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Abstract

The packing chromatic number χρ(G) of a graph G is the smallest integer k
such that the vertex set of G can be partitioned into sets Π1, . . . ,Πk, where Πi,
i ∈ [k], is an i-packing. The following conjecture is posed and studied: if G is
a subcubic graph, then χρ(S(G)) ≤ 5, where S(G) is the subdivision of G. The
conjecture is proved for all generalized prisms of cycles. To get this result it is
proved that if G is a generalized prism of a cycle, then G is (1, 1, 2, 2)-colorable if
and only if G is not the Petersen graph. The validity of the conjecture is further
proved for graphs that can be obtained from generalized prisms in such a way that
one of the two n-cycles in the edge set of a generalized prism is replaced by a union
of cycles among which at most one is a 5-cycle. The packing chromatic number of
graphs obtained by subdividing each of its edges a fixed number of times is also
considered.

Key words: packing chromatic number; cubic graph; subdivision; S-coloring; gener-
alized prism; Petersen graph.

AMS Subj. Class: 05C70, 05C15, 05C12

1 Introduction

Given a graph G and a positive integer i, an i-packing in G is a subset W of the vertex
set of G such that the distance between any two distinct vertices from W is greater
than i. This generalizes the notion of an independent set, which is equivalent to a
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1-packing. Now, the packing chromatic number of G is the smallest integer k such that
the vertex set of G can be partitioned into sets Π1, . . . ,Πk, where Πi is an i-packing
for each i ∈ [k]. This invariant is well defined on any graph G and is denoted χρ(G). It
was introduced in [13] under the name broadcast chromatic number, and subsequently
studied under the current name, see [2–9, 17, 18, 20, 21].

One of the intriguing problems related to the packing chromatic number is whether
it is bounded by a constant in the class of all cubic graphs. In particular, it was asked
already in the seminal paper [13] what is the maximum packing chromatic number in
the class of cubic graphs of a given order. Gastineau and Togni found a cubic graph G
with χρ(G) = 13 and asked whether 13 is an upper bound for χρ in the class of cubic
graphs [12], which we answered recently in the negative [5]. More specifically, it was
asked in [8] whether the invariant is bounded in the class of planar cubic graphs. A
question of similar nature from [12] asks whether the subdivision S(G) of any subcubic
graph G (i.e., a graph with maximum degree 3) has packing chromatic number no more
than 5. This question is the main motivation for the present paper. We suspect that
the answer is positive, and pose it as the following conjecture.

Conjecture 1.1 If G is a subcubic graph, then χρ(S(G)) ≤ 5.

The packing chromatic number of subdivided graphs has been studied in several
papers. Using subdivided graphs the class of graphs with packing chromatic number
equal to 3 was characterized in [13]. The effect on the invariant of the subdivision of an
edge of a graph was analyzed in [5]. It was observed in [3] that χρ(S(G)) ≤ χρ(G) + 1
for any graph G, and further proved that χρ(S(Kn)) = n+1. Consequently the packing
chromatic number of subdivided graphs is generally not bounded, hence the restriction
to subcubic graphs in Conjecture 1.1 is natural.

The paper is organized as follows. In the next section we introduce notation needed,
list several facts related to Conjecture 1.1, and prove a connection between the packing
chromatic number (of subdivided graphs) and the so-called (1, 1, 2, 2)-colorings. This
connection is then used as our main tool while attacking the conjecture. Then, in
Section 3, we prove that Conjecture 1.1 holds true for all generalized prisms of cycles.
Along the way a characterization of the Petersen graph is obtained. (We refer to [14] for
a recent characterization of the Petersen graph and to [22] for older characterizations.)
Moreover, it is shown that any optimal packing coloring of the subdivided Petersen
graph looks differently than one would expect. In Section 4 we then extend the main
result of the previous section to the graphs obtained from generalized prisms in such a
way that one of the two n-cycles in the edge set of a generalized prism is replaced by a
union of cycles among which at most one is a 5-cycle. In the final section we consider
the packing chromatic number of graphs obtained by subdividing each of its edges a
fixed number of times.
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2 Notation and preliminary results

All graphs considered in this paper are simple and connected, unless stated otherwise.
Let G be a graph and S(G) its subdivision, that is, the graph obtained from G by

replacing each edge with a disjoint path of length 2. In other words, S(G) is obtained
from G by subdividing each edge e of G with a new vertex to be denoted by ve.
The resulting vertex set V (S(G)) can thus be considered as V (G) ∪ {ve | e ∈ E(G)}.
More generally, if i ≥ 1, we define the graph Si(G) as the graph obtained from G by
subdividing each of its edges precisely i times. In other words, Si(G) is obtained from
G by replacing each edge with a disjoint path of length i+1. Note that S1(G) = S(G).

Observe that if H is a subgraph of G, then χρ(H) ≤ χρ(G). Indeed, this follows
because dH(u, v) ≥ dG(u, v) holds for any vertices u, v ∈ V (H). Consequently, a
packing coloring of G restricted to H is a packing coloring of H. Since every subcubic
graph is a subgraph of a cubic graph (easy exercise), it suffices to prove Conjecture 1.1
for cubic graphs. In addition, the following fact is a consequence of the characterization
of the graphs of packing chromatic number 3 from [13].

Proposition 2.1 ([13]) If G is a (connected) bipartite graph of order at least 3, then
χρ(S(G)) = 3.

Hence we can restrict our attention to cubic non-bipartite graphs. Since χρ(S(K4)) =
5 (see [3]), Conjecture 1.1 reduces to 3-chromatic cubic graphs. Before we continue, we
demonstrate that the conjecture does not hold for all 3-chromatic graphs.

Proposition 2.2 If Kn,n,n is the complete tripartite graph with all parts of order n,
then χρ(S(Kn,n,n)) −−−→

n→∞

∞.

Proof. Let Gn denote S(Kn,n,n). Since diam(Gn) = 4 for n ≥ 2, we infer that in any
packing coloring c of Gn every color bigger than 3 appears at most once. Let A,B and
C be the tripartition of V (Kn,n,n). Suppose there is a vertex x from A ∪ B ∪ C with
c(x) = 1. Since N [x] induces K1,2n with x as its center, in this case c uses at least 2n
colors. Otherwise, we may assume without loss of generality that in A ∪ B there are
vertices y and z with c(y) = 2, c(z) = 3. Clearly, then no vertex from C can receive
colors 2 or 3, which in turn implies that c uses n different colors on C. �

Note that χρ can be defined also in terms of a function on the vertex set of a graph
G. Indeed, we say that a function c : V (G) → [k] is a k-packing coloring of G if for
each i from the range of c, the set c−1(i) is an i-packing in G; we then also say that
G is k-packing colorable. In this way, χρ(G) is the smallest integer k such that there
exists a k-packing coloring of G.

One approach to attack Conjecture 1.1 is by using the concept of an S-coloring,
which generalizes that of a packing coloring. This concept was first briefly mentioned
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in [13] and later formally introduced in [15] as follows. Given a graph G and a non-
decreasing sequence S = (s1, . . . , sk) of positive integers, an S-coloring of G is a par-
tition of the vertex set of G into k subsets Π1, . . . ,Πk, where Πi is an si-packing for
each i ∈ [k]. We say that G is S-colorable if it has an S-coloring. Clearly, χρ(G) ≤ k if
and only if G is S-colorable for S = (1, 2, . . . , k). For further results on the S-packing
coloring see [10, 11, 16].

The following result shows in what way (1, 1, 2, 2)-colorable graphs are related to
Conjecture 1.1.

Proposition 2.3 If G is (1, 1, 2, 2)-colorable, then χρ(S(G)) ≤ 5.

Proof. By [12, Proposition 1], every (1, 1, 2, 2)-colorable graph G yields a (1, 3, 3, 5, 5)-
colorable S(G), which in turn implies that S(G) is (1, 2, 3, 4, 5)-colorable, that is, S(G)
is 5-packing colorable. �

We next state a result that will be the main tool in our subsequent proofs. For its
statement recall that the square G2 of a graph G is the graph having the same vertex
set as G and two vertices are adjacent in G2 precisely when their distance in G is at
most 2.

Lemma 2.4 A graph G is (1, 1, 2, 2)-colorable if and only if there is a partition {V1, V2, V3}
of V (G) such that V2 and V3 are independent sets and V1 induces a bipartite graph in
G2.

Proof. Suppose that {V1, V2, V3} is a partition of V (G) as stated above. Let A and
B represent the partite sets of the graph G2[V1]. Note that A is a 2-packing in G
for otherwise A would not be an independent set in G2. Similarly, B is a 2-packing.
Construct a (1, 1, 2, 2)-coloring of G by assigning all the vertices of V2 color 1, all the
vertices of V3 color 2, all the vertices of A color 3 and all the vertices of B color 4.
Thus, (V2, V3, A,B) is a (1, 1, 2, 2)-coloring of G.

Conversely, suppose that we have a (1, 1, 2, 2)-coloring of G with color classes
W1,W2,W3,W4. Since W3 and W4 are 2-packings in G, W3 and W4 are independent
sets in G2. It follows that W3∪W4 induces a bipartite graph in G2. Let V1 = W3∪W4,
V2 = W2, and V3 = W1. By definition, {V1, V2, V3} is a partition of V (G) as claimed in
the statement of the lemma. �

3 Generalized prisms and the Petersen graph

In this section we confirm Conjecture 1.1 for all generalized prisms of cycles, where a
generalized prism is a cubic graph obtained from the disjoint union of two cycles of equal
length by adding a perfect matching between the vertices of the two cycles. Along the
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way we prove that a generalized prism of a cycle is (1, 1, 2, 2)-colorable unless it is the
Petersen graph, thus characterizing the Petersen graph P in a new way. By separately
verifying that χρ(S(P )) = 5, Conjecture 1.1 for generalized prisms then follows from
Proposition 2.3. We begin with the following technical lemma.

Lemma 3.1 If Cn = v1 · · · vn is a cycle on n vertices, then the following hold.

(i) There exists a set A ⊂ V (Cn) such that at most one pair of adjacent vertices in
Cn is in the complement of A and G2[A] is an even cycle or a path.

(ii) If n is odd and i ∈ {3, . . . , n − 1}, there exists a set A ⊂ V (G) such that
{v1, vi, vj} ∩ A = ∅ for some j ∈ {i − 1, i + 1}, vivj is the only adjacent pair
of vertices in Cn, which is in the complement of A, and G2[A] is a path.

Proof. The result is trivial if 3 ≤ n ≤ 5 so we may assume that n ≥ 6. To prove
statement (i), we first assume n is even, and let

A1 =

{

{vi | i is odd} if n ≡ 0 (mod 4)

{v1, v2, v4, v5} ∪ {vj | j is odd and j ≥ 7} if n ≡ 2 (mod 4)
.

Note that G2[A1] is an even cycle.
Suppose next that n is odd, n ≥ 7. If we let

A2 =

{

{v1, v2, v4, v5, v7, v8} ∪ {vj | j is even and j ≥ 10} if n ≡ 1 (mod 4), n ≥ 9

{v1, v4} ∪ {vj | j is even and j ≥ 4} if n ≡ 3 (mod 4)
,

then G2[A2] is a path if n ≡ 3 (mod 4) and G2[A2] is an even cycle if n ≡ 1 (mod 4).
This concludes the proof of (i).

We next prove (ii) in which case n is odd. Let i ∈ {3, . . . , n− 1}. Suppose first that
i is even. If i ≤ n− 3, let

A3 = {v2, vi+2} ∪ {vj | 3 ≤ j ≤ i− 1, j odd} ∪ {vj | i+ 3 ≤ j ≤ n, j odd},

and if i = n− 1, let

A4 =

{

{v2, vn−3, vn} ∪ {vj | 3 ≤ j ≤ n− 4, j odd} if n ≡ 1 (mod 4)

{vn} ∪ {vj | 2 ≤ j ≤ n− 3, j even} if n ≡ 3 (mod 4)
.

Finally, if i is odd, we let A5 = {vj | 2 ≤ j ≤ i − 1, j even} ∪ {vj | i + 2 ≤ j ≤
n, j odd}. In each case, G2[Aj ] is a path for j ∈ {3, 4, 5}. �

Theorem 3.2 If G is a generalized prism of a cycle, then G is (1, 1, 2, 2)-colorable if
and only if G is not the Petersen graph.
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Proof. Up to isomorphism there is only one generalized prism of the 3-cycle, and it
is clearly (1, 1, 2, 2)-colorable. So we may assume that Cn is a cycle on at least four
vertices. By Lemma 2.4, it suffices to show that V (G) can be partitioned into V1, V2, V3,
where V2 and V3 are independent sets and G2[V1] is bipartite. In G, let A = x1 · · · xn
and B = y1 · · · yn represent the two copies of Cn. By definition, there exists a perfect
matching between A and B in G, and so we define f : A → B such that f(xi) = yj if
xiyj ∈ E(G) for all 1 ≤ i ≤ n. Without loss of generality we assume that f(x1) = y1.
In addition, let f(xn−1) = yr and f(xn) = ys for some {r, s} ⊆ {2, . . . , n}. We then
draw A horizontally so that the indices increase from left to right and xn is located in
the middle of the cycle. Moreover, we can draw B horizontally and beneath A so that
the indices increase from left to right and y1 is drawn to the right of both yr and ys,
as shown in Figure 1(a). If yr is to the right of ys, meaning r > s, then we can relabel
the vertices of B so that f(x1) still has index 1, but the indices increase from right
to left. Then we draw B so that the indices increase from left to right, as depicted in
Figure 1(b), and yr is to the left of both y1 and ys. So we may assume throughout the
remainder of the proof that r < s.

y3
· · ·

ys
· · ·

yr
· · ·

yn y1 y2

· · · · · ·
xn−1 xn x1

· · · · · ·

(a) Original drawing of G

y3
· · ·

yn−r+2

· · ·
yn−s+2

· · ·
yn y1 y2

· · · · · ·
xn−1 xn x1

· · · · · ·

(b) G after reindexing the vertices of B

Figure 1: Drawing of the generalized prism of a cycle

Suppose first that Cn is an even cycle. Let

• X2 = {xi | 1 ≤ i ≤ n, i is odd} and

• X3 = {xi | 1 ≤ i ≤ n, i is even}.

Let Y1 be the set A1 from Lemma 3.1 and define

• Y2 = {yi 6∈ Y1 | f
−1(yi) ∈ X3} and

• Y3 = {yi 6∈ Y1 | f
−1(yi) ∈ X2}.

One can easily verify that G2[Y1] is an even cycle and Xi ∪ Yi is independent for
i ∈ {2, 3}. By Lemma 2.4 it follows that the generalized prism is (1, 1, 2, 2)-colorable.

So we may assume that Cn is an odd cycle. Let X1 = {xn},

• X2 = {xi | i is odd, 1 ≤ i ≤ n− 2}, and

• X3 = {xi | i is even, 1 ≤ i ≤ n− 1}.
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In what follows, we partition the vertices of B into Y1, Y2, Y3 depending on the parity
of r and s. In each case, we let Vi = Xi ∪ Yi for each i ∈ [3] so that V2 and V3 are
independent and G2[V1] is bipartite.
Case 1. Suppose s is odd.
We shall assume first that r is odd as well. If s 6= n, let Y1 be the set A5 from Lemma 3.1
where i = s so that G2[V1] is a path that does not contain {y1, ys, ys+1}. We then define

Y2 =

{

{ys+1} ∪ {yi /∈ Y1 | f
−1(yi) ∈ X3} if f−1(ys+1) ∈ X3

{ys} ∪ {yi 6∈ Y1 | f
−1(yi) ∈ X3} if f−1(ys+1) ∈ X2

,

and

Y3 =

{

{ys} ∪ {yi 6∈ Y1 | f
−1(yi) ∈ X2} if f−1(ys+1) ∈ X3

{ys+1} ∪ {yi 6∈ Y1 | f
−1(yi) ∈ X2} if f−1(ys+1) ∈ X2

.

If s = n and r is odd or r = n− 1, we let Y1 = {yi | i is even},

• Y2 = {ys} ∪ {yi 6∈ Y1 | f
−1(yi) ∈ X3} and

• Y3 = {yi 6∈ Y1 | f
−1(yi) ∈ X2}.

In either case, G2[V1] is a path. So we may assume that r is even and r 6= n− 1 (note
that the case r = n − 1 is symmetric to the case when s = n, which was considered
above).

If s < n, we let

• Y1 = {yi | 3 ≤ i ≤ s− 2, i is odd} ∪ {y2, ys+1} ∪ {yi | s+ 2 ≤ i ≤ n, i is odd}.

As above, G2[V1] is a path. If f−1(ys−1) ∈ X3, then let

• Y2 = {yi 6∈ Y1 | f
−1(yi) ∈ X3} and

• Y3 = {ys} ∪ {yi 6∈ Y1 | f
−1(yi) ∈ X2}.

Otherwise, let

• Y2 = {ys} ∪ {yi 6∈ Y1 | f
−1(yi) ∈ X3} and

• Y3 = {yi 6∈ Y1 | f
−1(yi) ∈ X2}.

Case 2. Suppose that s is even.
First, note that if r is odd, then we can define Y1, Y2, Y3 similarly to those subcases
given in Case 1 (which can be observed by reversing the roles of xn−1 and x1). So we
may assume that r is even. Suppose first that n > 5 and r > 2. Then one of the
sets A3 or A4 given in Lemma 3.1 can be chosen for Y1 so that G2[V1] is a path and
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Y1 does not contain vertices {y1, ys, yj} where j ∈ {s − 1, s + 1} (see Figure 2 for two
corresponding examples). Thus, G2[V1] is path. We then define

Y2 =























{yi 6∈ Y1 | f
−1(yi) ∈ X3} if s ≤ n− 3, f−1(ys+1) ∈ X3

{ys} ∪ {yi 6∈ Y1 | f
−1(yi) ∈ X3} if s ≤ n− 3, f−1(ys+1) ∈ X2

{yi 6∈ Y1 | f
−1(yi) ∈ X3} if s = n− 1, f−1(ys−1) ∈ X3

{ys} ∪ {yi 6∈ Y1 | f
−1(yi) ∈ X3} if s = n− 1, f−1(ys−1) ∈ X2

,

and

Y3 =























{ys} ∪ {yi 6∈ Y1 | f
−1(yi) ∈ X2} if s ≤ n− 3, f−1(ys+1) ∈ X3

{yi 6∈ Y1 | f
−1(yi) ∈ X2} if s ≤ n− 3, f−1(ys+1) ∈ X2

{ys} ∪ {yi 6∈ Y1 | f
−1(yi) ∈ X2} if s = n− 1, f−1(ys−1) ∈ X3

{yi 6∈ Y1 | f
−1(yi) ∈ X2} if s = n− 1, f−1(ys−1) ∈ X2

.

1 1 1 1 1

· · ·
xn−1 xn x1

· · ·

(a) Y1 when n = 9

1 1 1 1 1

· · ·
xn−1 xn x1

· · ·

(b) Y1 when n = 11

Figure 2: The set Y1 in the (1,1,2,2)-coloring of C9 and C11

Next, we suppose that r = 2 (while we may assume, by symmetry, that s < n− 1),
and let

Y1 = {ys+2} ∪ {yi | s+ 3 ≤ i ≤ n, i odd} ∪ {yi | 3 ≤ i ≤ s− 1, i odd}.

Then choose Y2 and Y3 in the same way as above based on the index of s.
Finally, consider when Cn is a 5-cycle. If f(x2) = y5 and f(x3) = y3, then Figure 3

depicts a labeling of G where V2 and V3 are independent and G2[V1] is bipartite. If
f(x2) = y3 and f(x3) = y5, then G is the Petersen graph. The argument is complete by
invoking the fact [12, Proposition 4] that the Petersen graph is not (1, 1, 2, 2)-colorable.
�

By Theorem 3.2 and Proposition 2.3 we know that any subdivided generalized prism
of a cycle but the subdivided Petersen graph P is 5-packing colorable. In addition, a
5-packing coloring of S(P ) is shown in Fig. 4. Hence we have the following result.
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2 3 1 2 3

2 3 1 2 3

Figure 3: The labels depict a (1, 1, 2, 2)-coloring

2 1 4

3 1

1

1

2 1

1 1

2 5

1 2

5 3

4

1 3

25

3 2
4

Figure 4: 5-packing coloring of S(P )

Corollary 3.3 If G is a generalized prism of a cycle, then χρ(S(G)) ≤ 5.

Intuitively, it seems reasonable to expect that an optimal packing coloring of any
subdivided graph colors all the subdivided vertices by 1. The example from Fig. 4
shows that an optimal coloring need not be like that. In fact, no optimal coloring of
S(P ) colors all the subdivided vertices by 1. This is an immediate consequence of the
following result.

Proposition 3.4 If G is not (1, 1, 2, 2)-colorable, and S(G) is (1, 2, 3, 4, 5)-colorable,
then in every 5-packing coloring of S(G) at least one of the subdivided vertices of S(G)
receives color bigger than 1.

Proof. Suppose to the contrary that c is a 5-packing coloring of S(G) with c(ue) = 1 for
every edge e ∈ E(G). Then all vertices of V (G) in S(G) receive colors from {2, 3, 4, 5}.

9



Consider the coloring c′ of V (G), obtained as the restriction of c to G. Note that
vertices colored by the color 2, respectively 3, form an independent set in G, while the
set of vertices colored by the color 4, respectively 5, is a 2-packing of G. This implies
that c′ is a (1, 1, 2, 2)-coloring of G. �

4 A class larger than generalized prisms

In this section we confirm Conjecture 1.1 for a class of graphs larger than generalized
prisms of cycles by proving that if G is a connected, cubic graph of order 2n with a
2-factor F and a perfect matching M , where F contains a cycle C of length n, no edge
of M has both vertices in C, and F contains at most one 5-cycle, then G is (1, 1, 2, 2)-
colorable. In other words, our result extends Theorem 3.2 to the graphs obtained
from generalized prisms in such a way that one of the two n-cycles in the edge set of a
generalized prism is replaced by a union of cycles among which at most one is a 5-cycle.

Theorem 4.1 Let G be a connected, cubic graph of order 2n with a 2-factor F and a
perfect matching M . If F contains a cycle C of length n where no edge of M has both
vertices in C, and F contains at most one 5-cycle, then G is (1, 1, 2, 2)-colorable.

Proof. Note that by Theorem 3.2, we may assume that F contains at least three
cycles. Thus, n ≥ 6. We let Cn = x1 · · · xn represent the cycle in F of order n, and let
Z1, . . . , Zk be the remaining cycles of F . Reindexing if necessary, we may assume that
if F contains a 5-cycle that Z1 is said 5-cycle. Otherwise, if Zi is odd for some i ∈ [k],
we let Z1 represent the smallest odd cycle among all Zi, i ∈ [k]. In any case, we let
Z1 = y1 · · · yp for some 3 ≤ p < n.

Assume first that Z1 is a 5-cycle so that p = 5. Note that there exists xi ∈ Cn such
that f(xi) ∈ Z1 and f(xj) 6∈ Z1 for some j ∈ {i − 1, i + 1}. Reindexing x1, . . . , xn if
necessary, we may assume f(xn) ∈ Z1 and, redrawing G if necessary, f(xn−1) 6∈ Z1.

As in Theorem 3.2, we let X1 = {xn}, X2 = {xi | 1 ≤ i < n, i is odd} and
X3 = {xi | 2 ≤ i < n, i is even}. In what follows, we partition the vertices of ∪k

i=1Zi

into Y1, Y2, Y3, and let Vi = Xi∪Yi for each i ∈ [3]. In each case, G2[V1] will be bipartite
and V2, V3 will be independent sets.
Case 1. Suppose that f(x1) ∈ Z1. Without loss of generality, we may assume f(x1) =
y1, and reindexing Z1 if necessary, f(xn) = ys where s ∈ {4, 5}. For each i ∈ {2, . . . , k}
let Ti be one of the sets A1 or A2 from Lemma 3.1 depending on the congruence class
of n modulo 4. Note that for each i ∈ {2, . . . , k}, G2[Ti] is bipartite.

Next, we assume for the time being that s = 4 and let T1 = {y2, y5}. We let

• Y1 = ∪k
i=1Ti,

• Y2 = W2 ∪
⋃k

i=2
{vj ∈ Zi − Ti | f

−1(vj) ∈ X3} and
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• Y3 = W3 ∪
⋃k

i=2
{vj ∈ Zi − Ti | f

−1(vj) ∈ X2},

where

• W2 = {y3} and W3 = {y1, y4}, if f
−1(y3) ∈ X3;

• W2 = {y4} and W3 = {y1, y3}, if f
−1(y3) ∈ X2.

In G2[V1], all edges incident to xn are bridges to either the K2 induced by T1−{xn}
or to a bipartite component induced by Ti for some i ∈ {2, . . . , k}. Thus, G2[V1] is
bipartite. Furthermore, Vi where i ∈ {2, 3} is independent.

Now, one can easily see that Y1, Y2, Y3 can be defined in a similar fashion if instead
s = 5. (�)

Case 2. Suppose that f(x1) 6∈ Z1. Without loss of generality, we may assume f(xn) =
y1. In this case, we define Ti as in Case 1 for each i ∈ {2, . . . , k} and we let T1 = {y2, y4}.
We let

• Y1 =
⋃k

i=1
Ti,

• Y2 = W2 ∪
⋃k

i=2
{vj ∈ Zi − Ti | f

−1(vj) ∈ X3} and

• Y3 = W3 ∪
⋃k

i=2
{vj ∈ Zi − Ti | f

−1(vj) ∈ X2},

where y3 ∈ W2 if and only if f−1(y3) ∈ X3, and otherwise y3 ∈ W3; and y1 and y5 are
in different sets W2,W3, depending on f−1(y5).

As in Case 1, G2[V1] is bipartite and Vi is independent for i ∈ {2, 3}. (�)

Now consider the case, when at least one of the cycles Zi is odd and none of them is a
5-cycle. Recall that Z1 is a shortest odd cycle from F . We shall assume that f(xn) = ys
for some s ∈ [p]. Whether or not f(x1) ∈ Z1, we may choose T1 to be the set A3, A4, or
A5 from Lemma 3.1 so that {ys, ys+1}∩T1 = ∅ if f(x1) 6∈ Z1, {f(x1), ys, ys+1}∩T1 = ∅
if f(x1) ∈ Z1, and G2[T1 ∪ X1] is bipartite. Then for each i ∈ {2, . . . , k}, we let Ti

be one of the sets A1 or A2 from Lemma 3.1 depending on the congruence class of n
modulo 4. Defining Y1, Y2, and Y3 similarly as in Case 1, one can verify that G2[V1] is
indeed bipartite.

Finally, consider the case that Z1 is even, in which case all the cycles Zi are even,
and so n is also even. In this and only in this case, we let X1 = ∅, and X2 = {xi | 1 ≤
i ≤ n − 1, i is odd} and X3 = {xi | 2 ≤ i ≤ n, i is even}. Next, for each i ∈ [k], we
let Ti be the set A1 from Lemma 3.1 and we define Y1 =

⋃k
i=1

Ti (note that V1 = Y1).
Letting

• Y2 =
⋃k

i=1
{vj ∈ Zi − Ti | f

−1(vj) ∈ X3} and

• Y3 =
⋃k

i=1
{vj ∈ Zi − Ti | f

−1(vj) ∈ X2}
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we obtain a (1, 1, 2, 2)-coloring of G. �

Note that the graphs from Theorem 4.1 are 2-connected. We suspect that a sim-
ilar approach might work to prove that an arbitrary 2-connected cubic graph (except
the Petersen graph) has a (1, 1, 2, 2)-packing coloring. (Recall that by Petersen’s theo-
rem [19] the edge set of any such graph can be partitioned into a 2-factor and a perfect
matching.)

One class of cubic graphs covered by the result in Theorem 4.1 are some subclasses
of generalized Petersen graphs. Let k and n be positive integers such that k < n/2.
The generalized Petersen graph P (n, k) has vertex set {u1, v1, . . . , un, vn}. The edge
set of P (n, k) is the set

{uiui+1 | i ∈ [n]} ∪ {uivi | i ∈ [n]} ∪ {vivi+k | i ∈ [n]} ,

where addition on the subscripts is computed modulo n. The set {ui | i ∈ [n]} induces a
cycle of order n, while the set {vi | i ∈ [n]} induces a disjoint union of cycles. The order
and the number of this latter collection of cycles depends on the relationship between n
and k. It is easy to see that if n and k are relatively prime, then {vi | i ∈ [n]} induces a
single cycle of order n. In this case P (n, k) is a generalized prism of Cn and satisfies the
hypotheses of Theorem 3.2 unless n = 5, in which case P (5, k) is either the ordinary
prism of C5 (that is, the Cartesian product of C5 and K2) or the famous Petersen
graph. If n and k are not relatively prime, then the subgraph of P (n, k) induced by
{vi | i ∈ [n]} consists of the disjoint union of n/r cycles each of order r, where r is the
smallest positive integer such that rk is divisible by n. Hence, these will be 5-cycles if
and only if n is a multiple of 5.

Corollary 4.2 If n and k are positive integers such that k < n/2 and n is not a
multiple of 5, then P (n, k) has a (1, 1, 2, 2)-coloring and hence χρ(S(P (n, k))) ≤ 5.

5 Multiple subdivisions

We have already remarked that χρ(S(Kn)) = n + 1. We next consider χρ(Si(Kn)) for
i ≥ 2.

Proposition 5.1 If n ≥ 3 and i ≥ 3, then

χρ(Si(Kn)) =

{

3; if i ≡ 3 (mod 4),
4; otherwise.

Moreover, χρ(S2(Kn)) −−−→
n→∞

∞.

Proof. Clearly, χρ(Si(Kn)) ≥ 3 for n ≥ 3 and i ≥ 3. Note that Si(Kn) contains a
cycle of length 3i+ 3 = 3(i + 1). Since χρ(Cn) = 3 if n ≡ 0 (mod 4), and χρ(Cn) = 4

12



otherwise (see [13]), we get that χρ(Si(Kn)) ≥ 3 if i ≡ 3 (mod 4), and χρ(Si(Kn)) ≥ 4
otherwise.

To prove that these lower bounds are tight, we color Si(Kn) as follows. If i ≡ 3
(mod 4), then color the vertices v ∈ V (Kn) with color 3; otherwise color all these
vertices with 4. Colorings of the subdivided vertices are done based on the parity
of i (mod 4) as follows. If i ≡ 3 (mod 4), then for each original edge of Kn color the
subdivided vertices consecutively by 1, 2, 1, and add the block of colors 3, 1, 2, 1 as many
times as required. If i = 4, use colors 1, 2, 3, 1. For any even i ≥ 6, alternatively attach
to the four colors 1, 2, 3, 1 the pairs 2, 1 and 3, 1 as many times as required. Finally,
let i ≡ 1 (mod 4). If i = 5, then use the pattern 1, 3, 1, 2, 1, and if i ≥ 9, then add the
block 3, 1, 2, 1 as many times as required. In all of the cases it is straightforward to
verify that the constructed colorings are packing colorings.

It remains to consider the case i = 2. If e = uv ∈ E(Kn), then let ue and ve be
the vertices of S2(Kn) obtained by subdividing the edge e, where ue is adjacent to u
and ve to v. Let c be an arbitrary packing coloring of S2(Kn). Then for any edge
e = uv ∈ E(Kn) we must have c(ue) 6= 1 or c(ve) 6= 1. Define now the orientation of
Kn as follows. If for the edge e = uv we have c(ue) 6= 1, then in Kn orient the edge uv
from u to v. Otherwise we must have c(ve) 6= 1 in which case we orient the edge uv
from v to u. (In the case that both c(ue) 6= 1 and c(ve) 6= 1 hold, we orient the edge
uv arbitrarily.) By the degree sum formula for digraphs and the pigeon-hole principle
there exists a vertex u with out-degree at least ⌈(n−1)/2⌉. This means that in S2(Kn)
u has at least that many neighbors colored with different colors bigger than 1. Hence
χρ(S2(Kn)) > ⌈(n− 1)/2⌉. �

By using our earlier observation that the packing chromatic number of a subgraph
is bounded above by the packing chromatic number of the original graph, we get the
following immediate corollary of Proposition 5.1.

Corollary 5.2 If G is a connected graph of order at least 3 and i ≥ 3, then

3 ≤ χρ(Si(G)) ≤ 4 .

In the case of trees we can further strengthen the result of Corollary 5.2 by including
the parameter i = 2 (and i = 1), and by showing that for any odd i, the packing
chromatic number is always 3. More precisely, we have the following result.

Theorem 5.3 If i ≥ 1, then

max{χρ(Si(T )) | T tree} =

{

3; i odd,
4; i even.

Proof. Let T be a tree on at least three vertices. Then, as already mentioned,
χρ(S1(T )) = 3, hence the assertion holds for i = 1.

13



Let i = 2 and let T be an arbitrary tree. To see that χρ(S2(T )) ≤ 4 let v be an
arbitrary vertex of T and consider the BFS-tree of S2(T ) rooted in v. Then set

c(x) =















1; dT (v, x) ≡ 1 (mod 3),
2; dT (v, x) ≡ 2 (mod 3),
3; dT (v, x) ≡ 0 (mod 6),
4; dT (v, x) ≡ 3 (mod 6).

It is straightforward to verify that c is a packing coloring of S2(T ). Let now T be a tree
with a vertex u of degree at least 3, let v be a neighbor of u and let w be a neighbor of v
different from u. Recall that if xy ∈ E(T ), then we denote with exy and eyx the vertices
of S2(T ) obtained by subdividing xy, where exy is the vertex adjacent to x. Let c be a
packing coloring of S2(T ). If c(u) = 1, then considering the neighbors of u (in S2(T ))
we see that χρ(S2(T )) ≥ 4. The same conclusion also follows if {c(u), c(v)} = {2, 3}.
Suppose next that c(u) = c(v) = 2. Then we may without loss of generality assume
that c(evu) = 3 which in turn implies that c(evw) = 1. But then c(ewv) ≥ 4. Finally,
let c(u) = c(v) = 3. Assuming without loss of generality that c(evu) = 1, we get
c(evw) = 2, c(ewv) = 1, but then c(w) ≥ 4. This settles the case i = 2.

Suppose now that i ≥ 3. Then by Corollary 5.2, χρ(Si(T )) ≤ 4. We first deal
with i odd in which case we need to prove that χρ(Si(T )) ≤ 3 for any tree T . In
the first subcase assume that i ≡ 3 (mod 4). By Corollary 5.2 we know that 3 ≤
χρ(Si(T )). Since χρ(Si(T )) ≤ χρ(Si(Kn)), where T has order n, and χρ(Si(Kn)) = 3
by Proposition 5.1, we conclude that χρ(Si(T )) = 3 when i ≡ 3 (mod 4). The second
subcase to consider is when i ≡ 1 (mod 4), i ≥ 5. Again root Si(T ) in a vertex of T ,
say u, and consider the corresponding BFS tree. Consider the following sequence S of
i + 1 colors: first repeat the block 2, 1, 3, 1 as many times as necessary and finish it
with colors 2, 1, 3. Note that |S| ≡ 3 (mod 4). Let now e = xy be an edge of T , where
dT (x, u) < dT (y, u). If dT (x, u) is even, then color the vertices in Si(T ) between x and
y (including x and y) with the sequence of colors S, otherwise (if dT (x, u) is odd), color
the vertices in Si(T ) between x and y (including x and y) with the sequence of colors
obtained by reversing S. Note that this gives a well-defined coloring of V (Si(T )), that
is, each vertex of T receives a unique color and that c is a packing coloring.

It remains to consider the case when i ≥ 4 is even. To complete the argument
we need to show that χρ(Si(T )) ≥ 4 for some tree T . Suppose on the contrary that
χρ(Si(T )) = 3 holds for any tree T on at least three vertices. If u is a vertex of degree at
least 3, then as above we infer that if c is a 3-packing coloring of Si(T ), then c(u) > 1.
In the rest we will also use the fact that if c(x1) = 3 for some vertex of Si(T ), and
x1, x2, x3, x4, . . . is a path in Si(T ), then c(x2) = 1. Indeed, for otherwise c(x2) = 2,
but then c(x3) = 1 and we would have c(x4) ≥ 4. Consider an arbitrary edge uv of T
and consider the following subcases.

Let c(u) = c(v) = 3. Then the subdivided vertices between u and v must receive
the sequence of colors 1, 2, 1, 3, 1, 2, 1, . . .. But then the number of subdivided vertices
between u and v is odd, a contradiction.
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Let c(u) = c(v) = 2 and let w be the vertex adjacent to u on the u, v-path. Assume
first that c(w) = 1. Then the vertices between u and v receive colors 1, 3, 1, 2, 1, 3, 1, . . .
which again mean that there are an odd number of these subdivided vertices. Assume
next that c(w) = 3. We may assume that y 6= v is another neighbor of u in T . Then
the neighbor of u on the u, y-path in Si(T ) receives color 1. But then we need color at
least 4 for the next vertex on the u, y-path.

Suppose finally that c(u) = 2 and c(v) = 3. If c(w) = 1, then the sequence of colors
on the u, v-path is 1, 3, 1, 2, 1, 3, . . . and we would have an odd number of subdivided
vertices. While if c(w) = 3 we get the same contradiction as in the above paragraph.
�
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