The Steiner k-eccentricity on trees *

Xingfu Li^{a}, Guihai Yu^{a}, Sandi Klavžar ${ }^{b, c, d}$, Jie Hu^{a}, $\mathrm{Bo} \mathrm{Li}^{a}$
${ }^{a}$ College of Big Data Statistics, Guizhou University of Finance and Economics Guiyang, Guizhou, 550025, China
xingfulisdu@qq.com; yuguihai@mail.gufe.edu.cn
jason.houu@gmail.com; hn.libo@163.com
${ }^{b}$ Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
${ }^{c}$ Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia
${ }^{d}$ Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia sandi.klavzar@fmf.uni-lj.si

August 19, 2020

Abstract

We study the Steiner k-eccentricity on trees, which generalizes the previous one in the paper [X. Li, G. Yu, S. Klavžar, On the average Steiner 3-eccentricity of trees, arXiv:2005.10319, 2020]. To support the algorithm, we achieve much stronger properties for the Steiner k-ecc tree than that in the previous paper. Based on this, a linear time algorithm is devised to calculate the Steiner k-eccentricity of a vertex in a tree. On the other hand, the lower and upper bounds of the average Steiner k-eccentricity index of a tree on order n are established based on a novel technique which is quite different from that in the previous paper but much easier to follow.

Keywords: Steiner distance, Steiner tree, Steiner eccentricity, graph algorithms
AMS Math. Subj. Class. (2020): 05C12, 05C05, 05C85

1 Introduction

In this paper we consider connected, simple, undirected graphs $G=(V(G), E(G))$. For basic graph notation and terminology we follow the book of West [28], while for algorithmic

[^0]and computational terminology we use [4, 9].
The standard distance $d_{G}(u, v)$ between vertices u and v in graph G is the length of a shortest path between u and v in G. If $S \subseteq V(G),|S| \geq 2$, then the Steiner distance $d_{G}(S)$ is the minimum size among all connected subgraphs of G containing S, that is,
$$
d_{G}(S)=\min \{|E(T)|: T \text { is a subtree of } G, S \subseteq V(T)\}
$$

Note that if $S=\{u, v\}$, then $d_{G}(S)=d_{G}(u, v)$. If $k \geq 1$, then the Steiner k-eccentricity of a vertex v in graph G is

$$
\operatorname{ecc}_{k}(v, G)=\max \left\{d_{G}(S): v \in S \subseteq V(G),|S|=k\right\}
$$

Note that, by definition, $\operatorname{ecc}_{1}(v, G)=0 . S \subseteq V(G)$ is a Steiner k-ecc v-set if $|S|=k$, $v \in S$, and $d_{G}(S)=\operatorname{ecc}_{k}(v, G)$. A corresponding minimum Steiner tree T is called a Steiner k-ecc v-tree (corresponding to the k-set S). We will also shorty say that T is a $\operatorname{MST}(S, G)$. The average Steiner k-eccentricity of a graph G is the mean value of all vertices' Steiner k-eccentricities in G, that is,

$$
\operatorname{aecc}_{k}(G)=\frac{1}{|V(G)|} \sum_{v \in V(G)} \operatorname{ecc}_{k}(v, G)
$$

which is an extention of the average eccentricity of a graph [7, 8].
The Steiner tree problem is NP-hard on general graphs [9, 16], but it can be solved in polynomial time on trees [2]. The Steiner distance on some special graph classes such as trees, joins, Corona products, threshold and product graphs, has been studied in [1, 3, 11, 23, 26]. The average Steiner k-distance is closely related to the k-th Steiner Wiener index. Both of them were studied on trees, complete graphs, paths, cycles and complete bipartite graphs [6, 12]. The average Steiner distance and the Steiner Wiener index were investigated in [5, 18, 20], while for some work on the Steiner diameter see [23, 26]. The Steiner k-diameter was compared with the Steiner k-radius in [15, 24]. Closely related invariants were also studied, for instance Steiner Gutman index [21], Steiner degree distance [13], Steiner hyper-Wiener index [25], multi-center Wiener indices [14], and Steiner (revised) Szeged index [10]. We especiall point to the substantial survey [22] on the Steiner distance and related results and to the recent investigation of isometric subgraphs for Steiner distance [27].

Very recently, the Steiner 3-eccentricity of trees was investigated in [19]. A linear-time algorithm was developed to calculate the Steiner 3-eccentricity of a vertex in a tree, and lower and upper bounds for the average Steiner 3-eccentricity index on trees were derived. In this paper we extend these results to arbitrary $k \geq 2$. In the next section we propose a linear algorithm to calculate the Steiner k-eccentricity of a vertex in a tree. In Section 3 we establish lower and upper bounds of the average Steiner k-eccentricity on trees. We conclude this paper by presenting several possibilities for future work.

2 Steiner k-eccentricity of vertices in trees

The techniques from [19] that enabled to calculate the Steiner 3 -eccentricity in a tree are not suitable for calculating the Steiner k-eccentricity of a vertex in a tree for arbitrary $k \geq 2$. In this section we establish new, stronger structural properties for the Steiner k-ecc v-tree for a vertex v in a tree, and then apply them to devise a linear time algorithm to calculate the Steiner k-eccentricity of a vertex in a tree.

2.1 Two key structural properties

Before stating the two properties, let us introduce some notation and terminology on trees. A vertex of a tree of degree at least 3 is a branching vertex. Let $L(T)$ denote the set of pendent vertices (leaves) of a tree T. If u and v are vertices of a tree T, then we will denote the (unique) $u . v$-path in T by $P(u, v, T)$. Given a vertex $v \in V(T)$ and a leaf $u \in L(T)$, let w be the nearest branching vertex to u on $P(v, u, T)$. If there is no branching vertex on $P(v, u, T)$, we set $w=v$. Then we say that the sub-path $P(w, u, T)$ of $P(v, u, T)$ is a quasi-pendent path (with respect to u and v).

In the rest we will use the following earlier lemma, also without explicitly mentioning it.

Lemma 2.1 [19, Lemmas 2.4, 2.5] If T is a tree and $v \in V(T)$, then the following holds.
(i) If $k>|L(T)|$, then every k-ecc v-set contains all the leaves of T. The same conclusion holds if v is a leaf and $k=|L(T)|$.
(ii) If $2 \leq k \leq|L(T)|$ and S is a k-ecc v-set, then every vertex from $S \backslash\{v\}$ is a leaf of T.

For our first structural result, we need one more lemma.
Lemma 2.2 Let $k \geq 2$, let v be a vertex of a tree T, let T_{v}^{k} be a Steiner k-ecc v-tree, and let T_{v}^{k-1} be a Steiner $(k-1)$-ecc v-tree. Then there exists a leaf $u \in L\left(T_{v}^{k}\right) \backslash L\left(T_{v}^{k-1}\right)$ such that the quasi-pendent path $P\left(w, u, T_{v}^{k}\right)$ has no common edge with T_{v}^{k-1}.

Proof. If $k=2$, then T_{v}^{1} is a tree on a single vertex v, hence the conclusion is clear. Assume in the rest that $k \geq 3$ and suppose on the contrary that every leaf $u \in L\left(T_{v}^{k}\right) \backslash$ $L\left(T_{v}^{k-1}\right)$ satisfies that the quasi-pendant path $P\left(w, u, T_{v}^{k}\right)$ has common edges with T_{v}^{k-1}. Then to every leaf $u \in L\left(T_{v}^{k}\right)$ we can associate its private leaf of $L\left(T_{v}^{k-1}\right)$. Hence the number of leaves in T_{v}^{k-1} is not less than that in T_{v}^{k}. This contradicts the fact (by Lemma 2.1) that the Steiner $(k-1)$-ecc v-set corresponding to T_{v}^{k-1} has one less element than the Steiner k-ecc v-set corresponding to T_{v}^{k}.

Theorem 2.3 Let $k \geq 2$, and let v be a vertex of a tree T. Then every Steiner k-ecc v-tree contains some Steiner ($k-1$)-ecc v-tree.

Proof. The case $k=2$ is trivial, hence assume in the rest that $k \geq 3$. Let T_{v}^{k} be a Steiner k-ecc v-tree and suppose on the contrary that it contains no Steiner $(k-1)$-ecc v-tree. If T_{v}^{k-1} is an arbitrary Steiner $(k-1)$-ecc v-tree, then, by Lemma 2.2 , we may select a leaf u from T_{v}^{k} such that the quasi-pendant path $P\left(w, u, T_{v}^{k}\right)$ does not have common edges with T_{v}^{k-1}.

Let S_{v}^{k} be the Steiner k-ecc v-set corresponding to T_{v}^{k} and set $S_{1}=S_{v}^{k} \backslash\{u\}$. Then S_{1} is a $(k-1)$-set containing the vertex v. Moreover, the tree $T_{1}=T_{v}^{k} \backslash\left(P\left(w, u, T_{v}^{k}\right) \backslash\{w\}\right)$ is a $\operatorname{MST}\left(S_{1}, T\right)$. By the assumption, the size of T_{1} is strictly less than that of T_{v}^{k-1}, that is,

$$
\begin{equation*}
\left|E\left(T_{1}\right)\right|<\left|E\left(T_{v}^{k-1}\right)\right| . \tag{1}
\end{equation*}
$$

Let $S_{2}=S_{v}^{k-1} \cup\{u\}$, where S_{v}^{k-1} is the Steiner $(k-1)$-ecc v-set corresponding to the tree T_{v}^{k-1}. Then S_{2} is a k-set which contains the vertex v. Let T_{2} be a $\operatorname{MST}\left(S_{2}, T\right)$. In the following we are going to show that the size of T_{2} is larger than that of T_{v}^{k}.

Since the quasi-pendant path $P\left(w, u, T_{v}^{k}\right)$ does not share any edge with T_{v}^{k-1} and must be a sub-path of the quasi-pendant path $P\left(w^{\prime}, u, T_{2}\right)$, the size of T_{2} satisfies

$$
\begin{equation*}
\left|E\left(T_{2}\right)\right| \geq\left|E\left(T_{v}^{k-1}\right)\right|+\left|E\left(P\left(w, u, T_{v}^{k}\right)\right)\right| . \tag{2}
\end{equation*}
$$

Combining (1) and (2) we obtain that

$$
\begin{align*}
\left|E\left(T_{2}\right)\right| & \geq\left|E\left(T_{v}^{k-1}\right)\right|+\left|E\left(P\left(w, u, T_{v}^{k}\right)\right)\right| \\
& >\left|E\left(T_{1}\right)\right|+\mid E\left(P\left(w, u, T_{v}^{k}\right)\right) \\
& =\left|E\left(T_{v}^{k}\right)\right| \tag{3}
\end{align*}
$$

Hence $\left|E\left(T_{2}\right)\right|>\left|E\left(T_{v}^{k}\right)\right|$. Since T_{2} is a minimum Steiner tree on a k-set containing $v,(3)$ contradicts the fact that T_{v}^{k} is a Steiner k-ecc v-tree.

Theorem 2.3 thus asserts that a Steiner k-ecc v-tree contains some Steiner $(k-1)$-ecc v-tree. The question now is, how to determine such a Steiner $(k-1)$-ecc v-tree. The message of the next result is that for our purposes, any Steiner $(k-1)$-ecc v-tree will do it. Before stating the theorem, we need some more notation. If H is a subgraph of a graph G, and $v \in V(G)$, then the distance from v to H is $d_{G}(v, H)=\min \left\{d_{G}(v, u): u \in V(H)\right\}$. The eccentricity of H in G is $\operatorname{ecc}_{G}(H)=\max \left\{d_{G}(v, H): v \in V(G)\right\}$.

Theorem 2.4 Let $k \geq 1$, and let v be a vertex of a tree T. If T_{1} and T_{2} are Steiner k-ecc v-trees of T, then $\operatorname{ecc}_{T}\left(T_{1}\right)=\operatorname{ecc}_{T}\left(T_{2}\right)$.

Proof. There is nothing to be proved if $T_{1}=T_{2}$. Hence assume in the rest that T_{1} and T_{2} are different Steiner k-ecc v-trees of T. If $k=1$, then a (unique) Steiner 1 -ecc v-tree is induced by the vertex v itself. Since all longest paths starting from v have the same length, the assertion of the theorem is clear for $k=1$. Hence we may also assume in the rest of the proof that $k \geq 2$.

Let P_{1} and P_{2} be longest paths from vertices of $V(T)$ to trees T_{1} and T_{2}, respectively. Let u_{1} and u_{2} be the two endpoints of P_{1} with $u_{1} \in V\left(T_{1}\right)$, and let w_{1} and w_{2} be the two endpoints of P_{2} with $w_{1} \in V\left(T_{2}\right)$. Set $T_{0}=T_{1} \cap T_{2}$. To prove the theorem it suffices to prove that $u_{1} \in V\left(T_{0}\right)$ and $w_{1} \in V\left(T_{0}\right)$. By symmetry, it suffices to prove the first assertion, that is, $u_{1} \in V\left(T_{0}\right)$.

Suppose on the contrary that $u_{1} \in V\left(T_{1}\right) \backslash V\left(T_{0}\right)$. Let s be a leaf of T_{1} such that u_{1} is on the path $P\left(v, s, T_{1}\right)$. Then there must be a vertex $w_{0} \in V\left(T_{0}\right)$ and a leaf t of T_{2} such that $E\left(P\left(w_{0}, s, T_{1}\right)\right) \cap E\left(P\left(w_{0}, t, T_{2}\right)\right)=\emptyset$, see Fig. 11. Note that w_{0} may be the vertex v.

Figure 1: The configuration of the vertices $w_{0}, u_{1}, u_{2}, w_{1}, w_{2}, s$ and t.
We claim that $V\left(P_{1}\right) \cap V\left(T_{2}\right)=\emptyset$. Otherwise, let $x \in V\left(T_{2}\right) \cap V\left(P_{1}\right)$. Then the path $E\left(P\left(x, v, T_{1}\right)\right) \backslash E\left(P\left(x, v, T_{2}\right)\right) \neq \emptyset$, since $E\left(P\left(w_{0}, u_{1}, T_{1}\right)\right) \neq \emptyset$. So the two paths $P\left(x, v, T_{1}\right)$ and $P\left(x, v, T_{2}\right)$ form a cycle in the original graph T. This contradicts to the fact that T is a tree. In the same way, we obtain that $V\left(P_{2}\right) \cap V\left(T_{2}\right)=\emptyset$.

Since $\left|E\left(P_{1}\right)\right|=d_{T}\left(u_{2}, T_{1}\right)=\operatorname{ecc}_{T}\left(T_{1}\right)$ and $\left|E\left(P\left(w_{0}, t, T_{2}\right)\right)\right|=d_{T}\left(t, T_{1}\right)$, we have

$$
\begin{equation*}
\left|E\left(P_{1}\right)\right| \geq\left|E\left(P\left(w_{0}, t, T_{2}\right)\right)\right| . \tag{4}
\end{equation*}
$$

Moreover, since we have assumed that $u_{1} \in V\left(T_{1}\right) \backslash V\left(T_{0}\right)$, we infer that $\left|E\left(P\left(u_{1}, w_{0}, T\right)\right)\right|>$ 0 . Together with (4) this yields

$$
\begin{align*}
\left|E\left(P\left(u_{2}, w_{0}, T\right)\right)\right| & =\left|E\left(P_{1}\right)\right|+\left|E\left(P\left(u_{1}, w_{0}, T\right)\right)\right| \\
& \geq\left|E\left(P\left(w_{0}, t, T_{2}\right)\right)\right|+\left|E\left(P\left(u_{1}, w_{0}, T\right)\right)\right| \\
& >\left|E\left(P\left(w_{0}, t, T_{2}\right)\right)\right| \tag{5}
\end{align*}
$$

Now we pay attention to the tree T_{2}. Let S be the Steiner k-ecc v-set corresponding to the tree T_{2}. Let $S^{\prime}=S \backslash\{t\} \cup\left\{u_{2}\right\}$. Then S^{\prime} is a k-set containing the vertex v. In the following, we will establish a contradition that the tree $T_{2}^{\prime}=\operatorname{MST}\left(S^{\prime}, T\right)$ has more edges than the tree T_{2}. Recall that T_{2} is a Steiner k-ecc v-tree.

Let $P\left(w, t, T_{2}\right)$ be the quasi-pendant path with respect to v in T_{2} and distinguish the following cases.

Case 1: $w \in V\left(P\left(w_{0}, t, T_{2}\right)\right) \backslash\left\{w_{0}\right\}$.
In this case the tree $T_{2}^{\prime}=\operatorname{MST}\left(S^{\prime}, T\right)$ can be represented as $T_{2}^{\prime}=T_{2} \backslash P\left(w, t, T_{2}\right) \cup$ $P\left(w_{0}, u_{2}, T\right)$. Since the path $P\left(w, t, T_{2}\right)$ is a sub-path of $P\left(w_{0}, t, T_{2}\right),\left|E\left(P\left(w_{0}, t, T_{2}\right)\right)\right| \geq$ $\left|E\left(P\left(w, t, T_{2}\right)\right)\right|$ holds. Combining this fact with (5) we have:

$$
\begin{aligned}
\left|E\left(T_{2}^{\prime}\right)\right| & =\left|E\left(T_{2}\right)\right|-\left|E\left(P\left(w, t, T_{2}\right)\right)\right|+\left|E\left(P\left(w_{0}, u_{2}, T\right)\right)\right| \\
& \geq\left|E\left(T_{2}\right)\right|-\left|E\left(P\left(w_{0}, t, T_{2}\right)\right)\right|+\left|E\left(P\left(w_{0}, u_{2}, T\right)\right)\right| \\
& >\left|E\left(T_{2}\right)\right| .
\end{aligned}
$$

Case 2: $w \in V\left(T_{0}\right)$.
Now the tree $T_{2}^{\prime}=\operatorname{MST}\left(S^{\prime}, T\right)$ can be represented as $T_{2}^{\prime}=T_{2} \backslash P\left(w, t, T_{2}\right) \cup P\left(w, u_{2}, T\right)$. Recall that the path $P\left(w, t, T_{2}\right)$ is composed of two sub-paths which are $P\left(w, w_{0}, T_{2}\right)$ and $P\left(w_{0}, t, T_{2}\right)$ respectively. And $P\left(w, u_{2}, T\right)$ is also composed of two sub-paths which are $P\left(w, w_{0}, T_{2}\right)$ and $P\left(u_{2}, w_{0}, T\right)$. By (5) we can estimate as follows:

$$
\begin{aligned}
\left|E\left(T_{2}^{\prime}\right)\right| & =\left|E\left(T_{2}\right)\right|-\left|E\left(P\left(w, t, T_{2}\right)\right)\right|+\left|E\left(P\left(w, u_{2}, T\right)\right)\right| \\
& =\left|E\left(T_{2}\right)\right|-\left(\left|E\left(P\left(w, w_{0}, T_{2}\right)\right)\right|+\left|E\left(P\left(w_{0}, t, T_{2}\right)\right)\right|\right) \\
& +\left(\left|E\left(P\left(w, w_{0}, T_{2}\right)\right)\right|+\left|E\left(P\left(u_{2}, w_{0}, T\right)\right)\right|\right) \\
& =\left|E\left(T_{2}\right)\right|-\left|E\left(P\left(w_{0}, t, T_{2}\right)\right)\right|+\left|E\left(P\left(u_{2}, w_{0}, T\right)\right)\right| \\
& >\left|E\left(T_{2}\right)\right| .
\end{aligned}
$$

In both cases we have thus proved that $\left|E\left(T_{2}^{\prime}\right)\right|>\left|E\left(T_{2}\right)\right|$, a contradiction to the fact that T_{2} is a Steiner k-ecc v-tree.

2.2 A linear time algorithm

By Theorems 2.3 and 2.4, the problem to calculate the Steiner k-eccentricity of a given vertex of a tree can be reduced to recursively finding a longest path starting at a given
vertex. This is formally done in Algorithm 1.

```
Algorithm 1: \(\mathrm{k}-\mathrm{ECC}(v, T, k)\)
    Input: A vertex \(v\), a tree \(T\), and an integer \(k \geq 2\)
    Output: The Steiner \(k\)-eccentricity of \(v\) in \(T\)
    if the number of leaves is less than \(k\) then
        return \(|V(T)|-1 ;\)
    end
    else
        \(e c c=0 ;\)
        for \(i=1\) to \(k-1\) do
            Longest_Path \((v, T\), path \()\);
            \(e c c=e c c+|E(P)| ;\)
            Path_Shrinking \((v, T\), path);
        end
        return ecc
    end
```

To explain Steps 1-3 of Algorithm 1, we state the following lemma.
Lemma 2.5 Let $k \geq 3$ and let v be a vertex of a tree T. If $|L(T)|<k$, then the Steiner k-ecc v-tree is the entire tree T.

Proof. The cardinality of the set $S=\{v\} \cup L(T)$ is at most k, since $|L(T)|<k$. Moreover, the $\operatorname{MST}(S, T)$ is the entire tree T. Hence the Steiner k-ecc v-tree is the entire T.

Steps 4.12 form the recursive reduction which consists of finding $k-1$ times a longest path starting at a vertex. In Step 7 we use the depth-first search (DFS) algorithm [4] to find a longest path starting at a given vertex, the details are present in Algorithm 2 . Step 9 shrinks the path obtained in Step 7 into a single vertex for the purpose of the next loop, the details are presented in Algorithm 3. Algorithms 2 and 3are borrowed from [19] where one can find additional details on them. For the statement of these algorithms we
recall that if v is a vertex of a graph G, then the set of its neighbours is denoted by $N_{G}(v)$.

```
Algorithm 2: Longest_Path \((v, T\), path)
    Input: A vertex \(v\), a tree \(T\) rooted at \(v\), and an array named path to store a
            longest path starting at \(v\)
    Output: the length of a longest path starting at \(v\)
    max \(=0\); temp \(=\) max;
    for each vertex \(u \in N_{T}(v)\) which has not been visited till now do
        temp=Longest_Path \((u, T\), path);
        if temp \(>\max\) then
            \(\operatorname{path}[v]=u\);
            \(\max =\) temp;
        end
    end
    return max +1 ;
```

```
Algorithm 3: Path_Shrinking \((v, T\), path)
        starting at \(v\)
    \(\mathrm{w}=\mathrm{v}\);
    while path \([\) w \(] \neq \emptyset\) do
        for each vertex \(x \in N_{T}(w)\) do
                remove the edge \((w, x)\) from \(T\);
                add a new edge between \(x\) and \(v\) in \(T\);
        end
        w=path[w];
    end
```

 Input: A tree \(T\), a vertex \(v\), and an array named path to store a longest path
 Output: A new tree obtained by shrinking the longest path into the single vertex \(v\)
 Theorem 2.6 Algorithm 1 computes the Steiner k-eccentricity of a vertex in a tree and can be implemented to run in $O(k(n+m)$) time, where n and m are the order and the size of the tree, respectively.

Proof. The correctness of Algorithm 1 is ensured by Theorems 2.3 and 2.4 .
By Lemma 2.5, the Steiner k-eccentricity of a vertex in a tree is equal to the size of the tree if its number of leaves is less than k. There is a linear-time algorithm to find all leaves of a tree by the depth-first search (DFS) algorithm [4. Hence Steps 113 can be implemented in $O(n+m)$ time. Similarly, each loop in Steps 6-9 can be implemented in $O(n+m)$ time, thus all loops require $O(k(n+m))$ time.

To conlcude the section we again point out that the structural properties to support
the algorithm(s) from [19] only ensure calculation of the Steiner 3-eccentricity. Hence we need to develop a new approach that works for general k.

3 Upper and lower bounds

In this section we establish an upper and a lower bound on the average Steiner k eccentricity index of a tree for $k \geq 3$. These bounds were earlier proved in [19] in the special case $k=3$. It is appealing that to obtain the bound for the general case, the proof idea is quite different and significantly simpler that the one in [19]. For the new approach, the following construction is essential.
π-transformation: Let T be a tree and let $P=P(u, v, T)$ be a path with at least one edge, such that every internal vertex of P is of degree 2 in T. Let X be the maximal subtree containing u in the tree $T \backslash E(P)$, and Y be the maximal subtree containing v in the graph $T \backslash E(P)$. We may without loss of generality assume that $\operatorname{ecc}_{T}(u, X) \leq \operatorname{ecc}_{T}(v, Y)$. Then the π-transformation $\pi(T)$ of T is defined as $T^{\prime}=\pi(T)=T \backslash\left\{(u, w): w \in N_{X}(u)\right\} \cup$ $\left\{(v, w): w \in N_{X}(u)\right\}$. The inverse transformation is is $T=\pi^{-1}\left(T^{\prime}\right)=T^{\prime} \backslash\{(v, w): w \in$ $\left.N_{X}(v)\right\} \cup\left\{(u, w): w \in N_{X}(v)\right\}$. See Fig. 2.

T

T^{\prime}

Figure 2: $T^{\prime}=\pi(T)$ and $T=\pi^{-1}\left(T^{\prime}\right)$

Lemma 3.1 Let T, P, u, v, X, Y, and T^{\prime} be as in the definition of the π-transformation. If $w \in V(P) \cup V(X)$, then in T^{\prime} there exists a Steiner k-ecc w-set S such that $S \cap(V(Y) \backslash$ $\{v\}) \neq \emptyset$.

Proof. Let S^{\prime} be a Steiner k-ecc w-set in T^{\prime} such that $S \cap(V(Y) \backslash\{v\})=\emptyset$, and set $Q=S^{\prime} \backslash\{w\}$. Since $k \geq 3$, the cardinality of Q is at least two. Let $v^{\prime} \in V(Y)$ such that the distance between v and v^{\prime} is $\operatorname{ecc}_{T^{\prime}}(v, Y)$. Consider the following two cases.

Case 1: $Q \cap V(X)=\emptyset$.
In this case the vertices of Q are all in P. Let $w^{\prime} \in Q$ be the nearest vertex to v. Construct a new vertex set $S^{\prime \prime}=\left(S^{\prime} \backslash\left\{w^{\prime}\right\}\right) \cup\left\{v^{\prime}\right\}$.

Case 2: $Q \cap V(X) \neq \emptyset$.
Let $w^{\prime} \in Q \cap V(X)$. Construct a new vertex set $S^{\prime \prime}=\left(S^{\prime} \backslash\left\{w^{\prime}\right\}\right) \cup\left\{v^{\prime}\right\}$.
In each of the two cases, the size of $\operatorname{MST}\left(S^{\prime \prime}, T^{\prime}\right)$ is not less than the size of $\operatorname{MST}\left(S^{\prime}, T^{\prime}\right)$, hence the assertion.

Lemma 3.2 Under the notation of Lemma 3.1, $\operatorname{aecc}_{k}(T) \geq \operatorname{aecc}_{k}\left(T^{\prime}\right)$.
Proof. If w is a vertex in $V(Y) \backslash\{v\}$, then for any Steiner k-ecc w-set S^{\prime} in T^{\prime}, the size of a minimum Steiner tree on S^{\prime} in graph T is not less than that in T^{\prime}. So the Steiner k-eccentricity of every vertex $w \in V(Y)$ in T is not less than that in T^{\prime}.

If w is a vertex in $V(P) \cup V(X)$, then by Lemma 3.1, there exists a Steiner k-ecc w-set S^{\prime} in T^{\prime}, such that $S^{\prime} \cap(V(Y) \backslash\{v\}) \neq \emptyset$. The size of a minimum Steiner tree on S^{\prime} in T is not less than that in T^{\prime}. Therefore the Steiner k-eccentricity of every vertex $w \in V(P) \cup V(X)$ in T is not less than that in T^{\prime}.

In any case, the Steiner k-eccentricity of every vertex $v \in V\left(T^{\prime}\right)$ is not larger than that in T. As the average Steiner k-eccentricity index is the mean value of all vertices' Steiner k-eccentricities, the average Steiner k-eccentricity of T^{\prime} is not large than that of T.

If the order of a tree T is not larger than k, then a Steiner k-ecc v-set contains all vertices of T for every $v \in V(T)$. Then every Steiner k-ecc v-tree is the entire tree T for every vertex v. So for a given $k \geq 3$, we just consider the trees where the order of each is more than k.

Theorem 3.3 If $k \geq 3$ is an integer, and T a tree on order $n>k$, then

$$
k-\frac{1}{n} \leq \operatorname{aecc}_{k}(T) \leq n-1 .
$$

Moreover, the star S_{n} attains the lower bound, and the path P_{n} attains the upper bound.
Proof. Repeatedly applying the π-transformation on T until it is possible, we obtain the star S_{n}. On the other hand, repeatedly applying the π^{-1} transformation on T until it is possible, we obtain the path P_{n}. By Lemma 3.2, the π-transformation does not increase the average Steiner k-eccentricity of T. Hence the star S_{n} attains the minimum Steiner k-eccentricity, and the path P_{n} attains the maximum Steiner k-eccentricity. Finally, we obtain $\operatorname{aecc}_{k}\left(S_{n}\right)=k-\frac{1}{n}$ and $\operatorname{aecc}_{k}\left(P_{n}\right)=n-1$ by straightforward computation.

In Fig. 3 an example is given in which the process of constructing extremal graphs, that is, a start and a path, by means of the π-transformation and the π^{-1}-transformation.

In [17] the average Steiner 2 -eccentricity of trees was investigated. For the sake of our final result, we recall the following result.

Figure 3: Constructing extremal graphs using the π transformation and the π^{-1} transformation. Bold edges denote the paths defined in the transformations.

Lemma 3.4 ([17]) Let T be a tree of order n. Then $\operatorname{aecc}_{2}\left(S_{n}\right) \leq \operatorname{aecc}_{2}(T) \leq \operatorname{aecc}_{2}\left(P_{n}\right)$. The left equality holds if and only if $T \cong S_{n}$, while the right equality holds if and only if $T \cong P_{n}$.

Combining Theorem 3.3 with Lemma 3.4, we have the following result.
Corollary 3.5 If $k \geq 2$ is an integer, then S_{n} (resp. P_{n}) attains the minimum (resp. the maximum) average Steiner k-eccentricity in the class of trees.

4 Conclusion

In this paper we have derived a linear-time algorithm to calculate the Steiner k-eccentricity of a vertex in a tree, and established lower and upper bounds for the average Steiner k eccentricity of a tree. These results extend those from [19] for the case $k=3$. It remains open to determine the extremal graphs for the average Steiner k-eccentricity index on trees for $k \geq 2$. Moreover, the general problem to compute the Steiner k-eccentricity of a general graph is widely open, in particular, it is not known whether it is NP-hard.

References

[1] B. S. Anand, M. Changat, S. Klavžar, I. Peterin, Convex sets in lexicographic product of graphs, Graphs Combin. 28 (2012) 77-84.
[2] L. W. Beineke, O. R. Oellermann, R. E. Pippert, On the Steiner median of a tree, Discrete Appl. Math. 68 (1996) 249-258.
[3] G. Chartrand, O. R. Oellermann, S. Tian, H. B. Zou, Steiner distance in graphs, Časopis Pěst. Mat. 114 (1989) 399-410.
[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms. Second Edition, MIT Press, Cambridge, MA, 2001.
[5] P. Dankelmann, H. C. Swart, O. R. Oellermann, The average Steiner distance of graphs with prescribed properties, Discrete Appl. Math. 79 (1997) 91-103.
[6] P. Dankelmann, O. R. Oellermann, H. C. Swart, The average Steiner distance of a graph, J. Graph Theory 22 (1996) 15-22.
[7] P. Dankelmann, W. Goddard, C. Swart, The average eccentricity of a graph and its subgraphs, Util. Math. 65 (2004) 41-51.
[8] P. Dankelmann, S. Mukwembi, Upper bounds on the average eccentricity, Discrete Appl. Math. 167 (2014) 72-79.
[9] M. R. Garey, D. S. Johnson, Computers and Intractibility: A Guide to the Theory of NP-Completeness, Freeman \& Company, New York, 1979.
[10] M. Ghorbani, X. Li, H. R. Maimani, Y. Mao, S. Rahmani, M. Rajabi-Parsa, Steiner (revised) Szeged index of graphs, MATCH Commun. Math. Comput. Chem. 82 (2019) 733-742.
[11] T. Gologranc, Steiner convex sets and Cartesian product, Bull. Malays. Math. Sci. Soc. 41 (2018) 627-636.
[12] I. Gutman, X. Li, Y. Mao, Inverse problem on the Steiner Wiener index, Discuss. Math. Graph Theory 38 (2017) 83-95.
[13] I. Gutman, On Steiner degree distance of trees, Appl. Math. Comput. 283 (2016) 163-167.
[14] I. Gutman, B. Furtula, X. Li, Multicenter Wiener indices and their applications, J. Serb. Chem. Soc. 80 (2015) 1009-1017.
[15] M. A. Henning, O. Oellermann, H. Swart, On the Steiner radius and Steiner diameter of a graph, Ars Combin. 29C (1990) 13-19.
[16] F. K. Hwang, D. S. Richards, P. Winter, The Steiner Tree Problem, North-Holland, Amsterdam, 1992.
[17] A. Ilić, On the extremal properties of the average eccentricity, Comput. Math. Appl. 64 (2012) 2877-2885.
[18] X. Li, Y. Mao, I. Gutman, The Steiner Wiener index of a graph, Discuss. Math. Graph Theory 36 (2016) 455-465.
[19] X. Li, G. Yu, S. Klavžar, On the average Steiner 3-eccentricity of trees, arXiv:2005.10319 (20 May 2020).
[20] L. Lu, Q. Huang, J. Hou, X. Chen, A sharp lower bound on the Steiner Wiener index for trees with given diameter, Discrete Math. 341 (2018) 723-731.
[21] Y. Mao, K. C. Das, Steiner Gutman index, MATCH Commun. Math. Comput. Chem. 79 (2018) 779-794.
[22] Y. Mao, Steiner distance in graphs-a survey, arXiv:1708.05779 (18 Aug 2017).
[23] Y. Mao, E. Cheng, Z. Wang, Steiner distance in product networks, Discrete Math. Theor. Comput. Sci. 20 (2018) no. 2, Paper No. 8, 25 pp.
[24] J. Reiswig, The Steiner k-radius and Steiner k-diameter of connected graphs for $k \geq 4$, arXiv:1907.07658v2 (18 Mar 2020).
[25] N. Tratnik, On the Steiner hyper-Wiener index of a graph, Appl. Math. Comput. 337(15) (2019) 360-371.
[26] Z. Wang, Y. Mao, C. Melekian, E. Cheng, Steiner distance in join, corona, and threshold graphs, in: The 14th International Symposium on Pervasive Systems, Algorithms and Networks \& 2017 11th International Conference on Frontier of Computer Science and Technology \& 2017 Third International Symposium of Creative Computing (ISPAN-FCST-ISCC), Exeter, 2017, pp. 100-104.
[27] D. Weißauer, Isometric subgraphs for Steiner distance, J. Graph Theory 94 (2020) 597-613.
[28] D.B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001.

[^0]: *This work was supported by the National Natural Science Foundation of China (11861019), Guizhou Talent Development Project in Science and Technology (KY[2018]046), Natural Science Foundation of Guizhou ([2019]1047, [2020]1Z001), Foundation of Guizhou University of Finance and Economics(2019XJC04). Sandi Klavžar acknowledges the financial support from the Slovenian Research Agency (research core funding No. P1-0297 and projects J1-9109, J1-1693, N1-0095, N1-0108.

