Discrete Applied Mathematics 385 (2026) 77-85

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

S-packing chromatic critical graphs A

Giilnaz Boruzanli Ekinci?, Csilla Bujtas ™, Didem Géziipek ¢, Sandi KlavZar >“¢ updates

2 Department of Mathematics, Faculty of Science, Ege University, Izmir, Tiirkiye
b Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

¢ Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

d Department of Computer Engineering, Gebze Technical University, Tiirkiye

€ Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia

b,c,*

ARTICLE INFO ABSTRACT

Article history: For a non-decreasing sequence of positive integers S = (s1,Sz,...), the S-packing
Received 22 May 2025 chromatic number of a graph G is denoted by xs(G). In this paper, xs-critical graphs are
Received in revised form 7 January 2026 introduced as the graphs G such that xs(H) < xs(G) for each proper subgraph H of G.

Accepted 18 January 2026 Several families of ys-critical graphs are constructed, and 2- and 3-colorable xs-critical

graphs are presented for all packing sequences S, while 4-colorable xs-critical graphs

Keywords: are found for most of S. Cycles which are xs-critical are characterized under different
Packing coloring conditions. It is proved that for any graph G and any edge e € E(G), the inequality
S-packing coloring xs(G — e) > xs(G)/2 holds. Moreover, in several important cases, this bound can be
S-packing critical graph improved to xs(G — e) > (xs(G) 4+ 1)/2. The sharpness of the bounds is also discussed.

Independence number

Along the way an earlier result on ys-vertex-critical graphs is supplemented.
Cycle graph g y Xs grap pp

© 2026 The Authors. Published by Elsevier B.V. This is an open access article under the CC
BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

1. Introduction

Let S = (s1, S2, .. .) be a non-decreasing sequence of positive integers and let G be a graph with vertex set V(G) and
edge set E(G). A mapping ¢ : V(G) — [k] = {1, ..., k} is an S-packing k-coloring of G if the equality c(u) = c(v) =i for all
i € [k] and u # v € V(G) implies dg(u, v) > s;. The S-packing chromatic number ys(G) of G is the smallest integer k such
that G admits an S-packing k-coloring [16].

In the special case when S = (1, 2, 3, ...), the S-packing chromatic number is the standard packing chromatic number
X,» Which was first explored under the name broadcast chromatic number [15] and given the present name in [7]. The
2020 review article [6] on packing colorings (including S-packing colorings) contains 68 references, but research continues,
see [3,14,17-19]. The greatest emphasis in recent years has been on S-packing colorings, especially on subcubic graphs,
see [5,8,12,21,28,33,36,37,40].

It should be stressed that the concept of S-packing coloring is very general. As said, it contains the packing coloring
as a particular instance. In addition, the special case S = (k, k, k,...), k > 1, is studied in the literature as k-distance
colorings, the corresponding (k, k, k, . . .)-packing chromatic number is denoted by y;. Note that x; = yx. Up to 2008, these
investigations were surveyed in [30], while for some recent related papers see [20,26,32]. In the last years, however, the
main focus was on 2-distance colorings of planar graphs, cf. [2,9,10,31,41].

Independently, and almost simultaneously, two different packing criticality concepts were introduced. In [25], a graph
G was defined to be yx,-vertex-critical if x,(G —u) < x,(G) for each u € V(G). Moreover, if G is a x,-vertex-critical graph
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with x,(G) = k, then G is called k-x,-vertex-critical. On the other hand, according to [4], G is x,-critical if x,(H) < x,(G)
for each proper subgraph H of G. If G has no isolated vertices, this is equivalent to the requirement that x,(G—e) < x,(G)
holds for each e € E(G). If G is a x,-critical graph with x,(G) = k, then G is called k-x,-critical. The paper [13] further
investigated y,-vertex-critical graphs and provided a characterization of 4-y,-vertex-critical graphs.

In the same way as packing colorings extend to S-packing colorings, one can extend y,-vertex-critical graphs and
Xp-critical graphs to ys-vertex-critical graphs and xs-critical graphs. The first of these generalizations has been done
in [22], while in the follow-up paper [24] a characterization of 4-xs-vertex-critical graphs for packing sequences with
s1 = 1 and s, > 3 is given. The second of these generalizations, that is, ys-critical graphs, has not yet been studied, we
fill this gap in this paper. We say that G is ys-critical if xs(H) < xs(G) for each proper subgraph H of G. If G is a xs-critical
graph with xs(G) = k, then G is called k- xs-critical. Note that we do not consider the empty graph as a proper subgraph.
Then, by our definition, the isolated vertex K; has no proper subgraph, and it is 1-xs-critical for every packing sequence
S.

The paper is organized as follows. In the next section, we give some definitions, introduce useful notation, and present
basic observations about S-packing critical graphs. In Section 3, some families of ys-critical graphs are discussed. We
determine 2-xs-critical and 3-ys-critical graphs for all packing sequences S, and determine 4- ys-critical graphs for most
of S. For the case of 4-xs-critical graphs, we supplement an earlier result from the literature on ys-vertex-critical graphs.
In Section 4 we characterize cycles which are xs-critical under different conditions. In Section 5 we consider the impact
of edge removal on the S-packing chromatic number. We prove that xs(G — e) > xs(G)/2 for any graph G and any edge
e € E(G), and that in several important cases the bound can be improved to xs(G—e) > (xs(G)+1)/2. For many S, infinitely
many sharp examples are constructed. In the last section we identify several open problems for further research.

2. Preliminaries

Let G be a graph. Then V(G) and E(G) stand for the vertex and edge set of G, respectively. The open neighborhood Ng(u)
of u in G is the set of the neighbors of u. We say that u is a universal vertex if Ng(u) = V(G) \ {u}. A support vertex of
G is a vertex adjacent to a leaf. An edge e in a connected graph G is a cut-edge if G — e is disconnected. The girth of G
is denoted by g(G). If G has no cycles, we set g(G) = oco. As usual, «(G) is the independence number of G. The distance
dc(u, v) between u, v € V(G) is the shortest-path distance. The diameter of G is denoted by diam(G). A subgraph H of G is
isometric, if for every two vertices u, v € V(H) we have dy(u, v) = dg(u, v). The path, the cycle, and the complete graph
of order n are respectively denoted by P, C,, and K;,, while the order of a graph G will be denoted by n(G).

The set of all packing sequences will be denoted by &, that is,

S=1{(s1,82,...): 1<s1<s3<---}.

For a given S € S we will always assume that S = (sq, S3, ... ). Unless stated otherwise, the packing sequences are
considered to be infinite in this paper.

We will consider sets of packing sequences such that some of their first coordinates are fixed or bounded from below.
Instead of introducing the notation in general, consider the following example. Assume we wish to consider the set of
packing sequences S = (s, S2, S3, ... ) With s; = 1, s, = 3, and s3 > 4. Then we set

S137=1{(51,52,83,...): s1=1,5,=3,53 > 4}.

The general notation should be clear from this example. For instance, S, 35 is the set of packing sequences with s; = 1,
3 <s; <5, and s3 = 5. Note also that § = S7.
It was stated in [16, Observation 2] that every graph G and any edge e of it satisfy the inequality

xs(G —e) < xs(G).
As the removal of isolated vertices does not change xs(G), this inequality also implies xs(H) < xs(G) for every subgraph
H of G. We may also infer that if xs5(G) = k, then G contains a subgraph that is k- xs-critical.
Observation 2.1. Let S € S and let G be a graph.
(i) If G contains no isolated vertex, then G is xs-critical if and only if xs(G — e) < xs(G) holds for every edge e € E(G).
(ii) K is the unique 1-xs-critical graph.

3. Families of S-packing critical graphs

In this section we present several families of S-packing critical graphs. We first show that graphs of diameter k and
girth at least k 4 2 are yxs-critical for each packing sequence S € S;. This result is then extended to specific generalized
lexicographic products. We end the section by classifying k- xs-critical graphs for almost all S and k € {2, 3, 4}. But first
we give two general, simple properties of S-packing critical graphs.

Lemma 3.1. IfS € S and G is a xs-critical graph, then G is connected.
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Proof. Suppose to the contrary that G is not a connected graph such that Hy, ..., H; are the components of G, where
r > 2. Since xs(G) = maxie[r xs(H;), there exists a component H; such that xs(H;) = xs(G). Now consider a component
Hy for some k # j. The removal of Hy from G yields a proper subgraph H with xs(H) = xs(H;) = xs(G), which contradicts
the assumption that G is ys-critical. Therefore, G must be connected. O

Lemma 3.2. If Gis a xs-critical graph, then G is a xs-vertex-critical graph.

Proof. If G = Kj, then it is ys-critical and xs-vertex-critical. Otherwise, consider an arbitrary vertex x € V(G). Since G —x
is a proper subgraph of G, xs-criticality implies xs(G — x) < xs(G) and proves that G is a ys-vertex-critical graph. O

A graph G is called diameter k-critical if diam(G) = k and diam(G—e) > diam(G) holds for every e € E(G) (see [11,34,39]).
Proposition 3.3. Let k > 1 and S € Si. Then every diameter k-critical graph is xs-critical.

Proof. Let G be a diameter k-critical graph. Since s; = k, no two vertices of G can receive the same color, that is,
xs(G) = n(G). Let now e be an arbitrary edge of G. Since diam(G — e) > k + 1, there are two vertices u and v with
dc_e(u, v) > k + 1. Therefore, in an S-coloring of G — e, we can color u and v with color 1, and assign a unique color to
every other vertex. Hence xs(G — e) < n(G) — 1 < xs(G) = n(G) which yields the conclusion. O

Since every graph G with diam(G) = k and girth g(G) > k+ 2 is diameter k-critical, we deduce the following statement
from Proposition 3.3.

Corollary 3.4. Letk > 1and S € S If G is a graph with diam(G) = k and g(G) > k + 2, then G is xs-critical.

As Proposition 3.3 and Corollary 3.4 are true for trees, we may infer that every tree is ys-critical for infinitely many
packing sequences S. We also prove the following property for trees.

Proposition 3.5. For every tree T and every S € S, the tree T is ys-critical if and only if it is xs-vertex-critical.

Proof. If T is an isolated vertex, the equivalence holds. From now on, we may assume n(T) > 2. The first direction of
the statement follows from Lemma 3.2. To prove the other direction, consider a xs-vertex-critical tree T and remove
an arbitrary edge e = w;u;. Let T; and T; be the two components of T — e such that u; € V(T;) and u; € V(T;). We
know that xs(T — e) = max{xs(T;), xs(T;)} and may assume xs(T — e) = xs(T;). As T; is also a component in T — u;, the
xs-vertex-criticality of T implies

xs(T —e) = xs(T;) < xs(T — u;) < xs(T).

Since xs(T —e) < xs(T) holds for every edge and T is isolate-free, we may conclude that T is ys-critical. This finishes the
proof of the equivalence. O

We conclude the section by considering k- xs-critical graphs, where k € {2, 3, 4}.
Proposition 3.6. IfS € S, then a graph G is 2- xs-critical if and only if G = K.

Proof. It is straightforward that G = K5 is 2-xs-critical: its packing chromatic number is 2, and removing any vertex or
edge reduces the packing chromatic number to 1. Conversely, suppose G is 2-xs-critical. Then, by Lemma 3.2, G is also
2-xs-vertex-critical. It is shown in [22] that the only graph with this property is K>. Thus, the result follows. O

In the first item of [22, Theorem 5.1] it is claimed that if S € S, 55, then a graph G is 4-xs-vertex-critical if and only
if G is one of the graphs Kj 3, Cs4, Z1, K4 — e, K4, where Z; denotes the graph obtained by adding a pendant edge to a Cs.
However, there is one example missing from the proof, which we explain below.

Consider a 4-xs-vertex-critical graph G and let u € V(G), so that xs(G—u) < 3. In the proof of [22, Theorem 5.1], when
the case deg.(u) = 2 is considered, it is correctly stated that if G — u is connected, then, for G — u = P; we get G = C4 or
G =27, for G — u = (3 we get G = K4 — e. Afterwards, it is stated that in any other case no ys-critical graph is obtained.
But the vertex u can be adjacent to two degree 1 vertices of G — u, that is, to the end-vertices of a path in which case G
is a cycle. Note that xs(C,) = 3 if and only if n is divisible by 3. Hence, C, is a 4-xs-vertex-critical graph if and only if n
is not divisible by 3.

According to the above, the first item of [22, Theorem 5.1] must be supplemented as follows.

Proposition 3.7. IfS € S,,.,, then a graph G is 4- xs-critical if and only if
Ge{Ki3,Z1,Ks—e, K4} U{Cy: n>4, n#£0 (mod 3)}.

With Proposition 3.7 in hand, we can state the following result.
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Fig. 1. The graphs G4, ..., Gs.

Theorem 3.8. LetS € S and let G be a graph.

(i) If S € 811, then G is 3-xs-critical if and only if G € {Coqq1 1 k > 1}.
(ii) If S € S, 3, then G is 3-xs-critical if and only if G € {C3, P4}

(iii) If S € S;, then G is 3-xs-critical if and only if G = Ps.

(iv) If S € 8322, then G is 4- xs-critical if and only if

Ge{Ki3}U{C,: n>4, n#0 (mod 3)}.

(v) If S € S, , 3, then G is 4-xs-critical if and only if G € {K 3, C4, Ps).
(vi) If S € S, 3, then G is 4-s-critical if and only if G € {Ky 3, C4, Ps}.
(vii) If S € Ss, then G is 4-xs-critical if and only if G € {K; 3, P4}.

Proof. Let S € S. Then it was proved in [22, Theorem 4.1] that (i) if S € Sy, then G is 3-s-vertex-critical if and only if
G € {Coy1 1 k= 1} (ii) if S € S, 3, then G is 3-xs-vertex-critical if and only if G € {Cs, Cy4, P4}; and (iii) if S € S5, then G
is 3-s-vertex-critical if and only if G € {Cs, P3}. By Lemma 3.2, it remains to verify which of the above-listed graphs is
3-xs-critical. Doing it one by one, the first three assertions of the theorem follow.

By Proposition 3.7 we know the list of 4-xs-vertex-critical where S € S, 5 ;. We next recall that it was further proved
in Theorem [22, Theorem 5.1] that (a) if S € S, , 3, then G is 4-xs-vertex-critical if and only if G € {K13, Cs,Z1, Kq —
e, Ky, Pg, Cg}; (b)if S € S5 then G is 4-xs-vertex-critical if and only if G € {Ki 3, C4,Z1, Ky — e, K4, Ps}; and (c) if S € S5,
then G is 4-xs-vertex-critical if and only if G € {Kj 3, P4, C4, Z1, K4 — e, K4}. Applying Lemma 3.2 again, we need to verify
which of the above-listed graphs are 4-xs-critical. Carefully checking all of them, the last four assertions of the theorem
follow. O

To state the following theorem, we first need to introduce two families of graphs and some specific graphs. If S € S,
then let

C, ={C,n>=5: (n=1,2 (mod4))or(n=3 (mod4)ands,; < [n/2])}.

So Cs, is a subclass of cycles that depends on the fourth term of S. Next, let Xy, k > 3, be the graph obtained from Py
by attaching a pendant vertex to each of the support vertices of P,. Finally, we need the graphs G;, i € {1, ..., 8}, which
are shown in Fig. 1. Note that Gg = X;.

Theorem 3.9. If G is a graph, then the following assertions hold.
(i) If S € 81,33, then G is 4-xs-critical if and only if
G € {Ky4,G1, G} UCs, U {Xpr : k > 3}
(ii) If S € S, 33, then G is 4-xs-critical if and only if
Ge{Ky,GCs5,GC5,P3}U{G; : Te€(1,...,7}}.
(iii) If S € S, 3, then G is 4- xs-critical if and only if
G € {Ky, G5, Pg, Gg}.
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Proof. Let S € S. In each of the three cases listed above, the set of all 4-xs-vertex-critical graphs has been completely
classified in [24]. This classification includes sporadic examples, as well as several graph families. By Lemma 3.2, any
4-xs-critical graph must also be 4-xs-vertex-critical. Therefore, it suffices to determine which of the graphs identified
in [24] are also ys-critical.

When S € 83,3, the classification from [24] includes nine individual graphs and four graph families, two of which are
infinite. Only those listed in item (i) satisfy the ys-criticality condition. For example, if G € Cy,, then it was proved in [24]
that xs(G) = 4. On the other hand, G — e is a path on at least five vertices, hence xs(G —e) = 3.

For S € 8, 33, the classification from [24] consists of thirteen graphs and two graph families. Only the graphs listed in
item (ii) are xs-critical.

For S € S, 3z, the classification from [24] includes twelve graphs and two graph families. Among them, only the graphs
in item (iii) were found to be yxs-critical through direct verification. This completes the proof. O

4. On S-packing critical cycles

Recall that (k, k, ...)-packing colorings are known as k-distance colorings and that the (k, k, .. .)-packing chromatic
number is denoted by x. For cycles, it is proved in [38] that x,(C,) = k+ 14 7], wheren = £(k+1)+1,0 <r < k.
(The special case when r = 0 was earlier observed in [29].) Since n > k+ 1 implies xx(P,) = k+ 1, we can conclude that
Cn, where n > k + 1, is (k, k, . . .)-packing critical if and only if n # 0 (mod k + 1).

Proposition 4.1. IfS € S and n > 3, then the following hold.

(i) If n < sy + 1, then C, is not S-packing critical.
(ii) If sy +2 < n < 2s; + 1, then C, is S-packing critical.

Proof. (i) Since n < s; + 1, we have xs(C,) = n. Moreover, G, — e = P, and diam(P,) = n— 1 < sy, hence xs(C, —e) = n.
So G, is not S-packing critical.

(ii) Let sy + 2 < n < 2s; + 1. Since diam(C,) = L%J < L@J = sy, we have yxs(C;) = n. On the other hand,
diam(C, — e) = diam(P,) =n — 1> (s; +2) — 1 = sy + 1, so we can color the two leaves of P, with the same color and
henceforth, xs(C, —e) < n — 1. So G, is S-packing critical in this case. O

Theorem 4.2. IfS € S; and n > 3, then the following hold.

(i) If n < s, + 2, then G, is S-packing critical if and only if n is odd.
(ii) If s, +3 < n < 2s, + 1, then C, is S-packing critical.

Proof. (i) If n < s, + 1, then diam(C,) < diam(P,) < s;. Therefore, no color t with t > 2 can be repeated in an
S-packing coloring of P,, and we get an optimal coloring by assigning color 1 to as many vertices as possible. Then
xs(Pp) =n—a(Py)+1=n— [%] + 1. For cycles, the situation is similar and we obtain xs(C,) = n—a(G,)+1=n— L%J +1.
Since xs(C, — e) = xs(P,) for every e € E(C,), the above formulas show that xs(C, — e) < xs(G,) if and only if n is odd.

Now let n = s, + 2. We observe that diam(C,,) = L%J < s, always holds and then no color t with t > 2 can be repeated
in an S-packing coloring of Cy. Thus, xs(C,) = n — a(G,)+ 1 =n— | 3] + 1 = [4] + 1. After deleting an edge from
C,, we obtain P,, whose diameter is n — 1 = s, + 1. We may have two types of S-coloring c of the n-path vy ... v,. The
first possibility is that no color t with t > 2 is repeated, and then c uses at least n — a(P,) + 1 = L%J + 1 colors. The
second possibility is to assign color 2 to v; and v, and use color 1 on an independent set in v, ... v,_1. This needs at
leastn —2 —a(Pp_3)+2=n— [%1 = L%J + 1 colors. We may therefore infer that xs(C,) = L%J + 1. Comparing xs(C,)
and xs(C, — e) = xs(Pn), we conclude that C, is xs-critical if and only if n is odd, as stated.

(ii) Suppose first that n is even. Since diam(C,) = % < sy, no color t with t > 2 can be repeated in an S-packing
coloring of C,. Thus, xs(C;) =n—a(C)+ 1= % + 1. For the n-path vqv, ... v,, consider the coloring c that assigns color
1 to the vertices vy, vs, ..., vy,_1, color 2 to v, and v,, while the remaining vertices are colored pairwise differently with
colors 3, ..., g As dp,(v2, vy) = n —2 > s, + 1, ¢ is an S-packing-coloring. Then, we conclude that ys(P,) < & < xs(Gp),
proving the xs-criticality OE C?.

If n is odd, diam(C,) = 5= < s, implies that no color different from 1 can be repeated in an S-packing coloring. We

infer again that xs(G,)=n—a(G)+ 1= "Zil + 1. The path P, can be colored such that only color 1 is repeated. Hence,

n—1
xs(Pp) <n—a(Py)+1= — +1 < xs(Gi)

that proves the ys-criticality of G,. O

Theorem 4.3. If n > 3, then the following hold.

(i) If S € 81,1, then C, is S-packing critical if and only if n is odd.
(ii) If S € 81,22, then G, is S-packing critical if and only if it is Cs or Cs.
(iii) If S € S, 3 3, then G, is S-packing critical if and only if n # 0 (mod 4).
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Proof. Throughout the proof, let v, ..., v, be consecutive vertices of C,.

(i) Let S € S1.1. An even cycle C, can be colored alternately with colors 1 and 2. Hence, xs(C,) = 2. If n is odd, a
2-packing-coloring is not possible, but three colors are clearly enough. On the other hand, xs(P,) = 2 for every n > 2. It
follows that xs(C, — e) < xs(G,) holds if and only if n is odd.

(ii) Let S € S1.2,2. Consider a path Py, for n > 4, and an S-packing-coloring ¢ of P,. On every four consecutive vertices of
the path, the coloring uses at least three colors. Let (123)* denote the sequence of colors in which 123 repeats an arbitrary
number of times. Using the color pattern (123)*, starting with the first vertex of the path, and where from the last block
123 the required number of elements is used (possibly zero), we obtain an S-packing coloring. Consequently, ys(P,) = 3
if n > 4. As follows, xs(C,) > 3 holds for every n > 4.

If n > 6, we consider the following colorings of G,. The referred patterns start from vertex vy, and after a specified initial
sequence, the coloring repeats pattern 123 so that the color of v, will be 3. If n = 0 (mod 3), we color C, with (123)*.
If n =1 (mod 3), we color C, as 1213 (123)*. If n = 2 (mod 3), then n > 8, and we can color C,; as 1213 1213 (123)*. It
shows xs(C;) < 3 and in turn, xs(C,) = 3, for every n > 6. We conclude that in this case there is no S-packing critical
cycle on more than 5 vertices.

For the small cases, we observe xs(P3) = 2 < xs(C3) = 3; xs(P4) = 3 = xs5(C4); and xs(Ps) = 3 < xs(Cs) = 4. Now,
we may conclude that C; and Gs are the only S-packing critical cycles if S € S17.5.

(iii) Under the conditions n > 4 and S € S, 3 3, any S-packing-coloring of P, or C, requires at least 3 colors. A path P,
with n > 4 can be colored by (1213)* no matter whether n = 0 (mod 4) is valid or not. Naturally, if n # 0 (mod 4), then
from the last block 1213 the required number of elements is used. Therefore, xs(P;) = 3 whenn > 4. 1If n = 0 (mod 4),
we can take the same type of coloring for C, and get xs(C,) = 3. It also shows that no n-cycle with n = 0 (mod 4) is
Xs-critical.

Suppose now that c is an S-packing coloring of C,, for n > 5 that uses only colors 1, 2, 3. We claim that there are
no two neighbors colored with 2 and 3. Assume, without loss of generality, that c(v;) = 3 and c(vi11) = 2. Then, vi;2
cannot get a color different from 1. But then, as s, > 2 and s3 = 3, neither of colors 1, 2, and 3 can be assigned to v;,s.
This contradiction proves that every second vertex of the cycle is colored with 1. As neither of the patterns 1212 and
1313 may occur in the coloring, we obtain that the pattern 1213 must be repeated along the cycle. If n # 0 (mod 4), it
is impossible to have 3 colors and we conclude xs(C,) > 4 for these cases. Therefore, C, is xs-critical for every n > 5 if
n # 0 (mod 4). Observing also that xs(P3) = 2 < xs(C3) = 3 we obtain that C3 is ys-critical. This completes the proof
for (iii). O

5. Impact of edge removal on s
In view of Observation 2.1(i), the question naturally arises as to what extent removing an edge of G can affect ys(G).

Before we answer this question, recall the following well-known sets (see [1,23,35]) which are defined for an arbitrary
edge e = uv of a graph G:

va ={w € V(G) : dg(u, w) < dg(v, w)},

WS = {w € V(G) : dg(v, w) < dg(u, w)},

JWE ={w e V(G): de(u, w) = dg(v, w)}.
Clearly, V(G) = W, UW,,U ,W,. We will use the next lemma throughout the rest of the section mostly without explicitly
mentioning it.

Lemma 5.1. If G is a graph and e = uv € E(G), then WS, = WS¢ and W&, = W5 .

Proof. Assume first that w € WS . Then e = uv does not lie on any shortest w, u-path, thus we have
dg—e(w, u) = dg(w, u) < dg(w, v) < dg—e(w, V),

hence w € WS .

Assume second that w € Wqu‘e, that is, dg_e(w, u) < dg_e(w, v). Then no matter whether there exists a shortest

w, v-path in G which passes e, we have
do(w, v) = dg(w, u) + 1,
that is, w € W¢,. We can conclude that W, = W . The argument for the equality W(, = W, © is parallel. O
In the proof of the next result, we use some ideas similar to those in the proof of [4, Theorem 1]. For it recall that the
matching number of a graph is the maximum number of independent edges in it.
Theorem 5.2. Let S be a packing sequence and let e = uv be an edge of a graph G. Then the following statements hold.

(i) xs(G—e) > % Moreover, there are infinitely many sharp examples for every packing sequence S € S;3U S,3
USs.
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(ii) If G contains a component on at least three vertices and S € S1.1 U8 2, then xs(G —e) > @ holds. Moreover, there
are infinitely many sharp examples for every S € S11 U S1.2.
(iii) If S € S5, and xs(G — e) > 3, then xs(G — e) > XS holds.

Proof. (i) Let ¢’:V(G) — [xs(G — e)] be a ys-packing-coloring of G — e. For a color t € [xs(G — e)], we say that a vertex
pair {x,y} is t-problematic if c'(x) = c¢/(y) = t but dg(x,y) < s;. Since ¢’ is an S-packing coloring of G — e, we have
do_e(x,y) > s¢ + 1. Then dg_.(x,y) > dg(x,y) and therefore, in G, every shortest (x, y)-path goes through the edge e. It
also follows that, for every problematic pair {x, y}, one vertex is in W& and the other is in W, Note that W¢ = WS¢
and W&, = W&~¢ hold by Lemma 5.1.

We say that a vertex z covers a problematic pair {x,y} if z = x or z = y and state the following key property of
problematic pairs.

Claim. For every t € [xs(G— e)], either there is no t-problematic pair or there exists a vertex that covers all t-problematic
pairs.
Proof. Consider the bipartite graph F; with partite classes WUGU, WvGu, where xy is an edge if {x, y} is a t-problematic pair in
G. Suppose for a contradiction that the claim is not true, that is, E(F;) # ¥ and that one vertex cannot cover all edges of
F;. Konig's theorem [27] implies that the matching number of F; is at least 2. So we may suppose that {xq, y1} and {x,, y-}
are two vertex-disjoint t-problematic pairs in G.

Without loss of generality, let x; € Wlﬁ) and y; € WUGH for i € {1, 2}. Let us set dg(x;, u) = a; and dg(y;, v) = b; for
i € {1, 2}. Note that these distances remain the same in G — e. Consider first x; and x,. As both vertices belong to W,,,,
we have dg(xq, X2) = dg_e(X1, X2). Since ¢’ is a ys-packing-coloring of G — e, it holds that d¢_.(x1, X2) > s; + 1. Further,
the length a; + a, of the (x1, x,)-walk through u gives an upper bound on the distance between x; and x,. We obtain

a1+ az > dg(x1,%2) > ¢ + 1. (1)
A similar reasoning gives

b1+ by > dg(y1,y2) = se + 1. (2)
By our assumption, both {x1, y;} and {x,, y,} are t-problematic pairs and so

a1+ 1+ b1 =de(x1,y1) < st (3)
and

a + 1+ by = dg(x2,y2) < st (4)
Inequalities (1)-(4) imply

2ss+2<ay+ay+ by +by <25 —2.
This contradiction finishes the proof of the claim. O

By the claim, for every color t with a t-problematic pair, we can specify a vertex z; that covers all t-problematic pairs.
If we remove z; from the corresponding color class, then no t-problematic pair remains, and hence, any two remaining
vertices have a distance of at least s; + 1 in G. Let Z contain all specified vertices z;. Then |Z| < xs(G — e). Define
now a new coloring ¢ which keeps the color ¢/(x) if x ¢ Z and assigns a unique color to every vertex x € Z from
{xs(G—e)+1,..., xs(G—e)+ |Z]}.

It is clear that ¢ uses at most 2xs(G — e) colors. We now prove that ¢ is an S-packing coloring of G. Suppose that
c(x) = c(y) = p, where x # y. Since every color ¢ with ¢ > xs(G — e) is assigned to only one vertex, we infer that
p € [xs(G—e)]. As all p-problematic pairs were destroyed by recoloring one vertex from the pair, {x, y} is not a problematic
pair and hence, dg(x, y) > s, + 1. Thus, ¢ is an S-packing coloring of G, which implies xs(G) < 2xs(G — e) as stated.

We now prove the sharpness of the inequality. If S € S, 3, let G be constructed by taking two copies of the star Kj y
with k > 3 and connecting them by an edge e between two leaves. It is clear that xs(G—e) = xs(Kq k) = 2. We show that
xs(G) = 4. In G, the path P between the centers of the stars is an isometric subgraph of diameter 3. Hence, either all four
vertices of P get different colors, or color 1 is assigned to two vertices. In the latter case, at least one center receives color
1, and then the k neighbors get pairwise different colors. In either case, the number of colors is at least 4. On the other
hand, a 4-packing-coloring can be obtained by assigning color 1 to all leaves and one vertex of degree 2. Thus, xs(G) = 4
and G is a sharp example for the bound in (i).

If S € S,3, let Gy, k > 2, be the graph obtained from the disjoint union of Ky and Ky, by adding a path of length 3
between a vertex of Ki and a vertex of Ki,1. Let e be the edge of this path attached to Kj1. As diam(G,) = 5, no color
except 1 can be repeated in an S-packing coloring of G and it is easy to check that xs(Gy) = 2k + 2 = 2 xs(G, — e).

Assume now that S € S3 and consider the following example. Let H be a graph with a universal vertex and let G be
the graph obtained from the disjoint union of two copies of H by adding an edge e between a universal vertex of one
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copy of H and a universal vertex of the other copy of H. Then diam(H) = 3 which implies that ys(G) = 2n(H). On the
other hand, xs(G — e) = n(H). This demonstrates the sharpness of (i) for every S € Ss.

(ii) Let S € Sq1,1 U Sy 5. If the largest component of G contains at least three vertices, xs(G — e) > 2 holds for every
e € E(G). We prove that there is a color t € {1, 2} without a t-problematic pair in G. Assume that {x, y} is a 1-problematic
pair. Then dg(x,y) < s; = 1 and all shortest (x, y)-paths contain e = uv. It implies {x, y} = {u, v} and c’(u) = c’(v) = 1.
Consequently, for every two vertices X" and y’ with ¢'(x') = ¢'(y') = 2, either dg(x', y') = dg_e(X', ¥') > s, +1 or, in G, every
shortest (x', y')-path contains e and dg(x',y’) > 3 > s, + 1. It follows that one of the colors 1 and 2 has no problematic
pair, and then, the proof of part (i) can be improved by claiming |Z| < xs(G—e)— 1. We conclude xs(G) < 2xs(G—e)—1
as stated.

For a packing sequence S € S;;, we take the odd cycles which are 3-xs-critical graphs according to Theorem 3.8(i).
Thus, xs(Car+1) = 3 and xs(Cokr1 — €) = 2, and the odd cycles are sharp examples for the inequality in (ii).

When S € S5, we consider two vertex-disjoint stars Kk, for k > 3, and add an edge e between the centers to obtain
the graph G. It is easy to check that xs(G — e) = 2 and xs(G) = 3. It provides then a sharp example for (ii). Remark that
Cs and Py are also sharp examples for S € Sy ,, according to Theorem 3.8 (ii).

(iii) Assume that S € S5 and xs(G — e) > 3. We prove that for at least one color t € {1, 2, 3}, G contains no
t-problematic pair. Let us choose t from {1, 2, 3} such that t # c’(u) and t # c’(v). Then, for every two vertices x and y
with ¢’(x) = c’(y) = t, all shortest (x, y)-paths contain e = uv and the distance dg(x, y) is at least 3 = s; + 1. Therefore,
we have |Z] < xs(G — e) — 1 again and may conclude xs(G) < 2xs(G—e)—1. O

We note that the inequalities in Theorem 5.2(i) and (ii) remain valid if the packing sequence S is finite and we suppose
that G is S-packing colorable. Indeed, if 2 xs(G — e) < |S|, the proof given above remains valid. If 2x5(G — e) > |S|, then
the S-packing colorability of G immediately implies xs(G) < |S| < 2xs(G — e) — 1 and the two inequalities follow.

Setting S = (1, 2, 3, ...) in Theorem 5.2 (ii), we get the following:
Corollary 5.3 ([4, Theorem 1]). If G is a graph and e € E(G), then x,(G —e) > @

To see that the bound in Theorem 5.2(i) is asymptotically sharp also when e is not a cut-edge, consider the following
example for the constant packing sequence S = (3, 3, ...). Let H be a graph with two universal vertices x and y, and let
H’ be an isomorphic copy of H with respective universal vertices x’ and y'. Let G be the graph obtained from the disjoint
union of H and H' by adding the edge e = xx/, and by connecting y and y’ with a path of length 3.

Note that n(G) = 2n(H) + 2 and that diam(G) = 3. Therefore, xs(G) = 2n(H) + 2. Consider now G — e. Then we can
assign color 1 to x and y/, color 2 to y and x/, whilst assigning each color from {3, ..., n(H)} to the remaining pairs of
vertices respectively, one from each of H and H'. Two further colors, n(H) + 1 and n(H) + 2 are used to color the two
vertices outside V(H) U V(H'). In this way, we infer that xs(G —e) = n(H) + 2. So lim,_, » Xi(s%)e) = 5.

If the removed edge is a cut-edge, we can slightly improve Theorem 5.2.

Proposition 5.4. LetS € S and s, < 2. If e is a cut-edge in a graph G and xs(G — e) > 2, then xs(G — e) > ’“(gﬁ

Proof. Theorem 5.2 (ii) establishes the lower bound if s; = 1 and s, < 2. Hence, it suffices to prove the lower bound for
s1 =S = 2. Let e = uv be a cut-edge in G, and Gy, G, be the two components in G — e. We may suppose that u € V(Gy)
and v € V(G;). We use the notations from the proof of Theorem 5.2. Assume first that some color t € {1, 2} is not in
{c’(u), c’(v)} and c’(x) = c’(y) = t. If x and y belong to the same component G;, then dg(x,y) = dg_e(x,y) > s + 1 as ¢’
is an S-packing coloring in G —e. If x € V(G1) and y € V(G,), then the distance dg(x,y) > 3 = s; + 1. We conclude that
there is no t-problematic pair in G and xs(G) < 2xs(G — e) — 1 holds for this case.

If both colors 1 and 2 are used on vertices u, v by ¢/, we define a coloring ¢” of G — e by switching colors 1 and 2 in
G,. Since s; = s, coloring ¢” remains an S-packing coloring. Moreover, as ¢”(u) = ¢”(v) holds, xs(G) < 2xs(G —e) — 1
follows by the same reasoning as above. O

In the sharp examples with xs(G) = 2xs(G — e) given in the proof of Theorem 5.2(i), the edge e is always a cut-edge.
Therefore, the inequality in Proposition 5.4 does not hold for all graphs when S € S;3U S,z U S3.

6. Concluding remarks

e In Theorems 3.8 and 3.9 we have characterized 4- xs-critical graphs for most of the packing sequences S. The missing
cases which remain to be considered are S € S;.1USy 2. In fact, these are also the missing cases of 4- xs-vertex-critical
graphs.

e In Theorem 4.3 we have characterized cycles which are S-packing critical for S € 81,1, S € S122, and S € S, 5 3. The
remaining cases are still to be explored.

e In Theorem 5.2 we have demonstrated that there are infinitely many sharp examples for the inequality xs(G —e) >
L2 (©) for each S € S,3UYS,5US3, where e is a cut-edge. We next provide another sporadic example for the sharpness
when S €831 For this purpose, consider P;4 and its middle edge e. Using case analysis, it can be checked that
xs(P14) = 8. On the other hand, P14 — e contains two components both of which are isomorphic to P; and we obtain
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xs(Pig—e)=4=% (P 5(P1a) . Proposition 5.4 shows that if s; < 2 and G contains a component with at least two edges,

then the stronger inequallty xs(G —e) > XS(G *1 holds for every cut-edge e of G. The remaining cases are packing
sequences with

oS =2,5%=23,and 3 <s3 <10;
0Ss1=2,5=4.

For these cases, it remains an open question whether xs(G — e) > XS(G ! holds whenever e is a cut- edge of G.

e In the above example when S € S, ; 77, we have stated that xs(P14) = 8. Establishing this result is not completely

straightforward. In general, it would be of interest to determine xs(P,) for any S € S and any n.
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