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Abstract

The Steiner k-eccentricity of a vertex v of a graph G is the maximum Steiner distance over all
k-subsets of V (G) which contain v. In this paper Steiner 3-eccentricity is studied on trees. Some
general properties of the Steiner 3-eccentricity of trees are given. A tree transformation which
does not increase the average Steiner 3-eccentricity is given. As its application, several lower and
upper bounds for the average Steiner 3-eccentricity of trees are derived.
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1 Introduction

Throughout this paper, all graphs considered are simple and connected. If G = (V (G), E(G)) is a
graph, then its order and size will be denoted by n(G) and m(G), respectively. If S ⊆ V (G), then
the Steiner distance dG(S) of S is the minimum size among all connected subgraphs of G containing
S, that is,

dG(S) = min{m(T ) : T subtree of G with S ⊆ V (T )} .

If k ≥ 2 is an integer and v ∈ V (G), then the Steiner k-eccentricity ecck(v,G) of v in G is the
maximum Steiner distance over all k-subsets of V (G) which contain v, that is,

ecck(v,G) = max{dG(S) : v ∈ S ⊆ V (G), |S| = k} .

Note that ecc2(v,G) is the standard eccentricity of the vertex v, that is, the largest distance between
v and the other vertices of G.
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Li, Mao, and Gutman [18] proposed the k-th Steiner Wiener index SWk(G) of G as

SWk(G) =
∑

S∈(V (G)
k )

dG(S) .

Note that SW2(G) = W (G), the celebrated Wiener index of G. Motivated by the k-th Steiner
Wiener index, we introduce the average Steiner k-eccentricity aecck(G) of G as the mean value of all
vertices’ Steiner k-eccentricities in G, that is,

aecck(G) =
1

n(G)

∑
v∈V (G)

ecck(v,G) .

In this notation, aecc2(G) is just the standard average eccentricity of G, cf. [4, 8, 9, 10, 26]).
The Steiner tree problem on general graphs is NP-hard to solve [11, 17], but it can be solved

in polynomial time on trees [3]. The Steiner distance has been extensively studied on special graph
classes such as trees, joins, standard graph products, corona products, and others, see [2, 5, 13,
24, 28]. The average Steiner k-distance and its close companion the k-th Steiner Wiener index
have been studied on trees, complete graphs, paths, cycles, complete bipartite graphs, and others,
see [7, 14]. The average Steiner distance and the Steiner Wiener index were also extensively studied,
see [6, 18, 19, 21, 29, 30]. Some work on the Steiner diameter is present in [24, 28]. Other topological
indices related to the Steiner distance have also been investigated: Steiner Gutman index in [25],
Steiner degree distance in [15], Steiner hyper-Wiener index in [27], multi-center Wiener index in [16],
Steiner Harary index in [23], and Steiner (revised) Szeged index in [12]. Y. Mao wrote an extensive
survey paper on the Steiner distance in graphs [22].

In this paper we focus on the average Steiner 3-eccentricity of trees. In the rest of this section
we list additional definitions needed in this paper. Then, in Section 2, we present several struc-
tural properties of the Steiner k-eccentricity of trees and discuss the complexity of computing the
average Steiner 3-eccentricity of trees. In Section 3, the average Steiner 3-eccentricity of trees is
investigated under a special transformation. Section 4 presents the existence and a extremal graph
of the π-transformation. Relying on this behavior and the properties, in the subsequent section we
establish several lower and upper bonds on the average Steiner 3-eccentricity of trees. We conclude
by presenting several topics for future research.

A vertex of a graph of degree 1 is a leaf or a pendent vertex, and if it is of degree at least 2, then
it is an internal vertex. With `(G) we denote the number of leaves of a graph G. A vertex of a tree
of degree at least 3 is a branching vertex. An edge is pendent if it is incident to a pendent vertex in a
graph. A path P of a graph G is a pendent path if one endpoint of P has degree 1 and each internal
vertex of P has degree 2.

If H1 and H2 are subgraphs of G, then the distance dG(H1, H2) between H1 and H2 is defined
as min{dG(h1, h2) : h1 ∈ V (H1), h2 ∈ V (H2)}. In particular, if H1 is the one vertex graph with u
being its unique vertex, then we will write dG(u,H2) for dG(H1, H2). The eccentricity of a subgraph
H in G is eccG(H) = max{dG(v,H) : v ∈ V (G)}.

If S ⊆ V (G) and T is subtree of G with S ⊆ V (T ) and m(T ) = dG(S), then we say that T is
an S-Steiner tree and that a vertex of S is a terminal of T . If k ≥ 2 and v ∈ V (G), then a k-set
S ⊆ V (G) is a Steiner k-ecc v-set (or k-ecc v-set for short) if v ∈ S and dG(S) = ecck(v,G); a
corresponding tree that realizes ecck(v,G) will be called a Steiner k-ecc v-tree (or k-ecc v-tree for
short). A vertex v may have more than one k-ecc v-set, and each such set may have more than one
Steiner k-ecc v-tree.
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2 Preliminary results

The main topic of this paper is the average Steiner 3-eccentricity (of trees). We first give exact values
of it for some classes of graphs, easy computations being omitted.

Proposition 2.1 If n ≥ 3, then aecc3(Kn) = 2, aecc3(Pn) = n − 1, aecc3(K1,n−1) = 3 − 1
n , and

aecc3(Cn) = d3n
4 e. Moreover, if m,n ≥ 3, then aecc3(Km,n) = 3.

We now proceed with a series of lemmas.

Lemma 2.2 If T is a tree and S ⊆ V (T ), then the S-Steiner tree is unique.

Lemma 2.2 is implicitly used in the literature and also briefly mentioned in [22, p. 11]. It follows
from the argument that two different S-Steiner trees would lead to a cycle in T . By Lemma 2.2, the
formulation of the next lemma is justified.

Lemma 2.3 Let T be a tree, v ∈ V (T ), and v ∈ S ⊆ V (T ), |S| = k. Let Tv be the unique S-Steiner
tree and P a path in T , where V (P ) 6= ∅, V (P ) ∩ V (Tv) = {x}, and x is an endpoint of the path P .
If

(1) x ∈ S and x 6= v, or

(2) x /∈ S and Tv has an internal vertex which is in S and is different from v,

then there exists a k-set S
′ 6= S with v ∈ S′, such that the size of the S

′
-Steiner tree is strictly larger

than the size of Tv.

Proof. Suppose first that x ∈ S and x 6= v. Let u be the pendent vertex of P not in Tv and set
S

′
= (S ∪ {u}) − x. Then the size of the S′-Steiner tree is |E(Tv) ∪ E(P )|. Since |V (P )| ≥ 2, we

have |E(Tv) ∪ E(P )| ≥ |E(Tv)|+ 1 > |E(Tv)|.
In the second case, let t be the internal vertex of Tv which is in S and different from v. Let again

u be the pendent vertex of P not in Tv. In this case we set S
′

= (S ∪ {u}) − t and obtain another
k-set which induces a larger size Steiner tree than the original k-set S.

Recall that `(T ) denotes the number of leaves of a tree T .

Lemma 2.4 Let T be a tree and v ∈ V (T ). If k > `(T ), then every k-ecc v-set contains all the
leaves of T . The same conclusion holds if v is a leaf and k = `(T ).

Proof. Trivially, ecck(v, T ) ≤ n(T ) − 1. Suppose that k > `(T ). Set S = {v} ∪ L ∪X, where L is
the set of leaves of T and X a set of arbitrary k − `(T ) − 1 vertices from V (T ) \ (L ∪ {v}). Then
|S| = k and the S-Steiner tree is the whole tree T . Hence every k-ecc v-set is the whole tree T and
thus contains all the leaves. If v is a leaf, then set S = L ∪X, where X a set of arbitrary k − `(T )
vertices from V (T ) \ L to reach the same conclusion.

Lemma 2.5 Let T be a tree, v ∈ V (T ), and `(T ) ≥ k ≥ 2. If S is a k-ecc v-set, then every vertex
from S \ {v} is a leaf of T .

Proof. If k = `(T ) and v is a leaf of T , then the conclusion follows by Lemma 2.4. In the rest we
may hence assume that k < `(T ) or v is not a leaf of T .

Let Tv be a k-ecc v-tree and suppose that there exists a vertex u ∈ S \ v which is an internal
vertex of T . There there exists a leaf x in T which does not lie in Tv. Let P be the unique x, Tv-path
in T . Then P is a pendent path with at least one edge not in Tv and hence we can use Lemma 2.3
to obtain a larger S-Steiner tree, a contradiction.
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Lemma 2.6 Let T be a tree and v ∈ V (T ). Then every Steiner k-ecc v-tree contains a longest path
starting at v.

Proof. If k = 2, then ecc2(v, T ) is the length of a longest path from v to all the other vertices
in T , so there is nothing to be proved. In the sequel we may thus assume k ≥ 3. Suppose on the
contrary that Tv is a k-ecc v-tree which contains no longest path starting at v in T . Let S be the
k-ecc v-set corresponding to Tv. Let P be a longest path starting at v in the tree T , and let v

′′
be

the endpoint of P different from v. Let P1 be the sub-path of P which is shared by Tv, and P2 be the
remaining sub-path of P . Then P1 and P2 share a unique vertex v

′ ∈ V (P ). The described situation
is illustrated in Fig. 1.

Figure 1: The situation from the proof of Lemma 2.6; the grey part is Tv

Note that v is an endpoint of P1 and v
′′

is an endpoint of P2. By the assumption, P2 is not
empty. Let F be a forest obtained by deleting all the edges in E(P1) ⊆ E(Tv) from the tree Tv. Let
T1 be the tree in F which contains the vertex v

′
, cf. Fig. 1 again. We now distinguish two cases.

Suppose first that n(T1) = 1. Then v
′

is a leaf of Tv. So v
′

must be in the set S. We claim that
v
′ 6= v. Otherwise, the tree Tv would be a trivial tree and S contains the unique vertex v, which

contradicts the fact that k ≥ 3. Let S
′

= (S \ {v′}) ∪ {v′′}. Then S
′

is another k-set containing v
and its S

′
-Steiner tree is Tv ∪ P2. Since S

′
is a larger tree than Tv, we have a contradiction to the

fact that Tv is a k-ecc v-tree.
Suppose second that n(T1) ≥ 2. Then there must be a vertex u ∈ V (T1) such that u is a leaf of

Tv. Then u lies in the k-set S. We construct a path P3 as follows.

• If there is no branching vertex in Tv, then set P3 to be the path from v
′

to u in Tv.

• Suppose that there is at least one branching vertex in Tv. Let w ∈ V (Tv) be the branching
vertex nearest to u in Tv. If w is on the path from v

′
to u, then let P3 be the path from w to

u in the tree Tv. Otherwise, let P3 be the path from v
′

to u in the tree Tv.

Let S
′

= (S \ {u}) ∪ {v′′}. Then the tree T
′
v = (Tv \ P3) ∪ P2 is the S

′
-Steiner tree. Since P is

a longest starting from v and Tv contains no such longest path from v, the length of P2 is strictly
larger than the length of P3. So m(T

′
v) > m(Tv), a final contradiction.

In the rest of the section we focus on the structure of 3-ecc v-trees. By Lemma 2.6, the endpoint
x of some longest path starting at v must be in some 3-ecc v-set. Here is now a property of the third
terminal in a 3-ecc v-set.

Lemma 2.7 Let v be a vertex of a tree T and let S = {v, x, y} be a 3-ecc v-set, where the v, x-path
P is a longest path in T starting from v. Then dT (y, P ) = eccT (P ).

Proof. Let Tv be the 3-ecc v-tree; so Tv contains P and the set S = {x, y, z}. The path P is thus fixed
and hence the vertex y must be such that the y, P -path in T is as long as possible. But this in turn
implies that for the third terminal y we must have dT (y, P ) = max{dT (s, P ) : s ∈ V (T )} = eccT (P ).
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Combining with Lemma 2.7, the next lemma asserts that in the case of 3-ecc v-sets, in Lemma 2.6
an arbitrary longest path starting from v can be used.

Lemma 2.8 Let v be a vertex of a tree T , and let P1 and P2 be distinct longest paths having v as
an endpoint. Then eccT (P1) = eccT (P2).

Proof. Let w be the last common vertex of P1 and P2. Clearly w exists, it is possible that w = v.
Let t1 and t2 be the other endpoints of P1 and P2, respectively. As T is a tree and P1 6= P2 we have
t1 6= t2. Let u and s be vertices of T such that dT (u, P1) = eccT (P1) and dT (s, P2) = eccT (P2). Let
further Pu be the shortest u, P1-path, Ps the shortest s, P2-path, u0 the endpoint of Pu different from
u, and s0 the endpoint of Ps different from s.

We claim that u0 lies in the v, w-subpath of P1 (or P2 for that matter). Suppose on the contrary
that u0 is an internal vertex of the w, t1-subpath of P1. Since dT (u, P1) = eccT (P1) it follows that
the length of Pu is at least the length of the w, t2-subpath of P2. Since the latter path is of the same
length as the w, t1-subpath of P1, we get that the concatenation of Pu with the v, u0-subpath of P1

is a path strictly longer than P1, a contradiction.
We have thus proved that u0 lies in the v, w-subpath of P1. By a parallel argument we also get

that s0 lies in the v, w-subpath of P2 (or in the v, w-subpath of P1 for that matter). But his means
that dG(u, P1) = dG(s, P2) and hence eccT (P1) = eccT (P2).

To conclude the section, we briefly discuss the computation complexity of the average Steiner
3-eccentricity on trees. The problem is clearly polynomial. If T is a tree and v its vertex, then we can
first compute ecc3(v, T ) by determining the S-Steiner tree for each 3-set S containing v, detecting in
this way one of the largest size. This brute force strategy yields an O(n4) algorithm. Based on the
results of this section, we have devised a faster, O(n2) algorithm. We do not present it here because
in the follow up [1] of our paper, Aleksandar Ilić has made full use of results from this section and
elaborately devised a linear-time algorithm to calculate the average Steiner 3-eccentricity of a tree.
In another follow up paper [20], the results of this section were extended to the Steiner k-eccentricity,
k ≥ 3, and presented a linear-time algorithm to calculate the Steiner k-eccentricity of a vertex in a
tree. It would be interesting to see however, whether there is a linear-time algorithm to calculate
the average Steiner k-eccentricity of a tree similar to Ilić’s algorithm from [1].

3 A transformation on trees

Let T be a tree with the structure as schematically depicted in Fig. 2. Here the w, v0-path P is
a pendant path for which we require that 0 ≤ m(P ) < ecc2(u, T0) holds. (In case m(P ) = 0,
we have v0 = w.) Then set T

′
= T \ {wx : x ∈ NT1(w)} ∪ {uy : y ∈ NT1(w)}, see Fig. 2

again. We say that T ′ is obtained from T by a π-transformation and write T ′ = π(T ). The
reverse transformation will be called a π−1-transformation, that is, given T ′ as in Fig. 2, we set
T = T

′ \ {ux : x ∈ NT1(u)} ∪ {wy : y ∈ NT1(u)} and write T = π−1(T ′).

0 0
0 0

’

1 1

Figure 2: T and T
′
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Theorem 3.1 Let T be a tree as in Fig. 2, and let T ′ = π(T ). Let P0 be a longest path starting at u in
T0. If eccT0(P0) ≤ ecc2(w,P ) < ecc2(u, T0) and ecc2(w, T1) ≤ ecc2(w,P ), then aecc3(T

′
) = aecc3(T ).

Otherwise, aecc3(T
′
) < aecc3(T ).

Proof. We are going to consider the behavior of the Steiner 3-eccentricity on the sets of vertices
V (P ) \ {w}, V (T1), and V (T0) on the following cases. (Recall that in the definition of the π-
transformation we have required that m(P ) = ecc2(w,P ) < ecc2(u, T0) holds.)

In order to cover all possibilities, the proof is based on the relationship among ecc2(w, T1),
ecc2(w,P ) and ecc2(u, T0). By the definition, we have ecc2(w,P ) < ecc2(u, T0). So on the whole,
there are three kinds of relationship among them, i.e., (1) ecc2(w,P ) < ecc2(u, T0) < ecc2(w, T1),
(2) ecc2(w,P ) < ecc2(w, T1) ≤ ecc2(u, T0), and (3) ecc2(w, T1) ≤ ecc2(w,P ) < ecc2(u, T0). In the
following, we elaborate that the theorem holds for each of these three cases.

Case 1: ecc2(w,P ) < ecc2(u, T0) < ecc2(w, T1).
To deal with this case, we need another variable eccT1(P1), where P1 is a longest path starting at w
in T1. Since ecc2(w, T1) is the length of the longest path starting at w in T1, we have eccT1(P1) ≤
ecc2(w, T1). Considering the relationship among ecc2(w,P ), ecc2(u, T0), ecc2(w, T1), and eccT1(P1),
there are the following three sub-cases to consider.

Case 1.1: 0 ≤ ecc2(w,P ) < ecc2(u, T0) < eccT1(P1) ≤ ecc2(w, T1).
In this case, the following three statements hold.

(i) ecc3(v, T )− ecc3(v, T
′
) = −1 for every vertex v ∈ V (P ) \ {w}.

By Lemmas 2.6 and 2.7, the other two terminals must be in T1. This remains true after the
π-transformation is performed. So for every v ∈ V (P ) \ {w}, ecc3(v, T ) increases by 1 after the
transformation.

(ii) ecc3(v, T )− ecc3(v, T
′
) ≥ 0 for every vertex v ∈ V (T1).

(iii) ecc3(v, T )− ecc3(v, T
′
) = 1 for every vertex v ∈ V (T0).

For every vertex v ∈ V (T0), by Lemma 2.6, the other endpoint of a longest path starting at v
must be in T1. This holds true after the π-transformation is performed. By Lemma 2.7, the
third terminal could not be v0. So after the π-transformation, ecc3(v, T ) decreases by 1.

Since we have assumed that ecc2(w,P ) < ecc2(u, T0), we have |V (P )\{w}| < n(T0). In summary,
in this case, we have

aecc3(T )− aecc3(T
′
) =

1

n

{
Σ

v∈V (P )\{w}
[ecc3(v, T )− ecc3(v, T

′
)]+

Σ
v∈V (T1)

[ecc3(v, T )− ecc3(v, T
′
)] + Σ

v∈V (T0)
[ecc3(v, T )− ecc3(v, T

′
)]
}

≥ 1

n

[
|V (T0)| − |V (P ) \ {w}|

]
> 0 .

We conclude that aecc3(T
′
) < aecc3(T ) holds in this case.

Case 1.2: 0 ≤ ecc2(w,P ) < eccT1(P1) ≤ ecc2(u, T0) < ecc2(w, T1).
Now we have:

(i) ecc3(v, T ) = ecc3(v, T
′
) for every vertex v ∈ V (P ) \ {w}.

(ii) ecc3(v, T )− ecc3(v, T
′
) ≥ 0 for every vertex v ∈ V (T1).
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(iii) ecc3(v, T )− ecc3(v, T
′
) ≥ 0 for every vertex v ∈ V (T0) \ {u}.

(iv) ecc3(u, T )− ecc3(v, T
′
) = 1 for the vertex u.

Yet again aecc3(T
′
) < aecc3(T ).

Case 1.3: 0 ≤ eccT1(P1) ≤ ecc2(w,P ) < ecc2(u, T0) < ecc2(w, T1).
Now we have:

(i) ecc3(v, T ) = ecc3(v, T
′
) for every vertex v ∈ V (P ) \ {w}.

(ii) ecc3(v, T )− ecc3(v, T
′
) ≥ 0 for every vertex v ∈ V (T1).

(iii) ecc3(v, T )− ecc3(v, T
′
) ≥ 0 for every vertex v ∈ V (T0) \ {u}.

(iv) ecc3(u, T )− ecc3(v, T
′
) = 1.

Once more aecc3(T
′
) < aecc3(T ).

So in Case 1 the theorem holds. In order to elaborate the other two cases, we use the variable
eccT0(P0) instead of eccT1(P1) in the following proof. Since P0 is a longest path starting at u in T0,
we have eccT0(P0) ≤ ecc2(u, T0).

Case 2: ecc2(w,P ) < ecc2(w, T1) ≤ ecc2(u, T0).
According to the relationship among ecc2(w,P ), ecc2(w, T1), ecc2(u, T0) and eccT0(P0), there are
three sub-cases as following.

Case 2.1: 0 ≤ ecc2(w,P ) < ecc2(w, T1) < eccT0(P0) ≤ ecc2(u, T0).
Now:

(i) ecc3(v, T ) = ecc3(v, T
′
) for every vertex v ∈ V (P ) \ {w}.

(ii) ecc3(v, T )− ecc3(v, T
′
) = 1 for every vertex v ∈ V (T1).

(iii) ecc3(v, T )− ecc3(v, T
′
) ≥ 0 for every vertex v ∈ V (T0).

Again aecc3(T
′
) < aecc3(T ).

Case 2.2: 0 ≤ ecc2(w,P ) < eccT0(P0) ≤ ecc2(w, T1) ≤ ecc2(u, T0).
Now:

(i) ecc3(v, T ) = ecc3(v, T
′
) for every vertex v ∈ V (P ) \ {w}.

(ii) ecc3(v, T )− ecc3(v, T
′
) = 1 for every vertex v ∈ V (T1).

(iii) ecc3(v, T )− ecc3(v, T
′
) ≥ 0 for every vertex v ∈ V (T0) \ {u}.

(iv) ecc3(u, T )− ecc3(v, T
′
) = 1 for the vertex u.

So also in this case aecc3(T
′
) < aecc3(T ).

Case 2.3: 0 ≤ eccT0(P0) ≤ ecc2(w,P ) < ecc2(w, T1) ≤ ecc2(u, T0).
Now:

(i) ecc3(v, T ) = ecc3(v, T
′
) for every vertex v ∈ V (P ) \ {w}.

(ii) ecc3(v, T )− ecc3(v, T
′
) ≥ 0 for every vertex v ∈ V (T1).

(iii) ecc3(v, T )− ecc3(v, T
′
) ≥ 0 for every vertex v ∈ V (T0) \ {u}.
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(iv) ecc3(u, T )− ecc3(v, T
′
) = 1.

We conclude that aecc3(T
′
) < aecc3(T ) in this case.

Case 3: ecc2(w, T1) ≤ ecc2(w,P ) < ecc2(u, T0).
This case is similar to Case 2, there are also there sub-cases which are elaborated in the following.

Case 3.1: 0 ≤ ecc2(w, T1) ≤ ecc2(w,P ) < eccT0(P0) ≤ ecc2(u, T0).
Now:

(i) ecc3(v, T ) = ecc3(v, T
′
) for every vertex v ∈ V (P ) \ {w}.

(ii) ecc3(v, T )− ecc3(v, T
′
) = 1 for every vertex v ∈ V (T1).

(iii) ecc3(v, T ) = ecc3(v, T
′
) for every vertex v ∈ V (T0).

Therefore, aecc3(T
′
) < aecc3(T ).

Case 3.2: 0 ≤ ecc2(w, T1) < eccT0(P0) ≤ ecc2(w,P ) < ecc2(u, T0).
In this case we obtain the same conclusions as the Case 1. Hence we conclude that aecc3(T

′
) =

aecc3(T ) holds also in this case.

Case 3.3: 0 ≤ eccT0(P0) ≤ ecc2(w, T1) ≤ ecc2(w,P ) < ecc2(u, T0).
In this case it is evident that the following three statements hold.

(i) ecc3(v, T ) = ecc3(v, T
′
) for every vertex v ∈ V (P ) \ {w}.

(ii) ecc3(v, T ) = ecc3(v, T
′
) for every vertex v ∈ V (T1).

(iii) ecc3(v, T ) = ecc3(v, T
′
) for every vertex v ∈ V (T0).

By the definition of the average Steiner 3-eccentricity it thus follows that aecc3(T
′
) = aecc3(T ) holds

in this case.
Since all the possibilities have been verified, the theorem holds.

Corollary 3.2 Let T ′ be a tree as in Fig. 2, and let T = π−1(T ′). Let P0 be a longest path starting
at u in T0. If eccT0(P0) ≤ ecc2(w,P ) < ecc2(u, T0) and ecc2(w, T1) ≤ ecc2(w,P ), then aecc3(T

′
) =

aecc3(T ). Otherwise, aecc3(T ) > aecc3(T ′).

4 More on the π-transformation

In the section, we present several properties of the transformation introduced in the previous section.
In Section 4.1 we list conditions under which the transformation exists, while in Section 4.2 we study
an extremal graph at which we would arrive after a sequence of π-transformations.

4.1 The existence of π-transformation

If a vertex of a tree has degree at least 3, then the vertex is said to be a branching vertex. If two
distinct pendent paths are attached to the same branching vertex, then the branching vertex is said
to be a pendent branching vertex. Referring to the definition of the π-transformation in Section 3,
if the subtree T1 is a pendent path of T , then the π-transformation will be refereed to as a pendent
π-transformation on T .
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Lemma 4.1 If there are two distinct branching vertices u and v in a tree, then there are two distinct
pendent branching vertices u1 and u2 such that the distance between u1 and u2 is not less than the
distance between u and v.

Proof. Let P be the path between u and v. Since u and v are distinct, there must be two distinct
leaves u′ and v′ such that the path between u and u′ shares no edge with P , and the path between
v and v′ shares no edge with P . Moreover, there is a pendent branching vertex on the path between
u and u′, while there is a pendent branching vertex on the path between v and v′, because u and v
are both branching vertices. Therefore, there are two distinct pendent branching vertices u1 and u2

such that the distance between u1 and u2 is not less than the distance between u and v.

Lemma 4.2 If there are two distinct branching vertices of a tree T such that the distance between
them is at least 2, then there exists a pendent π-transformation on T .

Proof. By Lemma 4.1, there are two distinct pendent branching vertices u1, u2 ∈ V (T ) such that
the distance between u1 and u2 is at least 2, cf. Fig. 3. The paths between v3 and u1 and between w1

and u1 are two pendent paths attached to the pendent branching vertex u1, while the paths between
v4 and u2 and between w2 and u2 are two pendent paths attached to the pendent branching vertex
u2. Let P and Q be the pendent paths between w1 and u1 and between w2 and u2, respectively. The
neighbors of u1 and u2 on the path between them are respectively marked as v1 and v2. Since the
distance between u1 and u2 is more than 1, we have v1 6= u2 and v2 6= u1.

u1 u2v1 v2v3 v4

w1 w2

P Q

Figure 3: The configuration of two pendent paths P and Q

If the length of the path between v3 and u1 is strictly less than the length of the path between v1

and v4, then a new tree T ′ can be achieved by a pendent π-transformation, i.e., T ′ = T \ {(u1, x) :
x ∈ NP (u1)} ∪ {(v1, y) : y ∈ NP (u1)}.

Otherwise, since v1 6= u2 and v2 6= u1, the length of the path between v3 and v2 is strictly larger
than the length of the path between u2 and v4. Then a new tree T ′′ can be achieved by a pendent
π-transformation, i.e., T ′′ = T \ {(u2, x) : x ∈ NQ(u2)} ∪ {(v2, y) : y ∈ NQ(u2)}.

As trees of course contain no triangles, Lemma 4.2 immediately gives the following consequence.

Lemma 4.3 If a tree T has more than two branching vertices, then there exists a pendent π-
transformation on T .

Lemma 4.4 Let T be a tree with exact two branching vertices, where the two branching vertices
are adjacent. If there are two pendent paths such that they have different length and attach to
distinct branching vertices, then there exists a π-transformation on T . Otherwise, there is no π-
transformation on T .

Proof. Let u1 and u2 be two unique (adjacent) branching vertices of T , see Fig. 4.
Suppose first that there are two distinct leaves v1 and v2 such that the length of the path between

v1 and u1 is not equal to length between v2 and u2. We may assume without loss of generality that

9



the first of these paths is longer than the second. . Then the length of the path between v2 and u2

is strictly less than the length between u2 and v1. Let T1 be the subtree rooted at u2 obtained by
deleting all the edges on the path between v1 and v2, see Fig. 4 again. A new tree T ′ can be obtained
by a π-transformation on T as T ′ = T \ {(u2, x) : x ∈ NT1(u2)} ∪ {(u1, y) : y ∈ NT1(u2)}.

u1 u2v1 v2

T1

Figure 4: The configuration of a tree with exact two branching verticces

In the second case all pendent paths attaching to both u1 and u2 have the same length. Then
the precondition of the π-transformation does not hold and hence there is no π-transformation on
T .

Lemma 4.5 Let T be a tree with exactly one branching vertex. If there are two distinct pendent
paths such that their lengths differ by at least 2, then here exists a π-transformation on T .

Proof. Let u be the unique branching vertex of T . Let v1 and v2 be two leaves such that the length
of the path between v1 and u has at least two more edges than the path between v2 and u, see Fig. 5.

u v2v1 u

T1

Figure 5: The configuration of a tree with exact one branching verticces

Let T1 be the subtree rooted at u obtained by deleting all the edges on the path between v1 and
v2. Let u′ be the unique neighbor of u on the path between u and v1. Then the length of the path
between v1 and u′ is strictly larger than that between u and v2. So a new tree T ′ can be obtained
by a π-transformation on T as T ′ = T \ {(u, x) : x ∈ NT1(u)} ∪ {(u′, y) : y ∈ NT1(u)}.

4.2 Properties of a bi-stars

We say that a tree T is a bi-star if T contains exactly two branching vertices, the two branching
vertices are adjacent, and all its pendent paths are of the same length. (Note that in the literature
bi-stars are often restricted to the case when all the pendent paths are of length 1.) By Lemma
4.4, bi-stars admit no π-transformation. In this subsection we study the Steiner 3-eccentricity in a
bi-stars.

Let u1 and u2 be the two branching vertices in the bi-star T . Let S1 and S2 be the subtrees
respectively rooted at u1 and u2 obtained by deleting the edge u1u2. Then S1 and S2 are both
star-like trees. By definition, all pendent paths in S1 and S2 have the same length. Let v be a leaf
in V (S1)∩V (T ) and w be a leaf in V (S2)∩V (T ). Let u′1 be the neighbor of u1 on the path between
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u1 and v in T . Let T1 be the sub-tree rooted at u1 which is obtained by deleting the edges u1u
′
1 and

u1u2, see Fig. 6.

u1 u2v w

T1
S1

S2

u1

Figure 6: The configuration of a bi-star

Lemma 4.6 Let T be a bi-star, and S1, S2 its corresponding star-like trees. If v ∈ V (Si), i ∈ {1, 2},
then a Steiner 3-ecc v-set has a vertex in V (S3−i).

Proof. By symmetry we may assume without loss of generality that v ∈ V (S1). Let Sv be a Steiner
3-ecc v-set. By Lemma 2.3 and the definition of bi-stars, the other two vertices in Sv must be leaves
of T . Suppose on the contrary that no vertex in Sv \ {v} is in S2. Then there must be a vertex
u ∈ Sv \ {v} such that u is a leaf in S1. Let S′v = Sv \ {u} ∪ {w}. Then S′v is a 3-set containing v
and the Steiner tree on S′v is strictly larger than that on Sv, since there is an edge between u1 and
u2, a contradiction.

We can define a τ -transformation on a bi-star T , which is to transform T into a new tree T ′,
with T ′ = τ(T ) = T \ {(u1, x) : x ∈ NT1(u1)} ∪ {(u2, y) : y ∈ NT1(u1)}, see Fig. 7. Obviously, T ′ is a
star-like tree with exactly one branching vertex.

u1 u2v w

T1

u1

T‘T

T‘

1

T‘

2

u1 u2v w

T1
S1

S2

u1

Figure 7: The τ -transformation: T ′ = τ(T ) where T is bi-star

Deleting the edge u1u2 from T ′ results in two subtrees. Let T ′1 be the subtree rooted at u1,
and T ′2 the subtree rooted at u2, see Fig. 7. The proof of the following lemma is similar to that of
Lemma 4.6, hence we omit it.

Lemma 4.7 Let T be a bi-star, let T ′ = τ(T ), and let T ′1, T
′
2, be the the subtrees defined in the above

paragraph. If v ∈ V (T ′i ), i ∈ {1, 2}, then a Steiner 3-ecc v-set has a vertex in V (T ′3−i).

Theorem 4.8 Let T be a bi-star and let T ′ = τ(T ). Then for every vertex v ∈ V (T ) = V (T ′) the
Steiner 3-eccentricity of v is the same in both T and T ′.
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Proof. In this proof, we use the notations from Fig. 7. Let P1 be the path between u1 and v, and
let P2 be the path between u2 and w. The vertex set V (T ) is partitioned into the following four
subsets: V1 = V (P1), V2 = V (P2), V3 = V (S1) \ V1 and V4 = V (S2) \ V2. We are going to prove that
for each set Vi, i ∈ {1, 2, 3, 4}, and for every vertex v ∈ Vi, we have ecc3(v, T ) = ecc3(v, T ′).

Case 1: v ∈ V1 = V (P1).
The position of v does not change after the τ -transformation. Let ST (v) and ST ′(v) be Steiner 3-ecc
v-sets in T and T ′, respectively. By Lemmas 4.6, 4.7 and 2.3, without loss of generality, let w be
in both ST (v) and ST ′(v). Now we consider the third vertex in ST (v) as well as ST ′(v). Obviously,
in ST ′(v) the third vertex must be a leaf in V (T ′2) \ {w}. So no matter whether the third vertex of
ST (v) is in V3 or in V4, the size of Steiner tree on ST (v) and that on ST ′(v) are the same.

Case 2: v ∈ V2 = V (P2).
The proof in this case is similar to Case 1.

Case 3: v ∈ V2 = V (S1) \ V1.
After the τ -transformation, the position of v is changed. Let ST (v) and ST ′(v) be Steiner 3-ecc
v-sets in T and T ′, respectively. By Lemmas 4.6, 4.7 and 2.3, without loss of generality, let w be in
ST (v) and v be in ST ′(v). Now consider the third vertex in ST (v) as well as in ST ′(v). It is obvious
that the third vertex in ST (v) is a leaf of S1 ∪ S2 \ {w}, while the third vertex in ST ′(v) is a leaf of
S1 ∪ S2 \ {v}. Therefore, the sizes of Steiner trees on ST (v) and on ST ′(v) are the same.

Case 4: v ∈ V2 = V (S2) \ V2.
The proof in this case is also similar to Case 1.

5 Some applications of the π-transformation

As an application of the π-transformation, we establish in this section several lower and upper bounds
on the average Steiner 3-eccentricity of trees in terms of the order, the maximum degree, the number
of pendent vertices, the matching number, the independent number, the diameter, and the radius.

5.1 Lower and upper bounds on general trees

Theorem 5.1 If T is a tree on n vertices, then

3− 1

n
≤ aecc3(T ) ≤ n− 1 .

The lower bound is achieved when T ∼= K1,n−1, while the upper bound is achieved when T ∼= Pn.

Proof. Let T be an arbitrary tree of order n. Then repeatedly apply the π-transformation on T
until no further π-transformation is possible.

We claim that in the last step we must necessarily arrive at K1,n−1. See Fig. 9 for an example
of such a procedure. Suppose on the contrary that in the last step we do not arrive at K1,n−1.
Let T ′ be the tree achieved in the last step. In this case, there are at least two internal vertices.
Without loss of generality, let u1 and u2 be two distinct internal vertices in T ′. Let u3 be the
unique neighbor of u1 in the unique path between u1 and u2 in T ′. Let T ′1 and T ′2 be the two
subtrees respectively rooted at u1 and u3 in the forest which is obtained by deleting the edge u1u2

from T ′ (see Fig. 8(a)). Now one can do a π-transformation to obtain a new tree T ′′ defined as
T ′′ = T \ {(u1, x) : x ∈ NT ′

1
(u1)} ∪ {(u3, y) : y ∈ NT ′

1
(u1)}. This contradicts the fact that T ′ is

achieved in the last step. Hence, in the last step we must arrive at K1,n−1.
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u1 u3 u2

T1
‘

T2
‘

(a)

u1u2

T1
‘

u0

T2
‘

v w

(b)

Figure 8: To prove the bounds on general graphs

u

w ( )v0

T1

T0
u

w ( )v0

T1

T0

u

w ( )v0

T1

T0

Figure 9: Transforming a tree with a sequences of π-transformations to a star

By Theorem 3.1, during the process, each π-transformation does not increase the average Steiner
3-eccentricity. Hence aecc3(K1,n−1) ≤ aecc3(T ).

On the other hand, repeatedly apply the π−1-transformation on T as long as it is possible. We
claim that in the last step we must necessarily arrive at the path Pn, see Fig. 10 for an example.
Suppose on the contrary that in the last step we do not arrive at Pn. Let T ′ be the tree obtained
in the last step. Then T ′ contains at least one vertex of degree at least 3, let u0 be such a vertex.
Let u1 be the unique neighbor of u0 on a longest path starting at u0 in T ′, and let w be the other
endpoint of the longest path, see Fig. 8(b). Let v be the leave of T ′ such that the path between v
and u0 has the smallest length among all paths starting at u0 to all leaves. If the path between v
and u0 is a pendent path of T ′, then let u2 be the neighbor of u0 on this path. Otherwise, let u2

be a branching vertex of T ′ such that u2 is on the path between v and u0 and the path between v
and u2 is a pendent path of T ′, see Fig. 8(b). Hence the length of the pendent path between v and
u2 is strictly less than that between u0 and w. This implies that one more π−1-transformation can
be done on T ′. This contradicts the fact that T ′ is the tree obtained in the last step. So we finally
must arrive at the path Pn.

By Corollary 3.2, at each step of this process the average Steiner 3-eccentricity does not de-
crease, hence aecc3(Pn) ≥ aecc3(T ). Using the values from Proposition 2.1 we thus have 3 − 1

n =
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T1

T0

w ( )v0
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T1
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v0
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u

T1

T0

w ( )v0
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w
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T0

P
-1

-1
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Figure 10: Transforming a tree with a sequences of π−1-transformations to a path

aecc(S1,n−1) ≤ aecc3(T ) ≤ aecc3(Pn) = n− 1 and we are done.

5.2 An upper bound on trees with maximum degree

A broom B(n,∆) is a tree obtained from K1,∆ by attaching a path of length n−∆−1 to an arbitrary
pendent vertex of the star. See Fig. 11 for an example.

Figure 11: The broom B(13, 8)

Theorem 5.2 If T is a tree of order n = n(T ) and maximum degree ∆ = ∆(T ), then

aecc3(T ) ≤ aecc3(B(n,∆)) = n−∆ + 1 +
∆

n
.

Proof. Let T be a tree with n = n(T ) and ∆ = ∆(T ), and let r be the vertex of T with degree ∆.
Consider T as a tree rooted in r. Let T1, . . . , T∆ be the maximal subtrees of T each of which do not
contain r, but exactly one of the neighbor is r. We may also consider these ∆ trees to be rooted at
r. Repeatedly apply the π−1-transformation on each subtree Ti, until no more such transformations
could be done. By the proof of Theorem 5.1, in the last step, every Ti becomes a path. Let T ′ be
the final tree in this procedure.

14



When all subtrees turn into paths, we can further proceed the π−1-transformation on T ′ until we
arrive at the broom B(n,∆), see Fig. 12 for an example. Now we will elaborate the process.

u

w

v0
T1

T0
P

u

T1

T0

w ( )v0

u

T1

T0w

v0

P

-1

-1

-1

Figure 12: Transforming a tree with a sequences of π−1-transformations to a broom

One can imagine that T ′ is a tree in which there are ∆ paths attached to a star K1,∆. The star
has the central vertex r. If there is no more than one neighbor of r each of which has degree 2, then
T ′ is just a broom. In this case, the theorem holds trivially. Now we consider that there are at least
two neighbors in NT ′(r) each of which has degree 2. Without loss of generality, let r1, r2 ∈ NT ′(r)
be two distinct neighbors of r, see Fig. 13. In ťhe figure, u and v are both leaves of T ′. If the size
of the path between r1 and u is less than that between r and v, then apply a π−1-transformation on
T ′ to obtain a new tree T ′′ with T ′′ = T ′ \ {(r, x) : x ∈ NT ′

1
(r)} ∪ {(r1, y) : y ∈ NT ′

1
(r)}. Otherwise,

also apply a π−1-transformation on T ′ to obtain another new tree T ′′′ with T ′′′ = T ′ \ {(r, x) : x ∈
NT ′

1
(r)}∪{(r2, y) : y ∈ NT ′

1
(r)}. Whenever there are two such different neighbors of r, whose degrees

are both 2, we employ the above procedure on the tree.

r2

T1
‘

rr1u v

Figure 13: To achieve a broom

We claim that in the last step we will achieve a broom with maximum degree ∆. Obviously, the
degree of the center vertex in the star K1,∆ remains to be ∆ all the way in the whole procedure. So
the maximum degree of the tree obtained in the last step is ∆. Now we show that in the final step we
must arrive at a broom. Suppose on the contrary that we do not achieve a broom in the last step. Let
T1 be the tree in the last step and r be the central vertex of the star K1,∆. In this case, there must
be two neighbors of r each of which has degree 2. This means that one more π−1-transformation can
be done on T1, just like the procedure in the above paragraph. This contradicts the fact that the
tree is achieved in the last step. So finally we must achieve a broom.
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By Corollary 3.2, during the whole process the Steiner 3-eccentricity does not decrease. This
implies that aecc3(T ) ≤ aecc3(B(n,∆)). Finally, the broom B = B(n,∆) has ∆ leaves, and
ecc3(v,B) = n−∆ + 2 holds for each of its leaves v. For each of the other n−∆ vertices w of B we
have ecc3(w,B) = n−∆+1. Hence aecc3(B) = (∆(n−∆+2)+(n−∆)(n−∆+1))/n = n+1−∆+ ∆

n ,
and we are done.

5.3 A lower bound on trees with constant number of leaves

A starlike tree is a tree with exactly one vertex of degree at least three. In other words, a starlike
tree is a tree obtained by attaching to an isolated vertex t ≥ 3 pendant paths. If the lengths of these
pendant paths pairwise differ by at most one, then the starlike tree is called balanced. Note that
if T is a balanced starlike tree of order n and with p leaves, then it is uniquely determined (up to
isomorphism); we will denote it by BSn,p.

Theorem 5.3 Let T be a tree of order n ≥ 2 and with p pendent vertices. Then

aecc3(T ) ≥ aecc3(BSn,p) .

Proof. If T has more than two branching vertices, by Lemma 4.3, one can do a pendent π-
transformation on T . Recall that the π-transformation does not increase the average Steiner 3-
eccentricity.

Now suppose T has exact two branching vertices. If the distance of these two branching vertices is
at least two, then by Lemma 4.2, one can do a pendent π-transformation on T . If the distance of these
two branching vertices is exact one, and there are two pendent paths such that they have different
length and attach to distinct branching vertices, then by Lemma 4.4, one can also do a pendent
π-transformation on T . All the processes does not increase the average Steiner 3-eccentricity. If the
distance of these two branching vertices is exact one, but every pendent path has the same length,
then by Theorem 4.8, one can do a τ -transformation to obtain a new tree with only one branching
vertices.

Now we consider the case that there is an unique branching vertex in the tree T . If there are two
distinct pendent paths such that their lengths differ by at most one, then T is trivially a balanced
star-like tree. Otherwise, by Lemma 4.5, one can also do a π-transformation on T .

To sum all, all the transformations do not increase the average Steiner 3-eccentricity. Finally we
arrive at the starlike tree BSn,p, see Fig. 14 for an example.

Since in all the transformations made to reach BSn,p the average Steiner 3-eccentricity has not
increased, we conclude that aecc3(BSn,p) ≤ aecc3(T ).

5.4 Lower bounds on trees with matching and independence number

If m ≥ 3 and m + 2 ≤ n ≤ 2m + 1, then let Tn,m be a tree obtained from K1,m by respectively
adding a pendent edge to its n −m − 1 pendent vertices. Hence we add a leaf to at least one and
not more than m leafs of K1,m. Note also that n(Tn,m) = n. Observe further that α(Tn,m) = m
and β(Tn,m) = n−m, where α(G) and β(G) are the independence and the matching number of G,
respectively.

Theorem 5.4 If T is a tree with n = n(T ) and β = β(T ) ≥ 2, then

aecc3(T ) ≥ aecc3(Tn,n−β) .
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Figure 14: Transforming a tree with a sequences of π-transformations to a balanced starlike tree

Proof. Let M be a maximum matching of T , so that |M | = β. Set further ` = `(T ). If e ∈M , then
at most one of the endpoints of e is a leaf, hence ` ≤ β + (n − 2β) = n − β. By Theorem 5.3, we
have aecc3(T ) ≥ aecc3(BSn,`). Applying Theorem 3.1 again we can then estimate that

aecc3(T ) ≥ aecc3(BSn,`) ≥ aecc3(BSn,n−β) = aecc3(Tn,n−β) ,

and we are done.

For trees with perfect matchings, Theorem 5.4 together with a straightforward computation of
aecc3(Tn,n/2) yields the following consequence.

Corollary 5.5 If T be a tree of order n with a perfect matching, then

aecc3(T ) ≥ aecc3(Tn,n/2) =


3; n = 4,
9
2 ; n = 6,
11
2 −

2
n ; n ≥ 8.

We next give a bound with the independence number of a tree.

Theorem 5.6 If T be a tree of order n and α = α(T ), then

aecc3(T ) ≥ aecc3(Tn,α) .

Proof. Set again ` = `(T ). Clearly, α ≥ `(T ). By Theorem 5.3, we have aecc3(T ) ≥ aecc3(BSn,`).
By the aid of Theorem 3.1 we conclude that aecc3(T ) ≥ aecc3(BSn,`) ≥ aecc3(BSn,α).
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5.5 Lower bounds on trees with constant diameter or radius

Recall that the diameter diam(G) and the radius rad(G) of a graph G are the maximum and the
minimum, respectively, eccentricity of the vertices of G. The center of G is the set of its vertices
with minimum eccentricity. Recall also that the center of a tree consists either of a single vertex or
of two adjacent vertices.

Let Tn,d(p1, . . . , pd−1) be a tree of order n obtained from a path Pd+1 = v0v1 . . . vd by attaching
pi ≥ 0 pendent vertices to vi for every i ∈ [d− 1]. Clearly, as the order of T ′n,d(p1, . . . , pd−1) is n, we

must have Σd−1
i=1 pi = n− d− 1. In the special case when d is even and all the n− d− 1 vertices are

attached to the vertex vd/2, we briefly denote the tree with T ′n,d. Similarly, if d is odd, then let T ′n,d
denote the graph in which b(n− d− 1)/2c vertices are attached to vdd/2e and d(n− d− 1)/2e vertices
are attached to vdd/2e.

Theorem 5.7 If T is a tree of order n and diam(T ) = d, then

aecc3(T ) ≥ aecc3(T ′n,d) .

Proof. Let T be a tree as stated and let P = v0v1 . . . vd be a longest path in T . Since P is a
longest path in T , both v0 and vd are leaves of T . For i ∈ [d − 1] let Ti be a maximal subtree of T
that contains vi but no other vertex of P . Consider Ti as a rooted tree with the root vi. Then the
depth of the rooted tree Ti is at most the minimum of the lengths of the v0, vi-subpath of P and the
vi, vd-subpath of P , that is, at most min{i, d− i}. Therefore, for each i ∈ [d− 1], we can repeatedly
apply the π-transformation on the subtree Ti respected to T so than Ti turns into a star rooted
at vi. The average Steiner 3-eccentricity has not increased along the way. After this procedure is
over, Tn,d(p1, . . . , pd−1) is constructed. Afterwards we repeatedly apply the π-transformation on each
pendent vertex attached to vi for each i ∈ [d− 1], to arrive at T ′n,d.

Note that if d is odd, then we could define T ′n,d also by arbitrary distributing the n−d−1 vertices
that are attached to vdd/2e and to vdd/2e. That is, any such tree can serve for the lower bound of
Theorem 5.7.

If the center of a tree T contains only one vertex, then diam(T ) = 2 rad(T ), and if the center
of T consists of two vertices, diam(T ) = 2 rad(T ) − 1. Hence Theorem 5.7 yields the following
consequence.

Corollary 5.8 If T is a tree of order n and r = rad(G), then aecc3(T ) ≥ aecc3(T ′n,2r−1).

6 Concluding remarks

We have derived several lower and upper bounds for the average Steiner 3-eccentricity on a tree with
different constrained parameters. It would be interesting to see if and how these bounds extend to
k ≥ 4.

Just a little research has been done by now on the (average) Steiner k-eccentricity for k ≥ 3.
Hence a lot of work still has to be done.
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