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Abstract

We study the Steiner k-eccentricity on trees, which generalizes the previous one
in the paper [X. Li, G. Yu, S. Klavzar, On the average Steiner 3-eccentricity of trees,
arXiv:2005.10319, 2020]. To support the algorithm, we achieve much stronger proper-
ties for the Steiner k-ecc tree than that in the previous paper. Based on this, a linear
time algorithm is devised to calculate the Steiner k-eccentricity of a vertex in a tree.
On the other hand, the lower and upper bounds of the average Steiner k-eccentricity
index of a tree on order n are established based on a novel technique which is quite

different from that in the previous paper but much easier to follow.
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1 Introduction

In this paper we consider connected, simple, undirected graphs G = (V(G), E(G)). For
basic graph notation and terminology we follow the book of West [28], while for algorithmic
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and computational terminology we use [4] [9].
The standard distance dg(u,v) between vertices u and v in graph G is the length of
a shortest path between v and v in G. If S C V(G), |S| > 2, then the Steiner distance

dg(9) is the minimum size among all connected subgraphs of G containing S, that is,
dg(S) = min{|E(T)| : T is a subtree of G, S C V(T)}.

Note that if S = {u,v}, then dg(S) = dg(u,v). If k£ > 1, then the Steiner k-eccentricity

of a vertex v in graph G is
ecck(v,G) = max{dg(S): ve S CV(QG),|S|=k}.

Note that, by definition, ecc;(v,G) = 0. S C V(G) is a Steiner k-ecc v-set if |S| = k,
v € S, and dg(S) = eccg(v,G). A corresponding minimum Steiner tree T is called a
Steiner k-ecc v-tree (corresponding to the k-set S). We will also shorty say that T is
a MST(S,G). The average Steiner k-eccentricity of a graph G is the mean value of all
vertices’ Steiner k-eccentricities in GG, that is,

1

aecck(G) = VG| e%(:G) ecck(v, G),

which is an extention of the average eccentricity of a graph [7] [§].

The Steiner tree problem is NP-hard on general graphs [9, [16], but it can be solved
in polynomial time on trees [2]. The Steiner distance on some special graph classes
such as trees, joins, Corona products, threshold and product graphs, has been studied
in [1 B, 11, 23, 26]. The average Steiner k-distance is closely related to the k-th Steiner
Wiener index. Both of them were studied on trees, complete graphs, paths, cycles and
complete bipartite graphs [0, [12]. The average Steiner distance and the Steiner Wiener in-
dex were investigated in [5] 18, 20], while for some work on the Steiner diameter see [23],26].
The Steiner k-diameter was compared with the Steiner k-radius in [I5)24]. Closely related
invariants were also studied, for instance Steiner Gutman index [21I], Steiner degree dis-
tance [13], Steiner hyper-Wiener index [25], multi-center Wiener indices [14], and Steiner
(revised) Szeged index [10]. We especiall point to the substantial survey [22] on the
Steiner distance and related results and to the recent investigation of isometric subgraphs
for Steiner distance [27].

Very recently, the Steiner 3-eccentricity of trees was investigated in [19]. A linear-time
algorithm was developed to calculate the Steiner 3-eccentricity of a vertex in a tree, and
lower and upper bounds for the average Steiner 3-eccentricity index on trees were derived.
In this paper we extend these results to arbitrary k£ > 2. In the next section we propose a
linear algorithm to calculate the Steiner k-eccentricity of a vertex in a tree. In Section
we establish lower and upper bounds of the average Steiner k-eccentricity on trees. We

conclude this paper by presenting several possibilities for future work.
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2 Steiner k-eccentricity of vertices in trees

The techniques from [19] that enabled to calculate the Steiner 3-eccentricity in a tree are
not suitable for calculating the Steiner k-eccentricity of a vertex in a tree for arbitrary
k > 2. In this section we establish new, stronger structural properties for the Steiner k-ecc
v-tree for a vertex v in a tree, and then apply them to devise a linear time algorithm to

calculate the Steiner k-eccentricity of a vertex in a tree.

2.1 Two key structural properties

Before stating the two properties, let us introduce some notation and terminology on trees.
A vertex of a tree of degree at least 3 is a branching vertex. Let L(T) denote the set of
pendent vertices (leaves) of a tree T'. If u and v are vertices of a tree T, then we will denote
the (unique) w.v-path in T by P(u,v,T). Given a vertex v € V(T') and a leaf u € L(T),
let w be the nearest branching vertex to v on P(v,u,T). If there is no branching vertex
on P(v,u,T), we set w =v. Then we say that the sub-path P(w,u,T) of P(v,u,T) is a
quasi-pendent path (with respect to u and v).

In the rest we will use the following earlier lemma, also without explicitly mentioning
it.

Lemma 2.1 [19, Lemmas 2.4, 2.5| If T is a tree and v € V(T'), then the following holds.
(i) If k > |L(T)|, then every k-ecc v-set contains all the leaves of T. The same
conclusion holds if v is a leaf and k = |L(T)|.
(1) If 2 < k < |L(T)| and S is a k-ecc v-set, then every vertex from S\ {v} is a leaf
of T.

For our first structural result, we need one more lemma.

Lemma 2.2 Let k > 2, let v be a vertex of a tree T, let Tf be a Steiner k-ecc v-tree, and
let TF=1 be a Steiner (k —1)-ecc v-tree. Then there exists a leaf w € L(TF)\ L(T*™1) such
that the quasi-pendent path P(w,u,T") has no common edge with T*~".

Proof. If k = 2, then T} is a tree on a single vertex v, hence the conclusion is clear.
Assume in the rest that k > 3 and suppose on the contrary that every leaf u € L(TF)\
L(T* 1) satisfies that the quasi-pendant path P(w,u,T*) has common edges with T*~1.
Then to every leaf u € L(TF) we can associate its private leaf of L(T*~'). Hence the
number of leaves in T%~! is not less than that in T¥. This contradicts the fact (by
Lemma that the Steiner (k — 1)-ecc v-set corresponding to T*~! has one less element

than the Steiner k-ecc v-set corresponding to T, [ |
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Theorem 2.3 Let k > 2, and let v be a vertex of a tree T'. Then every Steiner k-ecc

v-tree contains some Steiner (k — 1)-ecc v-tree.

Proof. The case k = 2 is trivial, hence assume in the rest that & > 3. Let T be a Steiner
k-ecc v-tree and suppose on the contrary that it contains no Steiner (k — 1)-ecc v-tree. If
T[f‘l is an arbitrary Steiner (k — 1)-ecc v-tree, then, by Lemma we may select a leaf u
from Tf such that the quasi-pendant path P(w,u, Tf) does not have common edges with
Tk,

Let S* be the Steiner k-ecc v-set corresponding to T and set S; = S¥\ {u}. Then S
is a (k — 1)-set containing the vertex v. Moreover, the tree T} = T\ (P(w,u, T¥) \ {w})
is a MST(Sy,T). By the assumption, the size of T3 is strictly less than that of 7¥~!, that
is,

|BE(T)| < [B(Ty ] (1)

Let Sy = S¥1 U {u}, where S¥~! is the Steiner (k — 1)-ecc v-set corresponding to the
tree TF~1. Then Sy is a k-set which contains the vertex v. Let Ty be a M.ST(Ss,T). In
the following we are going to show that the size of T3 is larger than that of Tf.

Since the quasi-pendant path P(w,u, T*) does not share any edge with 7*~! and must
be a sub-path of the quasi-pendant path P(w’,u,T3), the size of T, satisfies

|B(T2)| = |B(Ty )]+ |B(P(w,u,T}))| - (2)
Combining and we obtain that

[E(T2)| > [E(Ty | + | E(P(w, u, Ty))|

> |B(TY)| + |E(P(w, u, T))
= |E(T})] . (3)

v

Hence |E(Ty)| > |E(TF)|. Since T, is a minimum Steiner tree on a k-set containing v,

contradicts the fact that T is a Steiner k-ecc v-tree. [ ]

Theorem thus asserts that a Steiner k-ecc v-tree contains some Steiner (k — 1)-ecc
v-tree. The question now is, how to determine such a Steiner (k — 1)-ecc v-tree. The
message of the next result is that for our purposes, any Steiner (k —1)-ecc v-tree will do it.
Before stating the theorem, we need some more notation. If H is a subgraph of a graph
G, and v € V(G), then the distance from v to H is dg(v, H) = min{dg(v,u) : u € V(H)}.
The eccentricity of H in G is eccq(H) = max{dg(v,H) : v € V(G)}.

Theorem 2.4 Let k > 1, and let v be a vertex of a tree T'. If T1 and Ty are Steiner k-ecc
v-trees of T', then eccp(Th) = ecer(Th).
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Proof. There is nothing to be proved if 77 = T5. Hence assume in the rest that 77 and
T, are different Steiner k-ecc v-trees of T. If k = 1, then a (unique) Steiner 1-ecc v-tree
is induced by the vertex v itself. Since all longest paths starting from v have the same
length, the assertion of the theorem is clear for £k = 1. Hence we may also assume in the
rest of the proof that k > 2.

Let P, and P, be longest paths from vertices of V(T') to trees T} and Ty, respectively.
Let u; and ug be the two endpoints of P; with u; € V(11), and let w; and wy be the
two endpoints of P, with wy € V(Ty). Set Ty = Ty N T,. To prove the theorem it suffices
to prove that u; € V(Tp) and w; € V(Tp). By symmetry, it suffices to prove the first
assertion, that is, u; € V(Tp).

Suppose on the contrary that uy € V(T1) \ V(Tp). Let s be a leaf of T such that uy is
on the path P(v,s,T1). Then there must be a vertex wog € V(Tp) and a leaf t of Ty such
that E(P(wo,s,T1)) N E(P(wo,t,T>)) = 0, see Fig. |1l Note that wy may be the vertex v.

Wo

Figure 1: The configuration of the vertices wg, u1, ug, wy, we, s and t.

We claim that V(P1) N V(Tz) = (. Otherwise, let € V(Ty) N V(P;). Then the
path E(P(xz,v,T1)) \ E(P(z,v,T2)) # 0, since E(P(wp,u1,T1)) # 0. So the two paths
P(x,v,T1) and P(x,v,T) form a cycle in the original graph 7. This contradicts to the
fact that T is a tree. In the same way, we obtain that V(Py) NV (Ty) = 0.

Since |E(Py)| = dr(u2,T1) = ecer(Th) and |E(P(wo,t,T2))| = dr(t,T1), we have

[E(P)| = |E(P(wo,t,T2))| (4)

Moreover, since we have assumed that u; € V(T1)\V (1y), we infer that |E(P(u1,wo,T))| >
0. Together with this yields

|E(P(ug, w0, T))| = [E(P)| + |E(P(u1, w0, T))|
= ‘E(P(w07t7T2))’ + ’E(P(ulvw()’T))‘
> |E(P(wo, t,T2))] (5)
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Now we pay attention to the tree T5. Let S be the Steiner k-ecc v-set corresponding
to the tree Ty. Let S" = S\ {t} U{ua}. Then S’ is a k-set containing the vertex v. In the
following, we will establish a contradition that the tree 7% = M ST(S’,T) has more edges
than the tree T5. Recall that 75 is a Steiner k-ecc v-tree.

Let P(w,t,T3) be the quasi-pendant path with respect to v in T and distinguish the

following cases.

Case 1: w € V(P(wo,t,T2)) \ {wo}-

In this case the tree Ty = MST(S’,T) can be represented as Ty = T \ P(w,t,Ts) U
P(wo,ug,T). Since the path P(w,t,T5) is a sub-path of P(wo,t,T%), |E(P(wo,t,T2))| >
|E(P(w,t,T»))| holds. Combining this fact with (5)) we have:

|E(T3)| = |E(Ty)| — |E(P(w,t, T))| + |E(P(wo, uz, T))|
> |E(To)| — [E(P(wo, t, T2))| + | E(P(wo, u2, 1))
> |E(T3)].

Case 2: w € V(Tp).

Now the tree T4 = M ST(S’,T) can be represented as T = Ts \ P(w,t,T2) U P(w, ua, T).
Recall that the path P(w,t,T3) is composed of two sub-paths which are P(w,wg,T2) and
P(wo,t,Ty) respectively. And P(w,uz,T) is also composed of two sub-paths which are
P(w,wq, Te) and P(usg,wy,T). By (5)) we can estimate as follows:

|E(T3)| = |E(T2)| — |[E(P(w, t,T2))| + |E(P(w,u2,T))|
= |E(Ty)| — (IE(P(w, wo, T2))| + |E(P(wo, t,T2))])
+ (|E(P(w,wo, T2))| + [E(P(u2, w0, T))|)
= |E(T3)| — [E(P(wo,t,T2))| + [E(P(uz, wo, T))|
> |E(T3)] .-

In both cases we have thus proved that |E(T4)| > |E(T2)|, a contradiction to the fact that

T5 is a Steiner k-ecc v-tree. [

2.2 A linear time algorithm

By Theorems [2.3] and [2.4] the problem to calculate the Steiner k-eccentricity of a given

vertex of a tree can be reduced to recursively finding a longest path starting at a given
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vertex. This is formally done in Algorithm
Algorithm 1: k-ECC(v, T, k)
Input: A vertex v, a tree T', and an integer k > 2

Output: The Steiner k-eccentricity of v in T

if the number of leaves is less than k then

Ju—

2 return |V(T)| — 1;

3 end

4 else

5 ecc = 0;

6 fori=1tok—1do

7 Longest_Path(v, T, path);
8 ecc = ecc+ |E(P)];

9 Path_Shrinking(v, T', path);
10 end

11 return ecc

12 end

To explain Steps 1-3 of Algorithm [I] we state the following lemma.

Lemma 2.5 Let k > 3 and let v be a vertex of a tree T. If |L(T)| < k, then the Steiner

k-ecc v-tree is the entire tree T.

Proof. The cardinality of the set S = {v}UL(T) is at most k, since |L(T)| < k. Moreover,
the M ST(S,T) is the entire tree T. Hence the Steiner k-ecc v-tree is the entire 7' [ ]

Steps form the recursive reduction which consists of finding £ — 1 times a longest
path starting at a vertex. In Step 7 we use the depth-first search (DFS) algorithm [4]
to find a longest path starting at a given vertex, tte details are present in Algorithm
Step 9 shrinks the path obtained in Step 7 into a single vertex for the purpose of the next
loop, the details are presented in Algorithm|[3] Algorithms[2]and [3|are borrowed from [19]

where one can find additional details on them. For the statement of these algorithms we
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recall that if v is a vertex of a graph G, then the set of its neighbours is denoted by N¢g(v).

Algorithm 2: Longest_Path(v, T, path)
Input: A vertex v, a tree T rooted at v, and an array named path to store a

longest path starting at v
Output: the length of a longest path starting at v

[y

max=0; temp=max;

2 for each vertex u € Np(v) which has not been visited till now do
3 temp=Longest_Path(u, T, path);
4

if temp>mazr then

5 path[v]=u;
6 max=temp;
7 end

8 end

9 return max+1;

Algorithm 3: Path_Shrinking(v, T, path)
Input: A tree T, a vertex v, and an array named path to store a longest path

starting at v
Output: A new tree obtained by shrinking the longest path into the single vertex v
1 W=v;
while path[w]# () do
for each vertex x € Nr(w) do

N

remove the edge (w,z) from T}

(L B M

add a new edge between x and v in T

end

(=]

7 w=path[w];

8 end

Theorem 2.6 Algorithm [1] computes the Steiner k-eccentricity of a vertex in a tree and
can be implemented to run in O(k(n + m)) time, where n and m are the order and the

size of the tree, respectively.

Proof. The correctness of Algorithm [I]is ensured by Theorems [2.3] and

By Lemma the Steiner k-eccentricity of a vertex in a tree is equal to the size of
the tree if its number of leaves is less than k. There is a linear-time algorithm to find
all leaves of a tree by the depth-first search (DFS) algorithm [4]. Hence Steps can be
implemented in O(n + m) time. Similarly, each loop in Steps 6-9 can be implemented in
O(n + m) time, thus all loops require O(k(n + m)) time. ]

To conlcude the section we again point out that the structural properties to support



3 UPPER AND LOWER BOUNDS 9

the algorithm(s) from [19] only ensure calculation of the Steiner 3-eccentricity. Hence we

need to develop a new approach that works for general k.

3 Upper and lower bounds

In this section we establish an upper and a lower bound on the average Steiner k-
eccentricity index of a tree for k¥ > 3. These bounds were earlier proved in [19] in the
special case k = 3. It is appealing that to obtain the bound for the general case, the proof
idea is quite different and significantly simpler that the one in [I9]. For the new approach,

the following construction is essential.

m-transformation: Let T be a tree and let P = P(u,v,T') be a path with at least one
edge, such that every internal vertex of P is of degree 2 in T". Let X be the maximal subtree
containing u in the tree T\ E(P), and Y be the maximal subtree containing v in the graph
T\ E(P). We may without loss of generality assume that eccr(u, X) < eccr(v,Y’). Then
the m-transformation w(T) of T is defined as 7" = n(T) = T \ {(u,w) : w € Nx(u)} U
{(v,w) : w € Nx(u)}. The inverse transformation is is T = 7~ 1(T") = T" \ {(v,w) : w €
Nx(v)}U{(u,w):w e Nx(v)}. See Fig.

P
/—/%
u - \'
T T’

Figure 2: 7' = 7(T) and T = n~}(T")

Lemma 3.1 LetT, P, u, v, X, Y, and T be as in the definition of the w-transformation.
Ifw e V(P)UV(X), then in T' there exists a Steiner k-ecc w-set S such that SN(V(Y)\

{v}) # 0.

Proof. Let S’ be a Steiner k-ecc w-set in T” such that SN (V(Y) \ {v}) = 0, and set
Q = S"\ {w}. Since k > 3, the cardinality of @ is at least two. Let v" € V(Y) such that

the distance between v and v’ is eccyv(v,Y). Consider the following two cases.

Case 1: QNV(X)=0.

In this case the vertices of ) are all in P. Let w’ € Q be the nearest vertex to v. Construct
a new vertex set S” = (5" \ {w'}) U {v'}.
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Case 2: QNV(X) #0.
Let w' € Q NV (X). Construct a new vertex set S” = (5" \ {w'}) U {v'}.
In each of the two cases, the size of MST'(S”,T") is not less than the size of M ST(S',T"),

hence the assertion. []

Lemma 3.2 Under the notation of Lemma[3.1], accey,(T) > aeccy(T").

Proof. If w is a vertex in V(Y) \ {v}, then for any Steiner k-ecc w-set S" in T”, the size
of a minimum Steiner tree on S’ in graph T is not less than that in 7. So the Steiner
k-eccentricity of every vertex w € V(Y) in T is not less than that in 7".

If wis a vertex in V(P) U V(X), then by Lemma there exists a Steiner k-ecc
w-set S" in T’ such that S" N (V(Y) \ {v}) # 0. The size of a minimum Steiner tree on
S’ in T is not less than that in 7”. Therefore the Steiner k-eccentricity of every vertex
w e V(P)UV(X) in T is not less than that in 7".

In any case, the Steiner k-eccentricity of every vertex v € V(T”) is not larger than that
in T. As the average Steiner k-eccentricity index is the mean value of all vertices” Steiner

k-eccentricities, the average Steiner k-eccentricity of T is not large than that of 7. [ |

If the order of a tree T is not larger than k, then a Steiner k-ecc v-set contains all
vertices of T for every v € V(T'). Then every Steiner k-ecc v-tree is the entire tree T' for
every vertex v. So for a given k > 3, we just consider the trees where the order of each is

more than k.
Theorem 3.3 If k > 3 is an integer, and T a tree on order n > k, then
1
k—— <aecc(T) <n-—1.
n
Moreover, the star Sy attains the lower bound, and the path P, attains the upper bound.

Proof. Repeatedly applying the m-transformation on 7" until it is possible, we obtain the
star S,. On the other hand, repeatedly applying the 7—! transformation on 7" until it is
possible, we obtain the path P,,. By Lemma the m-transformation does not increase
the average Steiner k-eccentricity of T'. Hence the star S, attains the minimum Steiner
k-eccentricity, and the path P, attains the maximum Steiner k-eccentricity. Finally, we

obtain aeccy(S,) = k — L and aeccy(P,) = n — 1 by straightforward computation. |

In Fig. [3| an example is given in which the process of constructing extremal graphs,
that is, a start and a path, by means of the m-transformation and the 7~ !-transformation.
In [I7] the average Steiner 2-eccentricity of trees was investigated. For the sake of our

final result, we recall the following result.
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Figure 3: Constructing extremal graphs using the 7 transformation and the 7~ transfor-

mation. Bold edges denote the paths defined in the transformations.

Lemma 3.4 ([I7]) Let T' be a tree of order n. Then aecca(Sy) < aecca(T) < aecca(Py).
The left equality holds if and only if T = S,,, while the right equality holds if and only if
T=P,.

Combining Theorem [3.3] with Lemma [3.4] we have the following result.

Corollary 3.5 If k > 2 is an integer, then Sy, (resp. P,) attains the minimum (resp. the

mazimum) average Steiner k-eccentricity in the class of trees.

4 Conclusion

In this paper we have derived a linear-time algorithm to calculate the Steiner k-eccentricity
of a vertex in a tree, and established lower and upper bounds for the average Steiner k-
eccentricity of a tree. These results extend those from [19] for the case k = 3. It remains
open to determine the extremal graphs for the average Steiner k-eccentricity index on
trees for k > 2. Moreover, the general problem to compute the Steiner k-eccentricity of a

general graph is widely open, in particular, it is not known whether it is NP-hard.
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