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 a b s t r a c t

For a non-decreasing sequence of positive integers S = (s1, s2, . . .), the S-packing
chromatic number of a graph G is denoted by χS (G). In this paper, χS-critical graphs are
introduced as the graphs G such that χS (H) < χS (G) for each proper subgraph H of G.
Several families of χS-critical graphs are constructed, and 2- and 3-colorable χS-critical
graphs are presented for all packing sequences S, while 4-colorable χS-critical graphs
are found for most of S. Cycles which are χS-critical are characterized under different
conditions. It is proved that for any graph G and any edge e ∈ E(G), the inequality
χS (G − e) ≥ χS (G)/2 holds. Moreover, in several important cases, this bound can be
improved to χS (G − e) ≥ (χS (G) + 1)/2. The sharpness of the bounds is also discussed.
Along the way an earlier result on χS-vertex-critical graphs is supplemented.

© 2026 The Authors. Published by Elsevier B.V. This is an open access article under the CC
BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

1. Introduction

Let S = (s1, s2, . . .) be a non-decreasing sequence of positive integers and let G be a graph with vertex set V (G) and 
edge set E(G). A mapping c : V (G) → [k] = {1, . . . , k} is an S-packing k-coloring of G if the equality c(u) = c(v) = i for all 
i ∈ [k] and u ̸= v ∈ V (G) implies dG(u, v) > si. The S-packing chromatic number χS(G) of G is the smallest integer k such 
that G admits an S-packing k-coloring [16].

In the special case when S = (1, 2, 3, . . .), the S-packing chromatic number is the standard packing chromatic number 
χρ , which was first explored under the name broadcast chromatic number [15] and given the present name in [7]. The 
2020 review article [6] on packing colorings (including S-packing colorings) contains 68 references, but research continues, 
see [3,14,17–19]. The greatest emphasis in recent years has been on S-packing colorings, especially on subcubic graphs, 
see [5,8,12,21,28,33,36,37,40].

It should be stressed that the concept of S-packing coloring is very general. As said, it contains the packing coloring 
as a particular instance. In addition, the special case S = (k, k, k, . . .), k ≥ 1, is studied in the literature as k-distance 
colorings, the corresponding (k, k, k, . . .)-packing chromatic number is denoted by χk. Note that χ1 = χ . Up to 2008, these 
investigations were surveyed in [30], while for some recent related papers see [20,26,32]. In the last years, however, the 
main focus was on 2-distance colorings of planar graphs, cf. [2,9,10,31,41].

Independently, and almost simultaneously, two different packing criticality concepts were introduced. In [25], a graph 
G was defined to be χρ-vertex-critical if χρ(G − u) < χρ(G) for each u ∈ V (G). Moreover, if G is a χρ-vertex-critical graph 
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with χρ(G) = k, then G is called k-χρ-vertex-critical. On the other hand, according to [4], G is χρ-critical if χρ(H) < χρ(G)
for each proper subgraph H of G. If G has no isolated vertices, this is equivalent to the requirement that χρ(G−e) < χρ(G)
holds for each e ∈ E(G). If G is a χρ-critical graph with χρ(G) = k, then G is called k-χρ-critical. The paper [13] further 
investigated χρ-vertex-critical graphs and provided a characterization of 4-χρ-vertex-critical graphs.

In the same way as packing colorings extend to S-packing colorings, one can extend χρ-vertex-critical graphs and 
χρ-critical graphs to χS-vertex-critical graphs and χS-critical graphs. The first of these generalizations has been done 
in [22], while in the follow-up paper [24] a characterization of 4-χS-vertex-critical graphs for packing sequences with 
s1 = 1 and s2 ≥ 3 is given. The second of these generalizations, that is, χS-critical graphs, has not yet been studied, we 
fill this gap in this paper. We say that G is χS-critical if χS(H) < χS(G) for each proper subgraph H of G. If G is a χS-critical 
graph with χS(G) = k, then G is called k-χS-critical. Note that we do not consider the empty graph as a proper subgraph. 
Then, by our definition, the isolated vertex K1 has no proper subgraph, and it is 1-χS-critical for every packing sequence 
S.

The paper is organized as follows. In the next section, we give some definitions, introduce useful notation, and present 
basic observations about S-packing critical graphs. In Section 3, some families of χS-critical graphs are discussed. We 
determine 2-χS-critical and 3-χS-critical graphs for all packing sequences S, and determine 4-χS-critical graphs for most 
of S. For the case of 4-χS-critical graphs, we supplement an earlier result from the literature on χS-vertex-critical graphs. 
In Section 4 we characterize cycles which are χS-critical under different conditions. In Section 5 we consider the impact 
of edge removal on the S-packing chromatic number. We prove that χS(G − e) ≥ χS(G)/2 for any graph G and any edge 
e ∈ E(G), and that in several important cases the bound can be improved to χS(G−e) ≥ (χS(G)+1)/2. For many S, infinitely 
many sharp examples are constructed. In the last section we identify several open problems for further research.

2. Preliminaries

Let G be a graph. Then V (G) and E(G) stand for the vertex and edge set of G, respectively. The open neighborhood NG(u)
of u in G is the set of the neighbors of u. We say that u is a universal vertex if NG(u) = V (G) \ {u}. A support vertex of 
G is a vertex adjacent to a leaf. An edge e in a connected graph G is a cut-edge if G − e is disconnected. The girth of G
is denoted by g(G). If G has no cycles, we set g(G) = ∞. As usual, α(G) is the independence number of G. The distance 
dG(u, v) between u, v ∈ V (G) is the shortest-path distance. The diameter of G is denoted by diam(G). A subgraph H of G is 
isometric, if for every two vertices u, v ∈ V (H) we have dH (u, v) = dG(u, v). The path, the cycle, and the complete graph 
of order n are respectively denoted by Pn, Cn, and Kn, while the order of a graph G will be denoted by n(G).

The set of all packing sequences will be denoted by S , that is,
S = {(s1, s2, . . . ) : 1 ≤ s1 ≤ s2 ≤ · · · }.

For a given S ∈ S we will always assume that S = (s1, s2, . . . ). Unless stated otherwise, the packing sequences are 
considered to be infinite in this paper.

We will consider sets of packing sequences such that some of their first coordinates are fixed or bounded from below. 
Instead of introducing the notation in general, consider the following example. Assume we wish to consider the set of 
packing sequences S = (s1, s2, s3, . . . ) with s1 = 1, s2 = 3, and s3 ≥ 4. Then we set

S1,3,4 = {(s1, s2, s3, . . .) : s1 = 1, s2 = 3, s3 ≥ 4}.

The general notation should be clear from this example. For instance, S1,3,5 is the set of packing sequences with s1 = 1, 
3 ≤ s2 ≤ 5, and s3 = 5. Note also that S = S 1.

It was stated in [16, Observation 2] that every graph G and any edge e of it satisfy the inequality
χS(G − e) ≤ χS(G).

As the removal of isolated vertices does not change χS(G), this inequality also implies χS(H) ≤ χS(G) for every subgraph 
H of G. We may also infer that if χS(G) = k, then G contains a subgraph that is k-χS-critical.

Observation 2.1.  Let S ∈ S and let G be a graph.
(i) If G contains no isolated vertex, then G is χS-critical if and only if χS(G − e) < χS(G) holds for every edge e ∈ E(G).
(ii) K1 is the unique 1-χS-critical graph.

3. Families of S-packing critical graphs

In this section we present several families of S-packing critical graphs. We first show that graphs of diameter k and 
girth at least k + 2 are χS-critical for each packing sequence S ∈ Sk. This result is then extended to specific generalized 
lexicographic products. We end the section by classifying k-χS-critical graphs for almost all S and k ∈ {2, 3, 4}. But first 
we give two general, simple properties of S-packing critical graphs.

Lemma 3.1.  If S ∈ S and G is a χ -critical graph, then G is connected.
S
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Proof.  Suppose to the contrary that G is not a connected graph such that H1, . . . ,Hr  are the components of G, where 
r ≥ 2. Since χS(G) = maxi∈[r] χS(Hi), there exists a component Hj such that χS(Hj) = χS(G). Now consider a component 
Hk for some k ̸= j. The removal of Hk from G yields a proper subgraph H with χS(H) = χS(Hj) = χS(G), which contradicts 
the assumption that G is χS-critical. Therefore, G must be connected. □

Lemma 3.2.  If G is a χS-critical graph, then G is a χS-vertex-critical graph.

Proof.  If G ∼= K1, then it is χS-critical and χS-vertex-critical. Otherwise, consider an arbitrary vertex x ∈ V (G). Since G− x
is a proper subgraph of G, χS-criticality implies χS(G − x) < χS(G) and proves that G is a χS-vertex-critical graph. □

A graph G is called diameter k-critical if diam(G) = k and diam(G−e) > diam(G) holds for every e ∈ E(G) (see [11,34,39]).

Proposition 3.3.  Let k ≥ 1 and S ∈ Sk. Then every diameter k-critical graph is χS-critical.

Proof.  Let G be a diameter k-critical graph. Since s1 = k, no two vertices of G can receive the same color, that is, 
χS(G) = n(G). Let now e be an arbitrary edge of G. Since diam(G − e) ≥ k + 1, there are two vertices u and v with 
dG−e(u, v) ≥ k + 1. Therefore, in an S-coloring of G − e, we can color u and v with color 1, and assign a unique color to 
every other vertex. Hence χS(G − e) ≤ n(G) − 1 < χS(G) = n(G) which yields the conclusion. □

Since every graph G with diam(G) = k and girth g(G) ≥ k+2 is diameter k-critical, we deduce the following statement 
from Proposition  3.3. 

Corollary 3.4.  Let k ≥ 1 and S ∈ Sk. If G is a graph with diam(G) = k and g(G) ≥ k + 2, then G is χS-critical.

As Proposition  3.3 and Corollary  3.4 are true for trees, we may infer that every tree is χS-critical for infinitely many 
packing sequences S. We also prove the following property for trees.

Proposition 3.5.  For every tree T  and every S ∈ S , the tree T  is χS-critical if and only if it is χS-vertex-critical.

Proof.  If T  is an isolated vertex, the equivalence holds. From now on, we may assume n(T ) ≥ 2. The first direction of 
the statement follows from Lemma  3.2. To prove the other direction, consider a χS-vertex-critical tree T  and remove 
an arbitrary edge e = uiuj. Let Ti and Tj be the two components of T − e such that ui ∈ V (Ti) and uj ∈ V (Tj). We 
know that χS(T − e) = max{χS(Ti), χS(Tj)} and may assume χS(T − e) = χS(Ti). As Ti is also a component in T − uj, the 
χS-vertex-criticality of T  implies

χS(T − e) = χS(Ti) ≤ χS(T − uj) < χS(T ).

Since χS(T − e) < χS(T ) holds for every edge and T  is isolate-free, we may conclude that T  is χS-critical. This finishes the 
proof of the equivalence. □

We conclude the section by considering k-χS-critical graphs, where k ∈ {2, 3, 4}.

Proposition 3.6.  If S ∈ S , then a graph G is 2-χS-critical if and only if G ∼= K2.

Proof.  It is straightforward that G ∼= K2 is 2-χS-critical: its packing chromatic number is 2, and removing any vertex or 
edge reduces the packing chromatic number to 1. Conversely, suppose G is 2-χS-critical. Then, by Lemma  3.2, G is also 
2-χS-vertex-critical. It is shown in [22] that the only graph with this property is K2. Thus, the result follows. □

In the first item of [22, Theorem 5.1] it is claimed that if S ∈ S2,2,2, then a graph G is 4-χS-vertex-critical if and only 
if G is one of the graphs K1,3, C4, Z1, K4 − e, K4, where Z1 denotes the graph obtained by adding a pendant edge to a C3. 
However, there is one example missing from the proof, which we explain below.

Consider a 4-χS-vertex-critical graph G and let u ∈ V (G), so that χS(G−u) ≤ 3. In the proof of [22, Theorem 5.1], when 
the case degG(u) = 2 is considered, it is correctly stated that if G − u is connected, then, for G − u ∼= P3 we get G ∼= C4 or 
G ∼= Z1, for G − u ∼= C3 we get G ∼= K4 − e. Afterwards, it is stated that in any other case no χS-critical graph is obtained. 
But the vertex u can be adjacent to two degree 1 vertices of G − u, that is, to the end-vertices of a path in which case G
is a cycle. Note that χS(Cn) = 3 if and only if n is divisible by 3. Hence, Cn is a 4-χS-vertex-critical graph if and only if n
is not divisible by 3.

According to the above, the first item of [22, Theorem 5.1] must be supplemented as follows.

Proposition 3.7.  If S ∈ S2,2,2, then a graph G is 4-χS-critical if and only if
G ∈ {K1,3, Z1, K4 − e, K4} ∪ {Cn : n ≥ 4, n ̸≡ 0 (mod 3)}.

With Proposition  3.7 in hand, we can state the following result.
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Fig. 1. The graphs G1, . . . ,G8 .

Theorem 3.8.  Let S ∈ S and let G be a graph.
(i) If S ∈ S1,1, then G is 3-χS-critical if and only if G ∈ {C2k+1 : k ≥ 1}.
(ii) If S ∈ S1,2, then G is 3-χS-critical if and only if G ∈ {C3, P4}
(iii) If S ∈ S2, then G is 3-χS-critical if and only if G ∼= P3.
(iv) If S ∈ S2,2,2, then G is 4-χS-critical if and only if

G ∈ {K1,3} ∪ {Cn : n ≥ 4, n ̸≡ 0 (mod 3)}.
(v) If S ∈ S2,2,3, then G is 4-χS-critical if and only if G ∈ {K1,3, C4, P6}.
(vi) If S ∈ S2,3, then G is 4-χS-critical if and only if G ∈ {K1,3, C4, P5}.
(vii) If S ∈ S3, then G is 4-χS-critical if and only if G ∈ {K1,3, P4}.

Proof.  Let S ∈ S. Then it was proved in [22, Theorem 4.1] that (i) if S ∈ S1,1, then G is 3-χS-vertex-critical if and only if 
G ∈ {C2k+1 : k ≥ 1}; (ii) if S ∈ S1,2, then G is 3-χS-vertex-critical if and only if G ∈ {C3, C4, P4}; and (iii) if S ∈ S2, then G
is 3-χS-vertex-critical if and only if G ∈ {C3, P3}. By Lemma  3.2, it remains to verify which of the above-listed graphs is 
3-χS-critical. Doing it one by one, the first three assertions of the theorem follow.

By Proposition  3.7 we know the list of 4-χS-vertex-critical where S ∈ S2,2,2. We next recall that it was further proved 
in Theorem [22, Theorem 5.1] that (a) if S ∈ S2,2,3, then G is 4-χS-vertex-critical if and only if G ∈ {K1,3, C4, Z1, K4 −

e, K4, P6, C6}; (b) if S ∈ S2,3, then G is 4-χS-vertex-critical if and only if G ∈ {K1,3, C4, Z1, K4 − e, K4, P5}; and (c) if S ∈ S3, 
then G is 4-χS-vertex-critical if and only if G ∈ {K1,3, P4, C4, Z1, K4 − e, K4}. Applying Lemma  3.2 again, we need to verify 
which of the above-listed graphs are 4-χS-critical. Carefully checking all of them, the last four assertions of the theorem 
follow. □

To state the following theorem, we first need to introduce two families of graphs and some specific graphs. If S ∈ S , 
then let

Cs4 = {Cn, n ≥ 5 : (n ≡ 1, 2 (mod 4)) or (n ≡ 3 (mod 4) and s4 < ⌊n/2⌋)}.

So Cs4  is a subclass of cycles that depends on the fourth term of S. Next, let X2k, k ≥ 3, be the graph obtained from P2k
by attaching a pendant vertex to each of the support vertices of P2k. Finally, we need the graphs Gi, i ∈ {1, . . . , 8}, which 
are shown in Fig.  1. Note that G6 ∼= X6.

Theorem 3.9.  If G is a graph, then the following assertions hold.
(i) If S ∈ S1,3,3, then G is 4-χS-critical if and only if

G ∈ {K4,G1,G2} ∪ Cs4 ∪ {X2k : k ≥ 3}.

(ii) If S ∈ S1,3,4, then G is 4-χS-critical if and only if
G ∈ {K4, C5, C6, P8} ∪ {Gi : i ∈ {1, . . . , 7}}.

(iii) If S ∈ S1,4, then G is 4-χS-critical if and only if
G ∈ {K4, C5, P6,G8}.
80



G. Boruzanlı Ekinci, C. Bujtás, D. Gözüpek et al. Discrete Applied Mathematics 385 (2026) 77–85
Proof.  Let S ∈ S. In each of the three cases listed above, the set of all 4-χS-vertex-critical graphs has been completely 
classified in [24]. This classification includes sporadic examples, as well as several graph families. By Lemma  3.2, any 
4-χS-critical graph must also be 4-χS-vertex-critical. Therefore, it suffices to determine which of the graphs identified 
in [24] are also χS-critical.

When S ∈ S1,3,3, the classification from [24] includes nine individual graphs and four graph families, two of which are 
infinite. Only those listed in item (i) satisfy the χS-criticality condition. For example, if G ∈ Cs4 , then it was proved in [24] 
that χS(G) = 4. On the other hand, G − e is a path on at least five vertices, hence χS(G − e) = 3.

For S ∈ S1,3,4, the classification from [24] consists of thirteen graphs and two graph families. Only the graphs listed in 
item (ii) are χS-critical.

For S ∈ S1,4, the classification from [24] includes twelve graphs and two graph families. Among them, only the graphs 
in item (iii) were found to be χS-critical through direct verification. This completes the proof. □

4. On S-packing critical cycles

Recall that (k, k, . . .)-packing colorings are known as k-distance colorings and that the (k, k, . . .)-packing chromatic 
number is denoted by χk. For cycles, it is proved in [38] that χk(Cn) = k + 1 + ⌈

r
ℓ
⌉, where n = ℓ(k + 1) + r , 0 ≤ r ≤ k. 

(The special case when r = 0 was earlier observed in [29].) Since n ≥ k+ 1 implies χk(Pn) = k+ 1, we can conclude that 
Cn, where n ≥ k + 1, is (k, k, . . .)-packing critical if and only if n ̸≡ 0 (mod k + 1).

Proposition 4.1.  If S ∈ S and n ≥ 3, then the following hold.
(i) If n ≤ s1 + 1, then Cn is not S-packing critical.
(ii) If s1 + 2 ≤ n ≤ 2s1 + 1, then Cn is S-packing critical.

Proof.  (i) Since n ≤ s1 + 1, we have χS(Cn) = n. Moreover, Cn − e = Pn and diam(Pn) = n− 1 ≤ s1, hence χS(Cn − e) = n. 
So Cn is not S-packing critical.

(ii) Let s1 + 2 ≤ n ≤ 2s1 + 1. Since diam(Cn) = ⌊
n
2⌋ ≤ ⌊

2s1+1
2 ⌋ = s1, we have χS(Cn) = n. On the other hand, 

diam(Cn − e) = diam(Pn) = n − 1 ≥ (s1 + 2) − 1 = s1 + 1, so we can color the two leaves of Pn with the same color and 
henceforth, χS(Cn − e) ≤ n − 1. So Cn is S-packing critical in this case. □

Theorem 4.2.  If S ∈ S1 and n ≥ 3, then the following hold.
(i) If n ≤ s2 + 2, then Cn is S-packing critical if and only if n is odd.
(ii) If s2 + 3 ≤ n ≤ 2s2 + 1, then Cn is S-packing critical.

Proof.  (i) If n ≤ s2 + 1, then diam(Cn) < diam(Pn) ≤ s2. Therefore, no color t with t ≥ 2 can be repeated in an 
S-packing coloring of Pn, and we get an optimal coloring by assigning color 1 to as many vertices as possible. Then 
χS(Pn) = n−α(Pn)+1 = n−⌈

n
2⌉+1. For cycles, the situation is similar and we obtain χS(Cn) = n−α(Cn)+1 = n−⌊

n
2⌋+1. 

Since χS(Cn − e) = χS(Pn) for every e ∈ E(Cn), the above formulas show that χS(Cn − e) < χS(Cn) if and only if n is odd.
Now let n = s2 +2. We observe that diam(Cn) = ⌊

n
2⌋ ≤ s2 always holds and then no color t with t ≥ 2 can be repeated 

in an S-packing coloring of Cn. Thus, χS(Cn) = n − α(Cn) + 1 = n −
⌊ n

2

⌋
+ 1 =

⌈ n
2

⌉
+ 1. After deleting an edge from 

Cn, we obtain Pn, whose diameter is n − 1 = s2 + 1. We may have two types of S-coloring c of the n-path v1 . . . vn. The 
first possibility is that no color t with t ≥ 2 is repeated, and then c uses at least n − α(Pn) + 1 = ⌊

n
2⌋ + 1 colors. The 

second possibility is to assign color 2 to v1 and vn, and use color 1 on an independent set in v2 . . . vn−1. This needs at 
least n− 2− α(Pn−2)+ 2 = n− ⌈

n−2
2 ⌉ = ⌊

n
2⌋ + 1 colors. We may therefore infer that χS(Cn) = ⌊

n
2⌋ + 1. Comparing χS(Cn)

and χS(Cn − e) = χS(Pn), we conclude that Cn is χS-critical if and only if n is odd, as stated.
(ii) Suppose first that n is even. Since diam(Cn) =

n
2 ≤ s2, no color t with t ≥ 2 can be repeated in an S-packing 

coloring of Cn. Thus, χS(Cn) = n− α(Cn)+ 1 =
n
2 + 1. For the n-path v1v2 . . . vn, consider the coloring c that assigns color 

1 to the vertices v1, v3, . . . , vn−1, color 2 to v2 and vn, while the remaining vertices are colored pairwise differently with 
colors 3, . . . , n

2 . As dPn (v2, vn) = n − 2 ≥ s2 + 1, c is an S-packing-coloring. Then, we conclude that χS(Pn) ≤
n
2 < χS(Cn), 

proving the χS-criticality of Cn.
If n is odd, diam(Cn) =

n−1
2 ≤ s2 implies that no color different from 1 can be repeated in an S-packing coloring. We 

infer again that χS(Cn) = n − α(Cn) + 1 =
n+1
2 + 1. The path Pn can be colored such that only color 1 is repeated. Hence,

χS(Pn) ≤ n − α(Pn) + 1 =
n − 1
2

+ 1 < χS(Cn)

that proves the χS-criticality of Cn. □

Theorem 4.3.  If n ≥ 3, then the following hold.
(i) If S ∈ S1,1, then Cn is S-packing critical if and only if n is odd.
(ii) If S ∈ S1,2,2, then Cn is S-packing critical if and only if it is C3 or C5.
(iii) If S ∈ S , then C  is S-packing critical if and only if n ̸≡ 0 (mod 4).
1,2,3 n
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Proof.  Throughout the proof, let v1, . . . , vn be consecutive vertices of Cn.
(i) Let S ∈ S1,1. An even cycle Cn can be colored alternately with colors 1 and 2. Hence, χS(Cn) = 2. If n is odd, a 

2-packing-coloring is not possible, but three colors are clearly enough. On the other hand, χS(Pn) = 2 for every n ≥ 2. It 
follows that χS(Cn − e) < χS(Cn) holds if and only if n is odd.

(ii) Let S ∈ S1,2,2. Consider a path Pn, for n ≥ 4, and an S-packing-coloring c of Pn. On every four consecutive vertices of 
the path, the coloring uses at least three colors. Let (123)∗ denote the sequence of colors in which 123 repeats an arbitrary 
number of times. Using the color pattern (123)∗, starting with the first vertex of the path, and where from the last block 
123 the required number of elements is used (possibly zero), we obtain an S-packing coloring. Consequently, χS(Pn) = 3
if n ≥ 4. As follows, χS(Cn) ≥ 3 holds for every n ≥ 4.

If n ≥ 6, we consider the following colorings of Cn. The referred patterns start from vertex v1, and after a specified initial 
sequence, the coloring repeats pattern 123 so that the color of vn will be 3. If n ≡ 0 (mod 3), we color Cn with (123)∗. 
If n ≡ 1 (mod 3), we color Cn as 1213 (123)∗. If n ≡ 2 (mod 3), then n ≥ 8, and we can color Cn as 1213 1213 (123)∗. It 
shows χS(Cn) ≤ 3 and in turn, χS(Cn) = 3, for every n ≥ 6. We conclude that in this case there is no S-packing critical 
cycle on more than 5 vertices.

For the small cases, we observe χS(P3) = 2 < χS(C3) = 3; χS(P4) = 3 = χS(C4); and χS(P5) = 3 < χS(C5) = 4. Now, 
we may conclude that C3 and C5 are the only S-packing critical cycles if S ∈ S1,2,2.

(iii) Under the conditions n ≥ 4 and S ∈ S1,2,3, any S-packing-coloring of Pn or Cn requires at least 3 colors. A path Pn
with n ≥ 4 can be colored by (1213)∗ no matter whether n ≡ 0 (mod 4) is valid or not. Naturally, if n ̸≡ 0 (mod 4), then 
from the last block 1213 the required number of elements is used. Therefore, χS(Pn) = 3 when n ≥ 4. If n ≡ 0 (mod 4), 
we can take the same type of coloring for Cn and get χS(Cn) = 3. It also shows that no n-cycle with n ≡ 0 (mod 4) is 
χS-critical.

Suppose now that c is an S-packing coloring of Cn, for n ≥ 5 that uses only colors 1, 2, 3. We claim that there are 
no two neighbors colored with 2 and 3. Assume, without loss of generality, that c(vi) = 3 and c(vi+1) = 2. Then, vi+2
cannot get a color different from 1. But then, as s2 ≥ 2 and s3 = 3, neither of colors 1, 2, and 3 can be assigned to vi+3. 
This contradiction proves that every second vertex of the cycle is colored with 1. As neither of the patterns 1212 and 
1313 may occur in the coloring, we obtain that the pattern 1213 must be repeated along the cycle. If n ̸≡ 0 (mod 4), it 
is impossible to have 3 colors and we conclude χS(Cn) ≥ 4 for these cases. Therefore, Cn is χS-critical for every n ≥ 5 if 
n ̸≡ 0 (mod 4). Observing also that χS(P3) = 2 < χS(C3) = 3 we obtain that C3 is χS-critical. This completes the proof 
for (iii). □

5. Impact of edge removal on χS

In view of Observation  2.1(i), the question naturally arises as to what extent removing an edge of G can affect χS(G). 
Before we answer this question, recall the following well-known sets (see [1,23,35]) which are defined for an arbitrary 
edge e = uv of a graph G:

WG
uv = {w ∈ V (G) : dG(u, w) < dG(v,w)},

WG
vu = {w ∈ V (G) : dG(v,w) < dG(u, w)},

vWG
u = {w ∈ V (G) : dG(u, w) = dG(v,w)} .

Clearly, V (G) = Wuv ∪Wvu∪ vWu. We will use the next lemma throughout the rest of the section mostly without explicitly 
mentioning it.

Lemma 5.1.  If G is a graph and e = uv ∈ E(G), then WG
uv = WG−e

uv  and WG
vu = WG−e

vu .

Proof.  Assume first that w ∈ WG
uv . Then e = uv does not lie on any shortest w, u-path, thus we have

dG−e(w, u) = dG(w, u) < dG(w, v) ≤ dG−e(w, v),

hence w ∈ WG−e
uv .

Assume second that w ∈ WG−e
uv , that is, dG−e(w, u) < dG−e(w, v). Then no matter whether there exists a shortest 

w, v-path in G which passes e, we have
dG(w, v) ≥ dG(w, u) + 1,

that is, w ∈ WG
uv . We can conclude that WG

uv = WG−e
uv . The argument for the equality WG

vu = WG−e
vu  is parallel. □

In the proof of the next result, we use some ideas similar to those in the proof of [4, Theorem 1]. For it recall that the 
matching number of a graph is the maximum number of independent edges in it.

Theorem 5.2.  Let S be a packing sequence and let e = uv be an edge of a graph G. Then the following statements hold.
(i) χS(G − e) ≥

χS (G)
2 . Moreover, there are infinitely many sharp examples for every packing sequence S ∈ S1,3 ∪ S2,5

∪ S .
3
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(ii) If G contains a component on at least three vertices and S ∈ S1,1 ∪S1,2, then χS(G − e) ≥
χS (G)+1

2  holds. Moreover, there 
are infinitely many sharp examples for every S ∈ S1,1 ∪ S1,2.

(iii) If S ∈ S2,2,2 and χS(G − e) ≥ 3, then χS(G − e) ≥
χS (G)+1

2  holds.

Proof.  (i) Let c ′
: V (G) → [χS(G − e)] be a χS-packing-coloring of G − e. For a color t ∈ [χS(G − e)], we say that a vertex 

pair {x, y} is t-problematic if c ′(x) = c ′(y) = t but dG(x, y) ≤ st . Since c ′ is an S-packing coloring of G − e, we have 
dG−e(x, y) ≥ st + 1. Then dG−e(x, y) > dG(x, y) and therefore, in G, every shortest (x, y)-path goes through the edge e. It 
also follows that, for every problematic pair {x, y}, one vertex is in WG

uv and the other is in WG
vu. Note that WG

uv = WG−e
uv

and WG
vu = WG−e

vu  hold by Lemma  5.1.
We say that a vertex z covers a problematic pair {x, y} if z = x or z = y and state the following key property of 

problematic pairs.

Claim. For every t ∈ [χS(G−e)], either there is no t-problematic pair or there exists a vertex that covers all t-problematic 
pairs.

Proof. Consider the bipartite graph Ft with partite classes WG
uv , WG

vu, where xy is an edge if {x, y} is a t-problematic pair in 
G. Suppose for a contradiction that the claim is not true, that is, E(Ft ) ̸= ∅ and that one vertex cannot cover all edges of 
Ft . König’s theorem [27] implies that the matching number of Ft is at least 2. So we may suppose that {x1, y1} and {x2, y2}
are two vertex-disjoint t-problematic pairs in G.

Without loss of generality, let xi ∈ WG
uv and yi ∈ WG

vu for i ∈ {1, 2}. Let us set dG(xi, u) = ai and dG(yi, v) = bi for 
i ∈ {1, 2}. Note that these distances remain the same in G − e. Consider first x1 and x2. As both vertices belong to Wuv , 
we have dG(x1, x2) = dG−e(x1, x2). Since c ′ is a χS-packing-coloring of G − e, it holds that dG−e(x1, x2) ≥ st + 1. Further, 
the length a1 + a2 of the (x1, x2)-walk through u gives an upper bound on the distance between x1 and x2. We obtain 

a1 + a2 ≥ dG(x1, x2) ≥ st + 1. (1)

A similar reasoning gives 
b1 + b2 ≥ dG(y1, y2) ≥ st + 1. (2)

By our assumption, both {x1, y1} and {x2, y2} are t-problematic pairs and so 
a1 + 1 + b1 = dG(x1, y1) ≤ st (3)

and 
a2 + 1 + b2 = dG(x2, y2) ≤ st . (4)

Inequalities (1)–(4) imply

2st + 2 ≤ a1 + a2 + b1 + b2 ≤ 2st − 2.

This contradiction finishes the proof of the claim. □

By the claim, for every color t with a t-problematic pair, we can specify a vertex zt that covers all t-problematic pairs. 
If we remove zt from the corresponding color class, then no t-problematic pair remains, and hence, any two remaining 
vertices have a distance of at least st + 1 in G. Let Z contain all specified vertices zt . Then |Z | ≤ χS(G − e). Define 
now a new coloring c which keeps the color c ′(x) if x /∈ Z and assigns a unique color to every vertex x ∈ Z from 
{χS(G − e) + 1, . . . , χS(G − e) + |Z |}.

It is clear that c uses at most 2χS(G − e) colors. We now prove that c is an S-packing coloring of G. Suppose that 
c(x) = c(y) = p, where x ̸= y. Since every color q with q > χS(G − e) is assigned to only one vertex, we infer that 
p ∈ [χS(G−e)]. As all p-problematic pairs were destroyed by recoloring one vertex from the pair, {x, y} is not a problematic 
pair and hence, dG(x, y) ≥ sp + 1. Thus, c is an S-packing coloring of G, which implies χS(G) ≤ 2χS(G − e) as stated.

We now prove the sharpness of the inequality. If S ∈ S1,3, let G be constructed by taking two copies of the star K1,k
with k ≥ 3 and connecting them by an edge e between two leaves. It is clear that χS(G− e) = χS(K1,k) = 2. We show that 
χS(G) = 4. In G, the path P between the centers of the stars is an isometric subgraph of diameter 3. Hence, either all four 
vertices of P get different colors, or color 1 is assigned to two vertices. In the latter case, at least one center receives color 
1, and then the k neighbors get pairwise different colors. In either case, the number of colors is at least 4. On the other 
hand, a 4-packing-coloring can be obtained by assigning color 1 to all leaves and one vertex of degree 2. Thus, χS(G) = 4
and G is a sharp example for the bound in (i).

If S ∈ S2,5, let Gk, k ≥ 2, be the graph obtained from the disjoint union of Kk and Kk+1 by adding a path of length 3 
between a vertex of Kk and a vertex of Kk+1. Let e be the edge of this path attached to Kk+1. As diam(Gk) = 5, no color 
except 1 can be repeated in an S-packing coloring of Gk and it is easy to check that χS(Gk) = 2k + 2 = 2χS(Gk − e).

Assume now that S ∈ S 3 and consider the following example. Let H be a graph with a universal vertex and let G be 
the graph obtained from the disjoint union of two copies of H by adding an edge e between a universal vertex of one 
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copy of H and a universal vertex of the other copy of H . Then diam(H) = 3 which implies that χS(G) = 2n(H). On the 
other hand, χS(G − e) = n(H). This demonstrates the sharpness of (i) for every S ∈ S 3.

(ii) Let S ∈ S1,1 ∪ S1,2. If the largest component of G contains at least three vertices, χS(G − e) ≥ 2 holds for every 
e ∈ E(G). We prove that there is a color t ∈ {1, 2} without a t-problematic pair in G. Assume that {x, y} is a 1-problematic 
pair. Then dG(x, y) ≤ s1 = 1 and all shortest (x, y)-paths contain e = uv. It implies {x, y} = {u, v} and c ′(u) = c ′(v) = 1. 
Consequently, for every two vertices x′ and y′ with c ′(x′) = c ′(y′) = 2, either dG(x′, y′) = dG−e(x′, y′) ≥ s2+1 or, in G, every 
shortest (x′, y′)-path contains e and dG(x′, y′) ≥ 3 ≥ s2 + 1. It follows that one of the colors 1 and 2 has no problematic 
pair, and then, the proof of part (i) can be improved by claiming |Z | ≤ χS(G− e)− 1. We conclude χS(G) ≤ 2χS(G− e)− 1
as stated.

For a packing sequence S ∈ S1,1, we take the odd cycles which are 3-χS-critical graphs according to Theorem  3.8(i). 
Thus, χS(C2k+1) = 3 and χS(C2k+1 − e) = 2, and the odd cycles are sharp examples for the inequality in (ii).

When S ∈ S1,2, we consider two vertex-disjoint stars K1,k, for k ≥ 3, and add an edge e between the centers to obtain 
the graph G. It is easy to check that χS(G − e) = 2 and χS(G) = 3. It provides then a sharp example for (ii). Remark that 
C3 and P4 are also sharp examples for S ∈ S1,2, according to Theorem  3.8 (ii).

(iii) Assume that S ∈ S2,2,2 and χS(G − e) ≥ 3. We prove that for at least one color t ∈ {1, 2, 3}, G contains no 
t-problematic pair. Let us choose t from {1, 2, 3} such that t ̸= c ′(u) and t ̸= c ′(v). Then, for every two vertices x and y
with c ′(x) = c ′(y) = t , all shortest (x, y)-paths contain e = uv and the distance dG(x, y) is at least 3 = st + 1. Therefore, 
we have |Z | ≤ χS(G − e) − 1 again and may conclude χS(G) ≤ 2χS(G − e) − 1. □

We note that the inequalities in Theorem  5.2(i) and (ii) remain valid if the packing sequence S is finite and we suppose 
that G is S-packing colorable. Indeed, if 2χS(G − e) ≤ |S|, the proof given above remains valid. If 2χS(G − e) > |S|, then 
the S-packing colorability of G immediately implies χS(G) ≤ |S| ≤ 2χS(G − e) − 1 and the two inequalities follow.

Setting S = (1, 2, 3, . . .) in Theorem  5.2 (ii), we get the following:

Corollary 5.3 ([4, Theorem 1]).  If G is a graph and e ∈ E(G), then χρ(G − e) ≥
χρ (G)+1

2 .

To see that the bound in Theorem  5.2(i) is asymptotically sharp also when e is not a cut-edge, consider the following 
example for the constant packing sequence S = (3, 3, . . . ). Let H be a graph with two universal vertices x and y, and let 
H ′ be an isomorphic copy of H with respective universal vertices x′ and y′. Let G be the graph obtained from the disjoint 
union of H and H ′ by adding the edge e = xx′, and by connecting y and y′ with a path of length 3.

Note that n(G) = 2n(H) + 2 and that diam(G) = 3. Therefore, χS(G) = 2n(H) + 2. Consider now G − e. Then we can 
assign color 1 to x and y′, color 2 to y and x′, whilst assigning each color from {3, . . . , n(H)} to the remaining pairs of 
vertices respectively, one from each of H and H ′. Two further colors, n(H) + 1 and n(H) + 2 are used to color the two 
vertices outside V (H) ∪ V (H ′). In this way, we infer that χS(G − e) = n(H) + 2. So limn→∞

χS (G−e)
χS (G)

=
1
2 .

If the removed edge is a cut-edge, we can slightly improve Theorem  5.2. 

Proposition 5.4.  Let S ∈ S and s2 ≤ 2. If e is a cut-edge in a graph G and χS(G − e) ≥ 2, then χS(G − e) ≥
χS (G)+1

2 .

Proof. Theorem  5.2 (ii) establishes the lower bound if s1 = 1 and s2 ≤ 2. Hence, it suffices to prove the lower bound for 
s1 = s2 = 2. Let e = uv be a cut-edge in G, and G1, G2 be the two components in G − e. We may suppose that u ∈ V (G1)
and v ∈ V (G2). We use the notations from the proof of Theorem  5.2. Assume first that some color t ∈ {1, 2} is not in 
{c ′(u), c ′(v)} and c ′(x) = c ′(y) = t . If x and y belong to the same component Gi, then dG(x, y) = dG−e(x, y) ≥ st + 1 as c ′

is an S-packing coloring in G − e. If x ∈ V (G1) and y ∈ V (G2), then the distance dG(x, y) ≥ 3 = st + 1. We conclude that 
there is no t-problematic pair in G and χS(G) ≤ 2χS(G − e) − 1 holds for this case.

If both colors 1 and 2 are used on vertices u, v by c ′, we define a coloring c ′′ of G − e by switching colors 1 and 2 in 
G2. Since s1 = s2, coloring c ′′ remains an S-packing coloring. Moreover, as c ′′(u) = c ′′(v) holds, χS(G) ≤ 2χS(G − e) − 1
follows by the same reasoning as above. □

In the sharp examples with χS(G) = 2χS(G − e) given in the proof of Theorem  5.2(i), the edge e is always a cut-edge. 
Therefore, the inequality in Proposition  5.4 does not hold for all graphs when S ∈ S1,3 ∪ S2,5 ∪ S 3.

6. Concluding remarks

• In Theorems  3.8 and 3.9 we have characterized 4-χS-critical graphs for most of the packing sequences S. The missing 
cases which remain to be considered are S ∈ S1,1∪S1,2. In fact, these are also the missing cases of 4-χS-vertex-critical 
graphs.

• In Theorem  4.3 we have characterized cycles which are S-packing critical for S ∈ S1,1, S ∈ S1,2,2, and S ∈ S1,2,3. The 
remaining cases are still to be explored.

• In Theorem  5.2 we have demonstrated that there are infinitely many sharp examples for the inequality χS(G− e) ≥
χS (G)

2 , for each S ∈ S1,3∪S2,5∪S 3, where e is a cut-edge. We next provide another sporadic example for the sharpness 
when S ∈ S2,3,11. For this purpose, consider P14 and its middle edge e. Using case analysis, it can be checked that 
χ (P ) = 8. On the other hand, P − e contains two components both of which are isomorphic to P  and we obtain 
S 14 14 7
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χS(P14 − e) = 4 =
χS (P14)

2 . Proposition  5.4 shows that if s2 ≤ 2 and G contains a component with at least two edges, 
then the stronger inequality χS(G − e) ≥

χS (G)+1
2  holds for every cut-edge e of G. The remaining cases are packing 

sequences with

◦ s1 = 2, s2 = 3, and 3 ≤ s3 ≤ 10;
◦ s1 = 2, s2 = 4.

For these cases, it remains an open question whether χS(G − e) ≥
χS (G)+1

2  holds whenever e is a cut-edge of G.
• In the above example when S ∈ S2,3,11, we have stated that χS(P14) = 8. Establishing this result is not completely 

straightforward. In general, it would be of interest to determine χS(Pn) for any S ∈ S and any n.
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