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Abstract

The 2-domination number γ2(G) of a graph G is the minimum cardinality of a set
S ⊆ V (G) such that every vertex from V (G) \ S is adjacent to at least two vertices
in S. The annihilation number a(G) is the largest integer k such that the sum of the
first k terms of the non-decreasing degree sequence of G is at most the number of its
edges. It was conjectured that γ2(G) ≤ a(G) + 1 holds for every connected graph G.
The conjecture was earlier confirmed, in particular, for graphs of minimum degree 3,
for trees, and for block graphs. In this paper, we disprove the conjecture by proving
that the 2-domination number can be arbitrarily larger than the annihilation number.
On the positive side we prove the conjectured bound for a large subclass of bipartite,
connected cacti, thus generalizing a result of Jakovac from [Discrete Appl. Math. 260
(2019) 178–187].
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1 Introduction

Let d1 ≤ · · · ≤ dn be the degree ordering of a graph G. The annihilation number a(G) is the

largest integer k such that
k∑

i=1

di ≤ m(G). This concept was first defined in [17], see also [11]

for an earlier, closely related concept called Havel-Hakimi process. The 2-domination number
γ2(G) of a graph G is the minimum cardinality of a set S ⊆ V (G) such that every vertex
from V (G)\S is adjacent to at least two vertices in S. Now, the following conjecture relating
these two concepts was posed.

Conjecture 1.1 ([7, 9]) If G is a connected graph with at least 2 vertices, then γ2(G) ≤
a(G) + 1.

If δ(G) ≥ 3, then Caro and Roddity [5, Corollary 2] deduced from their main result

that γ2(G) ≤ ⌊n(G)
2

⌋. Hence, γ2(G) ≤ a(G) + 1 holds for any graph G with δ(G) ≥ 3.
Desormeaux, Henning, Rall, and Yeo [9] followed with a confirmation of the conjecture for
trees (see also [16] for another proof of it). Moreover, they have also characterized the trees
that attain the equality in the conjecture. Very recently, Jakovac [14] proved the conjecture
for block graphs. In addition he proved:

Proposition 1.2 ([14]) If G is a bipartite cactus such that every edge of G belongs to a
cycle, then γ2(G) ≤ a(G) + 1.

In Section 2 we disprove Conjecture 1.1 by a subclass of connected cactus graphs with
minimum degree 1. The construction further shows that the gap between the 2-domination
number and the annihilation number can be arbitrarily large. Although the conjecture is
wrong, it is still interesting to find classes of graphs which satisfy the conjecture. In Section 3
we prove several lemmas needed in the subsequent section. Then, in Section 4, we show that
Conjecture 1.1 holds for bipartite connected cacti which (i) contain no sun at an outer cycle
and (ii) the degree of the exit vertex of any outer 4-cycle is at least 4. (A sun at a cycle is
obtained from the cycle by adding a pendant vertex to each of its vertices except one.) In
this way we generalize Proposition 1.2. We conclude the paper with some open problems
while in the rest of this section definitions and concepts needed are given.

1.1 Preliminaries

All graphs in this paper are undirected, finite and simple. We follow [1] for graph theoretical
notation and terminology not defined here.

If G = (V (G), E(G)) is a graph, then set n(G) = |V (G)| and m(G) = |E(G)|. A graph
G is nontrivial if n(G) ≥ 2. For v ∈ V (G), the set of its neighbors is denoted by NG(v)
and called the neighborhood of v, and the closed neighborhood NG[v] of v is N(v) ∪ {v}.
The degree of a vertex v ∈ V (G) is denoted by dG(v). For a subset S ⊆ V (G), we define
∑

(S,G) =
∑

v∈S dG(v). In the above notation we may omit the index G provided that G
is clear from the context. A vertex v of degree 1 is a leaf while its only neighbor is called
a support vertex. If u has at least two neighbors which are leaves, then u is referred to as
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a strong support vertex. The minimum and the maximum degree among the vertices of G
are denoted by δ(G) and ∆(G), respectively. If X ⊆ V (G), then G−X denotes the graph
obtained from G by deleting the vertices in X and all edges incident with them. Moreover,
if u1u2 ∈ E(G) and v1v2 /∈ E(G), notations G−u1u2 and G+ v1v2 will be used for the graph
(V (G), E(G)− {u1u2}) and (V (G), E(G) ∪ {v1v2}), respectively. These − and + notations
will also be used for sets of edges. A connected graph is a cactus if its cycles are pairwise
edge-disjoint.

A vertex v ∈ V (G) dominates the vertices contained in N [v]. A set S ⊆ V (G) is a
dominating set if each vertex of G is dominated or equivalently, if N [S] = V (G), where
N [S] = Σv∈SN [v] is the closed neighborhood of S. The domination number γ(G) is the
minimum cardinality of a dominating set of G. For k ≥ 1, a k-dominating set of a graph G
is a set S ⊆ V (G) such that each vertex from V (G)\S is adjacent to at least k vertices in S.
There always exists at least one k-dominating set in G, since V (G) is clearly a k-dominating
set. The k-domination number γk(G) of G is the minimum cardinality of a k-dominating
set of G. Thus, a 1-dominating set is a usual dominating set and hence γ1(G) = γ(G). The
notion of the k-dominating set was introduced by Fink and Jacobson [10], a survey on it up
to 2012 can be found in [4]. It has been further investigated afterwards, [6, 15] are a couple
of recent papers. In this paper we focus on the 2-domination number, cf. [3].

S ⊆ V (G) is an annihilation set of G if
∑

v∈S d(v) ≤ m(G) and is an optimal annihilation
set if |S| = a(G). Obviously, any optimal annihilation set of a connected graph of order at
least 3 vertices contains all leaves. Assuming that S is an optimal annihilation set, we denote
by d∗(G) the minimum vertex degree over the set V (G) \ S.

2 Counterexample to Conjecture 1.1

Let t ≥ 4 and k1, . . . , kt ≥ 1. Then the graph G(t; k1, . . . , kt) is obtained in the following
way. First, take a disjoint union of cycles C3ki+1, i ∈ [t], add an additional vertex w, and
connect w with an arbitrary but fixed vertex in each of the cycles. Second, in the so far
constructed graph, add a pendant vertex to each of the vertices of degree 2. In Fig. 1 the
graph G(4; 1, 1, 1, 1) is drawn.

Consider first the sporadic counterexamples as shown in Fig. 2. It is straightforward to
verify that a(G(4; 1, 2, 3, 4)) = 3 + 6 + 9 + 12 +

⌊
38
3

⌋
= 42 and γ2(G(4; 1, 2, 3, 4)) = 5 + (6 +

3)+ (9+ 4)+ (12+ 5) = 44. Hence γ2(G(4; 1, 2, 3, 4))− a(G(4; 1, 2, 3, 4)) = 44− 42 = 2 > 1.
Similarly, in the second example we have a(G(t; 1, . . . , 1)) = 3t +

⌊
8t−3t

3

⌋
= 4t +

⌊
2t
3

⌋
and

γ2(G(t; 1, . . . , 1)) = 5t. Therefore, γ2(G(t; 1, . . . , 1))− a(G(t; 1, . . . , 1)) = 5t− (4t +
⌊
2t
3

⌋
) =

⌈
t
3

⌉
.
The above examples generalize as follows.

Theorem 2.1 Let c0 be a given positive integer, t ≥ 4, and k1, . . . , kt ≥ 1. If t > 3(c0 + 1),
then

γ2(G(t; k1, . . . , kt))− a(G(t; k1, . . . , kt)) > c0 + 1 .
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Figure 1: The graph G(4; 1, 1, 1, 1)

Figure 2: Graphs G(4; 1, 2, 3, 4) and G(t; 1, . . . , 1), t ≥ 4

Proof. To shorten the presentation, set G = G(t; k1, . . . , kt) for the rest of the proof. Since
to each of the constitutional cycles C3ki+1 of G exactly 3ki leaves are attached, as well as
the edge to the vertex w of degree t, we get

m(G) = 2

(
t∑

i=1

(3ki + 1)

)

.

Hence, since each leaf of G is a member of its every optimal annihilation set and all the
other vertices of such a set are of degree 3, we get

a(G) = 4
t∑

i=1

ki +

⌊
2t

3

⌋

. (1)

We now claim that γ2(G) = 4
t∑

i=1

ki+ t. Let X be a 2-dominating set of G with |X| = γ2(G).
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Then every leaf of G lies in X . Consider now a constitutional cycle C = C3ki+1 of G and
suppose that |X ∩ V (C)| ≤ ki. Then C contains three consecutive vertices neither of them
lying in X . But then the middle of these three vertices, even if being adjacent to w, is not 2-
dominated. If follows that |X∩V (C)| ≥ ki+1 for i ∈ [t]. Consequently, γ2(G) ≥ 4

∑t

i=1 ki+t.
Since on the other hand it is easy to construct a 2-dominating set that has exactly ki + 1
vertices on C, the claim is proved. Combining the claim with (1) we conclude that

γ2(G)− a(G) =

(

4
t∑

i=1

ki + t

)

−

(

4
t∑

i=1

ki +

⌊
2t

3

⌋)

=

⌈
t

3

⌉

> c0 + 1 .

�

3 Some preliminary lemmas

In this section, we give some lemmas to be used in the next section. They give examples
of how to obtain from a graph G a smaller graph G′, such that γ2(G

′) ≤ a(G′) + 1 implies
γ2(G) ≤ a(G) + 1. First we recall [14, Lemma 4].

Lemma 3.1 Assume that G is a graph on at least four vertices and u ∈ V (G) a strong
support vertex which is the common neighbor of pendant vertices v1, . . . , vℓ ∈ G, ℓ ≥ 2. If
G′ = G − {u, v1, . . . , vℓ} is a connected graph, then γ2(G

′) ≤ a(G′) + 1 implies γ2(G) ≤
a(G) + 1.

We proceed with new lemmas for which we define a function f on a finite graph G with

f(G) = n(G) + 3m(G) + n1(G) ,

where n1(G) denotes the number of leaves in G. Note that f(G) ≥ 7 for every nontrivial,
finite, connected graph G.

Lemma 3.2 Let G be a connected graph with n(G) ≥ 3 and which fulfils at least one of the
following properties:

(i) d∗(G) ≤ 2;

(ii) G contains an induced path P5 whose internal vertices are of degree 2;

(iii) G contains a pendant path P4.

Then, there exists a nontrivial connected graph G′ with f(G′) < f(G) such that γ2(G
′) ≤

a(G′)+1 implies γ2(G) ≤ a(G)+1. Moreover, if G is a connected cactus graph, then G′ can
be chosen to be a connected cactus graph as well.
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Proof. If G is a cycle and e ∈ E(C), then set G′ = G− e. If G is a tree and v its pendant
vertex, then set G′ = G− v. Hence in the rest of the proof we may assume that G is neither
a tree nor a cycle.

(i) Assume that d∗(G) ≤ 2. Since G is neither a tree nor a cycle, there exists a cycle C
in G and a vertex v ∈ V (C) with d(v) ≥ 3. Let e = vu ∈ E(C) and G′ = G− e. Then G′ is
connected, f(G′) < f(G) and m(G′) = m(G)− 1. The deletion of an edge does not decrease
the 2-domination number, so γ2(G) ≤ γ2(G

′). Consider an optimal annihilation set S ′ of G′.
Then

∑
(S ′, G′) ≤ m(G′) = m(G) − 1. If u, v /∈ S ′, then

∑
(S ′, G) =

∑
(S ′, G′) ≤ m(G′) =

m(G) − 1; if S ′ contains exactly one of u and v, then
∑

(S ′, G) =
∑

(S ′, G′) + 1 ≤ m(G).
In either case a(G) ≥ |S ′| = a(G′) follows. In the third case, u, v ∈ S ′ and

∑
(S ′, G) =

∑
(S ′, G′) + 2 ≤ m(G) + 1. Let V1,2 denote the set of vertices which have degree 1 or 2 in G.

Then
∑

(V1,2, G) ≥ m(G)+1 because d∗(G) ≤ 2. Since d(v) ≥ 3, we have
∑

(V1,2∪{v}, G) ≥
m(G) + 4, and then there is a vertex v∗ ∈ V1,2 which is not contained in S ′. If v is replaced
with v∗ in S ′, then we get a new annihilation set S with

∑
(S,G) ≤

∑
(S ′, G)− 1 ≤ m(G).

This proves a(G) ≥ |S ′| = a(G′) and then γ2(G) ≤ γ2(G
′) ≤ a(G′) + 1 ≤ a(G) + 1.

As we have just proved the statement under the assumption (i), we can assume that
d∗(G) ≥ 3 in the sequel of the proof.

(ii) Let vu1u2u3w be an induced path P5 such that dG(u1) = dG(u2) = dG(u3) = 2.
Set G′ = G − {u1, u2, u3} + vw. Observe that n(G′) = n(G) − 3, m(G′) = m(G) − 3,
n1(G

′) = n1(G) and hence f(G′) = f(G)− 12. Let D′ be a minimum 2-dominating set of G′

and define D as follows:

(a) D = D′ ∪ {u2}; if v, w ∈ D′,

(b) D = D′ ∪ {u1, u3}; otherwise.

In either case, D is a 2-dominating set in G. Hence, γ2(G) ≤ γ2(G
′) + 2. Pick an optimal

annihilation set S ′ of G′. Since dG(v) = dG′(v) and dG(w) = dG′(w) we have
∑

(S ′, G) =
∑

(S ′, G′) ≤ m(G′) = m(G)−3. Our assumption d∗(G) ≥ 3 implies that every vertex v with
d(v) ≤ 2 is contained in every optimal annihilation set of G. Hence, either S ′ ∪ {u1, u2, u3}
is an optimal annihilation set of G and a(G) ≥ a(G′) + 2, or there is a vertex v∗ ∈ S ′ with
d(v∗) ≥ 3. In the latter case, consider S = (S ′ − {v∗}) ∪ {u1, u2, u3}, and observe that
∑

(S,G) ≤
∑

(S ′, G) − 3 + 3 × 2 ≤ m(G). Therefore, a(G) ≥ |S| ≥ |S ′| + 2 = a(G′) + 2.
Then γ2(G) ≤ γ2(G

′) + 2 ≤ a(G′) + 1 + 2 ≤ a(G) + 1. This proves the statement under the
assumption (ii).

(iii) Let u1u2u3v be a pendant path P4 of G such that dG(u1) = 1 and dG(u2) = dG(u3) =
2. Since G is connected, G′ = G − {u1, u2, u3} is also connected, and we have m(G′) =
m(G) − 3 and f(G′) < f(G). Let D′ be a minimum 2-dominating set of G′. Then D =
D′∪{u1, u3} is 2-dominating set of G. Thus, γ2(G) ≤ γ2(G

′)+2. Next, we choose an optimal
annihilation set S ′ in G′. Since we have already proved (ii), we may assume that dG(v) ≥ 3.
Consider now the following two cases. If v /∈ S ′, then

∑
(S ′, G) =

∑
(S ′, G′), and

∑
(S ′, G) ≤

m(G′) = m(G)−3. Hence, S = S ′∪{u1, u2} satisfies
∑

(S,G) =
∑

(S ′, G)+3 ≤ m(G), and
a(G) ≥ |S| = |S ′|+ 2 = a(G′) + 2. Then γ2(G) ≤ γ2(G

′) + 2 ≤ a(G′) + 1 + 2 ≤ a(G) + 1. In
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the second case assume v ∈ S ′. Then,
∑

(S ′, G) =
∑

(S ′, G′) + 1 ≤ m(G′) + 1 = m(G)− 2.
We define S = (S ′ − {v}) ∪ {u1, u2, u3} and observe that

∑
(S,G) =

∑
(S ′, G)− d(v) + 5 ≤

m(G) − 2 − 3 + 5 ≤ m(G). Hence, S is an annihilation set in G and we may conclude
a(G) ≥ |S| = |S ′|+ 2 = a(G′) + 2. So γ2(G) ≤ γ2(G

′) + 2 ≤ a(G′) + 1 + 2 ≤ a(G) + 1.
To complete the proof note that all the above transformations result in a connected

cactus graph G′, if G is of the same type. �

Lemma 3.3 Let w be a vertex of a nontrivial, connected graph H and let v be a vertex of a
tree T with radius at least 3, where V (H) ∩ V (T ) = ∅. If G is the graph obtained from the
H and T by identifying w and u, then there exists a connected graph G′ with f(G′) < f(G)
such that γ2(G

′) ≤ a(G′) + 1 implies γ2(G) ≤ a(G) + 1.

Proof. By Lemma 3.2(i) we may suppose throughout the proof that d∗(G) ≥ 3. Let v1 ∈
V (T ) be a vertex of T at the maximum distance from u. Since T has radius at least 3, we
have dT (u, v1) ≥ 3. Let v1, v2, v3, v4 be the first vertices on the shortest v1, u-path in T (and
also in G). Since dT (u, v1) ≥ 3 we infer that vi 6= u for i ∈ [3].

If d(v2) ≥ 3, then v2 is a strong support vertex by the assumption on d(u, v1). Then lemma
holds by Lemma 3.1. Hence assume in the rest that d(v2) = 2. Let N(v3) = {w1 = v2, w2 =
v4, . . . , wt} and consider the graph G′ = G−{v1, v2, v3}+ {w3v4, . . . , wtv4}. The graph G′ is
connected, m(G′) = m(G)−3, and f(G′) < f(G). If D′ is a minimum 2-dominating set of G′,
then D = D′∪{v1, v3} is 2-dominating set of G. Thus, γ2(G) ≤ |D| = |D′|+2 = γ2(G

′)+ 2.
Let S ′ be an optimal annihilation set in G′. Then

∑
(S ′, G′) ≤ m(G′) = m(G)−3. Consider

S = S ′∪{v1, v2}. Then
∑

(S,G) =
∑

(S ′, G)+d(v1)+d(v2) ≤
∑

(S ′, G′)+3 ≤ m(G′)−3+3 =
m(G). This gives a(G) ≥ |S| = |S ′| + 2 = a(G′) + 2, and so γ2(G) ≤ γ2(G

′) + 2 ≤
a(G′) + 1 + 2 ≤ a(G) + 1. �

The subdivided star Ss(K1,s+t), s ≥ 2, t ≥ 0, is the graph on 2s + t + 1 vertices which is
constructed by subdividing s edges of the star K1,s+t exactly once.

Lemma 3.4 Let C be a cycle in a connected graph H and let w be a vertex of C of degree
2. If G is the graph obtained from H and Ss(K1,s+t) by identifying w with the center of
Ss(K1,s+t), then there exists a nontrivial connected graph G′ with f(G′) < f(G) such that
γ2(G

′) ≤ a(G′) + 1 implies γ2(G) ≤ a(G) + 1.

Proof. Set F = Ss(K1,s+t) and let u be the center of F . Let uv′ivi, i ∈ [s], be the
pendant paths attached to u, and let wi, i ∈ [t], be the leafs adjacent to u, so that
V (F ) = {u, v1, . . . , vs, v

′

1, . . . , v
′

s, w1, . . . , wt}. If G′ = G − V (F ), then G′ is a connected
cactus graph with m(G′) = m(G) − 2s − t − 2 and f(G′) < f(G). If D′ is a minimum
2-dominating set of G′, then D = D′ ∪ {u, w1, . . . , wt, v1, . . . , vs} is a 2-dominating set of G.
Thus, γ2(G) ≤ |D| = |D′|+s+ t+1 = γ2(G

′)+s+ t+1. Next, let S ′ be an optimal annihila-
tion set in G′. Then

∑
(S ′, G) ≤

∑
(S ′, G′) + 2 ≤ m(G′) + 2 = m(G)− 2s− t. Consider now

S = S ′∪{v′1, w1, . . . , wt, v1, . . . , vs}. Then
∑

(S,G) ≤
∑

(S ′, G′)+s+ t+4 ≤ m(G)−2s− t+
s+ t+2 = m(G)−s+2 ≤ m(G). This proves a(G) ≥ |S| = |S ′|+s+ t+1 = a(G′)+s+ t+1
and then γ2(G) ≤ γ2(G

′) + s+ t+ 1 ≤ a(G′) + 1 + s+ t + 1 ≤ a(G) + 1. �
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4 A class of cacti for which Conjecture 1.1 holds

If H1 and H2 are subgraphs of a graph G, then the distance dG(H1, H2) between H1 and H2

is defined as min{dG(u, v) : u ∈ V (H1), v ∈ V (H2)}, where dG(u, v) is the standard distance
between vertices u and v. Let C and C ′ be cycles of a cactus graph G. If x ∈ V (C) and
x′ ∈ V (C ′) such that dG(x, x

′) = dG(C,C
′), then we say that x and x′ are exit vertices of

cycles C and C ′, respectively. A cycle of G is said to be an outer cycle if it has at most one
exit vertex. In the case that G is unicyclic, then we also declare its cycle to be outer. Hence,
if a cactus graph is not a tree, then it contains at least one outer cycle. We say that there
is a sun at an outer cycle of a cactus if at all of its vertices, but at the exit vertex, there is
exactly one pendant vertex attached. In Fig. 3 a cactus that contains two suns is drawn.

sun

sun

Figure 3: A cactus with two suns

With the above terminology in hands the main result of this section reads as follows.

Theorem 4.1 Let G be a connected, bipartite cactus. If G contains no sun at an outer cycle,
and the exit vertex of every outer 4-cycle is of degree at least 4, then γ2(G) ≤ a(G) + 1.

Proof. We proceed by induction on the value of the function f defined in the previous
section. For f(G) = 7 we have G ∼= K2, and γ2(K2) = 2 = a(K2) + 1. For the inductive
hypothesis, let f(G) ≥ 8 and assume that for every nontrivial graph G′ with f(G′) < f(G),
we have γ2(G

′) ≤ a(G′) + 1, where G′ and G are connected, bipartite cactus graphs. If G
is a tree, then the result follows. Also, if G is a cycle, then the statement is true. Thus, we
may suppose that G contains at least one cycle as a proper subgraph. We denote with Cℓ,
where ℓ ≥ 4 is an even number, an outer cycle of G, and with x the exit vertex of Cℓ.

In the rest of the proof we will consider subgraphs G′ formed from G by removing a set of
vertices or edges and adding edges in such a way that f(G′) < f(G) will hold and such that
G′ will fulfil the assumptions of the theorem. Also, throughout the proof, D′ will denote a
minimum 2-domination set of G′, and S ′ an optimal annihilation set in G′. We are going to
construct a 2-domination set D = D′ ∪ D′′ and an annihilation set S = S ′ ∪ S ′′ in G that
will satisfy |D′′| = |S ′′| = s. Applying our inductive hypothesis to G′, we will estimate that
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γ2(G
′) ≤ a(G′)+ 1 and consecutively γ2(G) ≤ γ2(G

′)+ s ≤ a(G′)+ s+1 ≤ a(G)+ 1. In this
way the theorem will be proved.

Case 1: All vertices from V (Cℓ) \ {x} have degree 2.
Let Cℓ = x, v1, . . . , vℓ−1, x. Set G′ = G − {v2, . . . , vℓ−2}. Then m(G′) = m(G) − (ℓ − 2).
Since dG′(v1) = dG′(vℓ−1) = 1, both vertices v1 and vℓ−1 belong to D′. Set D = D′ ∪
{v3, v5, . . . , vℓ−3}.Then D is a 2-dominating set of G and hence γ2(G) ≤ |D| = |D′|+ ℓ−4

2
=

γ2(G
′) + ℓ−4

2
. Since dG′(v1) = dG′(vℓ−1) = 1, then v1 and vℓ are also both in S ′. Set

S = S ′ ∪ {v3, v5, . . . , vℓ−3}, Then
∑

(S,G) ≤
∑

(S ′, G′) + 2 + 2 ℓ−4
2

≤ m(G′) + 2 + 2 ℓ−4
2

≤
m(G)− ℓ+2+(ℓ−4) < m(G). It follows that a(G) ≥ a(G′)+ ℓ−4

2
. So γ2(G) ≤ γ2(G

′)+1 ≤
a(G′) + 1 + ℓ−4

2
≤ a(G) + 1.

Case 2: V (Cℓ) \ {x} contains a vertex of degree at least 3.
Since V (Cℓ) \ {x} contains some vertices of degree at least 3, and Cℓ is an outer cycle, there
are trees attached to these vertices. We root each of these trees in the vertex of the tree that
lies in V (Cℓ). Amongst these trees select a tree T such that T has the largest height among
the trees, where the height of T is max{d(u, v) : u = V (Cℓ)∩ V (T ), v ∈ V (T )}. Denote the
height ot T with h, and let u = V (T ) ∩ V (Cℓ).

Subcase 2.1: h ≥ 3.
Since h ≥ 3, there exists a leaf v ∈ V (T ) such that d(u, v) = h ≥ 3. By Lemma 3.3 and our
inductive hypothesis, the theorem holds.

Subcase 2.2: h = 2.
We consider Cases (a), (b), (c), (d), and (e) which are schematically presented in Fig. 2. All
the other cases can be proved with the help of Lemma 3.1 and Lemma 3.2(ii).

Case (a): In this case, we have a subdivided star Ss(K1,s+t), (s ≥ 2 and t ≥ 0), attached
to the vertex u in Cℓ. By Lemma 3.4 and our inductive hypothesis forG′ = G−V (Ss(K1,s+t)),
the result holds.

In the following cases we will only consider subdivided stars with s = 1 and t ≥ 0, that
is, the subdivided star S1(K1,1+t). Set V (S1(K1,1+t)) = {u, v1, v2, w1, . . . , wt}, where u is the
vertex of degree t+ 1, w1, . . . , wt are leaves adjacent to u, and uv1v2 is the pendant path of
length 2.

Case (b): In this case there are subdivided stars S1(K1,1+t1) and S1(K1,1+t2) with ad-
jacent respective roots u and u′ on Cℓ. Let V (S1(K1,1+t1)) = {u, v1, v2, w1, . . . , wt1} and
V (S1(K1,1+t2)) = {u′, v′1, v

′

2, w
′

1, . . . , w
′

t2
}. Set

G′ = G− [V (S1(K1,1+t1)) ∪ (V (S ′

1(K1,1+t2))− {u′})] .

Then m(G′) = m(G) − (t1 + t2 + 6). Since dG′(u′) = 1, we have u′ ∈ D′. Set further
D = D′ ∪ {u, v2, v

′

2, w1, . . . , wt1, w
′

1, . . . , w
′

t2
}. Since D is a 2-domination set of G we get

γ2(G) ≤ |D| = |D′|+ t1 +2+ t2 +1 = γ2(G
′) + t1 + t2 + 3. Let y be the neighbor of u on Cℓ

different from u′. (Note that y may be x.). We now consider four subcases with respect to
whether y and u′ belong to S ′.

If y /∈ S ′ and u′ /∈ S ′, we have
∑

(S ′, G) =
∑

(S ′, G′) ≤ m(G′) = m(G) − (t1 + t2 + 6).
Let S = S ′ ∪ {w1, . . . , wt1, w

′

1, . . . , w
′

t2
, v1, v2, v

′

2}. Then
∑

(S,G) =
∑

(S ′, G) + d(w1) + · · ·+
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Figure 4: The subcases (a), (b), (c), (d), and (e) for the case h = 2 from the proof

d(wt1)+d(w′

1)+ · · ·+d(w′

t2
)+d(v1)+d(v2)+d(v′2) ≤ m(G)−(t1+t2+6)+t1+t2+2+1+1 =

m(G)− 2 < m(G), and we have a(G) ≥ |S ′| = |S ′|+ t1 + t2 + 3 = a(G′) + t1 + t2 + 3.
If y ∈ S ′ and u′ /∈ S ′, we have

∑
(S ′, G) =

∑
(S ′, G′)+1 ≤ m(G′)+1 = m(G)−(t1+t2+5).

Let S = S ′ ∪ {w1, . . . , wt1, w
′

1, . . . , w
′

t2
, v1, v2, v

′

2}. Then
∑

(S,G) =
∑

(S ′, G) + d(w1) + · · ·+
d(wt1)+d(w′

1)+ · · ·+d(w′

t2
)+d(v1)+d(v2)+d(v′2) ≤ m(G)−(t1+t2+5)+t1+t2+2+1+1 =

m(G)− 1 < m(G), and we have a(G) ≥ |S ′| = |S ′|+ t1 + t2 + 3 = a(G′) + t1 + t2 + 3.
If y /∈ S ′ and u′ ∈ S ′, we have

∑
(S ′, G) =

∑
(S ′, G′) + 2 + t2 ≤ m(G′) + 2 + t2 =

m(G)− t1−4. Let S = (S ′−{u′})∪{w1, . . . , wt1 , w
′

1, . . . , w
′

t2
, v1, v2, v

′

2, v
′

1}. Then
∑

(S,G) =
∑

(S ′, G)−d(u′)+d(w1)+ · · ·+d(wt1)+d(w′

1)+ · · ·+d(w′

t2
)+d(v1)+d(v2)+d(v′2)+d(v′1) ≤

m(G) − t1 − 4 − t2 − 3 + t1 + t2 + 2 + 1 + 1 + 2 = m(G) − 1 < m(G), and we have
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a(G) ≥ |S| = |S ′|+ t1 + t2 + 3 = a(G′) + t1 + t2 + 3.
If y ∈ S ′ and u′ ∈ S ′, we have

∑
(S ′, G) =

∑
(S ′, G′) + 3 + t2 ≤ m(G′) + 3 + t2 =

m(G)− t1−3. Let S = (S ′−{u′})∪{w1, . . . , wt1 , w
′

1, . . . , w
′

t2
, v1, v2, v

′

2, v
′

1}. Then
∑

(S,G) =
∑

(S ′, G)−d(u′)+d(w1)+ · · ·+d(wt1)+d(w′

1)+ · · ·+d(w′

t2
)+d(v1)+d(v2)+d(v′2)+d(v′1) ≤

m(G) − t1 − 3 − t2 − 3 + t1 + t2 + 2 + 1 + 1 + 2 = m(G), and we have a(G) ≥ |S ′| =
|S ′|+ t1 + t2 + 3 = a(G′) + t1 + t2 + 3.

Case (c): In this case there exists a subdivided star S1(K1,1+t) whose vertex u on Cℓ

has a neighbor u′ on Cℓ with an attended pendant vertex v′.
If ℓ ≥ 6, then let G′ = G − (V (S1(K1,1+t)) ∪ {u′, v′}). Then m(G′) = m(G) − (t + 6).

Setting D = D′∪{u, v2, v
′, w1, . . . , wt} we have γ2(G) ≤ |D| = |D′|+ t+3 = γ2(G

′)+(t+3).
Independently of whether the neighbors of u and u′ in G′ are inside S ′ or not, we have
Σ(S ′, G) = Σ(S ′, G′) + 2 ≤ m(G′) + 2 = m(G)− (t+4). Let S = S ′ ∪ {v1, v2, v

′, w1, . . . , wt}.
Then Σ(S,G) = Σ(S ′, G) + (1 + 1 + 2 + t) ≤ m(G)− (t+ 4) + (t+ 4) = m(G), and we have
a(G) ≥ |S| = |S ′|+ (t+ 3) = a(G′) + (t + 3).

Suppose now that ℓ = 4 and let Cℓ = x, u, u′, y. If d(y) ≥ 3, then we can proceed as in
the above case ℓ ≥ 6. Suppose next that d(y) = 2. Setting G′ = G−(V (Cℓ)∪V (S1(K1,1+t)))
we have m(G′) = m(G)− (t+ 7). Let D = D′ ∪ {u, v2, y, v

′, w1, . . . , wt}, and hence γ2(G) ≤
|D| = |D′|+t+4 = γ2(G

′)+(t+4). If x /∈ S ′, then set S = S ′∪{v1, v2, y, v
′, w1, . . . , wt}. Then

Σ(S,G) = Σ(S ′, G)+(2+3+1+t) ≤ m(G)−(t+7)+(t+6) < m(G). If x ∈ S ′, then set S =
(S ′\x)∪{u′}∪{v1, v2, y, v

′, w1, . . . , wt}. Then Σ(S,G) = Σ(S ′, G)+2−d(x)+3+(2+3+1+t)≤
m(G)− (t+7)−1+(t+6) = m(G). So we have a(G) ≥ |S| = |S ′|+(t+4) = a(G′)+(t+4).

Case (d): In this case we have a subdivided star S1(K1,1+t) such that its vertex u on
Cℓ, has a neighbor u′ on Cℓ of degree 2. We consider thres subcases.

Case (d1): In this subcase u′ has another neighbor w ∈ V (Cℓ) such that d(w) = 2. If
ℓ ≥ 6, select G′ = G−(V (S1(K1,1+t))∪{u

′}). Then m(G′) = m(G)−(t+5). Since dG′(w)=1,
we much have w ∈ D′. Let D = D′∪{u, v2, w1, . . . , wt}. Since D is a 2-dominating set of G,
we get γ2(G) ≤ |D| = |D′|+(t+2) = γt(G

′)+(t+2). Independently of whether the neighbors
of u and u′ in G′ are inside S ′ or not, we have Σ(S ′, G) = Σ(S ′, G′) + 2 ≤ m(G′) + 2 =
m(G) − (t + 3). Let S = S ′ ∪ {v1, v2, w1, . . . , wt}. Then Σ(S,G) = Σ(S ′, G) + (t + 3) ≤
m(G)− (t+ 3) + (t+ 3) ≤ m(G), and we have a(G) ≥ |S| = |S ′|+ (t+ 2) = a(G′) + (t+ 2).

Consider now the case that ℓ = 4. Setting G′ = G − (V (S1(K1,1+t)) ∪ {u′, w}) we have
m(G′) = m(G) − (t + 6). Let D = D′ ∪ {u, v2, w, w1, . . . , wt}, and hence γ2(G) ≤ |D| =
|D′| + t + 3 = γ2(G

′) + (t + 3). If x /∈ S ′, then set S = S ′ ∪ {v1, v2, w, w1, . . . , wt}. Then
Σ(S,G) = Σ(S ′, G) + (2 + 2 + 1 + t) ≤ m(G)− (t+ 6) + (t+ 5) < m(G). If x ∈ S ′, then set
S = (S ′\x)∪{u′}∪{v1, v2, w, w1, . . . , wt}. Then Σ(S,G) = Σ(S ′, G)+2−d(x)+2+(2+2+1+
t) ≤ m(G)−(t+6)+(t+5) < m(G). So we have a(G) ≥ |S| = |S ′|+(t+3) = a(G′)+(t+3).

Case (d2): Suppose new that the other neighbor w of u′ has a pendant vertex w′. If
ℓ ≥ 6, then let G′ = G − (V (S1(K1,1+t)) ∪ {u′, w′}). Then m(G′) = m(G) − (t + 6). Since
dG′(w)=1, we have w ∈ D′. Set D = D′ ∪ {u, v2, w

′, w1, . . . , wt}. Then D is a 2-dominating
set of G and therefore γ2(G) ≤ |D| = |D′| + (t + 3) = γt(G

′) + (t + 3). If w /∈ S ′, then we
have Σ(S ′, G) ≤ Σ(S ′, G′) + 1 ≤ m(G) − (t + 5). Set next S = S ′ ∪ {v1, v2, w

′, w1, . . . , wt}.
Then Σ(S,G) = Σ(S ′, G) + (1 + 2 + 1 + t) ≤ m(G) − (t + 5) + (t + 4) < m(G), and
we have a(G) ≥ |S| = |S ′| + (t + 3) = a(G′) + (t + 3). If w ∈ S ′, we have Σ(S ′, G) ≤
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Σ(S ′, G′) + 3 ≤ m(G′) + 3 = m(G)− 3. Setting S = (S ′ − {w}) ∪ {u′, v1, v2, w
′, w1, . . . , wt},

we have Σ(S,G) = Σ(S ′, G) − 3 + (2 + 2 + 1 + 1 + t) ≤ m(G) − (t + 3) + (t + 3) = m(G),
and we have a(G) ≥ |S| = |S ′|+ (t+ 3) = a(G′) + (t+ 3).

Let now ℓ = 4. Setting G′ = G− (V (S1(K1,1+t) ∪ {u′, w, w′}) we have m(G′) = m(G)−
(t + 7). Let D = D′ ∪ {u, v2, w, w

′, w1, . . . , wt}, and hence γ2(G) ≤ |D| = |D′| + t + 4 =
γ2(G

′) + (t + 4). If x /∈ S ′, then set S = S ′ ∪ {u, v2, u
′, w′, w1, . . . , wt} and Σ(S,G) =

Σ(S ′, G) + (2 + 2 + 1 + 1 + t) ≤ m(G) − (t + 7) + (t + 6) < m(G). If x ∈ S ′, then
set S = (S ′ \ x) ∪ {w} ∪ {u, v2, u

′, w′, w1, . . . , wt} and therefore Σ(S,G) = Σ(S ′, G) + 2 −
d(x) + 3 + (2 + 2 + 1 + 1 + t) ≤ m(G) − (t + 7) + 1 + (t + 6) = m(G). So we have
a(G) ≥ |S| = |S ′|+ (t+ 4) = a(G′) + (t + 4).

Case (d3): Suppose now that at the other neighbor w of u′ we have another subdivided
star S1(K1,1+t2). Set G′ = G − (V (S1(K1,1+t1) ∪ V (S1(K1,1+t2) ∪ {u′}) and hence m(G′) =
m(G)− (t1 + t2 +8). Setting D = D′ ∪ {u, w, v2, v

′

2, w1, . . . , wt1 , w
′

1, . . . , w
′

t2
} we get γ2(G) ≤

|D| = |D′|+ (t1+ t2+4) = γ2(G
′) + (t1+ t2+4). Independently of whether the neighbors of

u and w in G′ are inside S ′ or not, we have Σ(S ′, G) ≤ Σ(S ′, G′) + 2 ≤ m(G)− (t1 + t2 + 6).
Set further S = S ′ ∪ {v1, v2, v

′

1, v
′

2, w1, . . . , wt1 , w
′

1, . . . , w
′

t2
}, so that Σ(S,G) = Σ(S ′, G) +

(1 + 2 + 1 + 2 + t1 + t2) ≤ m(G)− (t1 + t2 + 6) + (t1 + t2 + 6) = m(G), and a(G) ≥ |S| =
|S ′|+ (t1 + t2 + 4) = a(G′) + (t1 + t2 + 4).

Case (e): Let ℓ = 4 and let C4 = x, s, u, y, x, where u is attended with a subdivided star
S(K1,1,t). Setting G′ = G− V (S1(K1,1+t)) we have m(G′) = m(G)− (t + 4). Since d′G(s) =
d′G(y) = 1, the vertices s and y belong to D′. Let D = {D′ \ {s, y}} ∪ {x, u, v2, w1, . . . , wt}.
Then γ2(G) ≤ |D| = |D′|+ (t+ 1) = γ2(G

′) + (t+ 1). Set further S = S ′ ∪ {v2, w1, . . . , wt}.
Then Σ(S,G) = Σ(S ′, G)+ 2+ (1+ t) ≤ m(G)− (t+4)+ (t+3) < m(G), and a(G) ≥ |S| =
|S ′|+ (t + 1) = a(G′) + (t+ 1).

Subcase 2.3: h = 1.
We need to consider only one case which is shown in Fig. 5, because, as we have already
seen in Case 2.2, all the other cases for h = 1 can be proved with the help of Lemma 3.1.

x

u

v

u1

Figure 5: The situation to be considered in the subcase h = 1

Assume that d(u) = 3, and at least one of its neighbors in V (Cℓ) \ {x}, is degree of
2, denote it with u1. Denote the child of u with v. Setting G′ = G − {u, v} we have
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m(G′) = m(G) − 3. Then u1 ∈ D′, since it is leaf in G′. Setting D = D′ ∪ {v} we get
γ2(G) ≤ |D| = |D′| + 1 = γ2(G

′) + 1. Independently of whether the neighbors of u in G′

are inside S ′ or not, we have
∑

(S ′, G) ≤
∑

(S ′, G′) + 2 ≤ m(G′) + 2 = m(G) − 1. Let
S = S ′ ∪ {v}. Then

∑
(S,G) =

∑
(S ′, G) + d(v) ≤ m(G) − 1 + 1 = m(G), and we have

a(G) ≥ |S ′| = |S ′|+ 1 = a(G′) + 1. �

5 Concluding remarks

Based on the results of this paper, the following problem is very natural.

Problem 5.1 Characterize the cactus graphs for which Conjecture 1.1 holds true.

Note that the class of cacti in question does not contain bipartite cacti as a subclass
since some of the counterexamples from Section 2 are bipartite. More generally, it would be
interesting to know the answer to the following:

Problem 5.2 Characterize the graphs for which Conjecture 1.1 holds true.

As we already mentioned, in [9] trees were characterized for which the equality in Con-
jecture 1.1 holds. Hence we pose:

Problem 5.3 Characterize the cactus graphs for which the equality in Conjecture 1.1 holds.
More generally, characterize the graphs with the same property.

Let γt(G) denote the total domination number of a graph G. (For an extensive informa-
tion on γt see the book [13].) In [7, 9] a parallel conjecture to Conjecture 1.1 was posed for
the total domination number, that is, it was conjectured that

γt(G) ≤ a(G) + 1 (2)

holds for every nontrivial connected graph G. This conjecture holds for graphs of mini-
mum degree at least 3, and has been verified for trees [8] and for cactus graphs and block
graphs [2]. The counterexamples to Conjecture 1.1 presented in this paper are far from
being counterexamples for (2) since their total domination number is significantly smaller
and, after all, the counterexamples to Conjecture 1.1 are cactus graphs for which (2) holds.
Hence we are inclined to believe that (2) holds true.

Acknowledgments

Jun Yue was partially supported by the National Natural Science Foundation of China
(No. 11626148 and 11701342) and the Natural Science Foundation of Shandong Province
(No. ZR2016AQ01). Yongtang Shi was partially supported by the National Natural Science
Foundation of China, Natural Science Foundation of Tianjin (No. 17JCQNJC00300), the

13



China-Slovenia bilateral project “Some topics in modern graph theory” (No. 12-6), Open
Project Foundation of Intelligent Information Processing Key Laboratory of Shanxi Province
(No. CICIP2018005), and the Fundamental Research Funds for the Central Universities,
Nankai University (63191516). Sandi Klavžar acknowledges the financial support from the
Slovenian Research Agency (research core funding P1-0297 and projects J1-9109, N1-0095,
N1-0108).

References

[1] J. A. Bondy, U. S. R. Murty, Graph Theory, GTM 244, Springer, 2008.

[2] Cs. Bujtás, M. Jakovac, Relating the total domination number and the annihilation
number of cactus graphs and block graphs, Ars Math. Contemp. 16 (2019) 183–202.

[3] Cs. Bujtás, S. Jaskó, Bounds on the 2-domination number, Discrete Appl. Math. 242
(2018) 4–15.

[4] M. Chellali, O. Favaron, A. Hansberg, L. Volkmann, k-domination and k-independence
in graphs: a survey, Graphs Combin. 28 (2012) 1–55.

[5] Y. Caro, Y. Roditty, A note on the k-domination number of a graph, Int. J. Math.
Math. Sci. 13 (1990) 205–206.

[6] P. Dankelmann, F. J. Osaye, Average eccentricity, k-packing and k-domination in
graphs, Discrete Math. 342 (2019) 1261–1274.

[7] E. DeLaViña, Written on the Wall II (Conjectures of Graffiti.pc),
\protecthttp://cms.dt.uh.edu/faculty/delavinae/research/wowII/.

[8] W. J. Desormeaux, T. W. Haynes, M. A. Henning, Relating the annihilation number
and the total domination number of a tree, Discrete Appl. Math. 161 (2013) 349–354.

[9] W. J. Desormeaux, M. A. Henning, D. F. Rall, A. Yeo, Relating the annihilation number
and the 2-domination number of a tree, Discrete Math. 319 (2014) 15–23.

[10] J. F. Fink, M. S. Jacobson, n-domination in graphs, In: Y. Alavi, A. J. Schwenk (Eds.),
Graph Theory with Applications to Algorithms and Computer Science, Wiley, New
York (1985) 283–300.

[11] J. R. Griggs and D. J. Kleitman, Independence and the Havel-Hakimi residue, Discrete
Math. 127 (1994) 209–212.

[12] A. Hansberg, D. Meierling, L. Volkmann, Independence and k-domination in graphs,
Int. J. Comput. Math. 5 (2011) 905–915.

[13] M. A. Henning, A. Yeo, Total Domination in Graphs, Springer, New York, 2013.

14

\protect 
http://cms.dt.uh.edu/faculty/delavinae/research/wowII/


[14] M. Jakovac, Relating the annihilation number and the 2-domination number of block
graphs, Discrete Appl. Math. 260 (2019) 178–187.

[15] R. Li, Bounding the graphical parameters by the independent and k-domination num-
bers, Rom. J. Math. Comput. Sci. 8 (2018) 52–57.

[16] J. Lyle, S. Patterson, A note on the annihilation number and 2-domination number of
a tree, J. Comb. Optim. 33 (2017) 968–976.

[17] R. D. Pepper, Binding Independence, Ph.D. thesis, University of Houston, Houston,
Texas, 2004.

15


	1 Introduction
	1.1 Preliminaries

	2 Counterexample to Conjecture ??
	3 Some preliminary lemmas
	4 A class of cacti for which Conjecture ?? holds
	5 Concluding remarks

