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Abstract

The packing chromatic number χρ(G) of a graphG is the smallest integer k such
that there exists a k-vertex coloring of G in which any two vertices receiving color
i are at distance at least i+1. It is proved that in the class of subcubic graphs the
packing chromatic number is bigger than 13, thus answering an open problem from
[Gastineau, Togni, S-packing colorings of cubic graphs, Discrete Math. 339 (2016)
2461–2470]. In addition, the packing chromatic number is investigated with respect
to several local operations. In particular, if Se(G) is the graph obtained from a
graph G by subdividing its edge e, then ⌊χρ(G)/2⌋+ 1 ≤ χρ(Se(G)) ≤ χρ(G) + 1.
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1 Introduction

Many variations of the classical graph coloring have been introduced, several of which

involve graph distance, which as a condition is usually imposed on the vertices that are

given the same color. In this paper we study packing colorings defined as follows. The

packing chromatic number χρ(G) of G is the smallest integer k such that V (G) can be

partitioned into subsets X1, . . . ,Xk, where Xi induces an i-packing; that is, vertices

of Xi are pairwise at distance more than i. Equivalently, a k-packing coloring of G is

a function c : V (G) → [k], where [k] = {1, . . . , k}, such that if c(u) = c(v) = i, then

dG(u, v) > i, where dG(u, v) is the usual shortest-path distance between u and v in G.

We mention that in distance-k colorings V (G) is partitioned into k-packings.
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The concept of the packing chromatic number was introduced in [10] and given

the name in [3]. The problem intuitively appears more difficult than the standard

coloring problem. Indeed, the packing chromatic number is intrinsically more difficult

due to the fact that determining χρ is NP-complete even when restricted to trees [7].

On the other hand, Argiroffo et al. discovered that the packing coloring problem is

solvable in polynomial time for several nontrivial classes of graphs [2]. In addition,

the packing chromatic number was studied on hypercubes [10, 16], Cartesian product

graphs [11, 13], and distance graphs [6, 15].

In the seminal paper [10] the following problem was posed: does there exist an

absolute constant M , such that χρ(G) ≤ M holds for any subcubic graph G. (Recall

that a graph is subcubic, if its largest degree is bounded by 3.) This problem led to a lot

of research but remains unsolved at the present. In particular, the packing chromatic

number of the infinite hexagonal lattice is 7 (the upper bound being established in [8],

the lower bound in [12]), hence the packing chromatic number of any subgraph of the

hexagonal lattice is bounded by 7. The same bound also holds for subcubic trees as

follows from a result of Sloper [14]. For the (subcubic) family of base-3 Sierpiński

graphs the packing chromatic number was bounded by 9 in [4]. The exact value of

the packing chromatic of some additional subcubic graphs was determined in [5]. Very

recently, Gastineau and Togni [9] found a cubic graph with packing chromatic number

equal to 13 and posed an open problem which intrigued us: does there exist a cubic

graph with packing chromatic number larger than 13?

We proceed as follows. In the next section we prove that the answer to the above

question is positive. More precisely, we construct a cubic graph on 78 vertices with

packing chromatic number at least 14. A key technique in the related proof is edge

subdivision. We hence give a closer look at this operation with respect to its effect on

the packing chromatic number. In particular, the packing chromatic number does not

increase by more than 1 when an edge of a graph is subdivided, but can decrease by at

least 2. In addition, we prove that the lower bound for the packing chromatic number

of an edge-subdivided graph is bigger than half of the packing chromatic number of the

original graph. Then, in Section 3, we investigate the effect on the packing chromatic

number of the following local operations: a vertex deletion, an edge deletion, and an

edge contraction. In particular, we demonstrate that the difference χρ(G)− χρ(G− e)

can be arbitrarily large.
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2 Edge subdivision

In this section we consider the packing chromatic number with respect to the edge-

subdivision operation. If e is an edge of a graph G, then let Se(G) denote the graph

obtained from G by subdividing the edge e. The graph obtained from G by subdividing

all its edges is denoted S(G).

The following theorem is the key for the answer of the above mentioned question of

Gastineau and Togni.

Theorem 2.1 Suppose that there exists a constant M such that χρ(H) ≤ M holds for

any subcubic graph H. If G is a subcubic graph such that χρ(G) = M , then either

χρ(Se(G)) ≤ M − 2 for any e ∈ E(G), or diam(G) ≥ ⌈M
2
⌉ − 2.

Proof. Let G be a subcubic graph such that χρ(G) = M , where χρ(H) ≤ M for every

subcubic graph H. If χρ(Se(G)) ≤ M−2 holds for any e ∈ E(G), there is nothing to be

proved. Hence assume that there exists an edge e ∈ E(G) such that χρ(Se(G)) ≥ M−1.

Let G′ be the graph obtained from G by subdividing the edge e, and let x′ be the new

vertex. Let G′′ be a copy of G′, with x′′ playing the role of x′. Let now Ĝ be the graph

obtained from the disjoint union of G′ and G′′ by connecting x′ with x′′.

Note first that Ĝ is a subcubic graph, and hence by the theorem’s assumption,

χρ(Ĝ) ≤ M . Let c be an arbitrary optimal packing coloring of Ĝ. Because c restricted

to G′ (resp. G′′) is a packing coloring of G′ = Se(G) (resp. G′′), c uses at least M − 1

colors. We claim that diam(Ĝ) ≥ M −1. If c colors a vertex u′ of G′ and a vertex u′′ of

G′′ by the color M , then d
Ĝ
(u′, u′′) > M , and the claim follows. Otherwise, we assume

that c restricted to G′ does not use the color M . If also G′′ does not use color M , then

since χρ(G
′) ≥ M − 1 and χρ(G

′′) ≥ M − 1, there exist vertices v′, v′′ in G′, resp. G′′,

with c(v′) = c(v′′) = M −1, and consequently, diam(Ĝ) > M −1 as desired. So assume

that color M is present on G′′ (and not on G′). Color M − 1 must be present on G′,

for otherwise χρ(G
′) ≤ M − 2. If color M − 1 is also used on G′′, then it again follows

that diam(Ĝ) > M −1. Hence we are left with the situation that color M is present on

G′′ and not on G′, while M − 1 is used on G′ and not on G′′. We now claim that the

color M − 2 is present in both G′ and G′′. For if this is not the case, then in any of G′

or G′′ that is missing color M − 2 relabeling all vertices colored with the highest color

by the color M −2 would yield an (M −2)-packing coloring of G′ or G′′, which is again

not possible. If w′, w′′ are the vertices in G′, resp. G′′, with c(w′) = c(w′′) = M − 2,

then d
Ĝ
(w′, w′′) ≥ M − 1. This in turn implies diam(Ĝ) ≥ M − 1, and so the claim is

proved.
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Consider again vertices w′, w′′ in G′, resp. G′′, with c(w′) = c(w′′) ≥ M − 2. Since

diam(G′) ≥ d
Ĝ
(w′, x′) and diam(G′′) ≥ d

Ĝ
(w′′, x′′), we infer that

2 diam(G′) + 1 = diam(G′) + diam(G′′) + 1

≥ d
Ĝ
(w′, x′) + d

Ĝ
(w′′, x′′) + 1

= d
Ĝ
(w′, w′′)

≥ M − 1 .

Hence diam(G′) ≥ ⌈M
2
⌉ − 1. Since clearly diam(G′) ≤ diam(G) + 1 holds, we conclude

that

diam(G) ≥ diam(G′)− 1 ≥

⌈
M

2

⌉
− 2 .

�

Corollary 2.2 There exists a cubic graph with packing chromatic number larger than

13.

Proof. Let G38 be the cubic graph of order 38 with diameter 4 from [1] shown in

Figure 1.

Figure 1: G38
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From [9, Proposition 6] we know that χρ(G38) = 13. We have checked by computer

that χρ(Se(G38)) = 12 holds for any edge e of G38. Assuming that M = 13 is the

constant of Theorem 2.1, this theorem implies that diam(G38) ≥ ⌈13
2
⌉−2 = 5. However,

since the diameter of G38 equals 4, we infer that M cannot be 13. �

A closer look to the proof of Theorem 2.1 reveals that the graph constructed from

two copies G′
38 and G′′

38 of edge-subdivided G38 by connecting the vertices x′ and x′′ is

a graph of order 78, say G78 schematically shown in Figure 2, such that χρ(G78) ≥ 14.

x′ x′′G′
38 G′′

38

Figure 2: G78

Motivated by the construction from the proof of Theorem 2.1, we next consider

what happens with the packing chromatic number of an arbitrary graph when an edge

is subdivided.

Theorem 2.3 For any graph G with packing chromatic number j,

⌊j/2⌋ + 1 ≤ χρ(Se(G)) ≤ j + 1.

Moreover, for any k ≥ 2 there exists a graph G with an edge e such that k = χρ(G) =

χρ(Se(G))− 1.

Proof. Given a packing coloring c of G, a packing coloring of Se(G) can be obtained

by using c on vertices of G and coloring the new vertex with an additional color. Hence

we get the upper bound.

For the lower bound, let G be a graph with χρ(G) = j and consider any edge e = xy

of G. Subdivide e to get the graph H = Se(G). That is, we remove the edge e from G

and replace it with the path x, z, y. Let W1, . . . ,Wr be an optimal packing coloring of

H.

We will construct a packing coloring of G. Note that {x, y} 6⊆ Wn for any n ≥ 2. Fix

i such that 2 ≤ i ≤ r and suppose there are vertices u, v ∈ Wi such that dG(u, v) = i.

Since Wi is an i-packing in H, we know that every shortest (u, v)-path in H contains

the vertex z. From among all pairs of vertices in Wi that are at distance i in G select
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ai, bi such that dG(ai, x) = t is the minimum and dG(bi, y) = s, and so t ≤ s. Thus

dH(ai, bi) = t+ s+2 = i+1. Let c ∈ Wi−{ai, bi}. It now follows that dG(c, x) > t, for

otherwise dH(c, ai) ≤ 2t < i+1, a contradiction. Similarly, dG(c, y) ≥ s, or otherwise it

follows that dH(ai, c) = dG(ai, x)+2+dG(y, c) < t+2+s = i+1, again a contradiction.

For each such value of i we remove the vertex ai from Wi and place it into a set X of

vertices that will eventually be “recolored.” For all pairs u, v remaining in Wi it follows

that dG(u, v) ≥ i + 1. If a2 as defined above exists, then a2 = x. It follows that W1

is independent in G and |X| = m ≤ r − 1. Otherwise if x and y belong to W1 place

vertex x in the set X. In this case W2 is a 2-packing in G and |X| = m ≤ r− 1. Hence

we can recolor the vertices in X using colors r + 1, . . . , r +m and this gives a packing

coloring of G using at most 2r − 1 colors. That is, χρ(G) ≤ 2r − 1.

To prove the last assertion of the theorem, consider the following examples. For

k = 2, we have 2 = χρ(P3) = χρ(P4)− 1, and P4 = Se(P3). Let now k ≥ 3. Recall [3,

Lemma 6] asserting that χρ(S(Kk)) = k + 1. Consider now the process of obtaining

S(Kk) from Kk by subdividing each of the edges of Kk one by one, and observe that in

the beginning of this process χρ(Kk) = k, and at the end we have χρ(S(Kk)) = k + 1.

Since in each step the packing chromatic number can increase by at most one, at some

stage of the process we have graphs Gi and Gi+1, such that Gi+1 = Se(Gi) for some

edge e of Gi, and χρ(Gi) = k, χρ(Gi+1) = k + 1. �

We do not know if the lower bound of Theorem 2.3 is sharp. On the other hand, it

is possible that the subdivision of an edge decreases the packing chromatic number by

2. Consider the following examples. Let n ≥ 5, and let Xn be the graph obtained from

the disjoint union of two copies of Kn, denoted by U and V , by first joining a vertex u

of U with a vertex v of V , and then subdividing the edge uv twice. Figure 3 depicts

the graph X5. Let e = xy be the edge, where x is adjacent to u, and y is adjacent to v.

x y

Figure 3: X5

We claim that χρ(Xn) = 2n − 3. Let c be an optimal packing coloring of Xn.
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Suppose first that c(x) = 1 and c(y) = 2. Clearly, c restricted to U uses all the colors

from [n]. On the other hand, c uses colors 1, 3, 4 on V , while the other n − 3 vertices

must receive new colors. Hence in this case, c uses 2n − 3 colors. Suppose next that

one of the vertices x and y is colored with a color a, where a > 2. Then c uses n colors

on U , different from a, and n− 4 new colors on V . Hence also in this case c uses 2n− 3

colors, which proves the claim.

Consider now the graph Se(Xn), and the following coloring c of this graph. Let

c(x) = c(y) = 1, and c(vxy) = 2, where vxy is the vertex obtained by subdividing the

edge xy. The mapping c restricted to U uses colors from [n] and restricted to V uses

colors from {1, 2, 3, 4, 5} together with n − 5 new colors. Hence χρ(Se(Xn)) ≤ 2n − 5.

The opposite inequality follows by the observation that however Se(Xn) is colored, n

different colors must be used on U , and out of these at most five colors can be used

also on V . This shows that χρ(Se(Xn)) = χρ(Xn)− 2.

Let us call an edge e of graph G weak if χρ(Se(G)) < χρ(G)− 1. We have not been

able to find a graph G such that all its edges are weak. We are inclined to believe

that there are no such graphs. From this point of view the following consequence of

Theorem 2.1 is relevant.

Corollary 2.4 Suppose that there exists a constant M such that χρ(H) ≤ M holds for

any subcubic graph H, and let G be a subcubic graph such that χρ(G) = M . If there

are no subcubic graphs in which all edges are weak then M ≤ 2 diam(G) + 4.

3 Vertex deletion, edge deletion and contraction

Since the distances in a graph when an edge is removed can only increase, it is clear

that for any graph G, any vertex v of G, and any edge e of G, we have

χρ(G− v) ≤ χρ(G) and χρ(G− e) ≤ χρ(G).

On the other hand, there are no lower bounds for χρ(G − v) and χρ(G − e). For the

former operation, let Gn, n ≥ 4, be the graph obtained from the path Pn by adding a

vertex x and making it adjacent to all vertices of the path. Note that χρ(Gn) ≥ ⌈n
2
⌉+1,

and since Gn − x is isomorphic to Pn, we have χρ(Gn − x) = 3. To deal with edge

removal we state

Proposition 3.1 For every positive integer r there exists a graph G with an edge e

such that χρ(G) − χρ(G− e) ≥ r.
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Proof. Consider the following construction. Let k ≥ 4, and n ≥ 2k − 2. Let A and

B be two copies of the graph Kn, and a, a′ ∈ V (A), b, b′ ∈ V (B). The graph Gn,k is

obtained from the disjoint union of A and B by connecting with an edge vertices a and

b and also connecting vertices a′ and b′, and then replacing the edge a′b′ with a path

of length 2k − 1. Figure 4 depicts the graph G6,4.

a

a′ b′

b

Figure 4: G6,4

We first claim that χρ(Gn,k) ≥ 2n− 2. Note that n colors are used in any packing

coloring on A. Since the distance between a vertex of A and a vertex of B is at most

3, we derive that only colors 1 and 2 can be repeated in B, hence the claim.

Letting G′
n,k = Gn,k − ab we next claim that χρ(G

′
n,k) ≤ 2(n − k) + 4. Consider

the following packing coloring of G′
n,k. First color the path of length 2k− 1 between a′

and b′ with colors from {1, 2, 3}. Because in G′
n,k every vertex in A \{a′} is at distance

2k + 1 from any vertex in B \ {b′}, we can use colors 4, . . . , 2k in both A and B. Note

that this is possible because we have assumed that n ≥ 2k − 2, and hence the number

of vertices in A\{a′} and in B \{b′} is at least 2k−3, respectively. This in turn implies

that the colors 4, . . . , 2k can indeed be used twice. The remaining vertices are then

colored by unique colors. Consequently,

χρ(G
′
n,k) ≤ 3 + (2k − 3) + [2(n − 1)− 2(2k − 3)] = 2(n − k) + 4 .

It follows that χρ(Gn,k)− χρ(G
′
n,k) ≥ (2n− 2)− [2(n− k) + 4] = 2k− 6. The assertion

now follows. �

We next turn our attention to edge contractions. We denote the graph obtained

from G by contracting its edge e by G|e.

Theorem 3.2 If G is a graph and e an edge in G, then

χρ(G)− 1 ≤ χρ(G|e) ≤ 2χρ(G) .
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Proof. Let e = xy be the edge that is contracted in a graph G, and vxy the resulting

vertex. For the lower bound, let c be an optimal packing coloring of G|e. We define

the coloring c′ of G by letting c′(x) = c(vxy), c
′(y) = χρ(G|e) + 1, and c′(z) = c(z) for

any other vertex in G. Since the distances in G are at least as large as the distances

in G|e between the corresponding vertices, c′ is packing coloring of G. It follows that

χρ(G) ≤ χρ(G|e) + 1.

For the upper bound let c be an optimal packing coloring of G. We define the

coloring c′ of G|e in two steps. First, let c′(vxy) = c(y), and c′(z) = c(z) for any other

vertex z of G|e. Let i ∈ [χρ(G)], and let xi be a vertex of G|e that minimizes dG|e(z, vxy)

over all z ∈ V (G|e) with c(z) = i. (Note that xi coincides with vxy for exactly one

i ∈ [χρ(G)].) Then, in the second step, set c′(xi) = χρ(G) + i. We claim that c′ is a

packing coloring of G|e.

Note that for any two vertices a and b of G|e we have that dG|e(a, b) is either dG(a, b)

or dG(a, b)−1. Moreover, in the latter case there exists a shortest (a, b)-path in G that

contains the edge xy. Suppose that there exist vertices u and v, both different from

xi, with c′(u) = c′(v) = i such that dG|e(u, v) = i. Clearly, then in G the edge xy must

lie on some shortest (u, v)-path P of length i + 1. Hence we may assume that P is

of the form u − P ′ − x − y − P ′′ − v. We may also assume without loss of generality

that dG(xi, x) ≤ dG(xi, y). Since xi is a closest vertex to vxy among all vertices colored

by i, we derive that dG(xi, x) < dG(v, x), hence dG(u, xi) ≤ dG(u, x) + dG(x, xi) <

dG(u, x) + dG(x, v) = i + 1. This is a contradiction with c being a packing coloring

of G, in which u and xi are both colored by color i. This shows that c′ is a packing

coloring of G|e with 2χρ(G) colors, hence the proof of the upper bound is also complete.

�

Note that Theorem 3.2 is in some sense dual to Theorem 2.3. To see that the lower

bound of Theorem 3.2 is sharp, just consider complete graphs. For the upper bound,

similarly as in Theorem 2.3, we are not aware of any example of a graph such that

after the contraction of its edge the packing chromatic number would increase by more

than 2. On the other hand, the graphs Se(Xn), as presented in Section 2 show that

the contraction of the edge e, yielding the graph Xn, increases their packing chromatic

number by 2.
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4 Concluding remarks

In this paper we answered a question of Gastineau and Togni [9] by showing that there

is a graph whose packing chromatic number is greater than 13. However, the problem

from [10] concerning the existence of a constant upper bound for the packing chromatic

number on the class of cubic graphs remains an interesting, unresolved problem. It is

possible that using Theorem 2.1 leads to subcubic graphs with increasing packing chro-

matic number. However, to prove this would require new methods since our approach

in part uses a computer.

Several open problems arise from considering local operations on graphs and how

these affect the packing chromatic number. For instance, the graph G38 from Section 2

has the property that the subdivision of an arbitrary edge produces a graph whose

packing chromatic number is exactly one less than that of G38. Cycles of the form

C4k+3 also share this property. It would be interesting to know more about this class

of subdivision critical graphs. The examples Xn from Section 2 show that there exist

graphs that have an edge whose subdivision decreases the packing chromatic number

by 2. As mentioned in Section 2 we suspect that there does not exist a graph for which

the subdivision of any of its edges decreases the packing chromatic number by more

then 1. In other words, we suspect that there are no graphs with only weak edges.

Following the definition of graphs that are critical with respect to ordinary chro-

matic number (i.e., the chromatic number of any subgraph is less than that of the orig-

inal graph) it is natural to study graphs that are critical with respect to the packing

chromatic number. For graphs with no isolated vertices this is equivalent to requiring

that the packing chromatic number decreases upon the removal of any edge. Examples

of these are cycles whose order is not congruent to 0 modulo 4, complete graphs, and

the Petersen graph.
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