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Abstract
To define a minimal mathematical framework for isolating some of
the characteristic properties of quantum entanglement, we introduce a
generalization of the tensor product of graphs. Inspired by the notion of a
density matrix, the generalization is a simple one: every graph can be obtained
by addition modulo two, possibly with many summands, of tensor products of
adjacency matrices. In light of this, we are still able to prove a combinatorial
analogue of the Peres–Horodecki criterion for testing separability.

PACS numbers: 03.65.Fd, 03.65.Ud, 03.67.−a, 02.10.Ox

1. Introduction

In this communication we attempt to define a minimal mathematical framework for isolating
some of the characteristic properties of quantum entanglement. The proposed model is such
that we hope the communication is amenable to be read by two audiences with different
interests: those interested in algebraic and structural graph theory and those interested in
entanglement theory.

The tensor product has a fundamental role in the standard formulation of quantum
mechanics as the axiomatically designed operation for combining Hilbert spaces associated
with the parties of a distributed quantum mechanical system (see, e.g. [5]). The definition
of entanglement is in such a way so essentially dependent on the tensor product that we can
only speak about entanglement in the presence of this operation. In the light of such a fact,
mathematical criteria for detecting and classifying entanglement are mainly based on tools
that give information, in most of the cases only partial, about the tensor product structure of
quantum states or their dynamical operators.

It is plausible that some characteristic properties of significance in the quantum context
remain associated with the tensor product even when we impoverish the mathematical structure
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used in quantum mechanics itself. In different terms, it is conceivable that certain properties of
entanglement can be studied outside quantum mechanics, in a more controlled mathematical
laboratory, where we keep features designated as essential and throw away redundant or ‘less
important’ material. It is clear that such an experiment would imply a loss of some kind.

The goal of this communication is to define a toy setting with ‘fake quantum states’, which
are still combined by using the notion of a tensor product. We do not ask whether we can
actually define a physical theory with a state-space equivalent to the one proper of quantum
mechanics, but obtain it with a restricted mathematical tool box. As we have stated above,
what we do aim for is to picture a scenery with mathematical objects poorer than general
quantum mechanical states, but still exhibiting some of their characteristic features.

The idea is then to distil a likely analogue of entanglement but in a slimmer mathematical
setting. Specifically, we should be able to (i) define an operation for mixing states, that is, to
obtain statistical mixtures of pure states, and to (ii) define an operation for combining states.
Labelled graphs provide a versatile language for this intent: we mix by sum modulo two of
adjacency matrices; we combine by a tensor product of graphs. The latter operation is well
studied in graph theory. Indeed, it appeared in many different contexts with a number of
equivalent names: tensor product in [1, 21], but also a direct product [3, 8] and a categorical
product [19, 20], just to mention the most important ones. See also the recent papers
[9, 13, 16], while for a general treatment of this graph product we refer to the book [12].

Graph tensor products have found a variety of applications. For example, let us just
mention here that recently Leskovec et al [15] proposed tensor powers of graphs for modelling
complex networks. The Kronecker product not only allows an investigation using analytical
tools (which is not surprising since this is a well-understood operation), but the construction
itself results very close to real-world networks.

The remainder of this communication is organized as follows. In the next section
we provide the required preliminary definitions. Then, in section 3, theorem 6 gives a
combinatorial characterization of tensor 2-sums. In section 4, theorem 8 gives a combinatorial
analogue of the Peres–Horodecki criterion (see, e.g., [18]) for testing separability. The
concluding section contains several topics for further research and related problems. In
particular, it is an open question to establish computational complexity results concerning the
recognition problem of tensor 2-sums.

2. Definitions

We consider graphs with a finite number of vertices, without multiple edges and without
self-loops. The tensor product of graphs (see figure 1 for two examples) is defined as follows.

Definition 1. The tensor product, K = G ⊗ H , of graphs G = (V (G),E(G)) and
H = (V (H),E(H)) is the graph with vertex set V (K) = V (G) × V (H) and {(g, h),

(g′, h′)} ∈ E(K) if and only if {g, g′} ∈ E(G) and {h, h′} ∈ E(H).

Note that the product graph K is undirected, since {(g, h), (g′, h′)} ∈ E(K) if and only
if we have {(g′, h′), (g, h)} ∈ E(K). Let G be a graph with V (G) = {g1, g2, . . . , gn}.
Recall that the adjacency matrix A(G) of G is an n × n matrix with A(G)i,j = 1
if {gi, gj } ∈ E(G) and A(G)i,j = 0, otherwise. Note that A(G) is symmetric and
that its labelling depends on the ordering of the vertices of G. Let H be another graph
with V (H) = {h1, h2, . . . , hm}. Then, unless stated otherwise, the adjacency matrix of
the tensor product G ⊗ H will be understood with respect to the lexicographic ordering
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Figure 1. The figure consists of three rows. In the top row (from left to right) are drawn the
complete graphs K4 and K3, and their tensor product K4 ⊗ K3. In the middle row are drawn the
cycle C4, the path P3 and their tensor product C4 ⊗ P3. In the bottom row are drawn the graph
G = K4 ⊗ K3, H = C4 ⊗ P3, and their 2-sum G ⊕ H .

(This figure is in colour only in the electronic version)

of V (G ⊗ H): (g1, h1), . . . , (g1, hm), (g2, h1), . . . , (g2, hm), . . . , (gn, hm). Under this
agreement, the following statement is a well-known useful fact: if K = G ⊗ H then A(K) =
A(G) ⊗ A(H).

Our generalization of the tensor product of graphs requires an additional operation that is
reminiscent of the symmetric difference, but producing a graph on the same vertex set of the
operands.

Definition 2. Let G and H be graphs with V (G) = V (H). The sum modulo 2 or 2-sum for
short, K = G⊕H , of G and H is the graph with the same vertex set as G (and as H) such that
{u, v} ∈ E(K) if and only if either (i) {u, v} ∈ E(G) and {u, v} /∈ E(H) or (ii) {u, v} /∈ E(G)

and {u, v} ∈ E(H).
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The right-hand side of the figure gives an example of the 2-sum of two graphs (in fact,
of two tensor product graphs). The graph K = G ⊕ H has adjacency matrix with ij th entry
(A(K))i,j = ((A(G))i,j + (A(H))i,j ) mod 2.

We are now ready to give the following definition, where by a nontrivial graph we mean
a graph with at least one edge.

Definition 3. A graph K is a tensor 2-sum if there exist a positive integer l, nontrivial graphs
G1, . . . , Gl , and nontrivial graphs H1, . . . , Hl , such that

K =
l⊕

k=1

(Gk ⊗ Hk).

Here, V (Gi) = V (Gj ) and V (Hi) = V (Hj ), for every i and j .

Note that the case l = 1 reduces to the standard tensor product.

3. Characterization

LetK(p, q) be the set of graphs that are a tensor 2-sum in which the factors of the corresponding
tensor products are of sizes p and q, respectively. Hence |V (K)| = n = pq for K ∈ K(p, q).
Note that if K ∈ K(p, q), then

|E(K)| �
(

pq

2

)
− q

(
p

2

)
− p

(
q

2

)
= 2

(
p

2

)(
q

2

)
,

with the equality if and only if K = Kp ⊗ Kq . Let p � 2 and q � 2 be arbitrary but fixed
integers. Let G and H be arbitrary graphs on the p and q vertices, respectively. For our
purposes, we may assume that V (G) = {g1, . . . , gp} for an arbitrary graph G on p vertices
and V (H) = {h1, . . . , hq} for an arbitrary graph H on q vertices, that is, all graphs on a fixed
number of vertices will have the same vertex set. Assume K ∈ K(p, q) and let G1, . . . ,Gl

and H1, . . . , Hl be graphs such that K = ⊕l
k=1(Gk ⊗ Hk). Thus, by the above assumption,

V (K) = {(gi, hj ) | 1 � i � p, 1 � j � q}. The next notions will be useful for theorem 6:

Definition 4. Let K be a (spanning) subgraph of the tensor product G ⊗ H . Then K is a
cross-like subgraph if {(gi, hj ), (gi ′ , hj ′)} ∈ E(K) implies that {(gi, hj ′), (gi ′ , hj )} ∈ E(K)

as well.

Definition 5. Let G and H be graphs on vertex sets {g1, . . . , gp} and {h1, . . . , hq}, respectively,
with E(G) = {{gi, gi ′ }} and E(H) = {{hj , hj ′ }}. Let us denote the tensor product G ⊗ H

with E(i, i ′; j, j ′) and call it a tensor-elementary graph.

Using these concepts, the graphs in the set K(p, q) can be characterized follows.

Theorem 6. For a graph K, the following statements are equivalent.

(i) K ∈ K(p, q);
(ii) K is a spanning, cross-like subgraph of Kp ⊗ Kq;

(iii) K is a 2-sum of tensor-elementary graphs.

Proof. (i) ⇒ (ii). Let K = ⊕l
k=1(Gk ⊗ Hk). Then V (K) = {(gi, hj ) | 1 � i � p, 1 �

j � q}. Consider vertices (gi, hj ) and (gi, hj ′) of K, where j �= j ′. Since {(gi, hj ),

(gi, hj ′)} /∈ E(Gk ⊗ Hk), 1 � k � l, we infer that {(gi, hj ), (gi, hj ′)} /∈ E(K). Analogously,
{(gi, hj ), (gi ′ , hj )} /∈ E(K) for any i and any j �= j ′. It follows that K is a spanning subgraph
of Kp ⊗ Kq .
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Assume next that {(gi, hj ), (gi ′ , hj ′)} ∈ E(K). Then {(gi, hj ), (gi ′ , hj ′)} ∈ E(Gi ⊗ Hi)

for an odd number of indices k, say k = k1, . . . , k2r+1, r � 0. Consequently, the edges
{gi, gi ′ } and {hj , hj ′ } are simultaneously present precisely in the products E(Gk ⊗ Hk), k =
k1, . . . , k2r+1. Therefore {(gi, hj ′), (gi ′ , hj )} ∈ E(K) as well. We conclude that K is also
cross like.

(ii) ⇒ (iii). Let K be a spanning, cross-like subgraph of Kp ⊗ Kq . To each pair
{(gi, hj ), (gi ′ , hj ′)}, {(gi, hj ′), (gi ′ , hj )} of K assign the tensor-elementary graph E(i, i ′; j, j ′).
Then it is straightforward to see that

K =
⊕

{(gi ,hj ),(gi′ ,hj ′ )}∈E(K)

{(gi ,hj ′ ),(gi′ ,hj )}∈E(K)

E(i, i ′; j, j ′).

(iii) ⇒ (i). This implication is obvious. �

A sum modulo 2 of tensor products is not unique. More formally, given a tensor 2-sum
graph K, there may be different representations of the form K = ⊕l

k=1(Gk ⊗ Hk). This is
trivially analogous to the situation for density matrices, where a mixed state does not capture
all the information about the ensemble of pure states from which it arises.

To see that a representation need not be unique it is enough to recall that the prime factor
decomposition of graph with respect to the tensor product is not unique in the class of bipartite
graphs, see [12] for the general case and [2] for factorization of hypercubes. On the other
hand, the prime factor decomposition is unique for connected nonbipartite graphs [17]. To
see that this does not hold for tensor 2-sum representations, observe first that the 2-sum is
commutative and associative. Moreover, it is not difficult to verify the distributivity law:

G ⊗ (H1 ⊕ H2) = (G ⊗ H1) ⊕ (G ⊗ H2). (1)

Consider now a tensor 2-sum graph K in which the first factor is fixed, that is

K =
l⊕

k=1

(G ⊗ Hk).

Then by (1) we can also write K as

K = G ⊗ (⊕l
k=1Hk

)
.

Moreover, by the commutativity and associativity of the 2-sum, the graphs Hi can be arbitrarily
combined to get numerous different representations of K.

4. Partial transpose

The Peres–Horodecki criterion for testing separability of quantum states is based on the partial
transpose of a density matrix (see, e.g., [18]). The criterion states that if the density matrix
(or, equivalently, the state) of a quantum mechanical system with composite dimension pq is
entangled, with respect to the subsystems of dimension p and q, then its partial transpose is
positive. For generic matrices, this operation is defined as follows.

Definition 7. Let M be an n×n matrix, where n = pq, p, q > 1. Consider M as partitioned
into p2 blocks each of size q × q. The partial transpose of M, denoted by M�p , is the matrix
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obtained from M, by transposing independently each of its p2 blocks. Formally,

M =

⎛
⎜⎝
B1,1 · · · B1,p

...
. . .

...

Bp,1 · · · Bp,p

⎞
⎟⎠ �⇒ M�p =

⎛
⎜⎝
BT

1,1 · · · BT
1,p

...
. . .

...

BT
p,1 · · · BT

p,p

⎞
⎟⎠ ,

where BT
i,j denotes the transpose of the block Bi,j , for 1 � i, j � p.

It is clear that we can have a partial transpose of a graph via its adjacency matrix. The next
result translates the Peres–Horodecki criterion in our restricted setting. In a stronger way, the
positivity is substituted by the equality. This observation closely resembles the result obtained
in [4], when considering normalized Laplacians. However, here we drop the constraints of
positivity and unit trace. The only property of relevance for this criterion to hold is then
symmetry, apart from the fact that here we have only matrices of zeros and ones.

Theorem 8. Let K ∈ K(p, q). Then A(K) = A(K)�p .

Proof. Let K = ⊕l
k=1(Gk ⊗Hk). As earlier we can assume that V (K) = {(gi, hj ) | 1 � i �

p, 1 � j � q}. Also, A(K) is assumed to be constructed with respect to the lexicographic
order of the vertices of K: (g1, h1), . . . , (g1, hq), (g2, h1), . . . , (g2, hq), . . . , (gp, hq). To
simplify the notation, identify the vertices of K in this order with the sequence 1, . . . , q, q +
1, . . . , 2q, . . . , pq. Then any i, 1 � i � pq, can be (uniquely) written as i = sq + r for some
0 � s � p − 1 and 1 � r � q. Consider an arbitrary block Bs1,s2 , 0 � s1, s2 � p − 1, of
A(K). Note first that by the lexicographic order, Bs1,s2 = 0 if s1 = s2. Hence assume without
loss of generality s1 < s2. Let the (r1, r2)th entry of Bs1,s2 be equal to 1:

(
Bs1,s2

)
r1,r2

= 1.
Then r1 �= r2. So s1q + r1 is adjacent to s2q + r2. Hence by theorem 6 (ii), s2q + r1 is adjacent
to s1q + r2. But then

(
Bs1,s2

)
r2,r1

= 1 which implies that Bs1,s2 = (
Bs1,s2

)T
as claimed. �

The converse of theorem 8 does not hold. Consider, for instance, the path on 4 vertices P4

and label its consecutive vertices with 4, 1, 3, 2. Then the corresponding adjacency matrix is⎛
⎜⎜⎝

0 0 1 1
0 0 1 0
1 1 0 0
1 0 0 0

⎞
⎟⎟⎠ ,

which can be partitioned into 2 × 2 symmetric blocks. However, P4 /∈ K(p, q) since it has an
odd number of edges.

While all separable quantum states belong to a set of PPT states (or, positive partial
transposestates), it is not immediate to construct a general PPT state (see [18]). For graphs
we have a simple method described in the next result, where ∪ denotes the disjoint union of
graphs.

Theorem 9. Let G be a graph on n vertices and with m edges. Then the graph

G ∪ mK2 ∪ (n2 − n − 2m)K1

belongs to K(n, n).

Proof. Let V (G) = {g1, g2, . . . , gn} and let G′ be an isomorphic copy of G with V (G′) =
{g′

1, g
′
2, . . . , g

′
n}. Let H be the graph with the vertex set V (H) = {(gi, g

′
j ) | 1 � i � p, 1 �

j � q} and the edge set E(H) = {{(gi, g
′
i ), (gj , g

′
j )}, {(gi, g

′
j ), (gj , g

′
i )} | {gi, gj } ∈ E(G)}.

Then it is straightforward to see that the connected components of H are G,n copies of K2,

6
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and the remaining n2 − n − 2m components are K1. In other words, H = G ∪ mK2 ∪ (n2 −
n − 2m)K1. Moreover, H is a spanning, cross-like subgraph of Kn ⊗ Kn so we conclude that
H ∈ K(n, n). �

5. Conclusions and open problems

In an attempt to define a minimal mathematical framework for isolating some of the
characteristic properties of quantum entanglement, we have introduced a generalization of the
tensor product of graphs. The generalization consists of obtaining every graph by the addition
modulo two, possibly with many summands, of tensor products of adjacency matrices. Then,
we have proved a combinatorial analogue of the Peres–Horodecki criterion, by substituting
positivity with equality.

The tensor 2-sum operation gives numerous interesting issues worth of investigation.
Here is a selection of such open topics and problems.

• We have seen that a given graph K can have (and in most of the cases it does) different
representation as a tensor 2-sum graph. Hence it is natural to define T2(K) as the smallest
integer l (if it exists) such that K has a representation of the form K = ⊕l

k=1(Gk ⊗ Hk).
Clearly, T2(K) < ∞ if and only if K ∈ K(p, q), for some p and q. The representation
of K ∈ K(p, q) from theorem 6 (iii) can have an arbitrarily larger number of modulo 2
summands than Kron(K). Consider, for instance, K = Kp ⊗Kq . Clearly, Kron(K) = 1,
on the other hand the representation of theorem 6 (iii) requires pq summands. However,
let K = ⊕p−1

i=1 E(i, i + 1; i, i + 1). Then T2(K) = p. Note also that T2(K) = 1 if and
only if K is not prime with respect to the tensor product. Is there a neat characterization
of graphs K with T2(K)? More generally, it would be good to have a classification of
graphs in terms of the minimum number of summands required for their constructions as
a sum of tensor products (that is, in terms of T2).

• Theorem 6 gives two necessary and sufficient conditions for a graph to belong to K(p, q).
However, these conditions are not efficient, so it remains to determine the computational
complexity of the following decision problem.

– Given: a graph G on n = pq vertices.

– Task: is G ∈ K(p, q)?

We feel that recent investigations of the so-called approximate graph products [10] might
be useful in solving this problem. In this respect we add that the unique prime factorization
of nonbipartite connected graphs can be found in polynomial time [11]. The problem of
determining separability of generic quantum states is NP-hard [6, 7, 14]. The proof of
this result requires some machinery. No separation between the two problems would give
a simpler proof method.

• Assume K is a tensor 2-sum graph with a representation K = ⊕l
k=1(Gk ⊗ Hk). Then the

only condition we imposed on the graphs Gi and Hi is that each has at least one edge. One
might want to be more restrictive by imposing that all Gi’s and Hi’s must be connected.
What can be said of such restricted representations?

• It would be interesting to introduce a dynamics in addition to the static picture. Initially,
this could be done by defining families of graphs obtained by local permutation
congruence. The idea would be to describe a form of local unitary operations. For
graphs, these are essentially permutations. Intuitively, testing equivalence under local
unitaries can be seen as a special case of the subgraph isomorphism problem.

7
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