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Abstract

We study the Steiner k-eccentricity on trees, which generalizes the previous one

in the paper [X. Li, G. Yu, S. Klavžar, On the average Steiner 3-eccentricity of trees,

arXiv:2005.10319, 2020]. To support the algorithm, we achieve much stronger proper-

ties for the Steiner k-ecc tree than that in the previous paper. Based on this, a linear

time algorithm is devised to calculate the Steiner k-eccentricity of a vertex in a tree.

On the other hand, the lower and upper bounds of the average Steiner k-eccentricity

index of a tree on order n are established based on a novel technique which is quite

different from that in the previous paper but much easier to follow.
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1 Introduction

In this paper we consider connected, simple, undirected graphs G = (V (G), E(G)). For

basic graph notation and terminology we follow the book of West [28], while for algorithmic
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and computational terminology we use [4, 9].

The standard distance dG(u, v) between vertices u and v in graph G is the length of

a shortest path between u and v in G. If S ⊆ V (G), |S| ≥ 2, then the Steiner distance

dG(S) is the minimum size among all connected subgraphs of G containing S, that is,

dG(S) = min{|E(T )| : T is a subtree of G,S ⊆ V (T )} .

Note that if S = {u, v}, then dG(S) = dG(u, v). If k ≥ 1, then the Steiner k-eccentricity

of a vertex v in graph G is

ecck(v,G) = max{dG(S) : v ∈ S ⊆ V (G), |S| = k} .

Note that, by definition, ecc1(v,G) = 0. S ⊆ V (G) is a Steiner k-ecc v-set if |S| = k,

v ∈ S, and dG(S) = ecck(v,G). A corresponding minimum Steiner tree T is called a

Steiner k-ecc v-tree (corresponding to the k-set S). We will also shorty say that T is

a MST (S,G). The average Steiner k-eccentricity of a graph G is the mean value of all

vertices’ Steiner k-eccentricities in G, that is,

aecck(G) =
1

|V (G)|
∑

v∈V (G)

ecck(v,G) ,

which is an extention of the average eccentricity of a graph [7, 8].

The Steiner tree problem is NP-hard on general graphs [9, 16], but it can be solved

in polynomial time on trees [2]. The Steiner distance on some special graph classes

such as trees, joins, Corona products, threshold and product graphs, has been studied

in [1, 3, 11, 23, 26]. The average Steiner k-distance is closely related to the k-th Steiner

Wiener index. Both of them were studied on trees, complete graphs, paths, cycles and

complete bipartite graphs [6, 12]. The average Steiner distance and the Steiner Wiener in-

dex were investigated in [5, 18, 20], while for some work on the Steiner diameter see [23, 26].

The Steiner k-diameter was compared with the Steiner k-radius in [15, 24]. Closely related

invariants were also studied, for instance Steiner Gutman index [21], Steiner degree dis-

tance [13], Steiner hyper-Wiener index [25], multi-center Wiener indices [14], and Steiner

(revised) Szeged index [10]. We especiall point to the substantial survey [22] on the

Steiner distance and related results and to the recent investigation of isometric subgraphs

for Steiner distance [27].

Very recently, the Steiner 3-eccentricity of trees was investigated in [19]. A linear-time

algorithm was developed to calculate the Steiner 3-eccentricity of a vertex in a tree, and

lower and upper bounds for the average Steiner 3-eccentricity index on trees were derived.

In this paper we extend these results to arbitrary k ≥ 2. In the next section we propose a

linear algorithm to calculate the Steiner k-eccentricity of a vertex in a tree. In Section 3

we establish lower and upper bounds of the average Steiner k-eccentricity on trees. We

conclude this paper by presenting several possibilities for future work.
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2 Steiner k-eccentricity of vertices in trees

The techniques from [19] that enabled to calculate the Steiner 3-eccentricity in a tree are

not suitable for calculating the Steiner k-eccentricity of a vertex in a tree for arbitrary

k ≥ 2. In this section we establish new, stronger structural properties for the Steiner k-ecc

v-tree for a vertex v in a tree, and then apply them to devise a linear time algorithm to

calculate the Steiner k-eccentricity of a vertex in a tree.

2.1 Two key structural properties

Before stating the two properties, let us introduce some notation and terminology on trees.

A vertex of a tree of degree at least 3 is a branching vertex. Let L(T ) denote the set of

pendent vertices (leaves) of a tree T . If u and v are vertices of a tree T , then we will denote

the (unique) u.v-path in T by P (u, v, T ). Given a vertex v ∈ V (T ) and a leaf u ∈ L(T ),

let w be the nearest branching vertex to u on P (v, u, T ). If there is no branching vertex

on P (v, u, T ), we set w = v. Then we say that the sub-path P (w, u, T ) of P (v, u, T ) is a

quasi-pendent path (with respect to u and v).

In the rest we will use the following earlier lemma, also without explicitly mentioning

it.

Lemma 2.1 [19, Lemmas 2.4, 2.5] If T is a tree and v ∈ V (T ), then the following holds.

(i) If k > |L(T )|, then every k-ecc v-set contains all the leaves of T . The same

conclusion holds if v is a leaf and k = |L(T )|.
(ii) If 2 ≤ k ≤ |L(T )| and S is a k-ecc v-set, then every vertex from S \ {v} is a leaf

of T .

For our first structural result, we need one more lemma.

Lemma 2.2 Let k ≥ 2, let v be a vertex of a tree T , let T k
v be a Steiner k-ecc v-tree, and

let T k−1
v be a Steiner (k− 1)-ecc v-tree. Then there exists a leaf u ∈ L(T k

v ) \L(T k−1
v ) such

that the quasi-pendent path P (w, u, T k
v ) has no common edge with T k−1

v .

Proof. If k = 2, then T 1
v is a tree on a single vertex v, hence the conclusion is clear.

Assume in the rest that k ≥ 3 and suppose on the contrary that every leaf u ∈ L(T k
v ) \

L(T k−1
v ) satisfies that the quasi-pendant path P (w, u, T k

v ) has common edges with T k−1
v .

Then to every leaf u ∈ L(T k
v ) we can associate its private leaf of L(T k−1

v ). Hence the

number of leaves in T k−1
v is not less than that in T k

v . This contradicts the fact (by

Lemma 2.1) that the Steiner (k− 1)-ecc v-set corresponding to T k−1
v has one less element

than the Steiner k-ecc v-set corresponding to T k
v .
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Theorem 2.3 Let k ≥ 2, and let v be a vertex of a tree T . Then every Steiner k-ecc

v-tree contains some Steiner (k − 1)-ecc v-tree.

Proof. The case k = 2 is trivial, hence assume in the rest that k ≥ 3. Let T k
v be a Steiner

k-ecc v-tree and suppose on the contrary that it contains no Steiner (k − 1)-ecc v-tree. If

T k−1
v is an arbitrary Steiner (k−1)-ecc v-tree, then, by Lemma 2.2, we may select a leaf u

from T k
v such that the quasi-pendant path P (w, u, T k

v ) does not have common edges with

T k−1
v .

Let Sk
v be the Steiner k-ecc v-set corresponding to T k

v and set S1 = Sk
v \ {u}. Then S1

is a (k − 1)-set containing the vertex v. Moreover, the tree T1 = T k
v \ (P (w, u, T k

v ) \ {w})
is a MST (S1, T ). By the assumption, the size of T1 is strictly less than that of T k−1

v , that

is,

|E(T1)| < |E(T k−1
v )| . (1)

Let S2 = Sk−1
v ∪ {u}, where Sk−1

v is the Steiner (k − 1)-ecc v-set corresponding to the

tree T k−1
v . Then S2 is a k-set which contains the vertex v. Let T2 be a MST (S2, T ). In

the following we are going to show that the size of T2 is larger than that of T k
v .

Since the quasi-pendant path P (w, u, T k
v ) does not share any edge with T k−1

v and must

be a sub-path of the quasi-pendant path P (w′, u, T2), the size of T2 satisfies

|E(T2)| ≥ |E(T k−1
v )|+ |E(P (w, u, T k

v ))| . (2)

Combining (1) and (2) we obtain that

|E(T2)| ≥ |E(T k−1
v )|+ |E(P (w, u, T k

v ))|

> |E(T1)|+ |E(P (w, u, T k
v ))

= |E(T k
v )| . (3)

Hence |E(T2)| > |E(T k
v )|. Since T2 is a minimum Steiner tree on a k-set containing v, (3)

contradicts the fact that T k
v is a Steiner k-ecc v-tree.

Theorem 2.3 thus asserts that a Steiner k-ecc v-tree contains some Steiner (k− 1)-ecc

v-tree. The question now is, how to determine such a Steiner (k − 1)-ecc v-tree. The

message of the next result is that for our purposes, any Steiner (k−1)-ecc v-tree will do it.

Before stating the theorem, we need some more notation. If H is a subgraph of a graph

G, and v ∈ V (G), then the distance from v to H is dG(v,H) = min{dG(v, u) : u ∈ V (H)}.
The eccentricity of H in G is eccG(H) = max{dG(v,H) : v ∈ V (G)}.

Theorem 2.4 Let k ≥ 1, and let v be a vertex of a tree T . If T1 and T2 are Steiner k-ecc

v-trees of T , then eccT (T1) = eccT (T2).
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Proof. There is nothing to be proved if T1 = T2. Hence assume in the rest that T1 and

T2 are different Steiner k-ecc v-trees of T . If k = 1, then a (unique) Steiner 1-ecc v-tree

is induced by the vertex v itself. Since all longest paths starting from v have the same

length, the assertion of the theorem is clear for k = 1. Hence we may also assume in the

rest of the proof that k ≥ 2.

Let P1 and P2 be longest paths from vertices of V (T ) to trees T1 and T2, respectively.

Let u1 and u2 be the two endpoints of P1 with u1 ∈ V (T1), and let w1 and w2 be the

two endpoints of P2 with w1 ∈ V (T2). Set T0 = T1 ∩ T2. To prove the theorem it suffices

to prove that u1 ∈ V (T0) and w1 ∈ V (T0). By symmetry, it suffices to prove the first

assertion, that is, u1 ∈ V (T0).

Suppose on the contrary that u1 ∈ V (T1) \ V (T0). Let s be a leaf of T1 such that u1 is

on the path P (v, s, T1). Then there must be a vertex w0 ∈ V (T0) and a leaf t of T2 such

that E(P (w0, s, T1)) ∩E(P (w0, t, T2)) = ∅, see Fig. 1. Note that w0 may be the vertex v.

T0 w0

u1

u2

w1

w2

s

t

P1

P2

v

Figure 1: The configuration of the vertices w0, u1, u2, w1, w2, s and t.

We claim that V (P1) ∩ V (T2) = ∅. Otherwise, let x ∈ V (T2) ∩ V (P1). Then the

path E(P (x, v, T1)) \ E(P (x, v, T2)) 6= ∅, since E(P (w0, u1, T1)) 6= ∅. So the two paths

P (x, v, T1) and P (x, v, T2) form a cycle in the original graph T . This contradicts to the

fact that T is a tree. In the same way, we obtain that V (P2) ∩ V (T2) = ∅.
Since |E(P1)| = dT (u2, T1) = eccT (T1) and |E(P (w0, t, T2))| = dT (t, T1), we have

|E(P1)| ≥ |E(P (w0, t, T2))| . (4)

Moreover, since we have assumed that u1 ∈ V (T1)\V (T0), we infer that |E(P (u1, w0, T ))| >
0. Together with (4) this yields

|E(P (u2, w0, T ))| = |E(P1)|+ |E(P (u1, w0, T ))|

≥ |E(P (w0, t, T2))|+ |E(P (u1, w0, T ))|

> |E(P (w0, t, T2))| . (5)
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Now we pay attention to the tree T2. Let S be the Steiner k-ecc v-set corresponding

to the tree T2. Let S′ = S \ {t} ∪ {u2}. Then S′ is a k-set containing the vertex v. In the

following, we will establish a contradition that the tree T ′2 = MST (S′, T ) has more edges

than the tree T2. Recall that T2 is a Steiner k-ecc v-tree.

Let P (w, t, T2) be the quasi-pendant path with respect to v in T2 and distinguish the

following cases.

Case 1: w ∈ V (P (w0, t, T2)) \ {w0}.
In this case the tree T ′2 = MST (S′, T ) can be represented as T ′2 = T2 \ P (w, t, T2) ∪
P (w0, u2, T ). Since the path P (w, t, T2) is a sub-path of P (w0, t, T2), |E(P (w0, t, T2))| ≥
|E(P (w, t, T2))| holds. Combining this fact with (5) we have:

|E(T ′2)| = |E(T2)| − |E(P (w, t, T2))|+ |E(P (w0, u2, T ))|

≥ |E(T2)| − |E(P (w0, t, T2))|+ |E(P (w0, u2, T ))|

> |E(T2)| .

Case 2: w ∈ V (T0).

Now the tree T ′2 = MST (S′, T ) can be represented as T ′2 = T2 \ P (w, t, T2) ∪ P (w, u2, T ).

Recall that the path P (w, t, T2) is composed of two sub-paths which are P (w,w0, T2) and

P (w0, t, T2) respectively. And P (w, u2, T ) is also composed of two sub-paths which are

P (w,w0, T2) and P (u2, w0, T ). By (5) we can estimate as follows:

|E(T ′2)| = |E(T2)| − |E(P (w, t, T2))|+ |E(P (w, u2, T ))|

= |E(T2)| − (|E(P (w,w0, T2))|+ |E(P (w0, t, T2))|)

+ (|E(P (w,w0, T2))|+ |E(P (u2, w0, T ))|)

= |E(T2)| − |E(P (w0, t, T2))|+ |E(P (u2, w0, T ))|

> |E(T2)| .

In both cases we have thus proved that |E(T ′2)| > |E(T2)|, a contradiction to the fact that

T2 is a Steiner k-ecc v-tree.

2.2 A linear time algorithm

By Theorems 2.3 and 2.4, the problem to calculate the Steiner k-eccentricity of a given

vertex of a tree can be reduced to recursively finding a longest path starting at a given
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vertex. This is formally done in Algorithm 1.

Algorithm 1: k-ECC(v, T , k)

Input: A vertex v, a tree T , and an integer k ≥ 2

Output: The Steiner k-eccentricity of v in T

1 if the number of leaves is less than k then

2 return |V (T )| − 1;

3 end

4 else

5 ecc = 0;

6 for i = 1 to k − 1 do

7 Longest Path(v, T , path);

8 ecc = ecc+ |E(P )|;
9 Path Shrinking(v, T , path);

10 end

11 return ecc

12 end

To explain Steps 1-3 of Algorithm 1, we state the following lemma.

Lemma 2.5 Let k ≥ 3 and let v be a vertex of a tree T . If |L(T )| < k, then the Steiner

k-ecc v-tree is the entire tree T .

Proof. The cardinality of the set S = {v}∪L(T ) is at most k, since |L(T )| < k. Moreover,

the MST (S, T ) is the entire tree T . Hence the Steiner k-ecc v-tree is the entire T .

Steps 4-12 form the recursive reduction which consists of finding k− 1 times a longest

path starting at a vertex. In Step 7 we use the depth-first search (DFS) algorithm [4]

to find a longest path starting at a given vertex, tte details are present in Algorithm 2.

Step 9 shrinks the path obtained in Step 7 into a single vertex for the purpose of the next

loop, the details are presented in Algorithm 3. Algorithms 2 and 3 are borrowed from [19]

where one can find additional details on them. For the statement of these algorithms we
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recall that if v is a vertex of a graph G, then the set of its neighbours is denoted by NG(v).

Algorithm 2: Longest Path(v, T , path)

Input: A vertex v, a tree T rooted at v, and an array named path to store a

longest path starting at v

Output: the length of a longest path starting at v

1 max=0; temp=max;

2 for each vertex u ∈ NT (v) which has not been visited till now do

3 temp=Longest Path(u, T , path);

4 if temp>max then

5 path[v]=u;

6 max=temp;

7 end

8 end

9 return max+1;

Algorithm 3: Path Shrinking(v, T , path)

Input: A tree T , a vertex v, and an array named path to store a longest path

starting at v

Output: A new tree obtained by shrinking the longest path into the single vertex v

1 w=v;

2 while path[w]6= ∅ do
3 for each vertex x ∈ NT (w) do

4 remove the edge (w, x) from T ;

5 add a new edge between x and v in T ;

6 end

7 w=path[w];

8 end

Theorem 2.6 Algorithm 1 computes the Steiner k-eccentricity of a vertex in a tree and

can be implemented to run in O(k(n + m)) time, where n and m are the order and the

size of the tree, respectively.

Proof. The correctness of Algorithm 1 is ensured by Theorems 2.3 and 2.4.

By Lemma 2.5, the Steiner k-eccentricity of a vertex in a tree is equal to the size of

the tree if its number of leaves is less than k. There is a linear-time algorithm to find

all leaves of a tree by the depth-first search (DFS) algorithm [4]. Hence Steps 1-3 can be

implemented in O(n + m) time. Similarly, each loop in Steps 6-9 can be implemented in

O(n+m) time, thus all loops require O(k(n+m)) time.

To conlcude the section we again point out that the structural properties to support
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the algorithm(s) from [19] only ensure calculation of the Steiner 3-eccentricity. Hence we

need to develop a new approach that works for general k.

3 Upper and lower bounds

In this section we establish an upper and a lower bound on the average Steiner k-

eccentricity index of a tree for k ≥ 3. These bounds were earlier proved in [19] in the

special case k = 3. It is appealing that to obtain the bound for the general case, the proof

idea is quite different and significantly simpler that the one in [19]. For the new approach,

the following construction is essential.

π-transformation: Let T be a tree and let P = P (u, v, T ) be a path with at least one

edge, such that every internal vertex of P is of degree 2 in T . Let X be the maximal subtree

containing u in the tree T \E(P ), and Y be the maximal subtree containing v in the graph

T \E(P ). We may without loss of generality assume that eccT (u,X) ≤ eccT (v, Y ). Then

the π-transformation π(T ) of T is defined as T ′ = π(T ) = T \ {(u,w) : w ∈ NX(u)} ∪
{(v, w) : w ∈ NX(u)}. The inverse transformation is is T = π−1(T ′) = T ′ \ {(v, w) : w ∈
NX(v)} ∪ {(u,w) : w ∈ NX(v)}. See Fig. 2.

X Y
u v

X

Y
u v

T T

P P

Figure 2: T ′ = π(T ) and T = π−1(T ′)

Lemma 3.1 Let T , P , u, v, X, Y , and T ′ be as in the definition of the π-transformation.

If w ∈ V (P )∪V (X), then in T ′ there exists a Steiner k-ecc w-set S such that S ∩ (V (Y )\
{v}) 6= ∅.

Proof. Let S′ be a Steiner k-ecc w-set in T ′ such that S ∩ (V (Y ) \ {v}) = ∅, and set

Q = S′ \ {w}. Since k ≥ 3, the cardinality of Q is at least two. Let v′ ∈ V (Y ) such that

the distance between v and v′ is eccT ′(v, Y ). Consider the following two cases.

Case 1: Q ∩ V (X) = ∅.
In this case the vertices of Q are all in P . Let w′ ∈ Q be the nearest vertex to v. Construct

a new vertex set S′′ = (S′ \ {w′}) ∪ {v′}.
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Case 2: Q ∩ V (X) 6= ∅.
Let w′ ∈ Q ∩ V (X). Construct a new vertex set S′′ = (S′ \ {w′}) ∪ {v′}.

In each of the two cases, the size ofMST (S′′, T ′) is not less than the size ofMST (S′, T ′),

hence the assertion.

Lemma 3.2 Under the notation of Lemma 3.1, aecck(T ) ≥ aecck(T ′).

Proof. If w is a vertex in V (Y ) \ {v}, then for any Steiner k-ecc w-set S′ in T ′, the size

of a minimum Steiner tree on S′ in graph T is not less than that in T ′. So the Steiner

k-eccentricity of every vertex w ∈ V (Y ) in T is not less than that in T ′.

If w is a vertex in V (P ) ∪ V (X), then by Lemma 3.1, there exists a Steiner k-ecc

w-set S′ in T ′, such that S′ ∩ (V (Y ) \ {v}) 6= ∅. The size of a minimum Steiner tree on

S′ in T is not less than that in T ′. Therefore the Steiner k-eccentricity of every vertex

w ∈ V (P ) ∪ V (X) in T is not less than that in T ′.

In any case, the Steiner k-eccentricity of every vertex v ∈ V (T ′) is not larger than that

in T . As the average Steiner k-eccentricity index is the mean value of all vertices’ Steiner

k-eccentricities, the average Steiner k-eccentricity of T ′ is not large than that of T .

If the order of a tree T is not larger than k, then a Steiner k-ecc v-set contains all

vertices of T for every v ∈ V (T ). Then every Steiner k-ecc v-tree is the entire tree T for

every vertex v. So for a given k ≥ 3, we just consider the trees where the order of each is

more than k.

Theorem 3.3 If k ≥ 3 is an integer, and T a tree on order n > k, then

k − 1

n
≤ aecck(T ) ≤ n− 1.

Moreover, the star Sn attains the lower bound, and the path Pn attains the upper bound.

Proof. Repeatedly applying the π-transformation on T until it is possible, we obtain the

star Sn. On the other hand, repeatedly applying the π−1 transformation on T until it is

possible, we obtain the path Pn. By Lemma 3.2, the π-transformation does not increase

the average Steiner k-eccentricity of T . Hence the star Sn attains the minimum Steiner

k-eccentricity, and the path Pn attains the maximum Steiner k-eccentricity. Finally, we

obtain aecck(Sn) = k − 1
n and aecck(Pn) = n− 1 by straightforward computation.

In Fig. 3 an example is given in which the process of constructing extremal graphs,

that is, a start and a path, by means of the π-transformation and the π−1-transformation.

In [17] the average Steiner 2-eccentricity of trees was investigated. For the sake of our

final result, we recall the following result.
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Figure 3: Constructing extremal graphs using the π transformation and the π−1 transfor-

mation. Bold edges denote the paths defined in the transformations.

Lemma 3.4 ([17]) Let T be a tree of order n. Then aecc2(Sn) ≤ aecc2(T ) ≤ aecc2(Pn).

The left equality holds if and only if T ∼= Sn, while the right equality holds if and only if

T ∼= Pn.

Combining Theorem 3.3 with Lemma 3.4, we have the following result.

Corollary 3.5 If k ≥ 2 is an integer, then Sn (resp. Pn) attains the minimum (resp. the

maximum) average Steiner k-eccentricity in the class of trees.

4 Conclusion

In this paper we have derived a linear-time algorithm to calculate the Steiner k-eccentricity

of a vertex in a tree, and established lower and upper bounds for the average Steiner k-

eccentricity of a tree. These results extend those from [19] for the case k = 3. It remains

open to determine the extremal graphs for the average Steiner k-eccentricity index on

trees for k ≥ 2. Moreover, the general problem to compute the Steiner k-eccentricity of a

general graph is widely open, in particular, it is not known whether it is NP-hard.
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