. It would be interesting to classify the mobile

general position numbers of all torus graphs.

What is the mobile general position number of strong and direct products?

What is the mobile general position number of the hypercube?
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