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Abstract

If G = (VG, EG) is a graph, then S ⊆ VG is a global defensive k-alliance in G
if (i) each vertex not in S has a neighbor in S and (ii) each vertex of S has at least
k more neighbors inside S than outside of it. The global defensive k-alliance
number of G is the minimum cardinality among all global defensive k-alliance
in G. In this paper this concept is studied on the generalized hierarchical,
the lexicographic, the corona, and the edge corona product. For all of these
products upper bounds expressed with related invariants of the factors are given.
Sharpness of the bounds are also discussed.
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1 Introduction

Alliances form a phenomena in many ways, say in politics, in relations between
people (alliances such as common friendship), in social networks (say, Twitter users
following each other), in natural sciences (say, animals from the same group), to
list just a very small sample of examples. Since graphs are standard mathematical
models for several of such phenomena, there is a strong need for a theory of alliances
in graphs. The foundation for this theory was set up in [13], where alliances were
classified into defensive, offensive, and powerful.
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In this paper we are interested in defensive alliances, the theory of which has
been recently surveyed in [23]. More precisely, we are interested in global defensive
k-alliances, a concept that widely generalizes global defensive alliances and goes
back to the paper [16] published two years before [13]. We refer to [15, 20] for
several mathematical properties of global defensive k-alliances and to [10, 13, 16]
for applications of alliances in as different areas as national defence, studies of RNA
structures, and fault-tolerant computing.

Since determining an optimal (global) defensive (k-)alliance is NP-hard, a way
to approach the problem is via dynamic programming: decompose a given graph
into smaller parts, solve the problem on these smaller graphs, and deduce a solution
or an approximate the original problem from the obtained partial solutions. Graph
products and similar operations are natural candidates for such an approach. In [6],
the global defensive alliance was investigated on the join, the corona, and the com-
position (alias lexicographic product) of graphs. Very recently, the global defensive
k-alliance was studied on the Cartesian product, the strong product, and the direct
product of graphs [21, 22]. In this paper we continue this direction of research by
investigating the global defensive k-alliance on additional graph products and graph
operations, in particular extending some previous results.

In the rest of the introduction concepts and notation needed are introduced,
in particular the global defensive k-alliance is formally defined. In the subsequent
section we study the generalized hierarchical product, in Section 3 we proceed with
the lexicographic product, while in Section 4 we consider the corona and the edge
corona product.

Throughout this article, G = (VG, EG) stands for a simple graph of order n(G) =
|VG| and size m(G) = |EG|. The degree of v ∈ VG is denoted by degG(v), and the
minimum and the maximum degree of G by δG and ∆G, respectively. If X ⊆ VG,
then the subgraph induced by X is denoted by G〈V ′〉. If S ⊆ VG and v ∈ VG, then
NS(v) is the set of neighbors of v in S, that is, NS(v) := {u ∈ S | uv ∈ EG}. The
complement of S in VG is denoted by S̄.

Let X ⊆ VG. Then D ⊆ VG dominates X, if every vertex from X \ D has
a neighbor in D. When X = VG we say that D is a dominating set of G. The
domination number γ(G) is the cardinality of a smallest dominating set of G. Let
G = (VG, EG) be a graph and k ∈ {−δG, . . . , δG}. Then a nonempty set S ⊆ VG is
a global defensive k-alliance in G if the following conditions hold:

1. S is a dominating set of G and

2. for every v ∈ S, |NS(v)| ≥ |NS̄(v)|+ k.

When S fulfils Condition 2 it is a defensive k-alliance. To shorten the presentation,
we will abbreviate global defensive k-alliance as GDk-A and defensive k-alliance as
Dk-A. Note that GDk-A is a Dk-A which is also a dominating set.
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The global defensive k-alliance number γdk(G) of G (abbreviated as GDk-A num-
ber) is the smallest order of a GDk-A in G. If G admits not a single GDk-A, we
set γdk(G) = ∞. Similarly, The defensive k-alliance number γk(G) of G (abbrevi-
ated as Dk-A number) is the minimum cardinality among all Dk-As in G. If G
does not contain a Dk-A set then we set γk(G) = ∞. Finally, we use the notation
[n] = {1, . . . , n}.

2 Generalized hierarchical products

A graph G together with a fixed vertex subset U ⊆ VG will be denoted by G(U). If G
and H are graphs, and U ⊆ VG, then the generalized hierarchical product G(U)uH is
the graph with the vertex set VG×VH , vertices (g, h) and (g′, h′) being adjacent if and
only if either g = g′ ∈ U and hh′ ∈ EH , or gg′ ∈ EG and h = h′. Note that when
U = VG, then the generalized hierarchical product is just the classical Cartesian
product of graphs [8], that is, G(VG) u H = G�H. The generalized hierarchical
product was introduced for the first time in [4], we also refer to [1, 2, 3, 17] for
additional results on it as well as on its applications.

Consider G(U)uH and let h ∈ V (H). Then the set of vertices {(g, h) : g ∈ VG}
is called a G-layer over h. Similarly an H-layer over g ∈ VG is defined. Note that
a G-layer over h induces a subgraph of G(U) uH isomorphic to G and an H-layer
over g ∈ U induces a subgraph of G(U) uH isomorphic to H.

Theorem 1. If G and H are graphs and U ⊆ VG, then

γdk(G(U) uH) ≤ γdk(G)n(H) .

Proof. Let U ⊆ VG, let SG be a GDk-A inG with |SG| = γdk(G), and set S = SG×VH .
Note first that S is a domination set of G(U)uH. Indeed, since SG is a dominat-

ing set of G, every G-layer over h ∈ VH is dominated by the intersection of S with
the layer. So all G-layers are dominated by S and therefore G(U)uH is dominated
by S.

To show that S is a Dk-A in G(U) uH consider an arbitrary vertex (g, h) from
S. If g ∈ U , then we have

|NS((g, h))| − |NS̄((g, h))| = (|NSG
(g)| − |NS̄G

(g)|) + |NVH (h)|
≥ k + degH(h)

≥ k ,

and if g /∈ U , then

|NS((g, h))| − |NS̄((g, h))| = (|NSG
(g)| − |NS̄G

(g)|) + 0 ≥ k .

We have thus seen that S is a GDk-A. Since |S| = γdk(G)n(H), the argument is
complete.
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Let Γ be the graph of the truncated cube, see the right-hand side of Fig. 1. Then
Γ can be represented as the hierarchical product G(U) u P2, where G is the graph
of order 12 on the left-hand side of Fig. 1 and U = {g1, g4, g9, g12}.

Figure 1: The graph Γ = G(U) u P2, where U = {g1, g4, g9, g12}.

The set SG = {g5, g6, g7, g8} (drawn in black in Fig. 1) is a global defensive
(−1)-alliance in G. Since γ(G) = 4 (which follows for instance from the fact that
the vertices g1, g4, g9, g12 are pairwise at distance at least 3), we have γd−1(G) = 4.
Hence Theorem 1 yields γd−1(G(U) u P2) ≤ γd−1(G)n(P2) = 8.

Now, let SΓ be a minimal global defensive (−1)-alliance in Γ. Since Γ is a 3-
regular graph and for every v of VΓ we have |NSΓ

(g)| − |NS̄Γ
(g)| ≥ −1, each vertex

u of SΓ must have at least one neighbor in SΓ. On the other hand, SΓ dominates
vertices of Γ and so γd−1(Γ) ≥ 8; hence the the inequality of Theorem 1 is sharp.

As already mentioned, G(VG) u H = G�H. Hence Theorem 1 for the case of
the Cartesian product reads as:

γdk(G�H) ≤ γdk(G)n(H) .

By the well known commutativity property of the Cartesian product operation, this
bound further implies that

γdk(G�H) ≤ min{γdk(H)n(G), γdk(G)n(H)}.

The special case of the latter result for k = 1 has been recently obtained in [21].

3 Lexicographic products

The lexicographic product G[H] of graphs G and H has V (G[H]) = VG×VH , vertices
(g1, h1) and (g2, h2) being adjacent if either g1g2 ∈ EG, or g1 = g2 and h1h2 ∈ EH .

Let S be a GDk-A in G with k ≥ 0 and set S = SG × VH . Since |NSG
(g)| −

|NS̄G
(g)| ≥ k, we get that

|NSG
(g)|n(H)− |NS̄G

(g)|n(H) ≥ kn(H) ,
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which in turn implies that for any vertex h ∈ VH ,

|NSG
(g)|n(H) + degH(h)− |NS̄G

(g)|n(H) ≥ kn(H) + δH .

Since |NSG
(g)|n(H) + degH(h) = |NS(g, h)| and |NS̄G

(g)|n(H) = |NS̄(g, h)| this
means that S is a global defensive (kn(H) + δH)-alliance. As S is also a dominating
set, we conclude that

γdkn(H)+δH
(G[H]) ≤ n(H)γdk(G) .

For k > 0 this is a better result than

γdk(G[H]) ≤ n(H)γdk(G)

because in such a case k < kn(H) + δH , and so γdk(G[H]) ≤ γdkn(H)+δH
(G[H]).

Eballe et al. [6] obtained some upper bounds of γdk(G[H]) for the case k = 0 and
H = Km. In the next theorem, we present an upper bound on γdk(G[H]) for the case
when there exists a GDk-A in G with some special structure. For this sake recall
that an r-perfect code in G = (VG, EG) is a subset D of VG for which the balls of
radius r centered at the vertices of D form a partition of VG, cf. [12].

Theorem 2. Let k > 0, let S be a smallest GDk-A set in G, and suppose that G〈S〉
has a 1-perfect code. If H is a graph with more than one vertex, then G[H] has a
GDk-A. Moreover, if k ≥ 2, then

γdk(G[H]) ≤ n(H)(γdk(G)− γ(G〈S〉)) + γ(G〈S〉) .

Proof. First, suppose that k > 2. Let SG be a GDk-A in G and D be a 1-perfect
code in G〈SG〉. Then |D| = γ(G〈SG〉). (This fact is well known and has been
independently established several times, see [9, Theorem 9].)

Set S =
(
(SG \ D) × VH

)
∪
(
D × {v}

)
where v is a vertex of minimum degree

in H. It is easy to check that S is a dominating set in G[H]. We claim that S is a
Dk-A in G[H]. To prove this claim, let (g, h) ∈ S. If (g, h) ∈

(
(SG \D)× VH

)
, then

|NS((g, h))| − |NS̄((g, h))| = (|NS(g)| − 1)n(H)− (|NS̄(g)|+ 1)n(H) + degH(h) + 2

= n(H)(|NS(g)| − |NS̄(g)|)− 2n(H) + degH(h) + 2

≥ (k − 2)n(H) + degH(h) + 2 ≥ k,

which holds true because k ≥ 2.
Consider next a vertex (g, h) ∈ D × {v}. Then

|NS((g, h))| − |NS̄((g, h))| = |NS(g)|n(H)− |NS̄(g)|n(H)− δH
= n(H)(|NS(g)| − |NS̄(g)|)− δH
≥ kn(H)− δH ≥ k ,

5



which also holds for every k ≥ 2.
We have thus proved that S is a Dk-A in G[H]. Moreover, since S contains the

copy of SG in the G-layer over v, by the definition of the lexicographic product we
also infer that S is a dominating set. We conclude that S is a GDk-A in G[H]. Since
clearly |S| = n(H)(γdk(G)− γ(G〈S〉)) + γ(G〈S〉), the proof is complete.

The proof of the bound from Theorem 2 does not work for k = 1. The reason
is that the inequality (k − 2)n(H) + degH(h) + 2 ≥ k for the case k = 1 reduces to
−n(H) + degH(h) + 2 ≥ 1 which clearly does not hold in general.

4 Corona and edge corona products

The corona product G◦H of graphs G and H is the graph obtained from the disjoint
union of G and n(G) copies of H bijectively assigned to the vertices of G, where
each vertex v ∈ VG is adjacent to all the vertices of the assigned copy of H. This
product was introduced in [7], see also [18, 19].

Theorem 3. If G and H are graphs, then

γdk(G ◦H) ≤ min{n(G)(1 + γdk−1(H)), n(G)γdk+1(H)} .

Moreover, if δG − n(H) ≥ k, then γdk(G ◦H) = n(G).

Proof. Let G′ be the subgraph of G ◦H isomorphic to G and let Hi, i ∈ [n(G′)], be
the the isomorphic copy of H corresponding to the ith vertex of G′.

Note that γ(G ◦ H) = n(G) and consequently γdk(G ◦ H) ≥ n(G). Hence if
δG − n(H) ≥ k, then VG′ is a Dk-A set in G ◦H so that γdk(G ◦H) = n(G) holds in
this case.

For the general case, consider an arbitrary defensive (k − 1)-alliance SH in H.

Since each vertex of Hi has exactly one neighbor outside Hi, the set (∪n(G)
i=1 SHi)∪VG′

is a GDk-A in G ◦H, where SHi is the copy of SH in Hi. Therefore, γdk(G ◦H) ≤
n(G) + n(G)γk−1(H) = n(G)(1 + γk−1(H)).

Also, if SH is a global defensive (k+1)-alliance in H, then from the same reasons

as above, the set ∪n(G)
i=1 SHi is a GDk-A in G ◦H. Hence γdk(G ◦H) ≤ n(G)γdk+1(H)

and therefore, γdk(G ◦H) ≤ min{n(G) + n(G)γk−1(H), n(G)γdk+1(H)}.

Consider the corona products G ◦Km, m ≥ 2. Since γd1(Km) = d(m+ 2)/2e and
γd−1(G) = b(m+ 1)/2c(cf. [23]), Theorem 3, yields

γd0(G ◦Km) ≤ min{n(G)(1 + γd−1(Km)), n(G)γd1(Km)}
= min{n(G)(1 + b(m+ 1)/2c , n(G) d(m+ 2)/2e}
= n(G) d(m+ 2)/2e .
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On the other hand, it was proved in [6, Corollary 3.7] that if m ≥ 2 and ∆(G) <
m−1, then γd0(G◦Km) = n(G)d(m+1)/2e. It follows that the bound of Theorem 3
is sharp for G ◦Km for all even m.

Another corona-like product was recently introduced as follows. The edge corona
G♦H of graphs G and H is obtained by taking one copy of G and m(G) disjoint
copies of H associated to the edges of G, and for every edge uv ∈ EG joining u and
v to every vertex of the copy of H associated to uv, see [11, 14]. For the statement
of the next result recall that if SG is a subset of vertices of a graph G, then its
complement is denoted with S̄G.

Theorem 4. Let G and H be two graphs. Then

γdk(G♦H) ≤ min{m(G)γdk+2(H), γdk+n(H)∆G
(G) + γdk+2(H)|EG〈S̄G〉|,(

γdd k
n(H)+1

e(G) + n(H)|EG〈S′
G〉|+ γdk+2(H)|EG〈S̄′

G〉|
)
I(k)},

where SG is a global defensive (k+n(H)∆G)-alliance in G, S′G is a global defensive
d k
n(H)+1e-alliance in G, and

I(k) =

{
1; if k > −(n(H) + 1),

∞; otherwise .

Proof. Let G′ denote the copy of G in G♦H, and let Hi be the copy of H corre-
sponding to an edge ei ∈ EG.

If SH is a global defensive (k+ 2)-alliance in H, then since each vertex of Hi has

exactly two neighbors outside Hi, the set ∪m(G)
i=1 SHi , is a GDk-A in G♦H (again,

SHi is the copy of SH in Hi). Thus γdk(G♦H) ≤ n(G)γdk+2(H).
Let next SG be a global defensive (k+n(H)∆G)-alliance in G, and SH is a global

defensive (k + 2)-alliance in H. Since each vertex of Hi has exactly two neighbors
outside Hi and as each vertex of G′ has at most ∆Gn(H) neighbors outside G′,
the copy of SG in G′ together with the copies of SH is each of the copies of H
corresponding to the edges from G〈S̄G〉 form a global defensive k-alliance in G♦H.
So, γdk(G♦H) ≤ γdk+n(H)∆G

(G) + γdk+2(H)|EG′〈S̄G〉|.
Suppose now that S′G is a global defensive d k

n(H)+1e-alliance in G. Let S1 be
the set of vertices of G♦H that lie in the copies of H corresponding to the edges
of G′〈S′G′〉. In addition, in every copy of H corresponding to the edges from 〈S̄′G′〉
select a global defensive (k+2)-alliance in H. Then set S = S′G′ ∪S1∪S2. We claim
that S is a GDk-A in G♦H.

S is a dominating set in G♦H, because S′G′ dominates G′ and all the copies of
H above its edges as well as above copies of H above edges with one endpoint in
S′G′ , while the other copies of H are dominated by S2. To show that S is a Dk-A in
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G♦H consider u ∈ S′G′ . Then

|NS(u)| − |NS̄(u)| = (|NS′
G

(u)| − |NS̄′
G

(u))| · (n(H) + 1)

≥
⌈

k

n(H) + 1

⌉
(n(H) + 1) ≥ k .

The same conclusion is clear when u ∈ S \S′G′ . Therefore, S is a k-alliance in G♦H
and so γdk(G♦H) ≤ γdd k

n(H)+1
e(G) + n(H)|EG〈S′

G〉|+ γdk+2(H)|EG〈S̄′
G〉|.

The sun graph Sn is obtained by replacing every edge of a cycle Cn by a triangle
C3, cf. [5]. See Fig. 2 for S3.

Figure 2: The sun graph S3

From our point of view note that Sn = Cn♦K1. Since γd2(K1) =∞, γd2(C3) = 3,
γd0(C3 = 2, |EC3〈SG〉| = 1, |EC3〈S̄G〉| = 0, and I(0) = 1, Theorem 4 implies that

γd0(S3) = γd0(C3♦P1) ≤ 3. Actually, γd0(S3) = 3 (in Fig. 2 elements of a global
defensive alliance in C3♦P1 are colored black), we have the inequality in Theorem 4.
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