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Abstract

The strong geodetic problem on a graph G is to determine a smallest
set of vertices such that by fixing one shortest path between each pair of its
vertices, all vertices of G are covered. To do this as efficiently as possible,
strong geodetic cores and related numbers are introduced. Sharp upper and
lower bounds on the strong geodetic core number are proved. Using the strong
geodetic core number an earlier upper bound on the strong geodetic number
of Cartesian products is improved. It is also proved that sg(G�K2) ≥ sg(G)
holds for different families of graphs, a result conjectured to be true in general.
Counterexamples are constructed demonstrating that the conjecture does not
hold in general.
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1 Introduction

Motivated by social networks applications, the strong geodetic problem was intro-
duced in [20] as follows. Let G = (V,E) be a graph. Given a set S ⊆ V , for each pair
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of vertices {x, y} ⊆ S, x 6= y, let g̃(x, y) be a selected fixed shortest path between x
and y. Note that this means that g̃(x, y) = g̃(y, x) for each x, y ∈ S. Set

Ĩ(S) = {g̃(x, y) : x, y ∈ S} and V (Ĩ(S)) =
⋃

P̃∈Ĩ(S)

V (P̃ ) .

If V (Ĩ(S)) = V for some Ĩ(S), then the set S is called a strong geodetic set. For a
graph G with just one vertex, we consider the vertex as its unique strong geodetic
set. The strong geodetic problem is to find a smallest strong geodetic set of G, such a
set will be briefly called an sg-set. The cardinality of an sg-set is the strong geodetic
number sg(G) of G, that is, if S is an sg-set of G, then sg(G) = |S|.

So far, several aspects of the strong geodetic number have been studied. In
the seminal paper [20] the invariant was compared with the isometric path number
(see [8, 10] for the latter), determined for complete Apollonian networks, and proved
that the problem is NP-complete. The strong geodetic number was further investi-
gated on grids and cylinders, and on general Cartesian product graphs in [15, 18],
respectively. Additional properties, in particular with respect to the diameter, and
a solution for balanced complete bipartite graphs were reported in [14]. The edge
version of the problem has also been introduced and investigated in [21].

Once sg(G) is known, we can be faced with sg-sets that have significantly different
properties with respect to various applications. Typically we would like to select an
sg-set such that covering the graph is as efficient as possible. One way to do it is
to involve only those pairs of vertices which cannot be avoided. More formally, if
G = (V (G), E(G)) is a graph and S ⊆ V (G) is a strong geodetic set, then a set of

vertices X ⊆ S is a strong geodetic core for S, if there exists Ĩ(S) such that

⋃

(u,v)∈X×S

V (g̃(u, v)) = V (G) .

That is, X is a strong geodetic core for S provided that we can cover V (G) without
geodesics between the pairs of vertices from S \X . The strong geodetic core number
sgc(S) is the size of a smallest strong geodetic core for S, and the strong geodetic
core number of the graph G is

sgc(G) = min{sgc(S) : S sg-set} .

If X is a smallest strong geodetic core for S, then we will briefly call it an sgc-set.
A concept that is in a way dual to the strong geodetic problem is the one of the

the k-path vertex cover [3] where a smallest set of vertices is to be found that hits
all the paths of order k. This problem has been thoroughly investigated by now,
in particular on graph products [16]. In this paper we in particular investigate the
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strong geodetic problem on Cartesian products and complete bipartite graphs, and,
as a coincidence, the same was done very recently for the k-path vertex cover in [19].

The paper is organized as follows. In the next section we prepare the ground for
the rest of the paper: give notation, recall known concepts, introduce generalized
geodetic graphs, list a couple of known results and a conjecture, and describe a con-
struction to be used later. In Section 3 we prove general upper and lower bounds on
the strong geodetic core number and for each of them prove its sharpness. Then, in
Section 4, we use complete bipartite graphs to obtain several (surprising) properties
of the strong geodetic (core) number. In the subsequent section we demonstrate
the usefulness of the strong geodetic core number by improving an earlier known
upper bound on the strong geodetic number of Cartesian products. In Section 6 we
show that in many cases the strong geodetic number of a prism over G is at least
as large as the strong geodetic number of G, a result conjectured in [15] to be true
for all graphs G. More generally, similar results are proved for Cartesian products
with an arbitrary second factor. In the subsequent section we prove, however, that
the conjecture does not hold in general. We conclude the paper with several open
problems and directions for further investigation.

2 Preliminaries

The order and the size of a graph G will be denoted with n(G) and m(G), respec-
tively. The distance dG(u, v) between vertices u and v of a graph G is the usual
shortest-path distance. The interval IG(u, v) between u and v of a graph G consists
of all vertices that lie on some shortest u, v-path. If T is a tree, then ℓ(T ) is the
number of leaves of T . We will use the notation [n] = {1, . . . , n}.

The Cartesian product G�H of graphs G and H is the graph with vertex set
V (G)× V (H), where the vertices (g, h) and (g′, h′) are adjacent if either g = g′ and
hh′ ∈ E(H), or h = h′ and gg′ ∈ E(G). If h ∈ V (H), then a subgraph of G�H
induced by the set of vertices {(x, h); x ∈ V (G)} is isomorphic to G and called a
G-layer. Analogously H-layers are defined. If X ⊆ V (G�H), then its projection
pG(X) on G is the set {g ∈ V (G) : (g, h) ∈ X for some h ∈ V (H)}. The projection
pH(X) of X on H is defined analogously. If X is a subgraph of G�H , then pG(X)
and pH(X) are the natural projections of X on G and H respectively. Recall that
if P is a geodesic in G�H , then pG(P ) is a geodesic in G. For more information
on the Cartesian product of graphs see the book [13]. The following conjecture
from [15] was one of the main motivations for the present paper.

Conjecture 2.1 If G is a graph with n(G) ≥ 2, then sg(G�K2) ≥ sg(G).

In [15] it was reported, among other related results, that the conjecture holds
for all graphs G with n(G) ≤ 7.
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The geodetic number g(G) of G is the size of a smallest set S ⊆ V (G) such
that ∪{u,v}∈(S2)

I(u, v) = V (G). The classical geodetic problem for the graph G is to

determine g(G), see [5, 7, 9, 12, 23, 24] for related investigations and in particular [4,
17] for the geodetic number of Cartesian products. Very recently it was proved in [6]
that deciding whether the geodetic number of a graph is at most k is NP-complete
for graphs of maximum degree three. This result is appealing since to determine the
strong geodetic number is intuitively harder than to determine the geodetic number.

A graph is called geodetic if any two vertices are joined by a unique shortest
path, cf. [2, 22, 26]. As observed in [20, Lemma 2.1], we have sg(G) ≥ g(G) for any
graph G, and if G is geodetic, then g(G) = sg(G) holds. Hence we say that G is a
generalized geodetic graph if g(G) = sg(G). Consider the split graph G on a clique
K of size m and an independent set I of size n and all possible edges between K and
I. If

(
n

2

)
≥ m, then g(G) = sg(G) = n. This yields a class of generalized geodetic

graphs that are not geodetic.
The (open) neighborhood of a vertex v is denoted with N(v). A vertex v of a

graph G is simplicial if N(v) induces a complete graph. For later use we state the
following known fact.

Lemma 2.2 If S is a strong geodetic set of G and v is a simplicial vertex of G,
then v ∈ S.

As an application of Lemma 2.2 we consider the following class of graphs that
will be applied later. Let S(G) be the subdivision graph of a graph G, that is, the
graph obtained from G by subdividing each of its edges exactly once. In addition,

let Ŝ(G) be the graph obtained from S(G) by adding an edge between different

vertices u, v ∈ V (S(G)) \ V (G). See Fig. 1 where the graph Ŝ(K4) is drawn.

Figure 1: The graph Ŝ(K4) with its strong geodetic set.
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Proposition 2.3 If G is a connected graph, then

sg(Ŝ(G)) = n(G) and sgc(Ŝ(G)) ≥ min{k :

k∑

i=1

(n− i) ≥ m(G)} .

Proof. The vertices of G are simplicial in Ŝ(G), hence in view of Lemma 2.2 we have

sg(Ŝ(G)) ≥ n(G). On the other hand, these vertices also form a strong geodetic set,

hence the first assertion. It also follows that V (G) is a unique sg-set of Ŝ(G).
Note that geodesics between vertices of V (G) are either of length 2 or 3. Hence

such a geodesic from a vertex v ∈ V (G) to another vertex of V (G) covers one

or two vertices from V (Ŝ(G)) − V (G). Moreover, if it covers two, then one is a
vertex obtained by subdividing an edge vx, and this vertex is also covered with the
(unique) v, x-geodesic. It follows that geodesics from v ∈ V (G) to the vertices of

V (G) \ {v} cover at most n− 1 vertices in V (Ŝ(G))− V (G). After v is added to a
core, by the same reasoning we infer that the geodesics between u ∈ V (G)−{v} and
the remaining vertices cover at most n − 2 different vertices. Repeating the same

reasoning until all vertices in V (Ŝ(G)) − V (G) are covered we obtain sgc(Ŝ(G)) ≥
min{k :

∑k

i=1(n− i) ≥ m(G)}. �

In Section 4 we will demonstrate that the inequality from Proposition 2.3 can
be strict.

3 Bounds on the strong geodetic core number

If n ≥ 1, then sgc(Kn) = 1. The same holds for cycles, graphs on at most five
vertices, and trees. We state the latter fact as a lemma for later use.

Lemma 3.1 If T is a tree, then sgc(T ) = 1.

Proof. The set L of leaves of T forms a unique sg-set of T . If u ∈ L, then consider
the BFS-tree rooted at u to see that the geodesics between u and all the other
vertices of L cover V (T ). Hence sgc(T ) = 1. �

As said, sgc(Kn) = 1. For all the other graphs we have the following bounds.

Theorem 3.2 If G is a graph with n = n(G), s = sg(G), and d = diam(G) ≥ 2,
then

1 ≤



s−

1 +
√

(2s− 1)2 − 8(n−s)
d−1

2



≤ sgc(G) ≤ min{s− 1, n− s} .
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Proof. The bound sgc(G) ≤ sg(G)− 1 holds true because if S is a strong geodetic
set and u ∈ S, then setting X = S \ {u} we have ∪(u,v)∈X×S g̃(u, v) = V (G). Since
G is not complete, in a (smallest) strong geodetic core X ⊆ S we need at most one
vertex for each vertex from V (G) \ S, hence sgc(G) ≤ n(G) − sg(G). This proves
the upper bounds.

For the lower bound we claim that the following inequality holds:

(
sgc(G)(sg(G)− sgc(G)) +

(
sgc(G)

2

))
(diam(G)− 1) ≥ n(G)− sg(G) . (1)

Let S and C be respectively an sg-set of G and its core such that |C| = sgc(G). The
product sgc(G)(sg(G) − sgc(G)) is the number of paths between the vertices from
C and the vertices from S \ C, while

(
sgc(G)

2

)
is the number of paths between two

vertices C. Each of these paths cover at most diam(G) − 1 vertices of V (G) \ S.
Since only the paths between C and S are needed to cover V (G), these paths must
cover every vertex of V (G) \ S. This proves the inequality. After solving it, the
second lower bound is obtained.

Recall from [20] that sg(G) < n(G) holds for all non complete graphs. It follows
that 8(n(G) − sg(G))/(diam(G) − 1) > 0. Hence the expression from the theorem
under the ceiling is strictly positive which proves the first lower bound. �

We next show that all the bounds of Theorem 3.2 are sharp. The sharpness of
sgc(G) ≥ 1 follows from Lemma 3.1. For the other bounds we have:

Theorem 3.3 (i) For every k ≥ 2 there exists a graph G with sgc(G) = k and
sg(G) = k + 1.

(ii) For every n ≥ 3 there exists a graph G of order n with sgc(G) =
⌊
n
3

⌋
and

sg(G) = n−
⌊
n
3

⌋
.

(iii) For every k ≥ 1, d ≥ 2, s ≥ 0, there exists a graph G such that

sgc(G) = k =



sg(G)−

1 +
√

(2 sg(G)− 1)2 − 8[n(G)−sg(G)]
diam(G)−1

2




,

where sg(G) = k + s and diam(G) = d.

Proof. (i) Let Gk = Ŝ(Kk), k ≥ 3. (Recall that G4 is drawn in Fig. 1.) Then from
Proposition 2.3 we deduce that sgc(Gk+1) ≥ k and sg(Gk+1) = k+1 for every k ≥ 2.
Since for any graph G we have sgc(G) ≤ sg(G)− 1, we also have sgc(Gk+1) ≤ k and
we are done.
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(ii) If n is even, then consider the cocktail-party graph G = K2,...,2 of order n.
If n is odd, then let G = K2,...,2,1 be of order n. We claim that sg(G) = n − ⌊n/3⌋
and sgc(G) = ⌊n/3⌋. Let S be a minimum strong geodetic set of G. Then vertices
u, v ∈ S can cover an additional vertex if and only if u and v are not adjacent,
that is, are in the same part of the cocktail party graph. To minimize |S|, the set
S contains as many non-adjacent pairs of vertices as possible, that is, ⌊n/3⌋ such
pairs. These pairs cover 3 ⌊n/3⌋ vertices, while the remaining (0, 1, or 2) vertices
must be covered by themselves. Therefore,

sg(G) = 2
⌊n
3

⌋
+ (n− 3

⌊n
3

⌋
) = n−

⌊n
3

⌋
.

To see that sgc(G) = ⌊n/3⌋, consider a minimum strong geodetic set S of G. Then,
by the above, each vertex x ∈ V (G) \ S is covered by a unique geodesic between
non-adjacent vertices u, v ∈ S. It follows that a strong geodetic core must contain
one of u and v. Selecting one vertex from each pair of non-adjacent vertices from S
yields a strong geodetic core, hence sgc(G) = ⌊n/3⌋ indeed holds.

(iii) Consider a graph obtained from the join of the graphs Kk and Ks by subdi-
viding every edge d− 1 times, except the edges in Ks, which remain unsubdivided.
Set Vk,s = V (Kk) ∪ V (Ks), and let the vertices of the graph be

Vk,s ∪ {ei ; e ∈ E(Kk), i ∈ [d− 1]} ∪ {f i
u,v ; u ∈ V (Kk), v ∈ V (Ks), i ∈ [d− 1]}.

Define a set

V ={ei ; e ∈ E(Kk), i ∈ {⌊d/2⌋, ⌈d/2⌉}}∪

∪{f i
u,v ; u ∈ V (Kk), v ∈ V (Ks), i ∈ {⌊d/2⌋, ⌈d/2⌉}},

and add all missing edges between vertices in V (hence V forms a clique) to obtain
the graph Hk,s,d (cf. Fig. 2 for H3,2,4). Clearly, n(Hk,s,d) = k + s + (ks +

(
k

2

)
)(d −

1). Moreover, it is straighforward to see that diam(Hk,s,d) = d. We claim that
sg(Hk,s,d) = k + s, and sgc(Hk,s,d) = k. Note that this implies that the graph Hk,s,d

attains the equality in (1), and thus also in

k =



sg(G)−

1 +
√
(2 sg(G)− 1)2 − 8[n(G)−sg(G)]

diam(G)−1

2



.

To show this, consider the following subsets defined for all v ∈ Vk,s:

Mv = {v} ∪ {x : x ∈ V (Hk,s,d)− V, d(v, x) < d(v′, x) for every v′ ∈ Vk,s \ {v}} .

It follows from the geodetic structure of the graph that if none of the vertices in
some Mv lies in a strong geodetic set, then no geodesic covers v. Moreover, if v is
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Figure 2: The representation of the graph H3,2,4 with its strong geodetic set in black
and the set V in gray.

not in a strong geodetic set, then for each edge incident with v, at least one vertex
from Mv must belong to the strong geodetic set. Note that if there is just one such
edge, then v is simplicial. Thus each minimal strong geodetic set contains vertices
Vk,s. As this set is indeed a strong geodetic set, it follows that sg(Hk,s,d) = k + s,
where Vk,s is a unique sg-set.

As for the graph Gk defined in part (i) of the proof, it holds that at least k − 1
vertices are in the core of Hk,s,d. But as this is clearly not enough and V (Kk) is a
strong geodetic core, we have sgc(Hk,s,d) = k. �

If a graph G attains the equality sgc(G) = sg(G) − 1, then each of the
(
sg(G)

2

)

geodesics must cover at least one private vertex. Thus such a graph must have at
least sg(G)+

(
sg(G)

2

)
vertices. As for the graph Gk+1 from the proof of Theorem 3.3(i)

we have |V (Gk+1)| = k + 1 +
(
k+1
2

)
, these graphs are smallest possible examples for

this situation.

4 On the strong geodetic problem in complete bi-

partite graphs

The simple class of complete bipartite graphs turned out as a big challenge for the
strong geodetic problem. As already mentioned, sg(Kn,n) was determined in [14],
while such a result for all complete bipartite graphs is yet to be found. In this section
we show further appealing properties of complete bipartite graphs with respect to
the strong geodetic problem. We first observe that if n ≥ 1, then

sg
(
K

n,(n2)
)
= n . (2)

8



Indeed, the bipartition set of order n is a strong geodetic set as the pairs of its
vertices can take care for exactly

(
n

2

)
vertices of the other bipartition set. On the

other hand, if sg
(
K

n,(n2)
)
≤ n− 1, then geodesic between these vertices would cover

at most
(
n−1
2

)
other vertices. Thus at most (n − 1) +

(
n−1
2

)
=

(
n

2

)
< |V

(
K

n,(n2)
)
|

vertices would be covered. This proves (2).
We next show that with the help of the complete bipartite graphs K

n,(n2)
, n ≥ 4

we can show that the inequality of Proposition 2.3 cannot be turned into equality.

Proposition 4.1 If n ≥ 4 and Gn = K
n,(n2)

, then sgc(Ŝ(Gn)) = n.

Proof. Denote by (X, Y ) the bipartition of Gn, where |X| = n, |Y | =
(
n

2

)
.

First observe that min{k :
∑k

i=1(n−i) ≥ m(Gn)} = n−1, hence Proposition 2.3

yields sgc(Ŝ(Gn)) ≥ n − 1. Suppose the equality is attained. As observed in the
proof of Proposition 2.3, S = V (Gn) is a unique sg-set. Suppose that C is its core
of size n− 1 and let k = |C ∩ Y |.

Vertices with the neighborhood in S−C can be covered only by geodesics between
X ∩ C and X − C, or between Y ∩ C and Y − C. Hence,

(n− (n− 1− k))

((
n

2

)
− k

)
≤ (n− 1− k)(n− (n− 1− k)) + k

((
n

2

)
− k

)
,

which simplifies to (
n

2

)
− k − (n− k − 1)(k + 1) ≤ 0 .

But the quadratic equation in k on the left side has the minimum value (n−1)(n−3)
4

,

which is strictly positive for n ≥ 4. Hence, sgc(Ŝ(Gn)) > n − 1. Note that on

the other hand, sgc(Ŝ(Gn)) ≤ n, as X is a strong geodetic core. We conclude that

sgc(Ŝ(Gn)) = n > n− 1. �

As we have seen in the above proof that min{k :
∑k

i=1(n− i) ≥ m(Gn)} = n−1,
Proposition 4.1 thus indeed shows that the inequality in Proposition 2.3 is strict for
K

n,(n2)
.

To conclude the section, we use complete bipartite graphs again to present an
interesting phenomenon on the strong geodetic core number. If we have strong
geodetic sets S ⊆ T of a graph G, then clearly sgc(S) ≥ sgc(T ). On the other hand,
as the following “7/11-example” shows, there exist strong geodetic sets S and T
with |S| ≤ |T | such that sgc(S) < sgc(T ). (By the above, in such a case T cannot
be a superset of S.)

9



Example 4.2 (7/11 example) Consider the complete bipartite graph K7,11 with
vertex set {x1, . . . , x11} ∪ {y1, . . . , y7}. Notice that the sets S = {x1, . . . , x7} and
T = {x1, . . . , x5} ∪ {y1, . . . , y3} are strong geodetic sets. In fact, by a simple case
analysis we can prove that S is the unique optimal strong geodetic set. Notice that
sgc(S) = 2 (an appropriate set X is {x1, x2}), and sgc(T ) = 4 (an appropriate set
is {x1, x2, x3, y1}).

5 An application to Cartesian products

In [15] the strong geodetic number was studied on Cartesian products. In particular,
it was proved (see [15, Theorem 2.1]) that if G and H are graphs, then

sg(G�H) ≤ min{sg(H)n(G)− sg(G) + 1, sg(G)n(H)− sg(H) + 1} . (3)

We can use the concept of the strong geodetic core to improve this result as follows.

Theorem 5.1 If G and H are graphs, then

sg(G�H) ≤ min{sgc(H)(n(G)− 1) + sg(H), sgc(G)(n(H)− 1) + sg(G)} .

Proof. By commutativity of the Cartesian product operation, it suffices to prove
that sg(G�H) ≤ sgc(H)(n(G)− 1) + sg(H).

Let SH be an sg-set of H such that sgc(SH) = sgc(H), CH be a strong geodesic

core of SH and Ĩ(SH) fixed geodesics in H . Set l = |SH | = sg(H), m = |CH | =
sgc(H) and SH = {h0, h1, . . . , hl−1}, with CH = {h0, h1, . . . , hm−1} . Denote with

Qi,j the hi, hj-geodesic from Ĩ(SH) for all i, j ∈ [0, l − 1]. Fix a vertex g0 ∈ V (G),
and shortest paths Pg from g to g0 in G for all g ∈ V (G)− {g0}.

Define T = ((V (G) \ {g0})×CH) ∪ ({g0} × SH)). Clearly, |T | = sgc(H)(n(G)−
1) + sg(H). We claim that T is a strong geodetic set of G�H . To show it, we first
fix geodesics in H-layers between vertices from T in the same way as they are fixed
in Ĩ(SH). The only (possibly) uncovered vertices are the ones lying in H-layers gH
for g ∈ V (G)−{g0} that lie on paths gQi,j for i ∈ [0, l− 1] and j ∈ [m, l− 1]. Since
the vertices {hm, . . . , hl−1} are not in CH , the paths Qi,j with i, j ∈ [m, l−1] are not
needed to cover H and the corresponding paths gQi,j are not needed to cover the
layer gH . Only the vertices on the paths gQi,j for i ∈ [0, m − 1] and j ∈ [m, l − 1]
still need to be covered.

To cover them we fix (g, hi), (g0, hj)-geodesics as paths
gQi,j joined with P

hj
g for

all g ∈ V (G) \ {g0}, i ∈ [0, m− 1] and j ∈ [m, l − 1]. In this way all the vertices of
G�H are covered, hence sg(G�H) ≤ |T |. �

Quite often sgc(G) is significantly smaller that sg(G); as already noticed, this
happens for complete graphs and for trees. In such cases Theorem 5.1 gives much
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better bounds than (3). Consider for instance Kn�Kn, n ≥ 1. Then (3) yields
sg(Kn�Kn) ≤ n2 − n + 1, while Theorem 5.1 gives sg(Kn�Kn) ≤ 2n − 1, which
is the exact value, see [15, Theorem 3.3]. But even if sgc(G) is large, Theorem 5.1
is generally better than (3). Indeed, since sgc(G) ≤ sg(G)− 1, Theorem 5.1 implies
the following result stronger than (3):

Corollary 5.2 If G and H are graphs, then

sg(G�H) ≤ min{sg(H)n(G)− n(G) + 1, sg(G)n(H)− n(H) + 1} .

We conclude the section with another family for which the bound in Theorem 5.1
is attained.

Proposition 5.3 If n ≥ 3, then sg(Pn�P3) = 4.

Proof. Theorem 5.1 yields sg(Pn�P3) ≤ 4. To prove the other inequality, assume
on the contrary that sg(Pn�P3) = 3. Let S = {x, y, z} be an sg-set of Pn�P3.
Note that S must contain at least one vertex in both P3-layers above the leaves of
Pn. Let x, y be these two vertices, then d(x, y) ∈ {n−1, n, n+1}. If d(x, y) = n+1,
then d(x, z) + d(z, y) = n + 1, if d(x, y) = n, then d(x, z) + d(z, y) ≤ n + 2, and if
d(x, y) = n − 1, then d(x, z) + d(z, y) ≤ n + 3. In any case, the union of an x, y-
geodesic, an x, z-geodesic, and a y, z-geodesic cover at most 2n + 5 vertices, where
x, y, z are counted twice, hence we can cover at most 2n+ 2 < 3n vertices. �

6 Valid cases for Conjecture 2.1

In this section we show that Conjecture 2.1 holds for several large families of graphs.
Actually the more general problem [15, Problem 3.5] asks whether sg(G�H) ≥
max{sg(G), sg(H)} holds for arbitrary graphs G and H . Here we prove several
cases in which the answer to this question is positive.

Lemma 6.1 If G and H are graphs and S is a strong geodetic set of G�H, then
pG(Ĩ(S)) covers every vertex of G and pG(S) is a geodetic set of G.

Proof. Let SG = pG(S) and Ĩ(SG) = pG(Ĩ(S)). If (u, v) ∈ V (G�H), then there

exists a path Q in Ĩ(S) that covers (u, v). Then pG(Q) covers u and, since it is in

Ĩ(SG), the set of paths Ĩ(SG) covers all vertices of G. Since these projected paths
connect vertices from SG, we conclude that SG is a geodetic set of G. �

Proposition 6.2 If G is a generalized geodetic graph, then sg(G�H) ≥ sg(G)
holds for every graph H.
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Proof. Let S be an sg-set of G�H and let SG = pG(S). By Lemma 6.1, SG is
a geodetic set of G, hence |SG| ≥ g(G). Since G is a generalized geodetic graph,
g(G) = sg(G). As SG is the projection of S we have also have |SG| ≤ |S|. Putting
these estimates together we get

sg(G) = g(G) ≤ |SG| ≤ |S| = sg(G�H) ,

hence the result. �

Corollary 6.3 If G and H are generalized geodetic graphs, then sg(G�H) ≥
max{sg(G), sg(H)}.

Note that Corollary 6.3 in particular confirms Conjecture 2.1 for prisms over
generalized geodetic graphs.

When equality holds in Proposition 6.2 we can say more about the structure of
the corresponding sg-set.

Proposition 6.4 Let G be a generalized geodetic graph and H a graph such that
sg(G�H) = sg(G). If S is an sg-set of G�H, then |pG(S)| = |S| and pG(S) is an
sg-set of G.

Proof. By Lemma 6.1 we know that pG(S) is a geodetic set of G so |pG(S)| ≥
g(G) = sg(G) = |S|. Since pG(S) is the projection of S on G we have the equality

|pG(S)| = |S|. Let Ĩ(S) be a set of paths corresponding to the sg-set S and let

Ĩ(SG) = pG(Ĩ(S)). Since |pG(S)| = |S|, the projection is a bijection and between

two vertices of pG(S) there is only one path in Ĩ(SG). Using Lemma 6.1 again we

infer that Ĩ(SG) covers all vertices of G so pG(S) is a strong geodetic set of G. Since
|pG(S)| = sg(G), it is an sg-set of G. �

Proposition 6.4 can in turn be used to find cases in which the bound cannot be
reached. To state such a result, we need the following concepts. A subgraph H
of a graph G is convex if for every u, v ∈ V (H), every shortest u, v-path in G lies
completely in H . If a graph G admits a partition of its vertex set into p non-empty
sets V1, . . . , Vp such that every Vi, i ∈ [p], induces a convex subgraph, then G is said
to admit a convex p-partition, see [1]. The problem whether a graph admits such
a partition is NP-complete in general, but polynomial (for every fixed p ≥ 1) for
bipartite graphs [11].

Theorem 6.5 If G is a generalized geodetic graph with sgc(G) > sg(G)
2

and H admits
a convex 2-partition, then sg(G�H) > sg(G).
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Proof. Assume on the contrary that sg(G�H) ≤ sg(G). Let S be an sg-set of
G�H and SG = pG(S). By Proposition 6.2 we have sg(G�H) = sg(G) and

hence Proposition 6.4 implies that SG is an sg-set of G. Let Ĩ(S) be a set of paths

corresponding to the sg-set S and let Ĩ(SG) = pG(Ĩ(S)).
Let H1 and H2 be convex subgraphs of H induced by a convex 2-partition.

We partition S into sets S1 and S2 such that S1 = {(u, v) ∈ S : v ∈ H1} and
S2 = {(u, v) ∈ S : v ∈ H2}. We can assume without loss of generality that
|S1| ≥ |S2|. Hence |S2| ≤ sg(G)/2.

We claim that in Ĩ(SG) the paths between the vertices of pG(S2) and the vertices
of SG are not sufficient to cover G. Indeed, if this would be the case, then pG(S2)
would be a strong geodetic core of size at most sg(G)/2, but this is not possible
because sgc(G) > sg(G)/2. By the claim, there exist vertices u, v ∈ pG(S1) such

that the u, v-path from Ĩ(SG) covers a vertex w which is not covered by the paths
with at least one end-vertex in pG(S2).

Let t be a vertex of H2. Then the vertex (w, t) is not covered with the paths of

Ĩ(S) that have at least one end-vertex in S2, for otherwise w would be covered in G
with a path having one end-vertex in pG(S2). Since H1 is a convex subgraph of H ,
there is no shortest path between vertices of H1 containing t, so there is no shortest
path between vertices of S1 containing (w, t). Hence the vertex (w, t) of G�H is
not covered by shortest paths between vertices of S, a contradiction with the fact
that S is an sg-set of G�H . �

Note that if H contains a simplicial vertex u, then it admits a convex 2-partition,
where {u} is one part of it. Hence Theorem 6.5 holds for all such graphs H .

In the rest of the section we determine an infinite class of graphs for which the
equality is attained in Proposition 6.2.

Let T be a tree of order at least 3 with leaves l1, . . . , lℓ(T ) and let ni, i ∈ [ℓ(T )],
be positive integers. Then the clique tree KT

n1,...,nℓ(T )
of T , is the graph obtained from

T is the following way. Each leaf li of T is replaced with a complete graph of order
ni and each vertex of the clique is connected with an edge to the support vertex of
li. For the case T = K2 we set KK2

n1,n2
= Kn1+n2 . Note that KT

1,...,1 = T . See Fig. 3
for a tree T and its clique tree KT

3,2,2, where the support vertices of the three leaves
are drawn gray.

Theorem 6.6 Let T be a tree, let n1, . . . , nℓ(T ) be positive integers, and let s =
sg(KT

n1,...,nℓ(T )
). If G is a connected graph with n(G) ≤ s/2, then

sg(KT
n1,...,nℓ(T )

�G) = s .

Proof. Set K = KT
n1,...,nℓ(T )

, n = |V (G)|, and V (G) = [n]. Thus the K-layers of the

product K �G will be denoted by K1, . . . , Kn.

13



l1

l2

l3

T

K3

K2

K2

Figure 3: A tree T and the clique tree KT
3,2,2.

Note first that the set of simplicial vertices of K is S =
⋃

i∈[ℓ(T )] V (Kni
), and

that S is also a strong geodetic set. Hence, sg(K) =
∑ℓ(T )

i=1 ni. Observe also that
sgc(K) = 1 and that, due to the tree structure of K, the clique tree is geodetic and
every simplicial vertex is a core.

Select and fix 2n distinct vertices in S: a1, b1, . . . , an, bn. Note that this is possi-
ble, because n ≤ s/2. Let S ′ = S − {a1, b1, . . . , an, bn} and let

SK �G = {(ai, i), (bi, i) : i ∈ [n]} ∪ {(u, 1) : u ∈ S ′} .

In the following we prove that SK �G is a strong geodetic set of K �G. As |SK �G| =
2n+(s− 2n) = s and sg(K �G) ≥ s (by Proposition 6.2), this concludes the proof.

Denote a shortest path between vertices x, y in the H-layer as x  H y for
H ∈ {K,G}. Recall that the shortest paths in K are unique because K is geodetic.
Now fix the following geodesics, for i, j ∈ [n]:

(ai, i) K (s, i) G (u, 1), u ∈ S ′ ,

(ai, i) K (bi, i) ,

(ai, i) K (aj, i) G (aj , j), j < i ,

(ai, i) K (bj , i) G (bj , j), j > i ,

(bi, i) K (aj , i) G (aj, j), j > i ,

(bi, i) K (bj , i) G (bj , j), j < i .

First notice that for each pair of vertices in SK �G at most one geodesic is selected.
Moreover, as each ai is a strong geodetic core of K, the geodesics having ai as an
end-vertex cover K. Hence the only possibly uncovered vertices in each Ki-layer
lie on the ai, aj-geodesics for all j > i, and those on ai, bj-geodesics for all j < i.
Here we omit the notation (x, i), as we are only considering the Ki-layer. Next we
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explain that the vertices on these geodesics are in fact also covered. First suppose
j > i. Consider the subgraph of K induced on the geodesics between vertices
ai, aj, bi. As bi is a strong geodetic core of this subgraph, the ai, aj-geodesic is
covered by the geodesics with the end-vertex bi. Next, suppose j < i. By a similar
reasoning, geodesics containing ai cover all vertices, except perhaps those on the
ai, bj-geodesic, which is covered by geodesics containing bi. Hence, each Ki-layer is
completely covered by the selected geodesics. �

Note that the assumption n(G) ≤ s/2 is necessary. Consider for example the
prism over a path Pn, n ≥ 2. Here, n(K2) > 2/2, and sg(Pn�K2) = 3 > sg(Pn).

Corollary 6.7 (i) If T is a tree and G is a connected graph with 2n(G) ≤ ℓ(T ),
then sg(T �G) = sg(T ) = ℓ(T ).

(ii) If k ≥ 2 and G is a connected graph with 2n(G) ≤ k, then sg(Kk�G) =
sg(Kk) = k.

7 Counterexamples to Conjecture 2.1

In this section we demonstrate that, rather surprisingly, Conjecture 2.1 does not
hold in general. For this sake consider the graphs Gk,n, k ≥ 4, n ≥ 2, constructed as
follows. Start with the complete graph Kk, replace every edge of it with n disjoint
paths of length 2, and finally add an additional universal vertex, that is, a vertex
adjacent to all other vertices. In Fig. 4 the graph G4,2 is shown.

Figure 4: A representation of G4,2

Theorem 7.1 If k ≥ 4 and n ≥ 2, then

sg(Gk,n) =

(
k

2

)
(n− 1) + k and sg(Gk,n�Kn) ≤ kn + 1 .
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Proof. Let k ≥ 4 and n ≥ 2 and denote the vertices of Gk,n as follows. Let x1, . . . , xk

be its vertices corresponding to the initial complete graph Kk, let x
(1)
ij , . . . , x

(n)
ij be

the common degree-2 neighbors of xi and xj , where i, j ∈ [k], i 6= j, and let u be
the universal vertex of Gk,n.

An arbitrary degree-2 vertex x
(l)
ij of Gk,n can be covered by either being in a

strong geodetic set, or by the unique xi, xj-geodesic. Thus, for all {i, j} ∈
(
[k]
2

)
, at

least n− 1 vertices among x
(1)
ij , . . . , x

(n)
ij must lie in any strong geodetic set.

Notice that S = {x1, . . . , xk} ∪ {x
(l)
ij : i, j ∈ [k], i 6= j, l ∈ [n − 1]} is a strong

geodetic set of size k +
(
k

2

)
(n − 1). Suppose there exists a smaller strong geodetic

set T . We may without loss of generality assume that x1 /∈ T . Then T contains
vertices x

(l)
1j for j ∈ {2, . . . , k} and l ∈ [n]. If also some other xi /∈ T , then |T | ≥(

k

2

)
(n − 1) + (k − 1) + (k − 2) > |S| (as k ≥ 4). But if all x2, . . . , xk ∈ T , then

|T | ≥
(
k

2

)
(n− 1) + (k − 1) + (k − 1) > |S|. Hence, sg(Gk,n) = |S|.

Consider now the Cartesian product graph Gk,n�Kn. Set V (Kn) = {y1, . . . , yn}
and

S = {(u, y1)} ∪ {(xi, yj) : i ∈ [k], j ∈ [n]} .

Fix geodesics in the following way

(xi, yj) ∼ (x
(j′)
ii′ , yj) ∼ (xi′ , yj) ∼ (xi′ , yj′); i, i′ ∈ [k], i < i′, j, j′ ∈ [n], j 6= j′,

(xi, yj) ∼ (x
(j)
ii′ , yj) ∼ (xi′ , yj); i, i′ ∈ [k], i < i′, j ∈ [n],

(u, y1) ∼ (u, yj) ∼ (x1, yj); j ∈ {2, . . . , n},

to see that S is a strong geodetic set ofGk,n�Kn. We conclude that sg(Gk,n�Kn) ≤
|S| = 1 + kn. �

It follows from Theorem 7.1 that for every k ≥ 4 and every n ≥ 2,

sg(Gk,n)− sg(Gk,n�Kn) ≥
k(n− 1)(k − 3)− 2

2
.

Hence by increasing k or n, the difference sg(Gk,n)−sg(Gk,n�Kn) becomes arbitrary
large. This thus disproves Conjecture 2.1.

Note that the counterexamples from Theorem 7.1 are of diameter 2. For coun-
terexamples of higher diameter consider the following construction. Let H be the
graph obtained from a complete graph Kk in which every edge is replaced with n
pairwise disjoint paths of length 2p, p ≥ 2. Let us call the middle vertex of such a
path in H a middle vertex, and let the vertices of H that correspond to the vertices
of Kk be called original vertices. Next, let H ′ be the graph obtained from the star
K1,k by replacing each of its edges with a path of length p−1. Finally, connect each
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leaf of H ′ with a unique original vertex of H , and connect the vertex of H ′ of degree
k with all the middle vertices of H . Then the constructed graph has diameter 2p
and by similar yet more technical arguments as in the proof of Theorem 7.1 one can
show that the Cartesian product of it with Kn is also a counterexample.

8 Concluding remarks

In this paper we have studied the strong geodetic problem on graphs. The newly
introduced strong geodetic cores turned out to be quite useful for this sake. Hence
we believe that to introduce and investigate geodetic cores for the usual geodetic
problem would be a reasonable research plan.

We have also introduced generalized geodetic graphs as the graphs G for which
g(G) = sg(G) holds. In Section 6 we showed that these graphs behave nicely on the
Cartesian product w.r.t. the strong geodetic problem. Hence it seems an interesting
problem to characterize the class of generalized geodetic graphs.

It would also be interesting to characterize the graphs which have unique sg-
sets, because for them it seems easier to determine strong geodetic cores than in the
general case.

Finally, the computational complexity of the strong geodetic core number would
be interesting to investigate.
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