
ar
X

iv
:1

90
5.

05
96

8v
2 

 [
m

at
h.

C
O

] 
 1

4 
N

ov
 2

02
0

Comparing Wiener complexity with eccentric
complexity
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Abstract

The transmission of a vertex v of a graph G is the sum of distances from
v to all the other vertices in G. The Wiener complexity of G is the number
of different transmissions of its vertices. Similarly, the eccentric complexity
of G is defined as the number of different eccentricities of its vertices. In this
paper these two complexities are compared. The complexities are first studied
on Cartesian product graphs. Transmission indivisible graphs and arithmetic
transmission graphs are introduced to demonstrate sharpness of upper and
lower bounds on the Wiener complexity, respectively. It is shown that for
almost all graphs the Wiener complexity is not smaller than the eccentric
complexity. This property is proved for trees, the equality holding precisely
for center-regular trees. Several families of graphs in which the complexities
are equal are constructed. Using the Cartesian product, it is proved that the
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eccentric complexity can be arbitrarily larger than the Wiener complexity.
Additional infinite families of graphs with this property are constructed by
amalgamating universally diametrical graphs with center-regular trees.

Keywords: graph distance; Wiener complexity; eccentric complexity; Cartesian
product of graphs; graph of diameter 2
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1 Introduction

If G = (V (G), E(G)) is a graph, then dG(u, v) denotes the shortest-path distance
between vertices u, v ∈ V (G). The transmission TrG(v) of a vertex v ∈ V (G) is the
sum of distances from v to the vertices in G, that is,

TrG(v) =
∑

u∈V (G)

dG(u, v) .

The Wiener index W (G) of G can then be defined as W (G) = 1
2

∑

v∈V (G)

TrG(v). The

eccentricity ecG(v) of a vertex v ∈ V (G) is the maximum distance from v to other
vertices of G:

ecG(v) = max
u 6=v

dG(u, v) .

Eccentricity is a central concept of metric graph theory and has many applications
elsewhere, in particular in location theory and in chemical graph theory. In the
latter area, important eccentricity-based graph invariants (alias topological indices
in mathematical chemistry) include the first and the second Zagreb eccentricity
indices [20], eccentric connectivity index [19, 27], and connective eccentricity in-
dex [10]. For mathematical properties of these invariants see [9, 18, 21, 23, 25].

The Wiener complexity CW (G) of a graph G was introduced in [1] (under the
name Wiener dimension) as the number of different transmission of vertices in G:

CW (G) = |{TrG(v) : v ∈ V (G)}| .

The Wiener complexity of graphs has been further investigated in [4, 12, 13]. In
the same spirit as the Wiener complexity is defined, the connective eccentric com-
plexity [3] and the eccentric complexity [2] have been recently introduced. The
eccentric complexity Cec(G) of a graph G is the number of different eccentricities in
G. Equivalently,

Cec(G) = diam(G)− rad(G) + 1 , (1)
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where diam(G) = max
v∈V (G)

ecG(v) is the diameter of G and rad(G) = min
v∈V (G)

ecG(v) is

the radius of G.
In view of the conceptional similarities between the Wiener complexity and the

eccentric complexity, we compare in this paper these two complexities and proceed
as follows. In the rest of this section we list definitions, concepts, and known results
needed. In Section 2 we consider the Wiener complexity and the eccentric complexity
of Cartesian products. In particular, a new lower bound on the Wiener complexity
is proved and shown to be sharp using the so-called arithmetic transmission graphs.
To demonstrate that the Wiener complexity of a Cartesian product can be equal to
the product of the complexities of the factors, transmission indivisible graphs are
introduced. In Section 3 we first prove that Cec(G) ≤ CW (G) holds for almost all
graphs G. Consequently, in Subsections 3.1 and 3.2, we consider the graphs G for
which Cec(G) = CW (G) and Cec(G) > CW (G) holds, respectively. We prove that
for a tree T we always have Cec(G) ≤ CW (G), and that equality holds precisely for
center-regular trees. We construct several families of graphs, among them two fam-
ilies of product graphs, for which the equality holds. Using the Cartesian product,
we find an infinite family of graphs G with the property Cec(G) > CW (G). More-
over, the construction shows that the difference can be arbitrarily large. Finally,
amalgamating universally diametrical graphs with center-regular trees we construct
additional infinite families of graphs G for which Cec(G) > CW (G) holds.

1.1 Preliminaries

If k is a positive integer, then [k] = {1, . . . , k}. The degree of a vertex v of a graph
G is denoted by degG(v). If G is a graph, then n(G) denotes the order of G.

The center C(G) of a graph G is the set of vertices of G of the minimum ec-
centricity, these vertices being called central. G is self-centered [5] if all its vertices
have the same eccentricity, that is, if and only if Cec(G) = 1.

Let G be a graph. The transmission set Tr(G) of G is the set of the transmissions
of its vertices, that is, Tr(G) = {TrG(v) : v ∈ V (G)}. The eccentricity set Ec(G) of
a graph G is the set of the eccentricities of its vertices, that is, Ec(G) = {ecG(v) :
v ∈ V (G)}. A graph G is transmission regular [14] if all its vertices have the same
transmission. In other words, transmission regular graphs are precisely the graphs
G with CW (G) = 1. In addition, G is transmission irregular [4] if all its vertices
have pairwise different transmissions, that is, if and only if CW (G) = n(G). We will
make use of the following easy result on the transmission.

Proposition 1.1 ([1]) Let G be a graph with diam(G) = 2. If v ∈ V (G) with
ecG(v) = 2, then TrG(v) = 2n(G)− 2− degG(v).
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The Cartesian product G�H of graphs G and H is the graph with V (G�H) =
V (G) × V (H), vertices (g, h) and (g′, h′) being adjacent if gg′ ∈ E(G) and h = h′,
or g = g′ and hh′ ∈ E(H).

2 Complexities on Cartesian products

While comparing the Wiener complexity and the eccentric complexity we will exten-
sively use the Cartesian product operation. In this section we hence recall known,
and derive new related results.

It is well known that the distance function is additive on Cartesian product
graphs. More precisely, if G and H are graphs, then

dG�H((g, h), (g
′, h′)) = dG(g, g

′) + dH(h, h
′) (2)

holds for arbitrary vertices (g, h), (g′, h′) ∈ V (G�H), cf. [11, Proposition 5.1].
This, in particular, implies that the diameter and radius are additive functions on
Cartesian product graphs, which in turn gives the following closed formula for the
eccentric complexity of Cartesian products.

Theorem 2.1 ([2, Theorem 11]) If G and H are connected graphs, then we have
Cec(G�H) = Cec(G) + Cec(H)− 1.

For any graph G, we denote by Gm be mth power of G with respect to Cartesian
product, that is, the Cartesian product of m copies of G. Now we have:

Corollary 2.2 If k ≥ 1, then Cec(G
2k) = 2kCec(G)− 2k + 1.

Proof. By Theorem 2.1, we have

Cec(G
2k) = 2Cec(G

2k−1

)− 1

= 2
[

2Cec(G
2k−2

)− 1
]

− 1

...

= 2iCec(G
2k−i

)− 2i−1 − · · · − 2− 1
...

= 2kCec(G)− 2k + 1 .

�
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The Wiener complexity of Cartesian products is more involved. The distance
formula (2) yields

TrG�H((g, h)) =
∑

(g′,h′)∈V (G�H)

dG�H((g, h), (g
′, h′))

=
∑

(g′,h′)∈V (G�H)

(dG(g, g
′) + dH(h, h

′))

= n(H)
∑

g′∈V (G)

dG(g, g
′) + n(G)

∑

h′∈V (H)

dH(h, h
′)

= n(H)TrG(g) + n(G)TrH(h) , (3)

a result deduced earlier in [1]. Consequently,

CW (G�H) =
∣

∣{n(H)TrG(g) + n(G)TrH(h) : g ∈ V (G), h ∈ V (H)}
∣

∣ , (4)

from which we immediately get:

max{CW (G), CW (H)} ≤ CW (G�H) ≤ CW (G)CW (H) . (5)

The lower bound in (5) can be improved as follows.

Proposition 2.3 If G and H are graphs, then

CW (G�H) ≥ CW (G) + CW (H)− 1 .

Proof. Let Tr(G) = {x1, . . . , xs} and Tr(H) = {y1, . . . , yt}, where x1 < · · · < xs

and y1 < · · · < yt. Then the set X defined as

{x1n(H) + y1n(G), . . . , x1n(H) + ytn(G), x2n(H) + ytn(G), . . . , xsn(H) + ytn(G)}

contains pairwise different integers, and X ⊆ Tr(G�H) by (3). Since

|X| = s + t− 1 = CW (G) + CW (H)− 1,

the result follows. �

We note in passing that Theorem 2.1 and Proposition 2.3 immediately imply
that if CW (G) ≥ Cec(G) and CW (H) ≥ Cec(H), then CW (G�H) ≥ Cec(G�H).

If G is a graph and H a graph with CW (H) = 1, then CW (G�H) = CW (G),
a result first reported in [1]. Hence the lower bound in (5) is best possible, it
coincides with that in Proposition 2.3. On the other hand, the sharpness of the
upper bound in (5) was not discussed in [1]. To establish the sharpness also for
the upper bound we introduce the following notion. A graph G is transmission
indivisible if n(G) ∤ (TrG(u)− TrG(v)) for every two distinct vertices u, v ∈ V (G).

5



Theorem 2.4 Let G and H be graphs. If at least one of G and H is transmission
indivisible, and gcd(n(G), n(H)) = 1, then CW (G�H) = CW (G)CW (H).

Proof. Let Tr(G) = {pi : i ∈ [s]} and Tr(H) = {qj : j ∈ [t]}. Then in view of (4),

CW (G�H) =
∣

∣{n(H)pi + n(G)qj : i ∈ [s], j ∈ [t]}
∣

∣ .

To prove the assertion of the theorem we need to show that n(H)pi + n(G)qj 6=

n(H)pi′ + n(G)qj′ for every {i, i′} ∈
(

[s]
2

)

and every {j, j′} ∈
(

[t]
2

)

. Suppose on
the contrary that for some such pairs {i, i′} and {j, j′} we have n(H)pi + n(G)qj =
n(H)pi′+n(G)qj′, that is, n(H)(pi−pi′) = n(G)(qj′−qj). Because gcd(n(G), n(H)) =
1 we infer that n(G)|(pi − pi′) and n(H)|(qj′ − qj). But this means that neither G
nor H is transmission indivisible, a contradiction. �

Note that ifG is transmission indivisible, then the transmissions of all the vertices
of G are pairwise different, that is, G is transmission irregular. Although almost
all graphs are not transmission irregular, an infinite family of transmission irregular
trees was constructed in [4] and an infinite family of transmission irregular trees of
even order in [7]. Moreover, an infinite family of transmission irregular 2-connected
graphs was constructed in [6] and an infinite family of 3-connected cubic transmission
irregular graphs in [8].

A transmission irregular graph need not be transmission indivisible. In Fig. 1
a transmission irregular but non-transmission indivisible tree of order 7 is shown,
where the transmission is given for each vertex. Sporadic transmission indivisible
graphs of order 7 and 8 are shown in Fig. 2, where along with each vertex its
transmission is stated.

18 13 10 11 14 19

15

Figure 1: A transmission irregular but non-transmission indivisible tree

Note that the transmission of the vertices in each of the two examples from Fig. 2
are consecutive integers from the intervals [7..13] and [8..15], respectively, which
makes these examples particularly interesting. Such graphs were named interval
(transmission) irregular graphs in [6]. Interval irregular graphs are transmission
indivisible and hence Theorem 2.4 applies. We have checked by computer that there
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Figure 2: Two of the smallest interval irregular graphs

are 1, 2, 13, and 0 interval irregular graphs on 7, 8, 9, and 10 vertices, respectively.
In addition, Dobrynin [6] reports that there exist at least 207 interval irregular 2-
connected graphs of order 11. Their respective intervals of transmissions are [13..23]
(154 graphs), [15..25] (51 graphs), and [17..27] (2 graphs). The existence of an
infinite family of interval irregular graphs is an open problem.

With interval irregular graphs in hands (and hence with transmission indivisible
ones) the following result makes sense.

Corollary 2.5 If G is a transmission indivisible graph, then there exits a family of
graphs {Hi}i≥1 such that CW (G�Hi) = CW (G)CW (Hi).

Proof. Let {pi}i≥1 be a set of primes each larger than n(G) and let Hi be a graph
of order pi. Then gcd(n(G), n(Hi)) = 1 and the result follows from Theorem 2.4. �

By a computer search (using [15]) we have checked that the class of transmission
indivisible graphs is strictly larger than the class of interval irregular graphs. There
are no such examples on up to and including 10 vertices. However, a bit surprisingly,
there are 221 graphs on 11 vertices that are transmission indivisible but not interval
irregular. Among them there are no trees, but one finds 14 graphs which are 2-
connected, an example can be seen in Fig. 3.

A graph G is arithmetic transmission if the ordered elements of Tr(G) form an
arithmetic progression. Moreover, if Tr(G) has step a, we say that G has step a. (In
Subsection 3.2 see an example of arithmetic transmission graph with step 4.) Below
we present a result in which the lower bound is attained in Proposition 2.3.

Proposition 2.6 Let G and H be arithmetic transmission graphs. If Tr(H) ⊆
Tr(G) and n(G) = n(H), then CW (G�H) = CW (G) + CW (H)− 1.

7
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Figure 3: A 2-connected transmission indivisible graph which is not interval irregular

Proof. Set n = n(G) = n(H) and Tr(G) = {x1, . . . , xk}. We may without loss of
generality assume that Tr(H) = {x1, . . . , xj}, where j ≤ k. Then |Tr(G)| = k =
xk−x1

a
+1 and |Tr(H)| = j =

xj−x1

a
+1. By (4), Tr(G�H) = {n(x1+x1), . . . , n(xk+

xj)} and hence

|Tr(G�H)| =
(xk + xj)− (x1 + x1)

a
+ 1

=
xk − x1

a
+

xj − x1

a
+ 1 + 1− 1

= |Tr(G)|+ |Tr(H)| − 1 .
�

Taking H = G in Proposition 2.6 and using a similar technique as that in the
proof of Corollary 2.2, we have the following result.

Corollary 2.7 Let G be an arithmetic transmission graph and k ≥ 0 be an integer.
Then CW (G2k) = 2kCW (G)− 2k + 1.

In Fig. 4 graphs G and H are shown which satisfy the conditions of Proposi-
tion 2.6.

13 9 7 9 13

11

9

7

7

7

7

9

Figure 4: Graphs G (right) and H (left) with Tr(H) ⊂ Tr(G)
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Clearly, any interval irregular graph is arithmetic transmission as a special case.
Hence Proposition 2.6 and Corollary 2.7 also apply for interval irregular graphs.
Next we provide a result on the Cartesian product of arithmetic transmission graphs
for which the upper bound in (5) is attained.

Theorem 2.8 Let G and H be arithmetic transmission graphs with steps a and b,
respectively. If n(H)(CW (G)− 1)a < n(G)b, then CW (G�H) = CW (G)CW (H).

Proof. Let Tr(G) = {x1, . . . , xk} and Tr(H) = {y1, . . . , yj}. Thus CW (G) = k,
CW (H) = j and

CW (G�H) =
∣

∣{n(H)xp + n(G)yq : p ∈ [k], q ∈ [j]}
∣

∣

by (4). Let Ai = {n(H)x1 + n(G)yi, . . . , n(H)xk + n(G)yi} for i ∈ [j]. Therefore,

we have Tr(G�H) =
j
⋃

i=1

Ai. From the assumption, we have n(H)(k− 1)a < n(G)b.

It follows that

n(H)xk + n(G)yi = n(H)(x1 + (k − 1)a) + n(G)(yi+1 − b)

= (n(H)x1 + n(G)yi+1) + (n(H)(k − 1)a− n(G)b)

< n(H)x1 + n(G)yi+1 .

This implies that max{s : s ∈ Ai} < min{s : s ∈ Ai+1}, hence As ∩ At = ∅ for any
s, t ∈ [k], s 6= t. We conclude that CW (G�H) = kj. �

3 Comparing Cec(G) with CW (G)

It was proved in [2] that Cec(G) ≤ ⌈n(G)
2

⌉ for any graph G. Therefore, if G is a
transmission irregular graph, then CW (G) > Cec(G). Actually, this is a phenomena
that is very common as the next result shows.

Proposition 3.1 For almost all graphs G, we have Cec(G) ≤ CW (G).

Proof. It is well-known that almost all graphs have diameter 2. So let G be a graph
with diam(G) = 2. Then Cec(G) ≤ 2. There is nothing to show if Cec(G) = 1, so
let Cec(G) = 2 in which case we have Ec(G) = {1, 2}. But then G contains at least
one vertex of degree n(G)− 1, and at least one vertex of smaller degree. Since their
transmissions are different by Proposition 1.1, CW (G) ≥ 2. �

9



We next show that the difference CW (G)− Cec(G) can be arbitrarily large. For
this recall that the d-cube Qd, d ≥ 1, has the vertex set {0, 1}d, two vertices in Qd

are adjacent if they differ in precisely one coordinate. Let Q−
d be the graph obtained

from Qd by removing an arbitrary vertex.

Proposition 3.2 If d ≥ 2, then CW (Q−
d )− Cec(Q

−
d ) = d− 2.

Proof. We may without loss of generality assume that V (Q−
d ) = V (Qd)\{0

d}. Then
ecQ−

d
(1d) = d− 1 and ecQ−

d
(v) = d for all other vertices v of Q−

d . Thus Cec(Q
−
d ) = 2.

Let x ∈ V (Q−
d ). Then TrQ−

d
(x) = TrQd

(x)\{dQd
(x, 0d)}. Since there are precisely

d different values of dQd
(x, 0d), we conclude that Tr(Q−

d ) = d. �

Corollary 3.3 If d ≥ 2, then there exists a graph G with diam(G) = d such that
CW (G) > Cec(G).

Proof. If d = 2, then consider the paw graph P (that is, the graph obtained from
a triangle by attaching a leaf to one of its vertices) for which Ec(P ) = {1, 2} and
Tr(P ) = {3, 4, 5} hold. For d ≥ 3, apply Proposition 3.2. �

3.1 More graphs G with CW (G) ≥ Cec(G)

Let G be a graph. Then, by definition, Cec(G) = CW (G) = 1 if and only if G is
a self-centered, transmission regular graph. In the next result we present several
additional classes of graphs G for which CW (G) = Cec(G) holds. To state the result,
we need some further definitions. If the eccentricity of the vertices of a self-centered
graph G is k, we say that G is k-self-centered. A graph G is bidegreed if all vertices of
G have one of two possible degrees, cf. [16]. (If x is a vertex of a bidegreed graph G,
then degG(x) ∈ {δ(G),∆(G)}.) Let finally G(k∗), k ≥ 1, denote the graph obtained
from G by attaching k pendant vertices to each vertex of G.

Proposition 3.4 (i) If G is a regular, 2-self-centered graph, then CW (G) =
Cec(G) = 1.

(ii) If G is a bidegreed, non-self-centered graph with diam(G) = 2, then CW (G) =
Cec(G) = 2.

(iii) If G is a regular or bidegreed graph obtained from Kn by removing k edges,
k ∈ [⌊n

2
⌋], then CW (G) = Cec(G).

10



(iv) If G is a vertex-transitive graph and k ≥ 1, then Cec(G
(k∗)) = CW (G(k∗)) = 2.

Proof. (i) As G is self-centered, Cec(G) = 1. Combining Proposition 1.1 and the
fact that G is regular, we have CW (G) = 1.

(ii) Since G is not self-centered and diam(G) = 2, we have Cec(G) = 2 and
at least one vertex must have eccentricity 1, that is, ∆(G) = n(G) − 1. As G is
bidegreed, all the vertices that have degree smaller than n(G) − 1 must have the
same degree. In view of Proposition 1.1, we have CW (G) = 2.

(iii) If G is regular, then since k ≤ ⌊n
2
⌋, G is obtained from Kn be removing a

perfect matching (in which case n is even and k = n/2). Then the assertion follows
by (i). Otherwise G is not regular. But then G is bidegreed and hence G fulfils the
assumption of (ii).

(iv) Since G is vertex-transitive, G is a transmission regular, self-centered graph.
Assume that diam(G) = d, n = n(G), and let V (G) = {v1, . . . , vn}. Let V (G(k∗)) =

V (G)∪{v
(j)
i : i ∈ [n], j ∈ [k]} with viv

(j)
i ∈ E(G(k∗)) for j ∈ [k]. From the structure

of G(k∗) we have ecG(k∗)(vi) = d+1 and ecG(k∗)(v
(j)
i ) = d+2 for every i ∈ [n], j ∈ [k].

Hence Cec(G
(k∗)) = 2.

On the other hand, TrG(k∗)(vi) is the same for all i ∈ [n]. Since v
(j)
i is a pendant

vertex, we see that TrG(k∗)(v
(j)
i ) = TrG(k∗)(vi) + (n + 1)k − 2 is the same for every

j ∈ [k]. Thus CW (G(k∗)) = 2. �

The class of graphs from Proposition 3.4 (i) contains vertex-transitive graphs
as a proper subclass. For instance, if G is an arbitrary regular graph that is not
vertex-transitive, then the join of two copies of G is a regular, 2-self-centered graph,
but not vertex-transitive. (The join of graphs G and H is obtained from the disjoint
union of G and H by adding all possible edges between vertices of G and vertices of
H .)

To show that there exist graphs that have the same Wiener complexity and eccen-
tric complexity which is arbitrary large, Cartesian and lexicographic product graphs
can be used. We have already defined the Cartesian product. The lexicographic prod-
uct G ◦H of graphs G and H also has the vertex set V (G)× V (H), vertices (g, h)
and (g′, h′) being adjacent if either gg′ ∈ E(G), or g = g′ and hh′ ∈ E(H).

Theorem 3.5 (i) If G is a graph with CW (G) = Cec(G), and H is a self-centered,
transmission regular graph, then

Cec(G�H) = CW (G�H) = CW (G) .

(ii) If H is a regular graph and n ≥ 4, then

CW (Pn ◦H) = Cec(Pn ◦H) =
⌈n

2

⌉

.
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Proof. (i) The assumption that H is a self-centered, transmission regular graph,
means that Cec(H) = CW (H) = 1. Then Theorem 2.1 implies that

Cec(G�H) = Cec(G) + Cec(H)− 1 = Cec(G) = CW (G) .

On the other hand, from (5) we get CW (G�H) = CW (G) because CW (H) = 1.
(ii) Let V (Pn) = {v1, . . . , vn} with natural adjacency relation.
Consider first the case when H = K1. Then Pn ◦ H = Pn ◦ K1 = Pn. Clearly,

ecPn
(vi) = |i|n, where |i|n = max{i − 1, n − i}. Consequently Cec(Pn) =

⌈

n
2

⌉

.

Moreover, if i ∈ [n], then TrPn
(vi) =

(

i

2

)

+
(

n−i+1
2

)

. In particular, if i, j ≤
⌈

n
2

⌉

,
i 6= j, then TrPn

(vi) 6= TrPn
(vj), and TrPn

(vi) = TrPn
(vn−i+1). It follows that

CW (Pn) =
⌈

n
2

⌉

.
Let now H be an arbitrary regular graph and consider the lexicographic product

Pn ◦ H . Note first that dPn◦H((vi, h), (vi, h
′)) ≤ 2 for any vertices h, h′ ∈ V (H).

Moreover, dPn◦H((vi, h), (vj, h
′)) = dPn

(vi, vj) for i 6= j. Since n ≥ 4 it follows that
ecPn◦H((vi, h)) = ecPn

(vi) = |i|n and hence Cec(Pn ◦H) =
⌈

n
2

⌉

.
Consider now vertices (vi, h) and (vi, h

′) of Pn ◦H for some i ∈ [n] and h, h′ ∈
V (H), h 6= h′. Let Vi = {(vi, x) : x ∈ V (H)}. Since H is regular, both vertices
(vi, h) and (vi, h

′) have the same number of neighbors in Vi. Moreover, the distance
between them and their non-neighbors in Vi is 2. Since we already observed that
dPn◦H((vi, h), (vj, h

′′)) = dPn
(vi, vj) = dPn◦H((vi, h

′), (vj , h
′′)) for every h′′ ∈ V (H),

we get that TrPn◦H((vi, h)) = TrPn◦H((vi, h
′)), that is, the vertices of Vi have the

same transmission. Moreover, by the argument from the case H = K1 we also get
that if i, j ≤

⌈

n
2

⌉

, i 6= j, and h ∈ V (H), then TrPn◦H((vi, h)) 6= TrPn◦H((vj, h)), and
TrPn◦H((vi, h)) = TrPn◦H((vn−i+1, h)). We conclude that CW (Pn ◦H) =

⌈

n
2

⌉

. �

For a connected graph G, the set of vertices at the given distance from C(G) is
called a distance-level of G. The set Li of vertices at distance i from C(G) is called
i-distance-level of G for i ∈ [rad(G)]. A tree T is center-regular if the vertices in
every distance-level have the same degree. Note that this in particular implies that
if T is bicentered, then the central vertices have the same degree.

Proposition 3.6 If T is a center-regular tree, then CW (T ) = Cec(T ).

Proof. Let k = rad(T ) and consider the i-distance-levels Li of T , 0 ≤ i ≤ rad(T ).
Let u and v be arbitrary vertices from Li. Then since T is center-regular, there
exists an automorphism ϕ ∈ Aut(T ) such that ϕ(u) = v. This implies that all the
vertices of Li have the same eccentricity as well as the same transmission. Hence,
Cec(T ) ≤ k+1 and CW (T ) ≤ k+1. On the other hand, it is obvious that Cec(T ) ≥
k + 1 and CW (T ) ≥ k + 1. �
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The family of center-regular trees includes as a special case the recently in-
troduced degree-eccentricity regular (DE-regular for short) trees [24]. The degree-
eccentricity regular trees are defined as the trees T in which degT (v) + ecT (v) is
a fixed constant for every vertex v ∈ V (T ). Clearly, such a tree is center-regular.
In [24], among other results, all the molecular DE-regular trees were completely
characterized.

Remark 3.7 The result from Proposition 3.6 can be generalized as follows. Let G
be a graph such that for every two vertices in a distance-level with respect to C(G),
there exists an automorphism mapping one vertex to the other. If, in addition,
transmissions are pairwise different for distance-levels, then CW (G) = Cec(G).

Theorem 3.8 If T is a tree, then Cec(T ) ≤ CW (T ). Moreover, equality holds if
and only if T is center-regular tree.

Proof. Set n = n(T ) ≥ 2 and consider the following two cases.

Case 1. |C(T )| = 1.
In this case diam(T ) = 2 rad(T ) holds. Therefore, in view of (1), we need to prove
that the number of distinct values of Tr(v) is greater than or equal to Cec(T ) =
rad(T ) + 1. Let C(T ) = {r} and consider T as a tree rooted in r. Let c(v) be the
order of the subtree rooted at the vertex v and containing all the vertices x such
that v lies on the shortest r, x-path. Note that v itself lies in this tree. For example
c(r) = n and if v is a leaf, then c(v) = 1.

By definition, there are at least two disjoint paths of length rad(T ) starting at
r. Consider such a path

P : v1 → v2 → · · · → vrad(T ) → r ,

where v1 is a leaf, and c(vrad(T )) < n/2 holds. As there are at least two radial paths
starting from r, such a path always exists.

Because the distances from the vertices below vi increase by 1 and all others
decrease by 1, we infer that for every consecutive vertices vi+1 and vi of P it holds

Tr(vi+1) = Tr(vi) + 2c(vi)− n for i ∈ [rad(T )− 1] ,

and that Tr(r) = Tr(vrad(T )) + 2c(vrad(T )) − n holds. Since c(vi) < n/2 holds for
every i ∈ [rad(T )], we have strict chain of inequalities

Tr(v1) > Tr(v2) > · · · > Tr(vrad(T )) > Tr(r) .

This already implies that these are at least rad(T )+1 distinct values of transmissions—
which we wanted to show.

13



If T is center-regular tree, then the equality holds by Proposition 3.6. Conversely,
suppose that the equality holds for a tree T and consider again T rooted in its center
r. Then for every two radial paths starting from r there is a an automorphism
mapping one path onto the other. We can show by simple induction that all vertices
on the same distance from the root need to have the same degree. Namely, all the
leaves on rad(T ) level have the same degree 1. On the level rad(T ) − 1, as the
numbers c(v) need to be equal for all paths, it directly follows that these vertices
have the same degree. We can continue this until we reach the root r.

Case 2. |C(T )| = 2.
In this case we need to prove (again in view of (1)) that the number of distinct
values of Tr(v) is greater than or equal to rad(T ). We can use a parallel technique
as in Case 1 for the two center vertices, and also conclude that the equality holds if
and only if the tree T is center-regular. �

3.2 Graphs G with Cec(G) > CW (G)

In this section, we construct graphs G in which the Wiener complexity is arbitrarily
smaller than the eccentric complexity. The existence of such graphs is not obvious
at the first sight. Consider the following example.

Let Zk, k ≥ 1, be the graph obtained by attaching a pendant vertex to each of
two diametrical vertices in a cycle C2k+2. Let u and v be the degree 3 vertices of Zk,
let u′ and v′ be its respective neighbors of degree 1, and let x1, . . . , xk and y1, . . . , yk
be the u, v-paths in Zk. Since the transmission of a vertex in Cn is ⌊n2

4
⌋, see [17],

we have

TrZk
(xi) = TrZk

(yi)

= TrC2k+2
(xi) + (i+ 1) + (k + 1− i+ 1)

= (k + 1)2 + k + 3,

for i ∈ [k]. Moreover, TrZk
(u) = TrZk

(v) = (k + 1)2 + k + 3, and TrZk
(u′) =

TrZk
(v′) = (k + 1)2 + 3k + 5. On the other hand, Ec(Zk) = {k + 1, k + 2, k + 3}.

Thus Cec(Zk)− CW (Zk) = 1.
Each of the graphs Zk leads to another infinite family of graphs for which the

eccentricity complexity exceeds the Wiener complexity. For this sake we recall the
following result.

Corollary 3.9 ([1, Corollary 3.2]) If G is a graph and H a graph with CW (H) = 1,
then CW (G�H) = CW (G).
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Proposition 3.10 If G is a graph with Cec(G) > CW (G) and d ≥ 1, then

Cec(G�Qd) > CW (G�Qd) .

Proof. By Corollary 3.9, CW (G�Qd) = CW (G). On the other hand, Theorem 2.1
implies that Cec(G�Qd) = Cec(G) + Cec(Qd)− 1 = Cec(G). �

Note that in the proof of Proposition 3.10, the family of hypercubes could be
replaced by an arbitrary family of graphs {Hi}i≥1 with CW (Hi) = 1.

We have thus seen that there are infinitely many graphs with eccentric complexity
larger than the Wiener complexity. In the above families, this difference was 1. We
now demonstrate that the difference can be arbitrarily large. Let Z = Z1 and recall
that Zm is mth power of Z with respect to Cartesian product.

Proposition 3.11 If k ≥ 0, then Cec(Z
2k)− CW (Z2k) = 2k.

Proof. As we have observed above, Ec(Z) = {2, 3, 4} and Tr(Z) = {8, 12} with
Cec(Z) = 3 and CW (Z) = 2. By Corollary 2.2, we have Cec(Z

2k) = 3 · 2k − 2k + 1 =
2k+1 + 1. From Corollary 2.7, we have CW (Z2k) = 2 · 2k − 2k + 1 = 2k + 1. The
conclusion now follows immediately. �

Based on Corollaries 2.2 and 2.7, Proposition 3.11 can be generalized as follows.

Corollary 3.12 Let G be an arithmetic transmission graph with Cec(G) > CW (G)
and k ≥ 0 be an integer. Then Cec(G

2k) > CW (G2k).

Using the same argument as in the proof of Proposition 3.10, we infer that for
any positive integer N there exists an infinite family of graphs {Hi}i≥1 such that
Cec(Hi)− CW (Hi) > N .

As introduced in [22], a graph G is universally diametrical (UD for short) if there
exist diametrical vertices u and v of G such that EccG(w) ∩ {u, v} 6= ∅ for every
vertex w ∈ V (G) \ {u, v}, that is, at least one of u and v is eccentric to w. Here
EccG(w) = {u ∈ V (G) : dG(u, w) = ecG(w)} is the eccentric set ([26]) of w in G.
Here the vertices u and v form a universally diametrical pair in G. A universally
diametrical graph G with a universally diametrical pair u, v is called a k-(u, v)-
universally diametrical (or k-(u, v)-UD for simplicity) if dG(u, v) = diam(G) = k.
Since any tree is an UD-graph, UD-graphs can be viewed as a generalization of trees.
Moreover, the graph Zk defined as above is also an UD-graph with two universally
diametrical vertices having equal transmissions such that Cec(Zk) > CW (Zk). Next
we present a method for constructing new graphs with Cec > CW from UD-graphs.
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Theorem 3.13 Let G0 be a (v, v′)-UD graph with TrG(v) = TrG(v
′), let T be a

center-regular tree with C(T ) = {x}, and let T ′ ∼= T with C(T ′) = {x′}. Let G be a
graph obtained from G0, T , and T ′ by identifying the vertices v and x and identifying
the vertices v′ and x′. If Cec(G0) > CW (G0), then Cec(G) > CW (G).

Proof. Set k = diam(G0), r = ecT (x) = rad(T ), n0 = n(G0), and n1 = n(T )(=
n(T ′)). For convenience, we still denote by v and v′ the vertices of G obtained by
identifying v with x and by identifying v′ with x′, respectively. From the structure
of G, for any vertex y 6= v from the i-distance-level of T for i ∈ [r], we have
ecG(y) = r + k + i and

TrG(y) =
∑

z∈V (T )

dG(y, z) +
∑

z∈V (G0)\{v,v′}

dG(y, z) +
∑

z∈V (T ′)

dG(y, z)

= TrT (y) +
∑

z∈V (G0)\{v,v′}

[

dT (y, v) + dG0(v, z)
]

+
∑

z∈V (T )

[

dT (y, v) + k + dT ′(v′, z)
]

= TrT (y) + (n0 − 2)i+ TrG0(v)− k + n1(i+ k) + TrT ′(v′)

= TrT (y) + TrT (v) + TrG0(v) + (n1 + n0 − 2)i+ (n1 − 1)k .

Therefore the transmission and the eccentricity can be uniquely determined by the
value of i for all vertices in the i-distance-level of T in G. The same applies to the
vertices from the i-distance-level of T ′ in G. From TrG(v) = TrG(v

′), we have

|{TrG(y) : y ∈ V (T ) ∪ V (T ′) \ {v, v′}}| = |{ecG(y) : y ∈ V (T ) ∪ V (T ′) \ {v, v′}}| .

Let w ∈ V (G0). Since G0 is a k-(v, v′)-UD graph, we have ecG(w) = ecG0(w)+ r
and hence

TrG(w) =
∑

z∈V (G0)

dG(w, z) +
∑

z∈V (T )\{v}

dG(w, z) +
∑

z∈V (T ′)\{v′}

dG(w, z)

= TrG0(w) +
∑

z∈V (T )\{v}

[

dG0(w, v) + dT (v, z)
]

+
∑

z∈V (T ′)\{v′}

[

dG0(w, v
′) + dT ′(v′, z)

]

= TrG0(w) + (n1 − 1)
[

dG0(w, v) + dG0(w, v
′)
]

+ TrT (v) + TrT ′(v′)

= TrG0(w) + (n1 − 1)k + 2TrT (v)
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for every vertex w ∈ V (G0). Thus |{TrG(w) : w ∈ V (G0)}| = |{TrG0(w) : w ∈
V (G0)}| and |{ecG(w) : w ∈ V (G0)}| = |{ecG0(w) : w ∈ V (G0)}|. Notice that as
k = diam(G0), ecG(y) = r + k + i > ecG0(w) + r = ecG(w) for every y ∈ V (T ) \ {v}
and every w ∈ V (G0), thus Cec(G) = Cec(G0) + r. Since Cec(G0) > CW (G0), we
conclude that Cec(G) = Cec(G0) + r > CW (G0) + r ≥ CW (G). �

Denote by Yk the graph of order 2k + 4 consisting of P2k+3 and an additional
vertex which is adjacent to the two neighbors of the central vertex of P2k+3. Note
that Y1 = Z1 with Cec(Z1) > CW (Z1) and Yk with k > 1 is obtained by attaching a
pendant path of k− 1 vertices to each pedant vertex of Z1. By similar reasoning as
that in the proof of Theorem 3.13, we have Cec(Yk) > CW (Yk).

Now we have the following natural question. Is it true that if Cec(G) > CW (G)
and Cec(H) > CW (H), then Cec(G�H) > CW (G�H) holds? The answer is nega-
tive, as can be seen from the following result:

Cec(Yk �Zk)− CW (Yk �Zk) =







1, k = 2 ;
0, k ∈ {3, 4} ;

−2, k = 5 .

The graphs G with Cec(G) > CW (G) found in this paper have diameter at least
4. On the other hand, it follows from the proof of Proposition 3.1 that there are no
such graphs of diameter 2. Hence, we pose:

Problem 3.14 Does there exist a graph G with diam(G) = 3 and Cec(G) > CW (G)?

We have checked by computer that there is no such graph of order at most
10. Since 1 ≤ Cec(G) ≤ 2 for any graph G with diam(G) = 3, the key point for
solving the above problem is to determine the existence of transmission regular but
non-self-centered graphs with diameter 3.
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