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Abstract

Let G be a graph and S ⊆ V (G). If every two adjacent vertices of G have
different metric S-representations, then S is a local metric generator for G.
A local metric generator of smallest order is a local metric basis for G, its
order is the local metric dimension of G. Lower and upper bounds on the
local metric dimension of the generalized hierarchical product are proved and
demonstrated to be sharp. The results are applied to determine or bound
the dimension of several graphs of importance in mathematical chemistry.
Using the dimension, a new model for assigning codes to customers in delivery
services is proposed.
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1 Introduction

All graphs considered in this paper are connected and simple. If G = (V (G), E(G)
is a graph, then its order and its size are denoted with n(G) and m(G), respectively.
If u, v ∈ V (G), then dG(u, v) denotes the standard shortest-path distance between u
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and v inG, that is, the number of edges on a shortest u, v-path. If S = {v1, . . . , vk} ⊆
V (G), then the metric S-representation of a vertex v ∈ V (G) is the vector

rG(v|S) = (dG(v, v1), . . . , dG(v, vk)) .

A metric generator for G is a vertex subset S ⊆ V (G) such that the vertices of
G have pairwise different metric S-representations. A metric generator of smallest
order is a metric basis for G, its order being the metric dimension dim(G) of G.

The metric dimension was introduced in [9, 21] and is used to model many real
world problems. These include navigation of robots [13] and chemical problems [11].
However, quite often we do not need to distinguish all pairs of vertices but only
adjacent ones. From this reason the local metric dimension was introduced in [15].
To be more specific, S ⊆ V (G) is a local metric generator for G if the condition of
having different metric S-representations is fulfilled for every adjacent vertices of
G. The local metric dimension (lmd for short) dimℓ(G) of G is then, as expected, the
smallest order of a local metric generator, and such a set is a local metric basis (lmb

for short) for G. We mention here two further, recently proposed variants of the
metric dimension. In [8] resolving sets locate up to some fixed ℓ, ℓ ≥ 1, vertices in a
graph, while in [12] resolving sets locate the edges of a graph. The property of being
located is often also combined with some other properties, say being a dominating
set; for a comparison of resolving sets with locating-dominating set and additional
related sets see [7].

The lmd has been by now investigated on different graph operations. Already
in the seminal paper [15] it was considered on the Cartesian product. Rodŕıguez-
Velázquez, Garćıa Gómez, and Barragán-Ramı́rez followed with studies of it on
rooted products [18]. The behavior of the lmd on corona products and on edge
corona produces was investigated by Rodŕıguez-Velázquez, Barragán-Ramı́rez, and
Garćıa Gómez [19] and by Rinurwati, Slamin, and Suprajitno [17], respectively. Fi-
nally Barragán-Ramı́rez and Rodŕıguez-Velázquez studied it under the strong prod-
uct operation [2], while in [6] Fernau and Rodŕıguez-Velázquez related the local
dimensions of corona and strong products with the newly introduced adjacency
metric dimension. We also refer to [20] for the lmd of regular graphs.

The aim of the present work is to continue the above line of investigation on
graph operations by considering the lmd of the generalized hierarchical product (to
be defined below). We refer to [1, 10] as well as references therein for results on this
graph operation. The generalized hierarchical product is in particular important
because it generalizes several classical operations, such as the Cartesian product.

In the next section we give lower and upper bounds on the lmd of the general-
ized hierarchical product and demonstrate their sharpness. Some earlier results are
shown to be consequences of the present results. Then, in Section 3, we first apply
the results of Section 2 to determine or bound the lmd of several graphs that are
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important in mathematical chemistry. We conclude the paper with a new model for
assigning codes to customers in delivery services. The model uses local metric bases
and is in many cases significantly more efficient that the classical model from [13].

In the rest of the section we formally introduce the generalized hierarchical prod-
uct and recall the key result about the distances in it. Let G and H be graphs and
let ∅ 6= U ⊆ V (G). The generalized hierarchical product G(U) ⊓H (with respect to
U) of G and H , is a graph with the vertex set

V (G(U) ⊓H) = V (G)× V (H) ,

and the edge set

{(g, h)(g′, h′) : gg′ ∈ E(G), h = h′} ∪ {(g, h)(g′, h′) : g = g′ ∈ U, hh′ ∈ E(H)} ,

see [3].
If U ⊆ V (G) and u, v ∈ V (G), then we say that a u, v-walk W is a u, v-walk

through U if W is an u, v-walk in G that contains some vertex of U . (Note that this
vertex from U could be one of u and v.) With dG(U)(u, v) we denote the length of a
shortest u, v-walk through U . The following fundamental observation from [3] will
be used throughout the paper, mostly without explicitly mentioning it.

Proposition 1.1 If G is a graph with U ⊆ V (G) and H is a graph, then

dG(U)⊓H((g, h), (g
′, h′)) =

{

dG(U)(g, g
′) + dH(h, h

′); h 6= h′,

dG(g, g
′); h = h′.

2 Generalized hierarchical products

It this section we first prove bounds on the studied dimension of generalized hi-
erarchical product G(U) ⊓ H under the condition that G contains a lmb which is
contained in U . Although this is not always the case, the result has several inter-
esting consequences. In particular, if G is bipartite, then dimℓ(G�H) = dimℓ(H).
In our second main result we give a general upper bound on the lmd of G(U) ⊓H
and show that it is also sharp. To formulate the first main result we need to extend
the concept of the lmd as follows.

Let G be a graph and let ∅ 6= U ⊆ V (G). If S = {v1, . . . , vk} ⊆ V (G), then we
say that an U-metric S-representation of v ∈ V (G) is

rG(U)(v|S) = (dG(U)(v, v1), . . . , dG(U)(v, vk)) .

S ⊆ V (G) is a U-metric local generator if every two end-points of an edge of G
have pairwise different U -metric local representations. A U -metric local generator
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of smallest order is a U-metric local basis for G. The number of vertices in it is the
U-metric local dimension dimℓ(G|U) of G. In the case when U = V (G), we have
dimℓ(G|U) = dimℓ(G).

Theorem 2.1 Let G and H be graphs and ∅ 6= U ⊆ V (G). If G contains a lmb

which is contained in U , then

max{dimℓ(G|U), dimℓ(H)} ≤ dimℓ(G(U) ⊓H) ≤ max{dimℓ(G), dimℓ(H)} .

Proof. Set X = G(U) ⊓H for the rest of the proof. Let SG = {g1, . . . , gdimℓ(G)} be
a lmb of G that is contained in U , and let SH = {h1, . . . , hdimℓ(H)} be a lmb of H .

We first show that dimℓ(X) ≤ max{dimℓ(G), dimℓ(H)} and for this sake consider
the following cases.

Case 1: k = dimℓ(G) ≥ dimℓ(H).
Set S = {(gi, hi) : i ∈ [k]}, where the indices in the second coordinate are taken
modulo dimℓ(H). We claim that S is a local metric generator for X and for this
sake consider arbitrary adjacent vertices (g, h) and (g′, h′) in V (X) \ S.

Suppose first that h = h′. Then in G there exists gi ∈ SG such that dG(g, gi) 6=
dG(g

′, gi). Since gi ∈ U it follows that dG[U ](g, gi) = dG(g, gi) 6= dG(g
′, gi) =

dG[U ](g
′, gi). (It is possible that gi = g or gi = g′.) Applying Proposition 1.1

we thus infer that

dX((g, h), (gi, hi)) = dG(U)(g, gi) + dH(h, hi)

6= dG(U)(g
′, gi) + dH(h, hi)

= dX((g
′, h), (gi, hi)) .

It follows that rX((g, h)|S) 6= rX((g
′, h′)|S).

Suppose second that g = g′. Since hh′ ∈ E(H) we have hi ∈ SH with dH(h, hi) 6=
dH(h

′, hi). Then e

dX((g, h), (gi, hi)) = dG(U)(g, gi) + dH(h, hi)

6= dG(U)(g, gi) + dH(h
′, hi)

= dX((g, h
′), (gi, hi)) ,

which in turn implies that rX((g, h)|S) 6= rX((g
′, h′)|S).

It follows from the above that dimℓ(X) ≤ |S| = k = max{dimℓ(G), dimℓ(H)}.

Case 2: k = dimℓ(H) ≥ dimℓ(G).
In this case set again S = {(gi, hi) : i ∈ [k]}, except that now the indices in
the first coordinate are taken modulo dimℓ(G). The proof now proceeds anal-
ogously as in Case 1. Therefore, also in this case we have dimℓ(X) ≤ |S| =
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k = max{dimℓ(G), dimℓ(H)}. From Cases 1 and 2 we conclude that dimℓ(X) ≤
max{dimℓ(G), dimℓ(H)}.

Let now S be an arbitrary lmb for X . Consider first the projection SH of
S on H , that is, SH = {h ∈ V (H) : ∃g ∈ V (G) such that (g, h) ∈ S}. Let
h, h′ ∈ V (H) \SH such that hh′ ∈ E(H). Let g ∈ U . Then (g, h)(g, h′) ∈ E(X) and
(g, h), (g, h′) ∈ V (X) \ S. As S is a lmb for X , there is a vertex (g′′, h′′) ∈ S with
dX((g, h), (g

′′, h′′)) 6= dX((g, h
′), (g′′, h′′)). Since

dX((g, h), (g
′′, h′′)) = dG(U)(g, g

′′) + dH(h, h
′′)

and
dX((g, h

′), (g′′, h′′)) = dG(U)(g, g
′′) + dH(h

′, h′′) ,

it follows that dH(h, h
′′) 6= dH(h

′, h′′). As h′′ ∈ SH it follows that SH is a local
metric generator of H which means that dimℓ(H) ≤ |SH| ≤ |S| = dimℓ(X).

Consider second the projection SG of S on G, that is, SG = {g ∈ V (G) : ∃h ∈
V (H) such that (g, h) ∈ S}. Let g, g′ ∈ V (G) \ SG such that gg′ ∈ E(G). Let h ∈
V (H). Then (g, h)(g′, h) ∈ E(X) and (g, h), (g′, h) ∈ V (X)\S. As S is a lmb for X ,
there exists a vertex (g′′, h′′) ∈ S such that dX((g, h), (g

′′, h′′)) 6= dX((g
′, h), (g′′, h′′)).

Since
dX((g, h), (g

′′, h′′)) = dG(U)(g, g
′′) + dH(h, h

′′)

and
dX((g

′, h), (g′′, h′′)) = dG(U)(g
′, g′′) + dH(h, h

′′) ,

it follows that dG(U)(g, g
′′) 6= dG(U)(g

′, g′′). As h′′ ∈ SG it follows that SG is a U -
metric local generator of G and so dimℓ(G|U) ≤ |SG| ≤ |S| = dimℓ(X). �

Theorem 2.1 implies several exact results. For instance, if U = V (G) then
G(U)⊓H is just the Cartesian product G�H and dimℓ(G|U) = dimℓ(G), hence we
get:

Corollary 2.2 [15] For any G and H, dimℓ(G�H) = max{dimℓ(G), dimℓ(H)}.

Note that if G is bipartite, then dimℓ(G|U) = 1 holds for any ∅ 6= U ⊆ V (G).
Therefore:

Corollary 2.3 If G is a bipartite graph and H a graph, then dimℓ(G�H) =
dimℓ(H).
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The join G+H of disjoint graphs G and H is obtained from their disjoint union
by adding all possible edges between the vertices from G and the vertices from H .
The corona G⊙H of graphs G and H is obtained from the disjoint union of a copy
of G and n(G) copies of H , where each vertex of the ith copy of H is adjacent to the
ith vertex of G, i ∈ [n(G)]. Note that G⊙H = (H +K1)(U)⊓G where U = V (K1).
Among many results from [19] we extract [19, Corollary 5(i)] which asserts that

dimℓ(H ⊕Kt) = n(H)(t− 1) ,

that is,
dimℓ(Kt+1({v}) ⊓H)) = n(H)(t− 1) .

This result demonstrates that the assumption of Theorem 2.1 that the first factor
must contain a lmb which is contained in U cannot be avoided. Since in general this
condition is not fulfilled, we state the following bound for the general case.

Theorem 2.4 Let G and H be graphs and ∅ 6= U ⊆ V (G). If SG is a lmb of G
such that |SG ∩ U | = k, then

dimℓ(G(U) ⊓H) ≤ n(H)(dimℓ(G)− k) + k .

Proof. Set X = G(U) ⊓ H for the rest of the proof. Let SG = {g1, . . . , gdimℓ(G)}
and let SH = {h1, . . . , hdimℓ(H)} be a lmb of H . Assume w.l.o.g. that SG ∩ U =
{g1, . . . , gk}. We claim that

S =
(

(SG \ U)× VH

)

∪ {(gi, hi) : i ∈ [k]} ,

is a local metric generator for X , where the indices i, if necessary, are taken modulo
k. For this sake consider a pair of adjacent vertices (g, h) and (g′, h′) from V (X) \S
and distinguish the following two natural cases further divided into subcases.

Case 1: gg′ ∈ E(G) and h = h′.

Case 1.1: g, g′ /∈ SG.
Then there exists gi ∈ SG such that dG(gi, g) 6= dG(gi, g). If i > k, then (gi, h) ∈ S
and it follows immediately that dX((gi, h), (g, h)) 6= dX((gi, h), (g

′, h)). On the other
hand, if i ≤ k, then since gi ∈ U we have dG(U)(gi, g) 6= dG(U)(gi, g

′), which again
implies that dX((gi, h), (g, h)) 6= dX((gi, h), (g

′, h)).

Case 1.2: g, g′ ∈ SG.
In this subcase g and g′ must both be from SG ∩ U . Hence there exists an i such
that gi = g and therefore, |dX((gi, hi), (g, h))− dX((gi, hi), (g

′, h))| = dG(gi, g
′) = 1.

Case 1.3: g ∈ SG, g
′ /∈ SG.

Since g ∈ SG, we have g = gi for some i ∈ [dimℓ(G)]. If i > k, then

dX((gi, h), (g, h))− dX((gi, h), (g
′, h)) = −dG(gi, g

′) 6= 0,
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and if i ≤ k, then

dX((gi, hi), (g, h))− dX((gi, hi), (g
′, h)) = −dG(U)(gi, g

′) 6= 0 ,

where again the index i is taken modulo k if necessary.

Case 2: g = g′ ∈ U and hh′ ∈ E(H).

Case 2.1: g /∈ SG and h, h′ /∈ SH .
In this case there exists hj ∈ SH such that dH(hj , h) 6= dH(hj, h

′) and so

dX((gi, hj), (g, h))− dX((gi, hj), (g, h
′)) = dH(hj , h))− dH(hj , h

′) 6= 0 ,

where i ∈ [dimℓ(G)].

Case 2.2: h or h′ is in SH and g /∈ SG.
Without loss of generality we may assume that h ∈ SH . Thus dX((gi, h), (g, h))−
dX((gi, h), (g, h

′)) = −dH(h, h
′) 6= 0, where i > k.

Case 2.3: g ∈ SG and h, h′ /∈ SH .
In this subcase, g must be in SG ∩ U . Thus, there exists hj ∈ SH such that
dH(hj , h) 6= dH(hj , h

′) and so dX((gi, hj), (g, h))− dX((gi, hj), (g, h
′)) = dH(hj , h))−

dH(hj , h
′) 6= 0, where again i ∈ [dimℓ(G)].

In conclusion, for every pair of adjacent vertices (g, h) and (g′, h′) from V (X)\S
there exists a vertex (gi, hj) in S such that dX((gi, hj), (g, h)) 6= dX((gi, hj), (g

′, h)).
Consequently, since clearly |S| = n(H)(dimℓ(G) − k) + k holds, the argument is
complete. �

As already observed above, G⊙H = (H +K1)(U) ⊓G where U = V (K1). If H
has radius more than 3, then v is not an element of any lmb ofH+K1. Consequently,
by Theorem 2.4, we have

dimℓ(G⊙H) = dimℓ((H +K1)(U) ⊓G) ≤ n(G)dimℓ(H +K1) .

On the other hand, it was proved in [19] that if G is a connected graph and H
is a graph of radius at least 4, then dimℓ(G ⊙ H) = n(G)dimℓ(K1 + H). This
demonstrates the sharpness of the bound of Theorem 2.4.

3 Applications

In this section we consider a couple of applications of the lmd. In the first part we
apply the results of Section 2 to determine or bound the lmd of some graphs that
are important in mathematical chemistry. In the subsequent subsection we modify
the application of the metric dimension from [13] to delivery services such that the
lmd is involved. In the new model the length of constructed codes is lowered.
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3.1 Local metric dimension of some molecular graphs

Molecular graphs are, roughly speaking, graphs with the largest degree at most
4. Several graph invariants of relevance in mathematical chemistry have already
been investigated on the generalized hierarchical product, cf. [5, 16]. On the other
hand, the lmd has been used in [4, 14] to classify certain molecules (molecular
graphs). Here we add to these results additional examples of the metric dimension of
molecular graphs. The latter can be represented as generalized hierarchical products,
which in turn makes applicable the results of Section 2.

Example 1. Consider the graph G and its vertex subset U = {u1, . . . , u6} as shown
on Fig. 1 (left). Then the generalized hierarchical product G(U)⊓P2 is the fullerene
graph denoted F5,12 drawn on Fig. 1 (right).

As G is not bipartite, dimℓ(G) ≥ 2. On the other hand, one can check that the
two black vertices of G from the figure form a local metric generator. Consequently,
dimℓ(G) = 2. Then, using Theorem 2.4, dimℓ(F5,12) = dimℓ(F5,6(U)⊓P2) ≤ 4. (The
black vertices of F5,12 from the figure form a local metric generator.)

Example 2. Let H be the graph obtained from the of the truncated cube, see
Fig. 2 (bottom right). In the same figure it is shown how H can be constructed in
three steps from the triangle each time using the generalized hierarchical operation.
Going backwards, H = G(U)⊓P2, where U = {u1, u2, u3, u4}, see Fig. 2(c). Further,
G = W (U)⊓P2, where {u1, u2}, see Fig. 2(b). Finally (or firstly), W = C3(U)⊓P2,
where U = {u1}, see Fig. 2(a).

The two black vertices of W from the figure form a local metric generator of W .
Consequently, dimℓ(W ) = 2. In Fig. 2(b), U is a local metric generator for W and
so by Theorem 2.1 we get dimℓ(G) = dimℓ(W (U)⊓P2) ≤ 2 and hence dimℓ(G) = 2.
Finally, none of the black vertices are in U , hence k = 0 in Theorem 2.4 and so
dimℓ(H) = dimℓ(G(U) ⊓ P2) ≤ 4.

Example 3. Let the vertices of the path Pn be v1, . . . , vn in the natural order. Then
consider the generalized hierarchical products Γn,k = P2n+1(U) ⊓ Ck, where k ≥ 3
and U = {v2i+1 : 0 ≤ i ≤ k}. Fig. 3 displays the construction of Γn,5.

If k is an even number, then Γn,k is bipartite and therefore dimℓ(Γn,k) = 1. For
the other case we have:

Proposition 3.1 If k ≥ 3 is an odd number, then dimℓ(Γn,k) = 2.

Proof. Let k ≥ 3 be odd. Then Γn,k is not bipartite and hence dimℓ(Γn,k) ≥ 2.
To prove the reverse inequality we use the representation Γn,k = P2n+1(U) ⊓ Ck,
where U = {v2i+1 : 0 ≤ i ≤ k}. Since SP2n+1

= {v1} is a lmb, SP2n+1
⊆ U . Then by

Theorem 2.1, dimℓ(Γn,k) = dimℓ(P2n+1(U)⊓Ck) ≤ max{dimℓ(P2n+1), dimℓ(Ck)} = 2.
�
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3.2 Local metric basis in delivery services

Assume that a company wishes to assign codes to its customers such that the code
of a customer uniquely determines its location. It is natural that the company is
interested in making the length of the codes as short as possible. To design a graph
theory model for this problem consider customers as the vertices of a(n) (edge-
weighted) graph G. Vertices u and v are declared to be adjacent in G if one of the
following conditions is fulfilled:

(i) there is no other customer on the u, v-geodesics;

(ii) the first letters of the family names of the customers u and v are the same.

To make the model more realistic, we also assign weights w(uv) to the edges uv of
G as follows. It the edge uv is present solely because of (ii), then we set w(uv) = ∞.
Otherwise (that is, if the edge uv is present because of (i), or because of both (i)
and (ii)), we set w(uv) to be the real distance between the customers u and v.

Let S be a lmb for G. Then, if F is the first letter of the family name of a given
customer v, then the company allocates the ordered pair (F, r(v|S)) to the customer
v as its code.

Let us compare the above model with the one suggested by Khuller et al. in their
seminal paper on applications of the metric dimension [13]. The model there was
suggested to deal with robots’ navigation in networks. As an example, consider the
robotic movement space (or the plan of customers’ position) as depicted in Fig. 4.
Here all the distances in the weighted graph are set to 1.

In Fig. 5(a) the black vertices form a metric basis for the corresponding graph
and the 5-dimensional vectors next to vertices form the codes of the customers
(locations) as proposed in the seminal model from [13]. In Fig. 5(b) the new model
is presented. Here {A} is a lmb and the ordered pairs next to vertices are their
codes. The second component of an ordered pair is formally a vector, but since its
length is 1, it is identified in the figure with the value of the component.

Since dimℓ(G) ≤ dim(G) holds for every connected graphG, cf. [15], the proposed
model is at least as compact as the earlier one. Furthermore, in many cases it is
significantly shorter. For instance, dimℓ(G) = 1 holds for every bipartite graph G,
while dim(G) can be arbitrary large for such graphs.
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Figure 1: G(U) ⊓ P2 = F5,12 where U = {u1, . . . , u6}.

=

Figure 2: The molecular graph H constructed via the generalized hierarchical prod-
uct.
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Figure 3: Γn,5 represented as a generalized hierarchical product.
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Figure 4: The robotic movement space (or the plan of customers’ position).
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Figure 5: a) Earlier codes for the graph from Fig. 4. b) Present codes.
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