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LOWER BOUNDS FOR DILATION, WIRELENGTH, AND EDGE

CONGESTION OF EMBEDDING GRAPHS INTO HYPERCUBES

R. SUNDARA RAJAN1, THOMAS KALINOWSKI2, SANDI KLAVŽAR3,4,5, HAMID MOKHTAR6,
AND T.M. RAJALAXMI7

Abstract. Interconnection networks provide an effective mechanism for exchanging data between
processors in a parallel computing system. One of the most efficient interconnection networks is the
hypercube due to its structural regularity, potential for parallel computation of various algorithms,
and the high degree of fault tolerance. Thus it becomes the first choice of topological structure of
parallel processing and computing systems. In this paper, lower bounds for the dilation, wirelength,
and edge congestion of an embedding of a graph into a hypercube are proved. Two of these bounds
are expressed in terms of the bisection width. Applying these results, the dilation and wirelength of
embedding of certain complete multipartite graphs, folded hypercubes, wheels, and specific Cartesian
products are computed.

1. Introduction

A suitable interconnection network is an important part for the design of a multicomputer or
multiprocessor system. Such a network is usually modeled by a symmetric graph, where the nodes
represent the processing elements and the edges represent the communication channels. Desirable
properties of an interconnection network include symmetry, embedding capabilities, relatively small
degree, small diameter, scalability, robustness, and efficient routing [43]. One of the most efficient
interconnection networks is the hypercube due to its structural regularity, potential for parallel
computation of various algorithms, and the high degree of fault tolerance [44].

The hypercube has many excellent features and thus becomes the first choice of topological struc-
ture of parallel processing and computing systems. The machines based on hypercubes such as the
Cosmic Cube from Caltech, the iPSC/2 from Intel, and Connection Machines have been implemented
commercially [12]. Hypercubes are very popular models for parallel computation because of their
symmetry and relatively small number of interprocessor connections. Among the hypercube-based
interconnection networks designed for extremely large-scale supercomputers that were studied in the
last decade we mention metacubes [30], hierarchical cubic networks [6, 32], and k-ary n-cubes [17, 52].
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The hypercube embedding problem is the problem of mapping a communication graph into a hyper-
cube multicomputer. Hypercubes are known to simulate other structures such as grids and binary
trees [10, 34].

Graph embedding is an important technique that maps a guest graph into a host graph, usually
an interconnection network [8]. The quality of an embedding can be measured by certain cost
criteria. One of these criteria which is considered very often is the dilation. The dilation of an
embedding is defined as the maximum distance between a pair of vertices of the host graph that are
images of adjacent vertices of the guest graph. It is a measure for the communication time needed
when simulating one network on another [28]. A closely related and important cost criterion is the
wirelength of an embedding which is the sum of the dilations in the host graph of edges in the guest
graph. The wirelength of a graph embedding arises from VLSI design, data structures and data
representations, networks for parallel computer systems, biological models that deal with cloning
and visual stimuli, parallel architecture, structural engineering and so on [26, 39, 50].

Another important cost criterion is the edge congestion. The edge congestion of an embedding is
the maximum number of edges of the guest graph that are embedded on any single edge of the host
graph. An embedding with a large edge congestion faces many problems, such as long communication
delay, circuit switching, and the existence of different types of uncontrolled noise. In data networking,
network edge congestion occurs when a link or node is carrying so much data that its quality of service
deteriorates. Typical effects include packet loss or the blocking of new connections. Therefore, a
minimum edge congestion is a most desirable feature in network embedding [13, 36].

Graph embeddings have been well-studied for a number of networks [2, 3, 10, 13, 14, 15, 16, 17,
18, 20, 27, 34, 35, 37, 41, 42, 45, 50]. While in actual supercomputing applications it is usually not
sufficient to be able to embed individual graphs optimally, a good understanding of the embedding
behaviour of single graphs can provide insights to support the development of methodologies and
algorithms for solving the more complex problems arising in practice. In this paper, we study the
dilation, wirelength, and congestion of embeddings of graphs into hypercubes and proceed as follows.
In the next section concepts needed are formally introduced. In Section 3, we consider the dilation
of embedding into Qn and in the main result characterize the graphs G with dil(G,Qn) 6 n − 1:
they are precisely the graphs which contain a perfect anti-matching. Then, in Section 4, we prove
a general lower bound on the edge congestion and a lower bound on the wirelength of embeddings
into hypercubes. Both bounds are expressed in terms of the bisection width. In the remainder of the
paper these results are applied to particular graphs which have been studied in the supercomputing
literature before [33, 19, 7]. The specific results obtained in Sections 5 to 8 are summarized in Table 1,
where K2n−p,...,2n−p , FQn and W2n denote the complete 2p-partite graph with parts of size 2n−p, the
folded n-hypercubes and the 2n-wheel, respectively, and G�H is the cartesian product of two graphs
G and H (following standard notation in the graph theory literature, see for instance [25]). All of
these graphs are defined precisely in the sections containing the corresponding results.

2. Preliminaries

In this section, we give basic definitions and preliminaries related to embedding problems. Let G
and H be finite graphs. Then an embedding of G into H is a pair (f, Pf ), where f : V (G) → V (H)
is a one-to-one mapping and Pf is a mapping from E(G) to the set of paths in H such that each
edge e = uv ∈ E(G) is assigned a path Pf (e) in H between f(u) and f(v). By abuse of language we
will also refer to an embedding (f, Pf ) simply by f .

The length of Pf (e) is the dilation dilf (e) of the edge e (with respect to the embedding (f, Pf )).
The maximum dilation over all edges of G is called the dilation of the embedding. The dilation of

embedding G into H is the minimum dilation taken over all embeddings of G into H and denoted
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Table 1. Summary of the results in Sections 5 to 8.

Embedding

f : G → Qn
Dilation Wirelength

G = K2n−p,...,2n−p

n for p = n
n− 1 for n− log2(n+ 1)

< p 6 n− 1
(Corollary 1)

n22n−p−2(2p − 1)
(Theorem 4)

G = FQn 2 [35] n2n (Theorem 5)

G = W2n
n

(Theorem 1)
(n+ 2)2n−1

(Theorem 6)

G = K2n/2 �K2n/2

(n even)
6 n/2

n23n/2−2

(Theorem 8)

by dil(G,H), cf. [3]. In other words,

dil(G,H) = min
f

max
e∈E(G)

dilf (e) ,

where the minimum is taken over all injections f : V (G) → V (H). It is not necessary to specify Pf

when we are interested in the dilation of embedding G into H, because we can take Pf (uv) to be any
shortest path between f(u) and f(v). The diameter of H, denoted by diam(H), is the maximum
distance between any two vertices of H, and this provides a trivial upper bound for dil(G,H).

The wirelength of an embedding f = (f, Pf ) of G into H is

WLf (G,H) =
∑

eG∈E(G)

dilf (eG) , (1)

and the wirelength of embedding G into H is

WL(G,H) = min
f

WLf(G,H) ,

see [34]. We also refer to [2, 3, 38] for the search of embeddings of G into H that attain the value
WL(G,H).

Let f = (f, Pf ) be an embedding of G into H. For e = uv ∈ E(H), let ECf (e) denote the number
of edges e′ ∈ E(G) such that e is in the path Pf (e

′) between f(u) and f(v) in H. Then the edge

congestion of f is

ECf (G,H) = max
e∈E(H)

ECf (e)

and the edge congestion of embedding G into H is

EC(G,H) = min
f

ECf (G,H) ,

where the minimum is taken over all embeddings f = (f, Pf ) of G into H. Note that

WLf (G,H) =
∑

eH∈E(H)

ECf (eH) . (2)
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The above problems can be specialized to several distance problems. For example, if the host graph is
a path, then the dilation of embedding graph into a path is the bandwidth problem. Further distance
problems are listed in Table 2, where Pn, Cn and Kn, are the path, the cycle, and the complete
graph of order n, respectively, and Ka,b is the complete bipartite graphs on a+ b vertices.

Table 2. Various embedding problems

Embedding

f : G → H
Dilation Wirelength Congestion

H = Pn Bandwidth [22] MinLA [1] Cutwidth [21]

H = Cn Cyclic bandwidth [29] Cyclic wirelength [4] Cyclic cutwidth [9]

G = Kn diam(H) [49] Wiener index of H [48] Forwarding index of H [23]

G = Ka,b Makespan [46] Average load Maximum load

Let n > 1. The n-cube (n-dimensional hypercube) has vertex set {0, 1}n, and vertices x, y ∈ V (Qn)
are adjacent if and only if the corresponding binary strings differ exactly in one bit. Equivalently,
the vertices of Qn can be identified with integers 0, 1, . . . , 2n − 1, where vertices i and j are adjacent
if and only if i− j = ±2p for some integer p > 0.

For disjoint subsets A,B ⊆ V (G) we will use the notation EG(A,B) = {uv ∈ E(G) | u ∈ A, v ∈ B}
and EG(A) = {uv | u, v ∈ A}. If x is a vertex of a graph G, then Ni(x) is the set of vertices in G at
distance i from x. The maximum degree of G is denoted by ∆(G) and its order by n(G).

3. Graphs with large dilation of embedding into hypercubes

The dilation, the wirelength, and the edge congestion problem are different in the sense that an
embedding that gives the minimum dilation need not give the minimum congestion (wirelength) and
vice-versa. From diam(Qn) = n we obtain immediately the upper bound dil(G,Qn) 6 n for every
graph G. To characterize graphs G of order 2n with dil(G,Qn) = n, we need the following concept.
A pair (u, u′) ∈ V (G) × V (G), is said to be an antipodal pair (of vertices) if the distance between
u and u′ is equal to the diameter of G. If this is the case, we also say that u′ is an antipodal
vertex of u and u is an antipodal vertex of u′. In the hypercube Qn, every vertex u ∈ V (Qn) has
a unique antipodal vertex which we denote by ū. If G is a graph, then the set of pairs of vertices
X = {{x1, y1}, . . . , {xk, yk}} forms an anti-matching, if x1y1 /∈ E(G), . . . , xkyk /∈ E(G). That is, X
is an anti-matching if x1y1, . . . , xkyk form a matching in the complement of G, that is, the graph
which has the same vertex set as G, and edge set {xy |x, y ∈ V (G), xy 6∈ E(G)}. In addition, we say
that X is a perfect anti-matching if 2|X| = n(G). Now we have the following characterization.

Theorem 1. Let G be a graph of order 2n. Then dil(G,Qn) 6 n − 1 if and only if G contains a

perfect anti-matching.

Proof. Let dil(G,Qn) 6 n − 1 and let (f, Pf ) be a corresponding embedding of G into Qn, that is,
dilf (G,Qn) = dil(G,Qn). Consider the partition X ′ = {{u, u} | u ∈ V (Qn)} of V (Qn) into 2n−1

antipodal pairs. If e = {f−1(u), f−1(ū)} ∈ E(G) for some u ∈ V (Qn), then

dilf (G,Qn) > dilf (e) > distQn(u, ū) = n,

and this contradicts the assumption. We conclude that f−1(u) is not adjacent to f−1(u), and it
follows that X = {{f−1(u), f−1(u)} | u ∈ V (Qn)} is a perfect anti-matching.
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Conversely, let X be a perfect anti-matching of G. We now define an embedding (f, Pf ) of G
into Qn by mapping each pair {x, y} from X into an antipodal pair of vertices of Qn, that is,
{f(x), f(y)} = {v, v} for some v ∈ V (Qn). Since each vertex of Qn has a unique antipodal vertex, it
follows that dilf (e) 6 n− 1 for each edge e of G and hence dil(G,Qn) 6 n− 1. �

To determine a large class of graphs G with dil(G,Qn) = n− 1 we state the following lemma that
could be applied elsewhere.

Lemma 1. If G is a graph of order 2n, then

dil(G,Qn) > max

{

k :

k−1
∑

i=1

(

n

i

)

< ∆(G)

}

.

Proof. Let k be a positive integer satisfying
(n
0

)

+· · ·+
( n
k−1

)

< ∆(G), and let (f, Pf ) be an embedding

of G into Qn. Let u be a vertex of G with deg(u) = ∆(G) and let f(u) = v ∈ V (Qn). Setting
X = N1(v) ∪ · · · ∪Nk−1(v), the assumption on k implies that

|X| = |N1(v)| + · · ·+ |Nk−1(v)| =

k−1
∑

i=1

(

n

i

)

< ∆(G) .

Thus, there exists at least one vertex w of G adjacent to u such that f(w) ∈ V (Qn) \X. It follows
that the length of Pf (uw) is at least k and consequently dil(G,Qn) > k. �

Combining Lemma 1 with Theorem 1 we obtain the following corollary.

Corollary 1. If G is a graph of order 2n with ∆(G) > 2n−n−1 that contains a perfect anti-matching,

then dil(G,Qn) = n− 1.

Proof. By Theorem 1, dil(G,Qn) 6 n− 1 and the reverse inequality follows from Lemma 1 and

n−2
∑

i=1

(

n

i

)

= 2n −

(

n

0

)

−

(

n

n− 1

)

−

(

n

n

)

= 2n − n− 2 < ∆(G). �

For illustration, consider G = K4,4,4,4. Then ∆(G) = 12 > 24 − 4− 1. Since G contains a perfect
anti-matching, dil(G,Q4) = 3. In Figure 1 a corresponding embedding is shown.
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116
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8
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6 7

4 5

2 3

0 1

14 15

12 13

10 11

8 9

K4,4,4,4 Q4

Figure 1. An embedding of K4,4,4,4 into Q4 with dilation 3. The vertices of K4,4,4,4

are labeled such that we can take f to be the identity. The perfect anti-matching in
G consists of the pairs {i, 15 − i} for i = 0, 1, . . . , 7.



6 R.S. RAJAN, T. KALINOWSKI, S. KLAVŽAR, H. MOKHTAR, AND T.M. RAJALAXMI

4. Two lower bounds in terms of the bisection width

In this section, we give a general lower bound on the edge congestion and on the wirelength of
embedding into hypercubes. Both bound involve the bisection width that is defined as follows. The
bisection width BW (G) of a graph G is the minimum number of edges necessary in an edge cut so
that the sizes of the two sides of the cut differ by at most one.

The first lower bound is established by the following averaging argument.

Theorem 2. If G and H are graphs of the same order, then

EC(G,H) >
BW (G)

BW (H)
.

Proof. Set n = n(G) (= n(H)). Let A∪B be a partition of V (H) such that |A| = ⌈n/2⌉, |B| = ⌊n/2⌋,
and |EH(A,B)| = BW (H), and let f : G → H be an embedding with ECf (G,H) = EC(G,H).
Then

BW (G) 6
∣

∣EG(f
−1(A), f−1(B))

∣

∣ 6
∑

e∈EH(A,B)

ECf (e) . (3)

where the first inequality follows from the definition of the bisection width, and the second one from
the fact that for every edge uv ∈ EG(f

−1(A), f−1(B)) the path Pf (uv) has to use at least one edge
from EH(A,B). Finally, we conclude

BW (G)

BW (H)
=

BW (G)

|EH(A,B)|
6

1

|EH(A,B)|

∑

e∈EH (A,B)

ECf (e) 6 max
e∈EH(A,B)

ECf (e)

6 max
e∈E(H)

ECf (e) = ECf (G,H) = EC(G,H). �

Corollary 2. If G is a graph of order 2n, then

EC(G,Qn) >
BW (G)

2n−1
.

Proof. The result follows from Theorem 2 and the fact that BW (Qn) = 2n−1, see [47]. �

The lower bound for the wirelength is the following.

Theorem 3. If G is a graph of order 2n, then WL(G,Qn) > n · BW (G) .

Proof. Let E(Qn) = S1 ∪ · · · ∪ Sn be the partition of E(Qn) where Si consists of the edges whose
incident vertices differ in the ith coordinate. Then Qn \ Si consists of two vertex-disjoint (n − 1)-
cubes. Moreover, |Si| = 2n−1 = BW (Qn), and we can now estimate as follows, where the minimum
is taken over all embeddings of G into Qn:

WL(G,Qn) = min
f

∑

e∈E(Qn)

ECf (e) = min
f

n
∑

i=1

∑

e∈Si

ECf (e)
(3)

> min
f

n
∑

i=1

BW (G) = n · BW (G) .

The first equality above holds by (1) and (2), and the second equality follows because the sets Si

form a partition of E(Qn). �

5. Embeddings of complete multipartite graphs

In this section, we consider the complete p-partite graph G = Kn1,...,np of order 2n. Recall that G
contains p independent sets containing ni, i ∈ [p], vertices, and all possible edges between vertices
from different parts.

From Theorem 1 it follows that dil(G,Qn) = n if at least one of the pi is odd and dil(G,Qn) 6 n−1
otherwise (that is, if all the pi are even). We will next determine the wirelengths of embedding certain
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complete p-partite graphs into n-cubes, and start by determining the bisection widths of balanced
complete multipartite graphs.

Lemma 2. If G is the complete t-partite graph K2r,...,2r, with 2tr vertices, t > 2, r > 1, then

BW (G) = r2t(t− 1) .

Proof. Let V (G) = A ∪ B be a partition with |A| = |B| = tr such that A and B each contains half
of the vertices in every maximal independent set. Then

BW (G) 6 |EG(A,B)| = |E(G)| − |EG(A)| − |EG(B)| = 4r2
(

t

2

)

− 2r2
(

t

2

)

= r2t(t− 1).

For the reverse inequality, let V (G) = A ∪ B be a partition with |A| = |B| = tr and |EG(A,B)| =
BW (G). For i = 1, . . . , t, let ni be the number of vertices of A in the i-th independent set. Then we
apply the Cauchy-Schwarz inequality to obtain the bound

|EG(A)| =
∑

16i<j6t

ninj =
1

2





(

t
∑

i=1

ni

)2

−

t
∑

i=1

n2
i



 =
1

2

(

(tr)2 −

t
∑

i=1

n2
i

)

6
r2t(t− 1)

2
.

For the same reason, |EG(B)| 6 r2t(t− 1)/2, and consequently,

BW (G) = |EG(A,B)| = |E(G)| − (|EG(A)|+ |EG(B)|) > 4r2
(

t

2

)

− r2t(t− 1) = r2t(t− 1) . �

We now want to determine the wirelength for embedding the complete 2p-partite graph G =
K2n−p,...,2n−p , 1 6 p < n into Qn. In the proof of the following theorem, it will be convenient to have
an explicit notation for the function which maps a non-negative integer to the bitstring corresponding
to its binary representation. More specifically, we will use the function φ : N → {0, 1}N, defined by

φ
(

2k−1x1 + 2k−2x2 + 2k−3x3 + · · ·+ 21xk−1 + 20xk

)

= x1x2 . . . xk.

Theorem 4. If G is the complete 2p-partite graph K2n−p,...,2n−p, where 1 6 p < n, then

WL(G,Qn) = n · 22n−p−2 (2p − 1) .

Proof. Combining Lemma 2 for t = 2p and r = 2n−p−1 with Theorem 3, we obtain

WL(G,Qn) > n · BW (G) = n · 22n−p−2 (2p − 1).

In order to prove the reverse inequality we construct an embedding f : G → Qn in the following way.
Let V (G) = V1 ∪ · · · ∪ V2p be the partition of V (G) into 2p independent sets of size 2n−p. Label the
vertices of V (G) with the numbers 0, 1, 2, . . . , 2n − 1, in such a way that

Vi =
{

j2p+1 + i− 1 : j = 0, 1, 2, . . . , 2n−p−1 − 1
}

∪
{

j2p+1 − i : j = 1, 2, 3, . . . , 2n−p−1
}

. (4)

Recall that V (Qn) = {0, 1}n and define f : V (G) → V (Qn) by mapping x ∈ V (G) to its binary
representation. In other words, f is the restriction of φ to the set {0, 1, . . . , 2n − 1}, that is, x =
2n−1x1 + 2n−2x2 + · · · + 20xn is mapped to f(x) = φ(x) = x1x2 . . . xn. We will now show that for
this embedding, WLf (G,Qn) = n · 22n−p−2 (2p − 1), which concludes the proof. For x, y ∈ {0, 1}n,
let d(x, y) denote their Hamming distance, that is, d(x, y) = |x1− y1|+ · · ·+ |xn− yn|, which is equal
to the distance between x and y in Qn. It follows from (4) that, for every i ∈ {1, . . . , 2p},

f(Vi) = {0, 1}n−p−1 × {φ(i− 1), φ(2p+1 − i)}.
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For instance, for p = 3 and n = p+ 3 = 6,

f(V1) =















































000000,
010000,
100000,
110000,
001111,
011111,
101111,
111111















































, f(V2) =















































000001,
010001,
100001,
110001,
001110,
011110,
101110,
111110















































, f(V3) =















































000001,
010010,
100010,
110010,
001101,
011101,
101101,
111101















































, etc.

If x is an arbitrary vertex in Vi, and k ∈ {1, . . . , n} is any of the positions, then exactly half of the
elements of f(Vi) differ from f(x) in position k. For k ∈ {1, 2, . . . , n− p− 1} this is because the first
n − p − 1 positions run twice through the vertices of Qn−p−1, and for k ∈ {n − p, . . . , n} it follows
from the fact that φ(i− 1) and φ(2p+1− i) are antipodal vertices in Qp+1. As a consequence, for any
fixed x ∈ Vi,

∑

y∈Vi\x

d(f(x), f(y)) =

n
∑

k=1

1

2
|Vi| = n2n−p−1,

hence

∑

{x,y}∈(Vi2 )

d(f(x), f(y)) =
1

2

∑

x∈Vi

∑

y∈Vi\x

d(f(x), f(y)) =
1

2

∑

x∈Vi

n2n−p−1 = n22(n−1−p).

As this is true for every i ∈ {1, 2, . . . , 2p},

WLf (G,Qn) =
∑

{x,y}∈(V (Qn)
2 )

d(x, y) −
2p
∑

i=1

∑

{x,y}∈(Vi2 )

d(f(x), f(y))

= n22n−2 − 2pn22(n−1−p) = n22n−2−p(2p − 1) . �

6. Embeddings of folded hypercubes

The n-dimensional folded hypercube FQn is the graph obtained fromQn by adding, for every vertex
x = x1 . . . xn, the edge between x and its antipodal vertex x = x1 . . . xn, where xi = 1− xi, cf. [50].
Folded hypercubes are of wide current interest in reliability and fault tolerance of interconnection
networks, see [11, 26, 31, 51]. In this section, we add to the known results on folded hypercubes their
wirelength.

Theorem 5. For all n > 2, WL(FQn, Qn) = n2n.

Proof. In [40] it was proved that BW (FQn) = 2n, and with Theorem 3 this implies WL(FQn, Qn) >
n2n. To prove the reverse inequality, let id : FQn → Qn be the identity embedding, that is, id(v) = v,
for every v ∈ V (FQn) (and where the second v is considered as a vertex of Qn). For this embedding,
the n2n−1 edges of FQn that are also the edges of Qn contribute n2n−1 to the wirelength. and each
of the 2n−1 antipodal edges contributes n to the wirelength. We conclude

WLid(FQn, Qn) = n2n−1 + 2n−1n = n · 2n . �
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7. Embeddings of wheels

Let n > 4. The wheel Wn of order n is the graph obtained from a cycle Cn−1 by adding a new
vertex x and joining x to all the vertices of the cycle. Vertex x is called the hub of the wheel and
the edges incident with x are spokes of the wheel. Since the hub vertex is adjacent to all other
vertices, the wheel does not contain an anti-matching, and by Theorem 1, dil(W2n , Qn) = n. We
next determine the wirelength of embedding W2n into Qn.

Theorem 6. If n > 2, then WL(W2n , Qn) = (n+ 2)2n−1.

Proof. For every embedding the spokes contribute
n
∑

k=1

k

(

n

k

)

= n2n−1

to the wirelength. Since Qn is bipartite, the 2n − 1 cycle edges contribute at least 2n. This gives a
lower bound of n2n−1 + 2n = (n+ 2)2n−1, and using a Gray code this bound can be achieved. �

8. Embeddings of some Cartesian products

Recall that the Cartesian product G�H of graphs G and H is the graph with the vertex set
V (G) × V (H), vertices (g, h) and (g′, h′) being adjacent if either g = g′ and hh′ ∈ E(H), or h = h′

and gg′ ∈ E(G). For more information on this product see the book [25]. We will use the following
result on the edge-isoperimetric problem for Cartesian products of complete graphs (see [5] for a
survey of related results).

Theorem 7. ([24]) Let G = Kp1 �Kp2 � · · · �Kpt with p1 6 p2 6 · · · 6 pt, and let m be an integer

with 1 6 m 6 p1p2 · · · pt. If H is a subgraph of G with |V (H)| = m, then |E(H)| 6 |E(H∗)|, where
H∗ is the subgraph induced by the first m vertices in lexicographic order, where we take

V (G) = {(a1, a2, . . . , at) : 1 6 ai 6 pi for i = 1, 2 . . . , t} ,

and the lexicographic order is defined by (a1, a2, . . . , at) < (b1, b2, . . . , bt) if there exists an index i
with ai < bi and aj = bj for all j < i.

As a corollary, we obtain the bisection widths for products of complete graphs.

Corollary 3. If G = K2p1 �Kp2 �Kp3 � · · · �Kpt with 2p1 6 p2 6 p3 6 · · · 6 pt, then BW (G) =
p21p2 · · · pt.

Proof. We have |E(G)| = p1p2 · · · pt (2p1 + p2 + p3 + · · ·+ pt − t), and for any A ⊆ V (G) with |A| =
p1p2 · · · pt, Theorem 7 implies

|EG(A)| 6
1

2
p1p2 · · · pt (p1 + p2 + · · ·+ pt − t)

with equality if A is the set of vertices (a1, . . . , at) with a1 6 p1 or the set of vertices (a1, . . . , at)
with a1 > p1. This implies that for every partition V (G) = A ∪B with |A| = |B| = p1p2 · · · pt,

|EG(A,B)| = |E(G)| − |EG(A)| − |EG(B)|

> p1p2 · · · pt (2p1 + p2 + p3 + · · ·+ pt − t)− p1p2 · · · pt (p1 + p2 + · · ·+ pt − t) = p21p2 · · · pt

with equality if A is the set of vertices (a1, . . . , at) with a1 6 p1. �

Theorem 8. Let n be a positive even integer, and let G = K2n/2 �K2n/2 . Then

WL(G,Qn) = n23n/2−2 .
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Proof. From Corollary 3 with t = 2, p1 = 2n/2−1 and p2 = 2n/2, we obtain BW (G) = 23n/2−2, and
together with Theorem 3 this implies the lower bound. To prove the upper bound we embed G into
Qn, by mapping a vertex (a, b) ∈ V (G) = {0, 1, . . . , 2n/2 − 1} × {0, 1, . . . , 2n/2 − 1} with

a =

n/2
∑

i=1

ai2
n/2−i, b =

n/2
∑

i=1

bi2
n/2−i

to the binary string a1a2 . . . an/2b1b2 . . . bn/2 ∈ {0, 1}n = V (Qn). For i ∈ {1, . . . , n}, let V (Qn) =
Ai ∪Bi be the partition with Ai = {x ∈ V (Qn) : xi = 0} and Bi = {x ∈ V (Qn) : xi = 1}. Then

E(Qn) =
n
⋃

i=1

EQn(Ai, Bi)

and since each of the sets f−1(Ai) and f−1(Bi) induces a subgraph ofG isomorphic toK2n/2−1 �K2n/2 ,
we obtain

WLf (G,Qn) =

n
∑

i=1

∑

e∈EQn(Ai,Bi)

ECf (e) =

n
∑

i=1

∣

∣EG

(

f−1(Ai), f
−1(Bi)

)∣

∣

=
n
∑

i=1

BW (G) = n · BW (G) = n23n/2−2. �

Concluding Remarks

In this paper, we have obtained lower bounds for dilation, wirelength, and edge congestion of
an embedding of graphs into n-cubes. In particular, we found lower bounds for congestion and
wirelength in terms the bisection width of the guest graph. This technique allows the computation
of the exact dilation and wirelength for a range of networks. An open problem remains to determine
the edge congestion of these networks. It also opens up the study of embedding parameters which
remains unsolved for several good candidates of guest architectures. Another direction for extending
our work to make it more directly applicable is the study of weighted versions of the embedding
problem.
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