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Abstract

The general position number gp(G) of a graph G is the cardinality of a
largest set of vertices S such that no element of S lies on a geodesic between
two other elements of S. The complementary prism GG of G is the graph
formed from the disjoint union of G and its complement G by adding the edges
of a perfect matching between them. It is proved that gp(GG) ≤ n(G) + 1
if G is connected and gp(GG) ≤ n(G) if G is disconnected. Graphs G for
which gp(GG) = n(G) + 1 holds, provided that both G and G are connected,
are characterized. A sharp lower bound on gp(GG) is proved. If G is a
connected bipartite graph or a split graph then gp(GG) ∈ {n(G), n(G) + 1}.
Connected bipartite graphs and block graphs for which gp(GG) = n(G) + 1
holds are characterized. A family of block graphs is constructed in which
the gp-number of their complementary prisms is arbitrary smaller than their
order.
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1 Introduction

The general position problem in graphs was introduced in [14] as a graph theory
variant of the classical, century old Dudeney’s no-three-in-line problem [6] and the
general position subset selection problem from discrete geometry [7, 13, 17, 19, 20].
A set S of vertices in a graph G is a general position set if no element of S lies
on a geodesic between any two other elements of S. A largest general position set
is called a gp-set and its size is the general position number (gp-number for short)
gp(G) of G. The same concept was in use two years earlier in [21] under the name
geodetic irredundant sets.

Let us briefly recall the progress on the general position problem so far. In [14],
general upper and lower bounds on the gp-number were proved as well as NP-
completeness of the problem for arbitrary graphs. The gp-number of a large class of
subgraphs of the infinite grid graph and of some other classes were obtained in [15].
The paper [1] gives a characterization of general position sets which is then applied
in determining the gp-number of graphs of diameter 2, cographs, graphs with at
least one universal vertex, bipartite graphs and their complements. Subsequently,
the gp-number of complements of trees, of grids, and of hypercubes were deduced
in [1]. In [8], a sharp lower bound on the gp-number of Cartesian products is proved,
and the gp-number for different graph operations determined. The gp-number of
Cartesian products has been further studied in [12]. In [11] the general posotion
number has been connected with strong resolving graphs, and in [18] the general
position number of Kneser graphs was investigated.

If G is a graph and G its complement, then the complementary prism GG of G is
the graph formed from the disjoint union of G and G by adding the edges of a perfect
matching between the corresponding vertices of G and G [10]. For example, C5C5

is the Petersen graph. Solely from this particular reason, but also from many addi-
tional ones, complementary prisms were studied from different perspectives. Since
the Petersen graph is a key example in the theory of edge colorings, it is no surprise
that the chromatic index of complementary prisms was studied in [22]. Other topics
studied on complementary prisms include domination [9], cycle structure [16], com-
plexity properties [5], spectral properties [3], convexity number [4], and b-chromatic
number [2]. In this paper, we add to this list the general position problem. We
proceed as follows.

The next section contains definitions, observations, and known results needed
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in the rest of the paper. In Section 3 we prove that gp(GG) is bounded from
above by n(G) + 1 if G is connected and by n(G) if G is disconnected, where n(G)
is the order of G. We also introduce the concept of 3-general position sets and
apply it to derive a characterization of graphs G for which gp(GG) = n(G) + 1
holds provided that both G and G are connected. Then, in Section 4, we prove
a sharp lower bound on gp(GG). We follow with two sections on complementary
prisms of bipartite graphs and split graphs, respectively. In both cases, provided
that a bipartite graph in question is connected, gp(GG) lies between n(G) and
n(G) + 1. For connected bipartite graphs we characterize the graphs G for which
gp(GG) = n(G)+1 holds, while for split graphs we give two partial results about the
split graphs G for which gp(GG) = n(G) holds. We conclude with Section 7 in which
we give a characterization of block graphs G for which gp(GG) = n(G)+1 holds and
provide a family of block graphs in which the gp-number of their complementary
prisms is arbitrary smaller than their order.

2 Preliminaries

Graphs in this paper are finite and simple. Let G = (V (G), E(G)) be a graph. The
maximum order of its complete subgraph is denoted by ω(G). Let further η(G)
denote the maximum order of an induced complete multipartite subgraph of the
complement of G. The distance dG(u, v) between vertices u and v is the length of
a shortest u, v-path. An u, v-path of minimum length is also called an u, v-geodesic.
The interval IG[u, v] between u and v is the set of vertices that lie on some u, v-
geodesic of G. For S ⊆ V (G) we set IG[S] =

⋃

u,v∈S
IG[u, v]. The eccentricity of

u is eccG(u) = max{dG(u, v) : v ∈ V (G)}. The radius and the diameter of G are
rad(G) = min{eccG(v) : v ∈ V (G)} and diam(G) = max{eccG(v) : v ∈ V (G)},
respectively. A vertex v is a central vertex of G if eccG(v) = rad(G). The set of
all central vertices is denoted by C(G). We may simplify the above notation by
omitting the index G whenever G is clear from the context. On the other hand,
when we will want to emphasize that a vertex is central in a graph G, we will say
that it is G-central.

For a characterization of general position sets we needs some additional defini-
tions. Let G be a connected graph, S ⊆ V (G), and P = {S1, . . . , Sp} a partition
of S. Then P is distance-constant if for any i, j ∈ [p], i 6= j, the distance d(u, v),
where u ∈ Si and v ∈ Sj is independent of the selection of u and v. If P is a
distance-constant partition, and i, j ∈ [p], i 6= j, then let d(Si, Sj) be the distance
between a vertex from Si and a vertex from Sj. A distance-constant partition P is
in-transitive if d(Si, Sk) 6= d(Si, Sj) + d(Sj, Sk) holds for arbitrary pairwise different
i, j, k ∈ [p]. Now all is ready to recall the announced characterization.
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Theorem 2.1 [1, Theorem 3.1] Let G be a connected graph. Then S ⊆ V (G) is a
general position set if and only if the components of G[S] are complete subgraphs,
the vertices of which form an in-transitive, distance-constant partition of S.

We will also make use of the following two results.

Theorem 2.2 [1, Theorem 4.1] If diam(G) = 2, then gp(G) = max{ω(G), η(G)}.

Theorem 2.3 [1, Theorem 5.1] If G is a connected, bipartite graph with n(G) ≥ 3,
then gp(G) ≤ α(G). Moreover, if diam(G) ∈ {2, 3}, then gp(G) = α(G).

Let G be a graph and GG its complementary prism. Then we will consider
V (GG) as the disjoint union of V (G) and V (G). We will use the convention that
if u ∈ V (G) ∩ V (GG), then its unique neighbour in V (GG) ∩ V (G) will be denoted
with u and called the partner of u in G. We will extend this notation to sets of
vertices, that is, if X ⊆ V (G), then the set of the partners of the vertices from X
will be denoted with X . Since the complementation is an idempotent operation,

GG is isomorphic to GG. Note further that if diam(G) = 2, then diam(GG) = 2,
while if G is an arbitrary connected graph, then diam(GG) ≤ 3. Note finally that
GG is always connected, no matter whether G is connected or not.

3 Upper bounds

In this section we bound gp(GG) from the above by n(G) + 1 for connected graphs
G and by n(G) for disconnected graphs G, both bounds being sharp. We also
characterize the graphs G for which gp(GG) = n(G) + 1 holds provided that both
G and G are connected. For this purpose, the concept of 3-general position sets is
introduced along the way.

Theorem 3.1 Let G be a graph.
(i) If G is connected, then gp(GG) ≤ n(G) + 1.
(ii) If G is disconnected, then gp(GG) ≤ n(G).

Proof. (i) Let S ⊆ V (GG), where |S| ≥ n(G) + 2. By the pigeonhole principle
there exist vertices u, v ∈ V (G) such that {u, v, u, v} ⊆ S. Since either uv ∈ E(G)
or u v ∈ E(G), we see that either v ∈ I[u, v] or v ∈ I[v, u]. It follows that S is not
a general position set and we can conclude that gp(GG) ≤ n(G) + 1.

(ii) Let G1, . . . , Gr, r ≥ 2, be the components of G. Assume that S ⊆ V (GG),
where |S| ≥ n(G)+1, is a general position set of GG. Using the pigeonhole principle
again, there exists v ∈ V (G) such that {v, v} ⊆ S. We may without loss of generality
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assume that v ∈ V (G1). Let x ∈ S∩V (G), x 6= v. Then xv /∈ E(G), for otherwise v
would lie on a x, v-geodesic. Moreover, dGG(x, v) ≤ 2, for otherwise, having in mind
that x v ∈ E(GG), we would have that v would lie on a x, v-geodesic. It follows
that dGG(x, v) = 2 holds. This in particular implies that S ∩ V (G) ⊆ V (G1). Using
a parallel argument we infer that if y ∈ S ∩ V (G), then dGG(y, v) = 2. This in turn
implies that y v /∈ E(G) so that yv ∈ E(G). It follows that {y : y ∈ S ∩ V (G)} ⊆
NG[v].

We have thus proved that S ⊆ V (G1)∪ V (G1). Since G1 is connected, the proof
of (i) restricted to G1G1 implies that v is the unique vertex of S ∩ V (G) such that
v ∈ S. Hence |S| ≤ n(G1) + 1 ≤ n(G), a contradiction. Hence gp(GG) ≤ n(G). �

To quickly demonstrate that the bounds of Theorem 3.1 are sharp, consider
the following sporadic examples. First, as observed in [14] for the Petersen graph,

gp(C5C5) = 6, which demonstrates sharpness of (i). Second, gp(P2 P2) = 2 demon-
strates sharpness of (ii).

Our next goal is to characterize the graphs G such that both G and G are
connected and gp(GG) = n(G) + 1. By the above, the Petersen graph belongs to
this family.

Lemma 3.2 Let G be a graph with n(G) ≥ 2 and such that both G and G are
connected. If gp(GG) = n(G) + 1, then the following properties hold.

(i) rad(G) = 2.

(ii) If S is a gp-set of GG, then there exists a G-central vertex v ∈ S such that
S ∩ V (G) = {u ∈ V (G) : dG(u, v) = 2} ∪ {v} and S ∩ V (G) = NG[v].

Proof. Let S be a gp-set of GG. Then by lemma’s assumption, |S| = n(G)+1, and
hence there exists a vertex v ∈ V (G) such that {v, v} ⊆ S.

Suppose that there exists a vertex x ∈ S ∩ V (G) for which dG(x, v) ≥ 3 holds.
Then the path on the vertices x, x, v, v is a x, v-geodesic in GG containing the vertex
v, a contradiction. Hence dG(x, v) ≤ 2 for all x ∈ S ∩ V (G), x 6= v. Since G is
connected, V (G) \NG(v) 6= ∅, for otherwise v would be an isolated vertex in G. We
have shown that eccG(v) = 2 which in turn implies (i).

Theorem 2.1 implies that NG(v) ∩ S = ∅ and S ∩ V (G) ⊆ NG[v]. Since |S| =
n(G) + 1 and because by the proof of Theorem 3.1(i), the vertex v is the unique
vertex of S ∩ V (G) such that its partner in G also belongs to S, we must have that
S ∩ V (G) = V (G)\NG(v) and S ∩ V (G) = NG[v]. Combining this with the already
proved property (i), the assertion (ii) follows. �

The condition (i) of Lemma 3.2 is not sufficient for G to have gp(GG) = n(G)+1.
To see it, consider the double star G shown in Fig. 1.
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Figure 1: The double star G

Clearly, rad(G) = 2 and both G and G are connected. If gp(GG) = 7, and S is
a gp-set of GG, then by Lemma 3.2 either v ∈ S or u ∈ S. Assume without loss of
generality that v ∈ S. Using Lemma 3.2 again we get that S = {v, v, u1, u2, u, v1, v2}.
But then the path on the vertices u, u, v, v is a geodesic containing three vertices of
S, a contradiction.

To state the announced characterization, we introduce the following concept. A
set S of vertices in a graph G is a 3-general position set if no three vertices from S
lie on a common geodesic of length at most 3.

Lemma 3.3 Let G be a graph. A set S ⊆ V (G) is a 3-general position set if and
only if the components of G[S] are complete subgraphs, and if d(u, v) = 2, where u
and v lie in respective components Q and Q′ of G[S], then d(x, y) = 2 for all x ∈ Q
and all y ∈ Q′.

Proof. Let S ⊆ V (G) be a 3-general position set. Then each component of G[S]
must be complete, for otherwise a non-compete component would contain an in-
duced P3 which is a geodesic. Suppose now that d(u, v) = 2, where u and v lie in
components Q and Q′ of G[S]. Let x ∈ Q and y ∈ Q′. Clearly, 1 ≤ d(x, y) ≤ 3.
Suppose d(x, y) = 1. Assuming without loss of generality that x 6= u we see that
the vertices y, x, u induce a geodesic, a contradiction. Suppose d(x, y) = 3. Again
assuming without loss of generality that x 6= u we see that the vertices x, u, v lie on
a common geodesic of length 3, another contradiction. Hence d(x, y) = 2.

Conversely, suppose that the components of G[S] are complete subgraphs and
that the distance condition is fulfilled. Suppose on the contrary that S is not a 3-
general position set, that is, there are three vertices u, v, w ∈ S that lie on a common
geodesic P of length at most 3. As the components of G[S] are complete, P cannot
be of length 2, so we may without loss of generality assume that P in the path on
vertices u, v, x, w for some vertex x ∈ V (G). Then u and w lie in different cliques
of G[S], say u ∈ Q and w ∈ Q′. Clearly, then also v ∈ Q. Since d(v, w) = 2, the
distance condition implies that d(u, w) = 2 as well. But this contradicts the fact
that P is a geodesic. �
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We are now ready for the announced characterization.

Theorem 3.4 Let G be a graph with n(G) ≥ 2 and such that both G and G are
connected. Then gp(GG) = n(G) + 1 if and only if rad(G) = 2 and there exists
v ∈ C(G) such that

(i) NG(v) is a 3-general position set in G and N2
G(v) is a 3-general position set

in G, and

(ii) for each x ∈ NG(v) there exists y ∈ N2
G(v) such that xy /∈ E(G).

Proof. First suppose that gp(GG) = n(G) + 1. Let S be a gp-set of G, so that
|S| = n(G)+1. Then by Lemma 3.2, rad(G) = 2 and there exists a vertex v ∈ C(G)
such that S ∩ V (G) = N2

G(v) and S ∩ V (G) = NG(v) are both general position
sets in GG. Hence NG(v) is a 3-general position set in G and N2

G(v) is a 3-general
position set in G. Thus (i) holds for the vertex v. Let now x ∈ NG(v) and assume
that xy ∈ E(G) for every y ∈ N2

G(v). This implies that dGG(x, v) = 3. Since
dGG(x, v) = 2 and v, v are in the same clique of GG[S], Lemma 3.3 implies that also
dGG(x, v) = 2 must hold. This contradiction proves property (ii) for the vertex v.

Conversely, suppose that rad(G) = 2 and that there exists a vertex v in C(G)
satisfying properties (i) and (ii). We claim that the set S = N2

G(v)∪NG(v)∪ {v, v}
induces an in-transitive, distance-constant partition into cliques. By Lemma 3.3,
each of N2

G(v) and NG(v) induces an in-transitive, distance-constant partition into
cliques. Now, for any u ∈ V (G) and w ∈ V (G) with u 6= w, we have dGG(u, w) =

2. Which implies that N2
G(v) ∪ NG(v) ∪ {v} has an intransitive-distance constant

partition into cliques. Next, for any y ∈ NG(v) we have dGG(y, v) = 2 and by
condition (ii) of our assumption, dGG(y, v) = 2. Hence S induces an in-transitive,
distance-constant partition into cliques. Since eccG(v) = 2, we have that |S| =
n(G) + 1. Hence by Theorem 2.1, S is a general position set of size n(G) + 1 and so
gp(GG) = n(G) + 1 by Theorem 3.1. �

As an example consider again the Petersen graph P = C5C5. Let the vertices
of the C5 be v1, v2, v3, v4, v5. Observe that rad(C5) = 2 and C(C5) = V (C5). Select
v1 as a vertex from C(C5). Then N2

C5
(v1) = {v3, v4} and NC5

(v1) = {v2, v5}. It is
now straightforward to check that the conditions of Theorem 3.4 are fulfilled, hence
gp(P ) = 6 with {v1, v1, v3, v4, v2, v5} being its gp-set.

Next, we give an infinite family of graphs that satisfies Theorem 3.4. Let G be the
graph obtained from the path on vertices u, v, w and disjoint cliques Kn1

, . . . , Knr

and Km1
, . . . , Kms

by joining u to all the vertices of Kni
, i ∈ [r], and w to all

the vertices of Kmj
, j ∈ [s]. Then rad(G) = 2 and C(G) = {v}. Since the sets

NG(v) = {u, w} and N2
G(v) = V (G)\{u, v, w} satisfy the conditions of Theorem 3.4,

we conclude that gp(GG) = n(G) + 1.
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4 A lower bound

In this section we prove a sharp lower bound on gp(GG). For this sake we define a
new invariant gp3(G) of a graph G as follows:

gp3(G) = max{gp3(G[V (G) \ S]) : S gp3 -set of G} .

Theorem 4.1 If G is a graph, then

gp(GG) ≥ max{gp3(G) + gp3(G), gp3(G) + gp3(G)} .

Moreover, the bound is sharp.

Proof. Let S be a gp3-set of G and let Q1, . . . , Qk be the complete subgraphs of
G[S] according to Lemma 3.3. For x ∈ Qi and y ∈ Qj, where i 6= j, dG(x, y) ∈ {2, 3}
and hence dG(x, y) = dGG(x, y). This already implies that the cliques Q1, . . . , Qk

form an in-transitive, distant-constant partition of S in GG. Consider now a gp3-set
T of G[V (G)\S] and let R1, . . . , Rt be the complete subgraphs of G[T ] according to
Lemma 3.3. Then, by the same argument as we used forQ1, . . . , Qk, we infer that the
cliques R1, . . . , Rt form an in-transitive, distant-constant partition of T in GG. Let
now x ∈ Qi, i ∈ [k], and y ∈ Rj, j ∈ [t]. Then by the structure of GG it follows that
dGG(x, y) = 2. If follows that the cliques Q1, . . . , Qk, R1, . . . , Rt form an in-transitive,
distant-constant partition in GG. With Theorem 2.1 in hands we have thus proved
that gp(GG) ≥ gp3(G) + gp3(G). Starting with a gp3-set of G and repeating the
argument from the paragraph above, we also get that gp(GG) ≥ gp3(G) + gp3(G).

By a simple argument we can see that if n ≥ 2, then gp(KnKn) = n. Since
gp3(Kn) = n (as well as gp3(Kn) = n), the bound is sharp. �

From Theorem 4.1 it is clear that gp(GG) ≥ max{gp3(G), gp3(G)}. We next
characterize the connected graphs for which the equality holds.

Theorem 4.2 Let G be a connected graph. Then gp(GG) = max{gp3(G), gp3(G)}
if and only if G is a complete multipartite graph.

Proof. Let gp(GG) = max{gp3(G), gp3(G)}.
Suppose first that gp(GG) = max{gp3(G), gp3(G)} = gp3(G). Let S be a maxi-

mum 3-general position set of G. Then S is also a maximum general position set of
GG. If S 6= V (G), then S ∪ {v} is a general position set of GG for all v ∈ V (G)\S.
This is impossible. Hence gp3(G) = |S| = n(G). Then G[S] must be connected and
from Lemma 3.3 we conclude that G = Kn.

Suppose second that gp(GG) = max{gp3(G), gp3(G)} = gp3(G). If G is con-
nected, then as above we have that G = Kn. This is a contradiction to the fact that
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G is connected. Hence G must be disconnected. Let S be a maximum 3-general po-
sition set of G. Then S is also a maximum general position set of GG. If S 6= V (G),
then S ∪ {v} is a general position set of GG for all v ∈ V (G)\S. This is impossible
and so gp3(G) = |S| = n(G). By Lemma 3.3, each component of G must be a clique.
This shows that G is a complete multipartite graph.

Conversely, Let G be a complete multipartite graph. Then G is a disjoint union
of cliques. This shows that V (G) is a general position set of GG. Hence it follows
from Theorem 3.1(ii) that gp(GG) = n(G) = max{gp3(G), gp3(G)}. �

Note that if gp(G) ≥ n(G)−2, then Theorem 4.1 readily implies that gp(GG) ≥
n(G). On the other hand, the bound of Theorem 4.1 is never larger than n(G),
hence the existence of graphs G for which the equality gp(GG) = n(G)+1 holds (cf.
Theorem 3.4), implies that the bound is not sharp in general. Additional sharpness
cases for the bound of Theorem 4.1 will be presented in the subsequent sections.

5 Bipartite graphs

In this section we give our attention to the complementary prisms of bipartite graphs.
If G = (V (G), E(G)) is a bipartite graph with bipartition V (G) = A ∪ B, then we
write G as a triple (A,B,E(G)). In G = (A,B,E(G)), set

UG = {u ∈ A : deg(u) = |B|} ∪ {v ∈ B : deg(v) = |A|} .

Theorem 5.1 If G = (A,B,E(G)) is a connected, bipartite graph, then n(G) ≤
gp(GG) ≤ n(G) + 1. Moreover, gp(GG) = n(G) + 1 if and only if rad(G) = 2 and
C(G) is an independent set.

Proof. By Theorem 3.1, gp(GG) ≤ n(G) + 1. Since independent sets and cliques
are 3-general position sets in any graph, it follows from Theorem 4.1 that the set
S = A ∪ B is a general position set in GG. Thus gp(GG) ≥ n(G). It thus remains
to characterize the graphs G for which gp(GG) = n(G) + 1 holds.

Suppose that gp(GG) = n(G) + 1. Then, in view of Theorem 3.1, both G and
G are connected. Let S be a general position set in GG of size n(G) + 1. Then
by Lemma 3.2, we have that rad(G) = 2 and there exists a G-central vertex v ∈ S
such that S ∩ V (G) = {u ∈ V (G) : dG(u, v) = 2} and S ∩ V (G) = NG[v]. Now,
without loss of generality we may assume that v ∈ A. Since eccG(v) = 2 and G is
bipartite, it follows that v ∈ UG and so S∩V (G) = NG[v] = B∪{v}. Now, we claim
that UG ⊆ A. Assume on the contrary that there exists a vertex u ∈ B ∩UG. Then
dGG(u, v) = 3 and u, v ∈ S. Moreover, u, u, v, v is a u, v-geodesic in G containing the
vertex v. This leads to a contradiction to the fact that S is a general position set in
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GG. Thus UG ⊆ A. This shows that rad(G) = 2 and that C(G) is an independent
set in G.

Conversely, suppose that rad(G) = 2 and C(G) is independent in G. Since
rad(G) = 2 and G is bipartite, C(G) = UG. Because C(G) is independent, and
C(G) = UG, it follows that either C(G) ⊆ A or C(G) ⊆ B, say C(G) ⊆ A. Let v
be a vertex in C(G). We claim that the set S = A ∪ B ∪ {v} is a general position
set in GG. Now, the set N2

G(v) = A\{v} is an independent set in G and so it is
a 3-general position set in GG. Also, NG(v) = B is a clique in G and so it is a
3-general position set in GG. Moreover, since v ∈ UG = C(G) ⊆ A, we have that
dGG(y, v) = 2 for all y ∈ NG(v). Hence it follows from Theorem 3.4 that S is a
general position set in GG and hence gp(GG) = n(G) + 1. �

In the rest of the section we present the general position number of complemen-
tary prism of some standard families of bipartite graphs. Let T be a tree. Then
gp(T ) is the number of its leaves [1, 21], and gp(T ) = max{α(T ),△(T ) + 1} [1].
Since 1 ≤ |C(T )| ≤ 2, Theorem 5.1 implies that gp(TT ) = n(G) + 1 if and only if
|C(T )| = 1 and rad(T ) = 2. This is possible only when T has diameter 4. We have
thus deduced:

Corollary 5.2 If T is a tree, then

gp(TT ) =

{

n(G) + 1; diam(T ) = 4 ,

n(G); otherwise .

The Cartesian product G�H of graphs (factors) G and H has V (G�H) =
V (G) × V (H) and vertices (g, h) and (g′, h′) are adjacent if either g = g′ and
hh′ ∈ E(G), or h = h′ and gg′ ∈ E(G). For n,m ≥ 2 set Pnm = Pn�Pm. In [15]
it was proved that gp(Pnm) = 4 for n,m ≥ 3, while in [1] the following result was
deduced:

gp(P nm) =

{

4; n = m = 2 ,

⌈n
2
⌉⌈m

2
⌉ + ⌊n

2
⌋⌊m

2
⌋; otherwise .

With the help of Theorem 5.1, we can add to these results the following.

Corollary 5.3 If n,m ≥ 2, then

gp(PnmP nm) =

{

10; n = m = 3 ,

nm; otherwise .

As the last subclass of bipartite graphs consider hypercubes. Recall that the
n-cube Qn is the n-fold Cartesian product of K2. Once more applying Theorem 5.1
we get:

Corollary 5.4 If n ≥ 2, then gp(QnQn) = 2n.

10



6 Split graphs

A graph G = (V (G), E(G)) is a split graph if V (G) can be partitioned into a clique
C and an independent set I. If so, the pair (C, I) is a split partition of G and we
write G = (C, I, E(G)).

Theorem 6.1 If G = (C, I, E(G)) is a split graph, then n(G) ≤ gp(GG) ≤ n(G) +
1. Moreover, the following hold.

(i) If degG(x) ≥ |C| + 1 for all x ∈ C and degG(y) ≤ |C| − 2 for all y ∈ I, then
gp(GG) = n(G).

(ii) If gp(GG) = n(G), then G is disconnected or degG(x) ≥ |C| for all x ∈ C.

Proof. By Theorem 4.1, the set H = C ∪ I is a general position set of GG and
hence gp(GG) ≥ n(G). The upper bound again follows from Theorem 3.1.

(i) Suppose that degG(x) ≥ |C| + 1 for all x ∈ C and degG(y) ≤ |C| − 2 for
all y ∈ I. By way of contradiction suppose that gp(GG) = n(G) + 1. Then by
Lemma 3.2, there exists a G-central vertex v such that S = N2

G(v)∪NG(v)∪ {v, v}
is a general position set of GG. We consider two cases.

Case 1: v ∈ C.
Then degG(v) ≥ |C|+ 1 and let z be a neighbour of v in I. Now, since NG[v] ⊆ S,
we have that z ∈ S. By our hypothesis, degG(z) ≤ |C|−2. Thus we can choose two
distinct vertices, say u1 and u2 in C, such that both u1 and u2 are non-adjacent to
z in G. This shows that z ∈ IGG[u1, u2] ⊆ IGG[S]. This is a contradiction to the
fact that S is a general position set in GG.

Case 2: v ∈ I.
In this case degG(v) ≤ |C| − 2. Let u be a vertex in C such that u and v are non
adjacent in G. Then by Lemma 3.2, u ∈ S. Then degG(u) ≥ |C| + 1, thus we can
choose two distinct vertices, say v1 and v2 in I such that both v1 and v2 are adjacent
to u in G. This shows that u ∈ IGG[v1, v2] ⊆ IGG[S]. This is a contradiction to the
fact that S is a general position set in GG.

Since in both cases we got a contradiction, we conclude that gp(GG) = n(G).

(ii) Assume that gp(GG) = n(G) and G is connected. Then G has no universal
vertex and so rad(G) = 2. Suppose that degG(v) = |C| − 1 for some v ∈ C. Then v
is a G-central vertex and NG(v) = C is an 3-general position set in G and N2

G(v) = I
is a 3-general position set of G. Moreover, since G has no universal vertices, we have
that for each x ∈ C there exists y ∈ I such that xy /∈ E(G). Hence by Theorem 3.4,
gp(GG) = n(G) + 1, a contradiction. �

11
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Figure 2: Split graphs

The converse for neither of Theorem 6.1(i) and (ii) is true. For this sake consider
the split graphs G1 and G2 shown in Fig. 2.

Consider first the split graph G1 with C = {u1, u2, u3} anf I = {v1, v2, v3}. The
center of G1 is C(G1) = {u1, u2, u3}. Since no central vertex satisfies conditions of
Theorem 3.4, gp(G1G1) = n(G1) = 6. Also, since degG1

(x) = 3 < 4 = |C| + 1
for all x ∈ C(G1), we infer that the converse of Theorem 6.1(i) does not hold.
Next, in G2, the vertex u1 is a G2-central vertex which satisfies the conditions of
Theorem 3.4. Hence gp(G2G2) = 7 = n(G) + 1, whereas both G2 and G2 are
connected and have no simplicial vertices in the corresponding cliques. Hence the
converse of Theorem 6.1(ii) also does not hold.

Again, consider a split graph G = (C, I, E(G)) such that both G and G are
connected. Then it is clear from Theorem 6.1 that gp(GG) = n(G) + 1 if either C
or I contains a simplicial vertex.

We conclude the section with the natural problem arising from Theorem 6.1.

Problem 6.2 Characterize the split graphs G for which gp(GG) = n(G) + 1 holds.

7 Block graphs

A graph is a block graph if every maximal 2-connected component is a clique. In
a block graph each vertex is either a simplicial vertex or a cut vertex. The fol-
lowing theorem gives a characterization of block graphs for which the bound in
Theorem 3.1(i) is attained.

Theorem 7.1 Let G be a block graph. Then gp(GG) = n(G) + 1 if and only if
rad(G) = 2 and there exists a G-central vertex v such that NG(v) is either a clique
or an independent set, and NG(v) contains at least two cut vertices of G.

Proof. First suppose that gp(GG) = n(G) + 1. Then by Lemma 3.2, we have
rad(G) = 2 and G contains a central vertex v such that N2

G(v) ∪ NG(v) ∪ {v, v} is

12



a gp-set of GG. We claim that NG(v) is either a clique or an independent set. Let
B1, . . . , Bk be the blocks of G containing v. Then we have NG(v) = ∪k

i=1NBi
(v).

Since each NBi
(v) induces a clique, NG(v) induces a multipartite set. By Theo-

rem 3.4, we have that NG(v) is a 3-general position set in G. Thus either k = 1
or NG(v) is a clique. This proves the claim. Next we prove that NG(v) contains at
least two cut vertices of G. Since v is a central vertex and rad(G) = 2, we have that
|NG(v)| ≥ 2. Let y ∈ NG(v). Since eccG(v) = 2, it follows from Theorem 3.4 that
corresponding to the vertex y there exist vertices x ∈ N2

G(v) and w ∈ NG(v) such
that xw ∈ E(G) and xy /∈ E(G). Similarly, corresponding to the vertex w there
exist vertices x′ ∈ N2

G(v) and z ∈ NG(v) such that x′z ∈ E(G) and x′w /∈ E(G).
Since G is block graph, both w and z must be cut vertices in G.

Conversely, suppose that rad(G) = 2 and G contains a central vertex v such
that NG(v) is either a clique or an independent set, and NG(v) contains at least
two cut vertices of G. Since NG(v) is either a clique or an independent set in G,
it is a 3-general position set of G. Let B′

1 . . . , B
′

r be the blocks of G which do not
contain v. Then each B′

i, i ∈ [r], must contains a vertex from NG(v), say ui. Then
N2

G(v) = ∪r
i=1V (B′

i) \ {ui}. Since V (B′

i) \ {ui} induces a clique in G, we have that
N2

G(v) is a union of disjoint cliques in G. This implies that N2
G(v) is a 3-general

position set in G. We now claim that for each y ∈ NG(v), there exists a vertex x in
N2

G(v) such that xy /∈ E(G). Suppose on the contrary a vertex y ∈ NG(v) is adjacent
to each vertex in N2

G(v). But this would mean thatNG(v) has at most one cut vertex,
a contradiction. Hence, by Theorem 3.4, we conclude that N2

G(v) ∪ NG(v) ∪ {v, v}
is a gp-set of GG and so gp(GG) = n(G) + 1. �

In the rest of the section we present an infinite family of block graphs such
that the gp-number of their complementary prisms is arbitrary smaller than their
order. Let G0 be the complete graph K3 with the vertex set {v1, u1, v2}. For
k ≥ 1, the graph Gk is obtained from Gk−1 by adding two new adjacent vertices
uk+1 and vk+2 and joining both uk+1 and vk+2 to the vertex vk+1. Note that Gk

is a block graph with k + 1 blocks B1, . . . , Bk+1, where each block Bi is a triangle
with V (Bi) = {vi, ui, vi+1}. Note further that Ek = {v1, vk+2} ∪ {u1, . . . , uk+1} is
the set of simplicial vertices of Gk and that the set of remaining vertices, that is
Ak = {v2, . . . , , vk+1}, is the set of cut vertices of Gk. Clearly, Ak induces a path of
length k − 1, let Xk and Yk form the bipartition of Ak where |Xk| ≥ |Yk|.

Theorem 7.2 If k ≥ 5, then gp(GkGk) = n(Gk)− ⌊k
2
⌋.

Proof. Let k ≥ 5 and let Ek, Ak, Xk, and Yk be the sets of vertices as defined before
the theorem. Using the proof of Theorem 4.1 we infer that S = Ek ∪Xk is a general
position set of GkGk of size n(Gk)− ⌊k

2
⌋. Hence gp(GkGk) ≥ n(Gk)− ⌊k

2
⌋.
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To prove the other inequality, assume on the contrary that there exists a general
position set S of GkGk with |S| > n(Gk)− ⌊k

2
⌋. Let M = S ∩ V (Gk) and N = S ∩

V (Gk). Then both M and N are 3-general position sets of Gk and Gk, respectively.
Since |S| > n(Gk)− ⌊k

2
⌋, it follows that either |M | > k + 3 or |N | = |N | > ⌊k

2
⌋.

Claim A: gp3(Gk) = k + 3 for all k ≥ 0.
We proceed by induction on k, the cases k = 0 and k = 1 being easily verified.
Assume that gp3(Gi) = i + 3 for all i with 2 ≤ i < k and consider Gk. Let Hk

be a maximum 3-general position set of Gk and suppose that |Hk| > k + 3. Then
both uk+1, vk+2 ∈ Hk. Otherwise, if uk+1 /∈ Hk (say), then Hk\{vk+2} is a 3-general
position set of Gk−1 of size at least k + 3. This is a contradiction to the induction
hypothesis. Now, let Hk−1 = Hk\{uk+1, vk+2}. Then Hk−1 is a 3-general position
set of Gk−1 of size at least k + 2. hence by induction Hk−1 is a maximum 3-general
position set of Gk−1 of size k + 2. Again, since gp(Gk−2) = k + 1, it follows that
either uk ∈ Hk−1 or vk+1 ∈ Hk−1. Recall that Hk is a 3-general position set in Gk.
This shows that Hk−1 contains exactly one vertex from the set {uk, vk+1}, say uk.
But this leads to the fact that Hk−1 ∪ {vk+1} is a 3-general position set of Gk−1 of
size k + 3, a contradiction, and the claim is proved.

Since M is a 3-general position set in Gk, Claim A implies that |M | ≤ k + 3.
This shows that |N | > ⌊k

2
⌋. We consider the following three cases.

Case 1: N ⊆ Ek.
Recall that N contains at most one vertex from M . First suppose that M ∩N 6= ∅.
In this case there exists a simplicial vertex x such that x ∈ M and x ∈ N . Let y be
a vertex from N distinct from x. If x and y are non-adjacent in Gk, then x, x, y is a
shortest path in GkGk with x, x, y ∈ M ∪N = S. This is impossible. Hence x and
y are adjacent in Gk. Now, since x, y ∈ N ⊆ Ek, it follows that either x, y ∈ B1, or
x, y ∈ Bk+1. This shows that Ek\{x, y} ⊆ IGkGk

[x, y] ⊆ IGkGk
[N ] and so N = {x, y}.

This is a contradiction to the fact that |N | > ⌈k
2
⌉ ≥ 3. So, assume that M ∩N = ∅.

Because N is a 3-general position set in Gk, we have that the components of the
induced subgraph of N in Gk are cliques. Hence N induces a complete multipartite
graph in Gk. Since N ⊆ Ek, it follows that N ⊆ Ek\{v1, vk+1} and so |N | ≤ k + 1.
On the other hand, since M is a 3-general position set in Gk and Ak induces a path
of order k, it follows that |M ∩Ak| ≤ ⌈k

2
⌉.

Thus |S| = |M |+|N | = |M |+|N | = |M∪N | = |(M∪N)∩Ek|+|(M∪N)∩Ak| ≤
k + ⌈k

2
⌉ + 3 = n(Gk)− ⌊k

2
⌋.

Case 2: N ⊆ Ak.
Recall that N induces a complete multipartite graph in Gk and Ak induces a path
of order k. Hence it is clear that either N ⊆ Xk or N ⊆ Yk and so |N | ≤ ⌈k

2
⌉. Hence

this case cannot occur.
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Case 3: N ∩ Ek 6= ∅ and N ∩ Ak 6= ∅.

Claim B: N is an independent set in Gk for all k ≥ 5.
Assume on the contrary that there exists adjacent vertices u and v in N and consider
the following cases.

Subcase 3.1: u is a simplicial vertex and v is a cut vertex.
We may assume that u = ui and v = vi+1. Then IGkGk

[u, v] covers both the

Ek\{ui+1} and Ak\{vi, vi+2}. This shows that N ⊆ {vi, vi+1, vi+2, ui, ui+1}. Again,
since N induces a complete multipartite graph, it follows that N = {vi, vi+1, ui} and
so k = 4.

Subcase 3.2: both u and v are simplicial vertices.
In this situation either u, v ∈ B1 or u, v ∈ Bk+1, say u, v ∈ B1. Then u = v1 and
v = u1. As in Subcase 3.1 we can then prove that N ⊆ {v1, v2, u1} and so k ≤ 4.

Subcase 3.3: both u and v are cut vertices.
Then u = vi and v = vi+1 for some i ≥ 2. Similarly as in Subcase 3.1 we have that
N ⊆ {vi−2, vi−1, vi, vi+1, ui, ui+1}. Again, since N induces a complete multipartite
graph, it follows that |N | ≤ 3 and so k ≤ 4. Hence Claim B follows.

Since N is an independent set in Gk, we have that N contains at most one vertex
from each block and so |N | ≤ k + 1. Recall that N contains both cut vertices and
simplicial vertices. This shows that |N | ≤ k. Again, since N is an independent set,
it follows that M ∩N = ∅.

Claim C: If v2 ∈ N or vk+1 ∈ N , then |N | ≤ ⌈k
2
⌉ for all k ≥ 2.

To prove this claim, we use induction on the number of cut vertices k. If k = 2 or
3 the result holds. Assume the result holds for all integers i with 3 ≤ i < k and
consider Gk. Suppose that v2 ∈ N or vk+1 ∈ N , say vk+1 ∈ N . Now, since N is
independent in Gk, we have that both uk+1 /∈ N and vk+2 /∈ N . Hence N ⊆ V (Gk−1)
and so by induction hypothesis |N | ≤ ⌈k−1

2
⌉ ≤ ⌈k

2
⌉. Hence Claim C follows.

In the following, we prove that |N | ≤ ⌈k
2
⌉. Choose α with 2 ≤ α ≤ k + 1 such

that the cut vertex vα ∈ N . Then it follows from Claim C that

|N ∩ V (Gα−1)| ≤

⌈

α− 1

2

⌉

.

and

|N ∩ [(V (Gk)\V (Gα−3)) ∪ {vα−1}]| ≤

⌈

k + 1− α

2

⌉

.
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Since vα is counted twice, we have that

|N | ≤ |N ∩ V (Gα−1)|+ |N ∩ [(V (Gk)\V (Gα−3)) ∪ {vα−1}]|

≤

⌈

α− 1

2

⌉

+

⌈

k + 1− α

2

⌉

− 1

≤

⌈

k

2

⌉

.

This shows that |M ∪N | ≤ k + ⌈k
2
⌉+ 3.

Since in all the cases we have arrived at a contradiction, we conclude that
gp(GkGk) = n(Gk)− ⌊k

2
⌋. �
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characterization of general position sets in graphs, Appl. Math. Comput. 359
(2019) 84–89.

[2] A. Bendali-Braham, N. Ikhlef-Eschouf, M. Blidia, Some results on the b-
chromatic number in complementary prism graphs, RAIRO Oper. Res. 53
(2019) 1187–1195.

[3] D. M. Cardoso, P. Carvalho, M. A. A. de Freitas, C. T. M. Vinagre, Spectra,
signless Laplacian and Laplacian spectra of complementary prisms of graphs,
Linear Algebra Appl. 544 (2018) 325–338.

[4] D. Castonguay, E. M. M. Coelho, H. Coelho, J. R. A. Nascimento, A note on the
convexity number of complementary prisms, Discrete Math. Theor. Comput.
Sci. 21 (2019), Paper No. 4, 10 pp.

16



[5] M. A. Duarte, L. Penso, D. Rautenbach, U. S. Souza, Complexity properties of
complementary prisms, J. Comb. Optim. 33 (2017) 365–372.

[6] H. E. Dudeney, Amusements in Mathematics, Nelson, Edinburgh, 1917.

[7] V. Froese, I. Kanj, A. Nichterlein, R. Niedermeier, Finding points in general
position, Internat. J. Comput. Geom. Appl. 27 (2017) 277–296.
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[11] S. Klavžar, I. G. Yero, The general position problem and strong resolving
graphs, Open Math. 17 (2019) 1126–1135.
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