LOWER BOUNDS FOR DILATION, WIRELENGTH, AND EDGE CONGESTION OF EMBEDDING GRAPHS INTO HYPERCUBES

R. SUNDARA RAJAN ${ }^{1}$, THOMAS KALINOWSKI ${ }^{2}$, SANDI KLAVŽAR ${ }^{3,4,5}$, HAMID MOKHTAR ${ }^{6}$, AND T.M. RAJALAXMI ${ }^{7}$

Abstract

Interconnection networks provide an effective mechanism for exchanging data between processors in a parallel computing system. One of the most efficient interconnection networks is the hypercube due to its structural regularity, potential for parallel computation of various algorithms, and the high degree of fault tolerance. Thus it becomes the first choice of topological structure of parallel processing and computing systems. In this paper, lower bounds for the dilation, wirelength, and edge congestion of an embedding of a graph into a hypercube are proved. Two of these bounds are expressed in terms of the bisection width. Applying these results, the dilation and wirelength of embedding of certain complete multipartite graphs, folded hypercubes, wheels, and specific Cartesian products are computed.

1. Introduction

A suitable interconnection network is an important part for the design of a multicomputer or multiprocessor system. Such a network is usually modeled by a symmetric graph, where the nodes represent the processing elements and the edges represent the communication channels. Desirable properties of an interconnection network include symmetry, embedding capabilities, relatively small degree, small diameter, scalability, robustness, and efficient routing [43]. One of the most efficient interconnection networks is the hypercube due to its structural regularity, potential for parallel computation of various algorithms, and the high degree of fault tolerance [44].

The hypercube has many excellent features and thus becomes the first choice of topological structure of parallel processing and computing systems. The machines based on hypercubes such as the Cosmic Cube from Caltech, the iPSC/2 from Intel, and Connection Machines have been implemented commercially [12]. Hypercubes are very popular models for parallel computation because of their symmetry and relatively small number of interprocessor connections. Among the hypercube-based interconnection networks designed for extremely large-scale supercomputers that were studied in the last decade we mention metacubes [30], hierarchical cubic networks [6, 32], and k-ary n-cubes [17, 52].

[^0]The hypercube embedding problem is the problem of mapping a communication graph into a hypercube multicomputer. Hypercubes are known to simulate other structures such as grids and binary trees [10, 34].

Graph embedding is an important technique that maps a guest graph into a host graph, usually an interconnection network [8]. The quality of an embedding can be measured by certain cost criteria. One of these criteria which is considered very often is the dilation. The dilation of an embedding is defined as the maximum distance between a pair of vertices of the host graph that are images of adjacent vertices of the guest graph. It is a measure for the communication time needed when simulating one network on another [28]. A closely related and important cost criterion is the wirelength of an embedding which is the sum of the dilations in the host graph of edges in the guest graph. The wirelength of a graph embedding arises from VLSI design, data structures and data representations, networks for parallel computer systems, biological models that deal with cloning and visual stimuli, parallel architecture, structural engineering and so on [26, 39, 50].

Another important cost criterion is the edge congestion. The edge congestion of an embedding is the maximum number of edges of the guest graph that are embedded on any single edge of the host graph. An embedding with a large edge congestion faces many problems, such as long communication delay, circuit switching, and the existence of different types of uncontrolled noise. In data networking, network edge congestion occurs when a link or node is carrying so much data that its quality of service deteriorates. Typical effects include packet loss or the blocking of new connections. Therefore, a minimum edge congestion is a most desirable feature in network embedding [13, 36].

Graph embeddings have been well-studied for a number of networks $[2,3,10,13,14,15,16,17$, $18,20,27,34,35,37,41,42,45,50]$. While in actual supercomputing applications it is usually not sufficient to be able to embed individual graphs optimally, a good understanding of the embedding behaviour of single graphs can provide insights to support the development of methodologies and algorithms for solving the more complex problems arising in practice. In this paper, we study the dilation, wirelength, and congestion of embeddings of graphs into hypercubes and proceed as follows. In the next section concepts needed are formally introduced. In Section 3, we consider the dilation of embedding into Q_{n} and in the main result characterize the graphs G with $\operatorname{dil}\left(G, Q_{n}\right) \leqslant n-1$: they are precisely the graphs which contain a perfect anti-matching. Then, in Section 4, we prove a general lower bound on the edge congestion and a lower bound on the wirelength of embeddings into hypercubes. Both bounds are expressed in terms of the bisection width. In the remainder of the paper these results are applied to particular graphs which have been studied in the supercomputing literature before $[33,19,7]$. The specific results obtained in Sections 5 to 8 are summarized in Table 1, where $K_{2^{n-p}, \ldots, 2^{n-p}}, F Q_{n}$ and $W_{2^{n}}$ denote the complete 2^{p}-partite graph with parts of size 2^{n-p}, the folded n-hypercubes and the 2^{n}-wheel, respectively, and $G \square H$ is the cartesian product of two graphs G and H (following standard notation in the graph theory literature, see for instance [25]). All of these graphs are defined precisely in the sections containing the corresponding results.

2. Preliminaries

In this section, we give basic definitions and preliminaries related to embedding problems. Let G and H be finite graphs. Then an embedding of G into H is a pair $\left(f, P_{f}\right)$, where $f: V(G) \rightarrow V(H)$ is a one-to-one mapping and P_{f} is a mapping from $E(G)$ to the set of paths in H such that each edge $e=u v \in E(G)$ is assigned a path $P_{f}(e)$ in H between $f(u)$ and $f(v)$. By abuse of language we will also refer to an embedding (f, P_{f}) simply by f.

The length of $P_{f}(e)$ is the dilation $\operatorname{dil}_{f}(e)$ of the edge e (with respect to the embedding $\left(f, P_{f}\right)$). The maximum dilation over all edges of G is called the dilation of the embedding. The dilation of embedding G into H is the minimum dilation taken over all embeddings of G into H and denoted

Table 1. Summary of the results in Sections 5 to 8.

Embedding $f: G \rightarrow Q_{n}$	Dilation	Wirelength
$G=K_{2^{n-p}, \ldots, 2^{n-p}}$	$\begin{array}{lll} n & \text { for } & p=n \\ n-1 & \text { for } & n-\log _{2}(n+1) \\ & & <p \leqslant n-1 \end{array}$ (Corollary 1)	$\begin{array}{r} n 2^{2 n-p-2}\left(2^{p}-1\right) \\ \text { (Theorem 4) } \end{array}$
$G=F Q_{n}$	2 [35]	$n 2^{n}$ (Theorem 5)
$G=W_{2^{n}}$	(Theorem 1)	$\begin{array}{r} (n+2) 2^{n-1} \\ (\text { Theorem } 6 \text {) } \end{array}$
$\begin{array}{r} G=K_{2^{n / 2}} \square K_{2^{n / 2}} \\ (n \text { even }) \end{array}$	$\leqslant n / 2$	$\begin{gathered} n 2^{3 n / 2-2} \\ \text { (Theorem 8) } \end{gathered}$

by $\operatorname{dil}(G, H)$, cf. [3]. In other words,

$$
\operatorname{dil}(G, H)=\min _{f} \max _{e \in E(G)} \operatorname{dil}_{f}(e)
$$

where the minimum is taken over all injections $f: V(G) \rightarrow V(H)$. It is not necessary to specify P_{f} when we are interested in the dilation of embedding G into H, because we can take $P_{f}(u v)$ to be any shortest path between $f(u)$ and $f(v)$. The diameter of H, denoted by $\operatorname{diam}(H)$, is the maximum distance between any two vertices of H, and this provides a trivial upper bound for $\operatorname{dil}(G, H)$.

The wirelength of an embedding $f=\left(f, P_{f}\right)$ of G into H is

$$
\begin{equation*}
W L_{f}(G, H)=\sum_{e_{G} \in E(G)} \operatorname{dil}_{f}\left(e_{G}\right), \tag{1}
\end{equation*}
$$

and the wirelength of embedding G into H is

$$
W L(G, H)=\min _{f} W L_{f}(G, H)
$$

see [34]. We also refer to $[2,3,38]$ for the search of embeddings of G into H that attain the value $W L(G, H)$.

Let $f=\left(f, P_{f}\right)$ be an embedding of G into H. For $e=u v \in E(H)$, let $E C_{f}(e)$ denote the number of edges $e^{\prime} \in E(G)$ such that e is in the path $P_{f}\left(e^{\prime}\right)$ between $f(u)$ and $f(v)$ in H. Then the edge congestion of f is

$$
E C_{f}(G, H)=\max _{e \in E(H)} E C_{f}(e)
$$

and the edge congestion of embedding G into H is

$$
E C(G, H)=\min _{f} E C_{f}(G, H),
$$

where the minimum is taken over all embeddings $f=\left(f, P_{f}\right)$ of G into H. Note that

$$
\begin{equation*}
W L_{f}(G, H)=\sum_{e_{H} \in E(H)} E C_{f}\left(e_{H}\right) . \tag{2}
\end{equation*}
$$

The above problems can be specialized to several distance problems. For example, if the host graph is a path, then the dilation of embedding graph into a path is the bandwidth problem. Further distance problems are listed in Table 2, where P_{n}, C_{n} and K_{n}, are the path, the cycle, and the complete graph of order n, respectively, and $K_{a, b}$ is the complete bipartite graphs on $a+b$ vertices.

Table 2. Various embedding problems

Embedding $f: G \rightarrow H$	Dilation	Wirelength	Congestion
$H=P_{n}$	Bandwidth [22]	MinLA [1]	Cutwidth [21]
$H=C_{n}$	Cyclic bandwidth [29]	Cyclic wirelength [4]	Cyclic cutwidth [9]
$G=K_{n}$	$\operatorname{diam}(H)[49]$	Wiener index of $H[48]$	Forwarding index of $H[23]$
$G=K_{a, b}$	Makespan [46]	Average load	Maximum load

Let $n \geqslant 1$. The n-cube (n-dimensional hypercube) has vertex set $\{0,1\}^{n}$, and vertices $x, y \in V\left(Q_{n}\right)$ are adjacent if and only if the corresponding binary strings differ exactly in one bit. Equivalently, the vertices of Q_{n} can be identified with integers $0,1, \ldots, 2^{n}-1$, where vertices i and j are adjacent if and only if $i-j= \pm 2^{p}$ for some integer $p \geqslant 0$.

For disjoint subsets $A, B \subseteq V(G)$ we will use the notation $E_{G}(A, B)=\{u v \in E(G) \mid u \in A, v \in B\}$ and $E_{G}(A)=\{u v \mid u, v \in A\}$. If x is a vertex of a graph G, then $N_{i}(x)$ is the set of vertices in G at distance i from x. The maximum degree of G is denoted by $\Delta(G)$ and its order by $n(G)$.

3. Graphs with large dilation of embedding into hypercubes

The dilation, the wirelength, and the edge congestion problem are different in the sense that an embedding that gives the minimum dilation need not give the minimum congestion (wirelength) and vice-versa. From $\operatorname{diam}\left(Q_{n}\right)=n$ we obtain immediately the upper bound $\operatorname{dil}\left(G, Q_{n}\right) \leqslant n$ for every graph G. To characterize graphs G of order 2^{n} with $\operatorname{dil}\left(G, Q_{n}\right)=n$, we need the following concept. A pair $\left(u, u^{\prime}\right) \in V(G) \times V(G)$, is said to be an antipodal pair (of vertices) if the distance between u and u^{\prime} is equal to the diameter of G. If this is the case, we also say that u^{\prime} is an antipodal vertex of u and u is an antipodal vertex of u^{\prime}. In the hypercube Q_{n}, every vertex $u \in V\left(Q_{n}\right)$ has a unique antipodal vertex which we denote by \bar{u}. If G is a graph, then the set of pairs of vertices $X=\left\{\left\{x_{1}, y_{1}\right\}, \ldots,\left\{x_{k}, y_{k}\right\}\right\}$ forms an anti-matching, if $x_{1} y_{1} \notin E(G), \ldots, x_{k} y_{k} \notin E(G)$. That is, X is an anti-matching if $x_{1} y_{1}, \ldots, x_{k} y_{k}$ form a matching in the complement of G, that is, the graph which has the same vertex set as G, and edge set $\{x y \mid x, y \in V(G), x y \notin E(G)\}$. In addition, we say that X is a perfect anti-matching if $2|X|=n(G)$. Now we have the following characterization.
Theorem 1. Let G be a graph of order 2^{n}. Then $\operatorname{dil}\left(G, Q_{n}\right) \leqslant n-1$ if and only if G contains a perfect anti-matching.

Proof. Let $\operatorname{dil}\left(G, Q_{n}\right) \leqslant n-1$ and let $\left(f, P_{f}\right)$ be a corresponding embedding of G into Q_{n}, that is, $\operatorname{dil}_{f}\left(G, Q_{n}\right)=\operatorname{dil}\left(G, Q_{n}\right)$. Consider the partition $X^{\prime}=\left\{\{u, \bar{u}\} \mid u \in V\left(Q_{n}\right)\right\}$ of $V\left(Q_{n}\right)$ into 2^{n-1} antipodal pairs. If $e=\left\{f^{-1}(u), f^{-1}(\bar{u})\right\} \in E(G)$ for some $u \in V\left(Q_{n}\right)$, then

$$
\operatorname{dil}_{f}\left(G, Q_{n}\right) \geqslant \operatorname{dil}_{f}(e) \geqslant \operatorname{dist}_{Q_{n}}(u, \bar{u})=n
$$

and this contradicts the assumption. We conclude that $f^{-1}(u)$ is not adjacent to $f^{-1}(\bar{u})$, and it follows that $X=\left\{\left\{f^{-1}(u), f^{-1}(\bar{u})\right\} \mid u \in V\left(Q_{n}\right)\right\}$ is a perfect anti-matching.

Conversely, let X be a perfect anti-matching of G. We now define an embedding $\left(f, P_{f}\right)$ of G into Q_{n} by mapping each pair $\{x, y\}$ from X into an antipodal pair of vertices of Q_{n}, that is, $\{f(x), f(y)\}=\{v, \bar{v}\}$ for some $v \in V\left(Q_{n}\right)$. Since each vertex of Q_{n} has a unique antipodal vertex, it follows that $\operatorname{dil}_{f}(e) \leqslant n-1$ for each edge e of G and hence $\operatorname{dil}\left(G, Q_{n}\right) \leqslant n-1$.

To determine a large class of graphs G with $\operatorname{dil}\left(G, Q_{n}\right)=n-1$ we state the following lemma that could be applied elsewhere.
Lemma 1. If G is a graph of order 2^{n}, then

$$
\operatorname{dil}\left(G, Q_{n}\right) \geqslant \max \left\{k: \sum_{i=1}^{k-1}\binom{n}{i}<\Delta(G)\right\} .
$$

Proof. Let k be a positive integer satisfying $\binom{n}{0}+\cdots+\binom{n}{k-1}<\Delta(G)$, and let $\left(f, P_{f}\right)$ be an embedding of G into Q_{n}. Let u be a vertex of G with $\operatorname{deg}(u)=\Delta(G)$ and let $f(u)=v \in V\left(Q_{n}\right)$. Setting $X=N_{1}(v) \cup \cdots \cup N_{k-1}(v)$, the assumption on k implies that

$$
|X|=\left|N_{1}(v)\right|+\cdots+\left|N_{k-1}(v)\right|=\sum_{i=1}^{k-1}\binom{n}{i}<\Delta(G) .
$$

Thus, there exists at least one vertex w of G adjacent to u such that $f(w) \in V\left(Q_{n}\right) \backslash X$. It follows that the length of $P_{f}(u w)$ is at least k and consequently $\operatorname{dil}\left(G, Q_{n}\right) \geqslant k$.

Combining Lemma 1 with Theorem 1 we obtain the following corollary.
Corollary 1. If G is a graph of order 2^{n} with $\Delta(G) \geqslant 2^{n}-n-1$ that contains a perfect anti-matching, then $\operatorname{dil}\left(G, Q_{n}\right)=n-1$.
Proof. By Theorem 1, $\operatorname{dil}\left(G, Q_{n}\right) \leqslant n-1$ and the reverse inequality follows from Lemma 1 and

$$
\sum_{i=1}^{n-2}\binom{n}{i}=2^{n}-\binom{n}{0}-\binom{n}{n-1}-\binom{n}{n}=2^{n}-n-2<\Delta(G) .
$$

For illustration, consider $G=K_{4,4,4,4}$. Then $\Delta(G)=12 \geqslant 2^{4}-4-1$. Since G contains a perfect anti-matching, $\operatorname{dil}\left(G, Q_{4}\right)=3$. In Figure 1 a corresponding embedding is shown.

Figure 1. An embedding of $K_{4,4,4,4}$ into Q_{4} with dilation 3. The vertices of $K_{4,4,4,4}$ are labeled such that we can take f to be the identity. The perfect anti-matching in G consists of the pairs $\{i, 15-i\}$ for $i=0,1, \ldots, 7$.

4. Two Lower bounds in terms of the bisection width

In this section, we give a general lower bound on the edge congestion and on the wirelength of embedding into hypercubes. Both bound involve the bisection width that is defined as follows. The bisection width $B W(G)$ of a graph G is the minimum number of edges necessary in an edge cut so that the sizes of the two sides of the cut differ by at most one.

The first lower bound is established by the following averaging argument.
Theorem 2. If G and H are graphs of the same order, then

$$
E C(G, H) \geqslant \frac{B W(G)}{B W(H)}
$$

Proof. Set $n=n(G)(=n(H))$. Let $A \cup B$ be a partition of $V(H)$ such that $|A|=\lceil n / 2\rceil,|B|=\lfloor n / 2\rfloor$, and $\left|E_{H}(A, B)\right|=B W(H)$, and let $f: G \rightarrow H$ be an embedding with $E C_{f}(G, H)=E C(G, H)$. Then

$$
\begin{equation*}
B W(G) \leqslant\left|E_{G}\left(f^{-1}(A), f^{-1}(B)\right)\right| \leqslant \sum_{e \in E_{H}(A, B)} E C_{f}(e) . \tag{3}
\end{equation*}
$$

where the first inequality follows from the definition of the bisection width, and the second one from the fact that for every edge $u v \in E_{G}\left(f^{-1}(A), f^{-1}(B)\right)$ the path $P_{f}(u v)$ has to use at least one edge from $E_{H}(A, B)$. Finally, we conclude

$$
\begin{aligned}
& \frac{B W(G)}{B W(H)}=\frac{B W(G)}{\left|E_{H}(A, B)\right|} \leqslant \frac{1}{\left|E_{H}(A, B)\right|} \sum_{e \in E_{H}(A, B)} E C_{f}(e) \leqslant \max _{e \in E_{H}(A, B)} E C_{f}(e) \\
& \leqslant \max _{e \in E(H)} E C_{f}(e)=E C_{f}(G, H)=E C(G, H)
\end{aligned}
$$

Corollary 2. If G is a graph of order 2^{n}, then

$$
E C\left(G, Q_{n}\right) \geqslant \frac{B W(G)}{2^{n-1}}
$$

Proof. The result follows from Theorem 2 and the fact that $B W\left(Q_{n}\right)=2^{n-1}$, see [47].
The lower bound for the wirelength is the following.
Theorem 3. If G is a graph of order 2^{n}, then $W L\left(G, Q_{n}\right) \geqslant n \cdot B W(G)$.
Proof. Let $E\left(Q_{n}\right)=S_{1} \cup \cdots \cup S_{n}$ be the partition of $E\left(Q_{n}\right)$ where S_{i} consists of the edges whose incident vertices differ in the i th coordinate. Then $Q_{n} \backslash S_{i}$ consists of two vertex-disjoint $(n-1)$ cubes. Moreover, $\left|S_{i}\right|=2^{n-1}=B W\left(Q_{n}\right)$, and we can now estimate as follows, where the minimum is taken over all embeddings of G into Q_{n} :

$$
W L\left(G, Q_{n}\right)=\min _{f} \sum_{e \in E\left(Q_{n}\right)} E C_{f}(e)=\min _{f} \sum_{i=1}^{n} \sum_{e \in S_{i}} E C_{f}(e) \stackrel{(3)}{\geqslant} \min _{f} \sum_{i=1}^{n} B W(G)=n \cdot B W(G) .
$$

The first equality above holds by (1) and (2), and the second equality follows because the sets S_{i} form a partition of $E\left(Q_{n}\right)$.

5. Embeddings of complete multipartite graphs

In this section, we consider the complete p-partite graph $G=K_{n_{1}, \ldots, n_{p}}$ of order 2^{n}. Recall that G contains p independent sets containing $n_{i}, i \in[p]$, vertices, and all possible edges between vertices from different parts.

From Theorem 1 it follows that $\operatorname{dil}\left(G, Q_{n}\right)=n$ if at least one of the p_{i} is odd and $\operatorname{dil}\left(G, Q_{n}\right) \leqslant n-1$ otherwise (that is, if all the p_{i} are even). We will next determine the wirelengths of embedding certain
complete p-partite graphs into n-cubes, and start by determining the bisection widths of balanced complete multipartite graphs.

Lemma 2. If G is the complete t-partite graph $K_{2 r, \ldots, 2 r}$, with 2 tr vertices, $t \geqslant 2, r \geqslant 1$, then

$$
B W(G)=r^{2} t(t-1) .
$$

Proof. Let $V(G)=A \cup B$ be a partition with $|A|=|B|=\operatorname{tr}$ such that A and B each contains half of the vertices in every maximal independent set. Then

$$
B W(G) \leqslant\left|E_{G}(A, B)\right|=|E(G)|-\left|E_{G}(A)\right|-\left|E_{G}(B)\right|=4 r^{2}\binom{t}{2}-2 r^{2}\binom{t}{2}=r^{2} t(t-1)
$$

For the reverse inequality, let $V(G)=A \cup B$ be a partition with $|A|=|B|=\operatorname{tr}$ and $\left|E_{G}(A, B)\right|=$ $B W(G)$. For $i=1, \ldots, t$, let n_{i} be the number of vertices of A in the i-th independent set. Then we apply the Cauchy-Schwarz inequality to obtain the bound

$$
\left|E_{G}(A)\right|=\sum_{1 \leqslant i<j \leqslant t} n_{i} n_{j}=\frac{1}{2}\left(\left(\sum_{i=1}^{t} n_{i}\right)^{2}-\sum_{i=1}^{t} n_{i}^{2}\right)=\frac{1}{2}\left((t r)^{2}-\sum_{i=1}^{t} n_{i}^{2}\right) \leqslant \frac{r^{2} t(t-1)}{2} .
$$

For the same reason, $\left|E_{G}(B)\right| \leqslant r^{2} t(t-1) / 2$, and consequently,

$$
B W(G)=\left|E_{G}(A, B)\right|=|E(G)|-\left(\left|E_{G}(A)\right|+\left|E_{G}(B)\right|\right) \geqslant 4 r^{2}\binom{t}{2}-r^{2} t(t-1)=r^{2} t(t-1)
$$

We now want to determine the wirelength for embedding the complete 2^{p}-partite graph $G=$ $K_{2^{n-p}, \ldots, 2^{n-p}}, 1 \leqslant p<n$ into Q_{n}. In the proof of the following theorem, it will be convenient to have an explicit notation for the function which maps a non-negative integer to the bitstring corresponding to its binary representation. More specifically, we will use the function $\phi: \mathbb{N} \rightarrow\{0,1\}^{\mathbb{N}}$, defined by

$$
\phi\left(2^{k-1} x_{1}+2^{k-2} x_{2}+2^{k-3} x_{3}+\cdots+2^{1} x_{k-1}+2^{0} x_{k}\right)=x_{1} x_{2} \ldots x_{k}
$$

Theorem 4. If G is the complete 2^{p}-partite graph $K_{2^{n-p}, \ldots, 2^{n-p}}$, where $1 \leqslant p<n$, then

$$
W L\left(G, Q_{n}\right)=n \cdot 2^{2 n-p-2}\left(2^{p}-1\right) .
$$

Proof. Combining Lemma 2 for $t=2^{p}$ and $r=2^{n-p-1}$ with Theorem 3, we obtain

$$
W L\left(G, Q_{n}\right) \geqslant n \cdot B W(G)=n \cdot 2^{2 n-p-2}\left(2^{p}-1\right) .
$$

In order to prove the reverse inequality we construct an embedding $f: G \rightarrow Q_{n}$ in the following way. Let $V(G)=V_{1} \cup \cdots \cup V_{2^{p}}$ be the partition of $V(G)$ into 2^{p} independent sets of size 2^{n-p}. Label the vertices of $V(G)$ with the numbers $0,1,2, \ldots, 2^{n}-1$, in such a way that

$$
\begin{equation*}
V_{i}=\left\{j 2^{p+1}+i-1: j=0,1,2, \ldots, 2^{n-p-1}-1\right\} \cup\left\{j 2^{p+1}-i: j=1,2,3, \ldots, 2^{n-p-1}\right\} \tag{4}
\end{equation*}
$$

Recall that $V\left(Q_{n}\right)=\{0,1\}^{n}$ and define $f: V(G) \rightarrow V\left(Q_{n}\right)$ by mapping $x \in V(G)$ to its binary representation. In other words, f is the restriction of ϕ to the set $\left\{0,1, \ldots, 2^{n}-1\right\}$, that is, $x=$ $2^{n-1} x_{1}+2^{n-2} x_{2}+\cdots+2^{0} x_{n}$ is mapped to $f(x)=\phi(x)=x_{1} x_{2} \ldots x_{n}$. We will now show that for this embedding, $W L_{f}\left(G, Q_{n}\right)=n \cdot 2^{2 n-p-2}\left(2^{p}-1\right)$, which concludes the proof. For $x, y \in\{0,1\}^{n}$, let $d(x, y)$ denote their Hamming distance, that is, $d(x, y)=\left|x_{1}-y_{1}\right|+\cdots+\left|x_{n}-y_{n}\right|$, which is equal to the distance between x and y in Q_{n}. It follows from (4) that, for every $i \in\left\{1, \ldots, 2^{p}\right\}$,

$$
f\left(V_{i}\right)=\{0,1\}^{n-p-1} \times\left\{\phi(i-1), \phi\left(2^{p+1}-i\right)\right\} .
$$

For instance, for $p=3$ and $n=p+3=6$,

$$
f\left(V_{1}\right)=\left\{\begin{array}{l}
000000, \\
010000, \\
100000, \\
110000, \\
001111, \\
01111, \\
101111, \\
111111
\end{array}\right\}, \quad f\left(V_{2}\right)=\left\{\begin{array}{l}
000001, \\
010001, \\
100001, \\
110001, \\
001110, \\
011110, \\
101110, \\
111110
\end{array}\right\}, \quad f\left(V_{3}\right)=\left\{\begin{array}{l}
000001, \\
010010, \\
100010, \\
110010, \\
001101, \\
011101, \\
101101, \\
111101
\end{array}\right\}
$$

etc.

If x is an arbitrary vertex in V_{i}, and $k \in\{1, \ldots, n\}$ is any of the positions, then exactly half of the elements of $f\left(V_{i}\right)$ differ from $f(x)$ in position k. For $k \in\{1,2, \ldots, n-p-1\}$ this is because the first $n-p-1$ positions run twice through the vertices of Q_{n-p-1}, and for $k \in\{n-p, \ldots, n\}$ it follows from the fact that $\phi(i-1)$ and $\phi\left(2^{p+1}-i\right)$ are antipodal vertices in Q_{p+1}. As a consequence, for any fixed $x \in V_{i}$,

$$
\sum_{y \in V_{i} \backslash x} d(f(x), f(y))=\sum_{k=1}^{n} \frac{1}{2}\left|V_{i}\right|=n 2^{n-p-1},
$$

hence

$$
\sum_{\{x, y\} \in\binom{V_{i}}{2}} d(f(x), f(y))=\frac{1}{2} \sum_{x \in V_{i}} \sum_{y \in V_{i} \backslash x} d(f(x), f(y))=\frac{1}{2} \sum_{x \in V_{i}} n 2^{n-p-1}=n 2^{2(n-1-p)} .
$$

As this is true for every $i \in\left\{1,2, \ldots, 2^{p}\right\}$,

$$
\begin{aligned}
W L_{f}\left(G, Q_{n}\right)= & \sum_{\{x, y\} \in\binom{V\left(Q_{n}\right)}{2}} d(x, y)-\sum_{i=1}^{2^{p}} \sum_{\substack{\{x, y\} \in\left(\begin{array}{c}
V_{i} \\
2
\end{array}\right)}} d(f(x), f(y)) \\
& =n 2^{2 n-2}-2^{p} n 2^{2(n-1-p)}=n 2^{2 n-2-p}\left(2^{p}-1\right) .
\end{aligned}
$$

6. Embeddings of folded hypercubes

The n-dimensional folded hypercube $F Q_{n}$ is the graph obtained from Q_{n} by adding, for every vertex $x=x_{1} \ldots x_{n}$, the edge between x and its antipodal vertex $\bar{x}=\bar{x}_{1} \ldots \bar{x}_{n}$, where $\bar{x}_{i}=1-x_{i}$, cf. [50]. Folded hypercubes are of wide current interest in reliability and fault tolerance of interconnection networks, see $[11,26,31,51]$. In this section, we add to the known results on folded hypercubes their wirelength.

Theorem 5. For all $n \geqslant 2, W L\left(F Q_{n}, Q_{n}\right)=n 2^{n}$.
Proof. In [40] it was proved that $B W\left(F Q_{n}\right)=2^{n}$, and with Theorem 3 this implies $W L\left(F Q_{n}, Q_{n}\right) \geqslant$ $n 2^{n}$. To prove the reverse inequality, let id : $F Q_{n} \rightarrow Q_{n}$ be the identity embedding, that is, $\operatorname{id}(v)=v$, for every $v \in V\left(F Q_{n}\right)$ (and where the second v is considered as a vertex of $\left.Q_{n}\right)$. For this embedding, the $n 2^{n-1}$ edges of $F Q_{n}$ that are also the edges of Q_{n} contribute $n 2^{n-1}$ to the wirelength. and each of the 2^{n-1} antipodal edges contributes n to the wirelength. We conclude

$$
W L_{\mathrm{id}}\left(F Q_{n}, Q_{n}\right)=n 2^{n-1}+2^{n-1} n=n \cdot 2^{n} .
$$

7. Embeddings of wheels

Let $n \geqslant 4$. The wheel W_{n} of order n is the graph obtained from a cycle C_{n-1} by adding a new vertex x and joining x to all the vertices of the cycle. Vertex x is called the $h u b$ of the wheel and the edges incident with x are spokes of the wheel. Since the hub vertex is adjacent to all other vertices, the wheel does not contain an anti-matching, and by Theorem $1, \operatorname{dil}\left(W_{2^{n}}, Q_{n}\right)=n$. We next determine the wirelength of embedding $W_{2^{n}}$ into Q_{n}.

Theorem 6. If $n \geqslant 2$, then $W L\left(W_{2^{n}}, Q_{n}\right)=(n+2) 2^{n-1}$.
Proof. For every embedding the spokes contribute

$$
\sum_{k=1}^{n} k\binom{n}{k}=n 2^{n-1}
$$

to the wirelength. Since Q_{n} is bipartite, the $2^{n}-1$ cycle edges contribute at least 2^{n}. This gives a lower bound of $n 2^{n-1}+2^{n}=(n+2) 2^{n-1}$, and using a Gray code this bound can be achieved.

8. Embeddings of some Cartesian products

Recall that the Cartesian product $G \square H$ of graphs G and H is the graph with the vertex set $V(G) \times V(H)$, vertices (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ being adjacent if either $g=g^{\prime}$ and $h h^{\prime} \in E(H)$, or $h=h^{\prime}$ and $g g^{\prime} \in E(G)$. For more information on this product see the book [25]. We will use the following result on the edge-isoperimetric problem for Cartesian products of complete graphs (see [5] for a survey of related results).

Theorem 7. ([24]) Let $G=K_{p_{1}} \square K_{p_{2}} \square \cdots \square K_{p_{t}}$ with $p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{t}$, and let m be an integer with $1 \leqslant m \leqslant p_{1} p_{2} \cdots p_{t}$. If H is a subgraph of G with $|V(H)|=m$, then $|E(H)| \leqslant\left|E\left(H^{*}\right)\right|$, where H^{*} is the subgraph induced by the first m vertices in lexicographic order, where we take

$$
V(G)=\left\{\left(a_{1}, a_{2}, \ldots, a_{t}\right): 1 \leqslant a_{i} \leqslant p_{i} \text { for } i=1,2 \ldots, t\right\}
$$

and the lexicographic order is defined by $\left(a_{1}, a_{2}, \ldots, a_{t}\right)<\left(b_{1}, b_{2}, \ldots, b_{t}\right)$ if there exists an index i with $a_{i}<b_{i}$ and $a_{j}=b_{j}$ for all $j<i$.

As a corollary, we obtain the bisection widths for products of complete graphs.
Corollary 3. If $G=K_{2 p_{1}} \square K_{p_{2}} \square K_{p_{3}} \square \cdots \square K_{p_{t}}$ with $2 p_{1} \leqslant p_{2} \leqslant p_{3} \leqslant \cdots \leqslant p_{t}$, then $B W(G)=$ $p_{1}^{2} p_{2} \cdots p_{t}$.
Proof. We have $|E(G)|=p_{1} p_{2} \cdots p_{t}\left(2 p_{1}+p_{2}+p_{3}+\cdots+p_{t}-t\right)$, and for any $A \subseteq V(G)$ with $|A|=$ $p_{1} p_{2} \cdots p_{t}$, Theorem 7 implies

$$
\left|E_{G}(A)\right| \leqslant \frac{1}{2} p_{1} p_{2} \cdots p_{t}\left(p_{1}+p_{2}+\cdots+p_{t}-t\right)
$$

with equality if A is the set of vertices $\left(a_{1}, \ldots, a_{t}\right)$ with $a_{1} \leqslant p_{1}$ or the set of vertices $\left(a_{1}, \ldots, a_{t}\right)$ with $a_{1}>p_{1}$. This implies that for every partition $V(G)=A \cup B$ with $|A|=|B|=p_{1} p_{2} \cdots p_{t}$,

$$
\begin{aligned}
& \left|E_{G}(A, B)\right|=|E(G)|-\left|E_{G}(A)\right|-\left|E_{G}(B)\right| \\
& \quad \geqslant p_{1} p_{2} \cdots p_{t}\left(2 p_{1}+p_{2}+p_{3}+\cdots+p_{t}-t\right)-p_{1} p_{2} \cdots p_{t}\left(p_{1}+p_{2}+\cdots+p_{t}-t\right)=p_{1}^{2} p_{2} \cdots p_{t}
\end{aligned}
$$

with equality if A is the set of vertices $\left(a_{1}, \ldots, a_{t}\right)$ with $a_{1} \leqslant p_{1}$.
Theorem 8. Let n be a positive even integer, and let $G=K_{2^{n / 2}} \square K_{2^{n / 2}}$. Then

$$
W L\left(G, Q_{n}\right)=n 2^{3 n / 2-2}
$$

Proof. From Corollary 3 with $t=2$, $p_{1}=2^{n / 2-1}$ and $p_{2}=2^{n / 2}$, we obtain $B W(G)=2^{3 n / 2-2}$, and together with Theorem 3 this implies the lower bound. To prove the upper bound we embed G into Q_{n}, by mapping a vertex $(a, b) \in V(G)=\left\{0,1, \ldots, 2^{n / 2}-1\right\} \times\left\{0,1, \ldots, 2^{n / 2}-1\right\}$ with

$$
a=\sum_{i=1}^{n / 2} a_{i} 2^{n / 2-i}, \quad b=\sum_{i=1}^{n / 2} b_{i} 2^{n / 2-i}
$$

to the binary string $a_{1} a_{2} \ldots a_{n / 2} b_{1} b_{2} \ldots b_{n / 2} \in\{0,1\}^{n}=V\left(Q_{n}\right)$. For $i \in\{1, \ldots, n\}$, let $V\left(Q_{n}\right)=$ $A_{i} \cup B_{i}$ be the partition with $A_{i}=\left\{x \in V\left(Q_{n}\right): x_{i}=0\right\}$ and $B_{i}=\left\{x \in V\left(Q_{n}\right): x_{i}=1\right\}$. Then

$$
E\left(Q_{n}\right)=\bigcup_{i=1}^{n} E_{Q_{n}}\left(A_{i}, B_{i}\right)
$$

and since each of the sets $f^{-1}\left(A_{i}\right)$ and $f^{-1}\left(B_{i}\right)$ induces a subgraph of G isomorphic to $K_{2^{n / 2-1}} \square K_{2^{n / 2}}$, we obtain

$$
\begin{aligned}
W L_{f}\left(G, Q_{n}\right)=\sum_{i=1}^{n} \sum_{e \in E_{Q_{n}}\left(A_{i}, B_{i}\right)} E C_{f}(e)=\sum_{i=1}^{n} \mid E_{G} & \left(f^{-1}\left(A_{i}\right), f^{-1}\left(B_{i}\right)\right) \mid \\
& =\sum_{i=1}^{n} B W(G)=n \cdot B W(G)=n 2^{3 n / 2-2} .
\end{aligned}
$$

Concluding Remarks

In this paper, we have obtained lower bounds for dilation, wirelength, and edge congestion of an embedding of graphs into n-cubes. In particular, we found lower bounds for congestion and wirelength in terms the bisection width of the guest graph. This technique allows the computation of the exact dilation and wirelength for a range of networks. An open problem remains to determine the edge congestion of these networks. It also opens up the study of embedding parameters which remains unsolved for several good candidates of guest architectures. Another direction for extending our work to make it more directly applicable is the study of weighted versions of the embedding problem.

Acknowledgments. The work of R. Sundara Rajan was partially supported by Project No. 2/48(4)/ 2016/NBHM-R\&D-II/11580, National Board of Higher Mathematics (NBHM), Department of Atomic Energy (DAE), Government of India. Sandi Klavžar acknowledges the financial support from the Slovenian Research Agency (research core funding No. P1-0297). Further, the authors would like to thank the anonymous referees for their comments and suggestions. These comments and suggestions were very helpful for improving the quality of this paper.

References

1. Donald L. Adolphson and Te Chiang Hu, Optimal linear ordering, SIAM Journal on Applied Mathematics 25 (1973), no. 3, 403-423.
2. Sergei L. Bezrukov, Joseph D. Chavez, Larry H. Harper, Marcus Röttger, and Ulf-Peter Schroeder, The congestion of n-cube layout on a rectangular grid, Discrete Mathematics 213 (2000), no. 1-3, 13-19.
3. Sergei L. Bezrukov, Joseph D. Chavez, Larry H. Harper, Markus Röttger, and Ulf-Peter Schroeder, Embedding of hypercubes into grids, Mathematical Foundations of Computer Science 1998, Lecture Notes in Computer Science, vol. 1450, Springer Berlin Heidelberg, 1998, pp. 693-701.
4. Sergei L. Bezrukov and Ulf-Peter Schroeder, The cyclic wirelength of trees, Discrete Applied Mathematics $\mathbf{8 7}$ (1998), no. 1-3, 275-277.
5. Sergei S. Bezrukov, Edge isoperimetric problems on graphs, Graph theory and combinatorial biology (László Lovász, ed.), Bolyai Society mathematical studies, vol. 7, János Bolyai Mathematical Society, 1999, pp. 157-197.
6. Antoine Bossard, The decycling problem in hierarchical cubic networks, Journal of Supercomputing 69 (2014), no. 1, 293-305.
7. _, The decycling problem in hierarchical cubic networks, The Journal of Supercomputing 69 (2014), no. 1, 293-305.
8. Vipin Chaudhary and Jake K. Aggarwal, A generalized scheme for mapping parallel algorithms, IEEE Transactions on Parallel and Distributed Systems 4 (1993), no. 3, 328-346.
9. Joseph D. Chavez and Rolland Trapp, The cyclic cutwidth of trees, Discrete Applied Mathematics 87 (1998), no. 1-3, 25-32.
10. Wai-Kai Chen and Matthias F. Stallmann, On embedding binary trees into hypercubes, Journal of Parallel and Distributed Computing 24 (1995), no. 2, 132-138.
11. Qi Cheng, Pingshan Li, and Min Xu, Conditional (edge-)fault-tolerant strong Menger (edge) connectivity of folded hypercubes, Theoretical Computer Science 728 (2018), 1-8.
12. Sheshayya A. Choudum and V. Sunitha, Augmented cubes, Networks 40 (2002), no. 2, 71-84.
13. Tomáš Dvořák, Dense sets and embedding binary trees into hypercubes, Discrete Applied Mathematics 155 (2007), no. 4, 506-514.
14. Jianxi Fan and Xiaohua Jia, Embedding meshes into crossed cubes, Information Sciences 177 (2007), no. 15, 31513160.
15. Jianxi Fan, Xiaohua Jia, and Xiaola Lin, Complete path embeddings in crossed cubes, Information Sciences 176 (2006), no. 22, 3332-3346.
16. Weibei Fan, Jianxi Fan, Cheng-Kuan Lin, Guijuan Wang, Baolei Cheng, and Ruchuan Wang, An efficient algorithm for embedding exchanged hypercubes into grids, The Journal of Supercomputing 75 (2019), no. 2, 783-807.
17. Weibei Fan, Jianxi Fan, Cheng-Kuan Lin, Yan Wang, Yue-Juan Han, and Ruchuan Wang, Optimally embedding 3-ary n-cubes into grids, Journal of Computer Science and Technology 34 (2019), no. 2, 372-387.
18. Jywe-Fei Fang and Kuan-Chou Lai, Embedding the incomplete hypercube in books, Information Processing Letters 96 (2005), no. 1, 1-6.
19. Litao Guo and Xiaofeng Guo, Fault tolerance of hypercubes and folded hypercubes, The Journal of Supercomputing 68 (2013), no. 3, 1235-1240.
20. Yuejuan Han, Jianxi Fan, Shukui Zhang, Jiwen Yang, and Peide Qian, Embedding meshes into locally twisted cubes, Information Sciences 180 (2010), no. 19, 3794-3805.
21. Larry H. Harper, Optimal assignments of numbers to vertices, Journal of the Society for Industrial and Applied Mathematics 12 (1964), no. 1, 131-135.
22. Optimal numberings and isoperimetric problems on graphs, Journal of Combinatorial Theory 1 (1966), no. 3, 385-393.
23. Marie-Claude Heydemann, J. C. Meyer, and Dominique Sotteau, On forwarding indices of networks, Discrete Applied Mathematics 23 (1989), no. 2, 103-123.
24. John H. Lindsey II, Assignment of numbers to vertices, The American Mathematical Monthly 71 (1964), no. 5, 508.
25. Wilfried Imrich, Sandi Klavžar, and Douglas F. Rall, Topics in graph theory: graphs and their cartesian product, CRC Press, 2008.
26. Che-Nan Kuo and Yu-Huei Cheng, Cycles embedding in folded hypercubes with conditionally faulty vertices, Discrete Applied Mathematics 220 (2017), 55-59.
27. Yung-Ling Lai and Kenneth Williams, A survey of solved problems and applications on bandwidth, edgesum, and profile of graphs, Journal of Graph Theory 31 (1999), no. 2, 75-94.
28. F. Thompson Leighton, Introduction to parallel algorithms and architectures: arrays trees hypercubes, Morgan Kaufmann Publishers, 1992.
29. Joseph Y.-T. Leung, Oliver Vornberger, and James D. Witthoff, On some variants of the bandwidth minimization problem, SIAM Journal on Computing 13 (1984), no. 3, 650-667.
30. Yamin Li, Shietung Peng, and Wanming Chu, Metacube - a versatile family of interconnection networks for extremely large-scale supercomputers, Journal of Supercomputing 53 (2010), no. 2, 329-351.
31. Aixia Liu, Shiying Wang, Jun Yuan, and Jing Li, On g-extra conditional diagnosability of hypercubes and folded hypercubes, Theoretical Computer Science 704 (2017), 62-73.
32. Huiqing Liu, Shunzhe Zhang, and Dong Li, On g-extra conditional diagnosability of hierarchical cubic networks, Theoretical Computer Science 790 (2019), no. 1, 66-79.
33. You Lu and Jun-Ming Xu, Panconnectivity of Cartesian product graphs, The Journal of Supercomputing 56 (2009), no. 2, 182-189.
34. Paul Manuel, Indra Rajasingh, Bharati Rajan, and Helda Mercy, Exact wirelength of hypercubes on a grid, Discrete Applied Mathematics 157 (2009), no. 7, 1486-1495.
35. Paul Manuel, Indra Rajasingh, and R. Sundara Rajan, Embedding variants of hypercubes with dilation 2, Journal of Interconnection Networks 13 (2012), 1250004.
36. Akira Matsubayashi, Separator-based graph embedding into multidimensional grids with small edge-congestion, Discrete Applied Mathematics 185 (2015), 119-137.
37. Mirka Miller, R. Sundara Rajan, Natarajan Parthiban, and Indra Rajasingh, Minimum linear arrangement of incomplete hypercubes, The Computer Journal 58 (2014), no. 2, 331-337.
38. Jaroslav Opatrný and Dominique Sotteau, Embeddings of complete binary trees into grids and extended grids with total vertex-congestion 1, Discrete Applied Mathematics 98 (2000), no. 3, 237-254.
39. R. Sundara Rajan, T. M. Rajalaxmi, Jia-Bao Liu, and Guruswamy Sethuraman, Wirelength of embedding complete multipartite graphs into certain graphs, Discrete Applied Mathematics 280 (2020), 221-236.
40. Indra Rajasingh and Micheal Arockiaraj, Linear wirelength of folded hypercubes, Mathematics in Computer Science 5 (2011), no. 1, 101-111.
41. Indra Rajasingh, Bharati Rajan, and R. Sundara Rajan, Embedding of hypercubes into necklace, windmill and snake graphs, Information Processing Letters 112 (2012), no. 12, 509-515.
42. __, Embedding of special classes of circulant networks, hypercubes and generalized Petersen graphs, International Journal of Computer Mathematics 89 (2012), no. 15, 1970-1978.
43. Parameswaran Ramanathan and Kang G. Shin, Reliable broadcast in hypercube multicomputers, IEEE Transactions on Computers 37 (1988), no. 12, 1654-1657.
44. Yousef Saad and Martin H. Schultz, Topological properties of hypercubes, IEEE Transactions on Computers $\mathbf{3 7}$ (1988), no. 7, 867-872.
45. Arul Jeya Shalini, Jessie Abraham, and Micheal Arockiaraj, A linear time algorithm for embedding locally twisted cube into grid network to optimize the layout, Discrete Applied Mathematics (2018), in press, doi:10.1016/j.dam.2018.06.039.
46. Jadranka Skorin-Kapov and Asoo J. Vakharia, Scheduling a flow-line manufacturing cell: a tabu search approach, International Journal of Production Research 31 (1993), no. 7, 1721-1734.
47. Ladislav Stacho and Imrich Vrt'o, Bisection width of transposition graphs, Discrete Applied Mathematics 84 (1998), no. 1-3, 221-235.
48. Harry Wiener, Structural determination of paraffin boiling points, Journal of the American Chemical Society 69 (1947), no. 1, 17-20.
49. Angela Y. Wu, Embedding of tree networks into hypercubes, Journal of Parallel and Distributed Computing 2 (1985), no. 3, 238-249.
50. Junming Xu, Topological structure and analysis of interconnection networks, Network theory and applications, vol. 7, Springer Science \& Business Media, 2013.
51. Weihua Yang, Shuli Zhao, and Shurong Zhang, Strong Menger connectivity with conditional faults of folded hypercubes, Information Processing Letters 125 (2017), 30-34.
52. Jun Yuan, Aixia Liu, Xiao Qin, Jifu Zhang, and Jing Li, g-good-neighbor conditional diagnosability measures for 3-ary n-cube networks, Theoretical Computer Science 626 (2016), no. 1, 144-162.

[^0]: ${ }^{1}$ Department of Mathematics, Hindustan Institute of Technology and Science, Padur, Chennai 603103, India
 ${ }^{2}$ University of New England, School of Science and Technology, Armidale, NSW 2351, Australia
 ${ }^{3}$ Faculty of Mathematics and Physics, University of Luubljana, Slovenia
 ${ }^{4}$ Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia
 ${ }^{5}$ Institute of Mathematics, Physics and Mechanics, Lubbljana, Slovenia
 ${ }^{6}$ School of Information Technology and Electrical Engineering, Faculty of Engineering, Architecture and Information Technology, St Lucia QLD 4072, Australia
 ${ }^{7}$ Department of Mathematics, SSN College of Engineering, Chennai 603110, India
 E-mail addresses: vprsundar@gmail.com, tkalinow@une.edu.au, sandi.klavzar@fmf.uni-lj.si, h.mokhtar@uq.edu.au, laxmi.raji18@gmail.com.

 2010 Mathematics Subject Classification. 05C10,68R10.
 Key words and phrases. Embedding; dilation; wirelength; edge congestion; bisection width; hypercube; complete multipartite graph; folded hypercube; wheel; Cartesian product of graphs.

