
Characterizing Subgraphs
of Hamming Graphs
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1. INTRODUCTION

Hamming graphs are, by definition, Cartesian products of complete graphs. For

different characterizations of these graphs see [2,3,21,22,23]. The special case

when all factor graphs are of the same order is treated in [9]. Hamming graphs

can be recognized in linear time and space [15,16]. Isometric subgraphs of

Hamming graphs, called partial Hamming graphs, have been intensively studied

by now, cf. [1,4,6,25,26]. One of the most important subclasses of partial

Hamming graphs is formed by weak retracts of Hamming graphs; these graphs

are known as quasi-median graphs. Quasi-median structures have been

independently discovered several times, cf. [3] and references therein.

Graham and Winkler [12] proved that every graph has a best representation

as an isometric subgraph of a Cartesian product, cf. also [13,17]. The key

construction is based on embeddings into Cartesian products of the so-called

quotient graphs with respect to a certain relation defined on the edge set of a

graph. Feder [10,11] followed with a similar approach in order to obtain such

representations for stronger embeddability conditions: 2-isometric representation,

weak retract representation, and Cartesian prime factorization.

In this paper, we take the opposite direction, treating isometry as the strongest

property. We namely consider subgraphs (see also [24]), induced subgraphs, and

isometric subgraphs of Hamming graphs. We show, roughly speaking, that

embeddings into Cartesian product of quotient graphs can be applied also to

subgraphs and induced subgraphs of Hamming graphs. Of course, as the

embeddability conditions are rather weak in these two cases, we cannot expect to

obtain some ‘‘best’’ (say unique) representation for subgraphs and induced

subgraphs.

In the rest of this section, we fix the notation and introduce the scheme for

embeddings into Cartesian products of quotient graphs. In Section 2, we first

observe that a graph G is a non-trivial subgraph of the Cartesian product of graphs

if and only if G is a non-trivial subgraph of the Cartesian product of two complete

graphs. Then we characterize subgraphs of Hamming graphs via certain edge

labelings of graphs. In Section 3, we give a similar characterization for induced

subgraphs of Hamming graphs. As far as we know, no characterization of induced

subgraphs of Hamming graphs was previously known. In the last section, we

briefly discuss partial Hamming graphs, adding one more characterization of

these graphs to the literature.

The Cartesian product G&H of graphs G and H is the graph with vertex set

VðGÞ � VðHÞ in which the vertex ða; xÞ is adjacent to the vertex ðb; yÞ whenever

ab 2 EðGÞ and x ¼ y, or a ¼ b and xy 2 EðHÞ. For a fixed vertex a of G, the

vertices fða; xÞ j x 2 VðHÞg induce a subgraph of G&H isomorphic to H, called

an H-layer of G&H. Analogously we define G-layers. A subgraph of G&H is

called non-trivial if it intersects at least two G-layers and at least two H-layers.

The map pG : G&H ! G defined by pGða; xÞ ¼ a, is called a projection. Clearly,

the image of an edge under a projection is either an edge or a vertex.
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As we already mentioned, Cartesian products of complete graphs are known

as Hamming graphs. They can be alternatively described as follows. For

i ¼ 1; 2; . . . ; n let ri � 2 be given integers. Let G be the graph whose vertices are

the n-tuples b1b2 � � � bn with bi 2 f0; 1; . . . ; ri � 1g. Two vertices are adjacent if

the corresponding tuples differ in precisely one place—one coordinate. Then

it is easy to see that G is isomorphic to Kr1
&Kr2

& � � �&Krn . For an edge uv of

H ¼ Kr1
&Kr2

& � � �&Krn we define the color map c : EðHÞ ! f1; 2; . . . ; ng with

cðuvÞ ¼ i, where u and v differ in coordinate i.

A subgraph H of G is called isometric if dHðu; vÞ ¼ dGðu; vÞ for all

u; v 2 VðHÞ, where dGðu; vÞ denotes the length of a shortest u; v-path with

respect to G. Note that an isometric subgraph is induced.

We now introduce the central concept of this paper. Let G be a connected

graph and let F ¼ fF1;F2; . . . ;Fkg be a partition of EðGÞ. The quotient graph

G=Fi has connected components of GnFi as vertices, two components C and C0

being adjacent whenever there exists an edge of Fi connecting a vertex of C with

a vertex of C0. For each i, define a map fi : VðGÞ ! VðG=FiÞ by fiðvÞ ¼ C, where

C is the component of GnFi containing v. Then let

f : G ! G=F1
&G=F2

& � � �&G=Fk

be the natural coordinate-wise mapping, that is,

f ðvÞ ¼ ð f1ðvÞ; f2ðvÞ; . . . ; fkðvÞÞ:

We call f the quotient map of G with respect to F . Note that f need not be one-to-

one in general and that it is possible that some quotient graphs are the one vertex

graph. However, all the partitions F introduced later will lead to one-to-one

mappings with non-trivial quotient graphs.

A partition fF1;F2; . . . ;Fkg of EðGÞ naturally leads to an edge-labeling

‘ : EðGÞ ! f1; 2; . . . ; kg by setting ‘ðeÞ ¼ i, where e 2 Fi. Unless stated

otherwise, a labeling (or more precisely a k-labeling) of G will mean an edge-

labeling (with k labels).

Finally, two edges e ¼ xy and f ¼ uv of a graph G are in the Djoković and

Winkler [8,26] relation � if dGðx; uÞ þ dGðy; vÞ 6¼ dGðx; vÞ þ dGðy; uÞ. Relation

� is reflexive and symmetric, �� stands for the transitive closure of �. Let F be

the partition of EðGÞ induced by ��. Graham and Winkler [12] proved that the

corresponding quotient map is an isometry and called it the canonical isometric

embedding of G.

2. SUBGRAPHS OF HAMMING GRAPHS

Subgraphs of Cartesian product graphs were first investigated by Lamprey and

Barnes [19,20] and later characterized in [18] using certain vertex-labelings.

Additional results are given in [5]. In this section, we give another characterization
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of them, this time using edge-labelings. Before giving the result, we note that the

general problem can be reduced to that of characterizing subgraphs of Hamming

graphs, as the next lemma asserts. Recall that a subgraph G of G1
&G2 is non-

trivial if the projections pG1
ðGÞ and pG2

ðGÞ both contain at least two vertices.

More generally, G is a non-trivial subgraph of G1
&G2

& � � �&Gk, if pGi
ðGÞ

contains at least two vertices for i ¼ 1; 2; . . . ; k.

Lemma 2.1. A graph G is a non-trivial subgraph of the Cartesian product of

graphs if and only if G is a non-trivial subgraph of a Hamming graph with two

factors.

Proof. Clearly, we only need to prove that a non-trivial subgraph of the

Cartesian product of graphs can be embedded as a non-trivial subgraph into the

Cartesian product of two complete graphs. So let G be a non-trivial subgraph of

G1
&G2

& � � �&Gk ¼ G1
& ðG2

& � � �&GkÞ. Setting H1 ¼ G2
& � � �&Gk, we get

that G is a non-trivial subgraph of G1
&H1. But now we can connect any non-

adjacent vertices of G1 and of H1 without violating that G is a non-trivial sub-

graph. We conclude that G is a non-trivial subgraph of KjVðG1Þj &KjVðH1Þj. &

By Lemma 2.1 we only need to consider 2-labelings of graphs with respect to

their embeddability into Cartesian products. Thus, for a given 2-labeling of G we

pose the following condition.

Condition A. Let G be a 2-labeled graph. Let C be an induced cycle of G that

possesses both labels. Then the labels change at least three times while passing

the cycle.

Note that if G has a 2-labeling obeying Condition A, then the edges of a

triangle have the same label, and the opposite edges of an induced quadrangle

have the same label.

Theorem 2.2. Let G be a connected graph. Then G is a non-trivial subgraph of

the Cartesian product of graphs if and only if there exists a 2-labeling of G that

fulfills Condition A.

Proof. Let G be a non-trivial subgraph of the Cartesian product of graphs.

By Lemma 2.1 we can restrict to products of two complete graphs.

Let G be a non-trivial subgraph of Kn
&Km, n;m � 2 and let e 2 EðGÞ. Then

we set

‘ðeÞ ¼ 1; pKn
ðeÞ is an edge;

2; pKn
ðeÞ is a vertex :

�

Let C ¼ v1v2 � � � vk be an induced cycle of G that possesses both labels. Suppose

that labels change only twice on C, that is, the labels along C are

1; . . . ; 1; 2; . . . ; 2, where v1v2 is the first edge with label 1. By the definition of

the Cartesian product and ‘, vertex v1 is of degree at least 4 on C. As this is not

possible, the labeling ‘ fulfills Condition A.
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Conversely, let ‘ be a 2-labeling of a connected graph G that satisfies Condition

A. Let F ¼ fF1;F2g be the partition of EðGÞ induced by ‘ and let f be the

quotient map of G with respect to F . We are going to show that G is a non-trivial

subgraph of G=F1
&G=F2.

We claim that f is one-to-one. Let u 6¼ v be vertices of G. Suppose first

that e ¼ uv 2 EðGÞ and assume without loss of generality that ‘ðuvÞ ¼ 1, that is,

uv 2 F1. We claim that u and v are in different components of GnF1. Let P be

an arbitrary path connecting the endvertices of e not containing e. Suppose

that every edge of P has label 2 and select P to be shortest possible among

all such paths. The edge e together with the path P forms a cycle C. By

Condition A, C is not induced. Let w and w0 be two non-consecutive but

adjacent vertices of C. Select w and w0 such that the distance between w and w0

along the cycle is as short as possible. Then ‘ðww0Þ ¼ 1 by the minimality of

P. Let C0 be the cycle containing the edge ww0 and the w;w0-subpath of

C containing only labels 2. Then C0 is an induced cycle on which the labels

change only twice, a contradiction with Condition A. Hence, f ðuÞ 6¼ f ðvÞ if uv is

an edge.

Suppose next dGðu; vÞ � 2. If every u; v-path contains at least one edge with

label 1, or if every u; v-path contains at least one edge with label 2, we are done.

Indeed, then u and v are mapped into different vertices in at least one of G=F1

and G=F2. Thus assume that there are u; v-paths P and Q such that all edges of

P receive label 1 and all edges of Q label 2. Let P and Q be shortest among all

such paths. Let w be the first common vertex of P and Q after u traversing these

two paths from u to v. (Note that we may have w ¼ v.) Then the u;w-subpath P0

of P together with the u;w-subpath Q0 of Q form a cycle C. If C is induced we

violate Condition A. Hence, assume C is not induced and consider an edge

that connects non-adjacent vertices of C of minimal possible distance. Then

we have three possibilities. The first is that there is an edge between non-

consecutive vertices of P0. By the minimality of P, the label of this edge is 2. The

second case is that there is an edge between non-consecutive vertices of Q0.
By the minimality of Q, the label of this edge must be 1. The last possibility is

that there is an edge between a vertex of P0 and a vertex of Q0. Such an edge can

be labeled 1 or 2. In any of the three cases, we find an induced cycle that violates

Condition A and conclude that f ðuÞ 6¼ f ðvÞ holds also in this case, which proves

the claim.

To conclude the proof we just need to observe that an edge of G is mapped

by the quotient map to an edge of G=F1
&G=F2. Hence G is a subgraph of

G=F1
&G=F2. Moreover, since each of G=F1 and G=F2 contains at least two

vertices, it also follows that G is a non-trivial subgraph. &

Corollary 2.3. A graph G is a non-trivial subgraph of a Hamming graph if and

only if there exists a 2-labeling of G that fulfills Condition A.

Proof. Combine Theorem 2.2 with Lemma 2.1. &
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Theorem 2.2 and its proof are illustrated in Figure 1. A graph G is given

together with a 2-labeling fulfilling Condition A. On the figures of GnF1 and

GnF2, the connected components are assigned numbers 1, 2, and 3, that represent

the vertices of G=F1 ¼ K3 and G=F2 ¼ K3. The images of vertices under the

quotient map are also given and finally the embedding of G into K3
&K3 is shown.

The characterization of subgraphs of Cartesian product graphs G from [18]

involves vertex-labelings, where labels can use integers between 2 and

jVðGÞj � 1. Hence, the present approach seems to be more convenient which

we demonstrate on the following example ([18, Corollary 3]).

Let G be a bipartite graph with radius 2 and suppose that G contains no

subgraph isomorphic to K2;3. We claim that G is a non-trivial subgraph of the

Cartesian product of two complete graphs. Let u be a vertex of G such that all

vertices of G are at distance at most two from it and let v be a neighbor of u.

Assign label 1 to uv and to the edges between vertices in NðuÞnv and NðvÞnu.

Assign label 2 to all the remaining edges. Note that all induced cycles of G are

4-cycles. Moreover, because G is K2;3-free, it follows immediately that every

induced 4-cycle is labeled 1,2,1,2. Hence, G is a non-trivial subgraph of a

Hamming graph by Corollary 2.3.

FIGURE 1. Subgraph of a Hamming graph and its quotient embedding.
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3. INDUCED SUBGRAPHS OF HAMMING GRAPHS

In this section, we characterize induced subgraphs of Hamming graphs. We first

state two labeling conditions needed for the result.

Condition B. Let G be a labeled graph. Then edges of a triangle have the same

label.

Condition C. Let G be a labeled graph and let u and v be arbitrary vertices of

G with dGðu; vÞ � 2. Then there exist different labels i and j which both appear on

any induced u; v-path.

Let G be a labeled graph fulfilling Condition C. Let Ck, k � 4, be an induced

cycle of G and let u and v be vertices of Ck with dCk
ðu; vÞ ¼ 2. Then the labels of

a u; v-path of length 2 on Ck are different. Hence, by Condition C, the other

u; v-path along Ck contains these two labels. Therefore we infer:

Lemma 3.1. Let G be a labeled graph fulfilling Condition C and let Ck, k � 4,

be an induced cycle of G. Then every label of Ck is presented more than once

on Ck.

For the main result of this section we also need:

Lemma 3.2. Let G be a labeled graph fulfilling Conditions B and C and let u; v
be vertices of G with dGðu; vÞ � 2. Then, if labels i and j appear on every induced

u; v-path, they appear on every u; v-path.

Proof. Suppose that labels i and j appear on every induced u; v-path. Let

P ¼ x1x2 � � � xr, x1 ¼ u, xr ¼ v, be a u; v-path of minimal length that does not

contain both labels i and j. Then P is not induced, hence we have an edge e ¼ xkx‘
with ‘� k > 1. We may assume that e is selected such that ‘� k is as small as

possible. By the minimality of P, the path x1x2 � � � xkx‘x‘þ1 � � � xr contains both

labels i and j. Hence, the label of the edge xkxl is either i or j. Assume without

loss of generality it is i. Then, using minimality again, label j appears on the path

x1x2 � � � xk or on x‘x‘þ1 � � � xr. It follows that i does not appear on the path

xkxkþ1 � � � x‘. But then the label i appears only once on the cycle C ¼
xkxkþ1 � � � x‘xk. If C is a triangle, we have a contradiction with Condition B,

otherwise with Lemma 3.1. &

Theorem 3.3. Let G be a connected graph. Then G is an induced subgraph of a

Hamming graph if and only if there exists a labeling of G that fulfills Conditions

B and C.

Proof. Let G be an induced subgraph of H ¼ Kn1
&Kn2

& � � �&Knk : Denote

pi ¼ pKni
and consider the labeling of EðGÞ induced by the color map c of H.

Condition B is clear. Indeed, if u, v, and w induce a triangle, then they all lie in

the same layer of H and so the edges uv, uw, and vw receive the same label. We

next show Condition C. Let u and v be two vertices of G with dGðu; vÞ � 2.

Suppose that there is no label that appears on all induced u; v-paths. Then
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piðuÞ ¼ piðvÞ for all i, contrary to dGðu; vÞ � 2. Suppose now that all induced

u; v-paths have exactly one label in common, say i. We have pjðuÞ ¼ pjðvÞ for all

j 6¼ i and piðuÞ 6¼ piðvÞ. Vertices piðuÞ and piðvÞ are adjacent in Kni , since Kni is a

complete graph. Hence, u and v are adjacent in H and therefore also in G which is

impossible.

Conversely, let ‘ be a labeling of G that fulfills Conditions B and C. Let

F ¼ fF1;F2; . . . ;Fkg be the partition of EðGÞ induced by ‘ and let f be the

quotient map of G with respect to F . We claim that f embeds G as an induced

subgraph into G=F1
&G=F2

& � � �&G=Fk.

We show first that f is one-to-one. Suppose that vertices x and y are not

adjacent in G. Then by Condition C and Lemma 3.2, there exist labels i and j such

that on every x; y-path we find labels i and j. So x and y are in different

components in both GnFi and GnFj. Already the first fact assures that

f ðxÞ 6¼ f ðyÞ. Let next x and y be adjacent vertices of G and let ‘ðxyÞ ¼ i.

Suppose that there exists an x; y-path P ¼ x1x2 � � � xr in GnFi, where x1 ¼ x and

xr ¼ y. We can assume that P is shortest among all x; y-paths in GnFi. If P is

induced in G� xy we have a contradiction with Condition B when r ¼ 3 and a

contradiction with Lemma 3.1 when r > 3: Thus P is not induced in G� xy,

r > 3, and there are adjacent vertices xj and xk with k > j þ 1. By the minimality

of P we have ‘ðxjxkÞ ¼ i. We can select j and k such that k � j is minimal among

all such vertices xj and xk. Then the cycle C ¼ xjxjþ1 � � � xk�1xkxj is induced. If C

is a triangle we have a contradiction with Condition B, otherwise we have a

contradiction with Lemma 3.1. Hence, we have shown that f is one-to-one.

Let xy be an edge with ‘ðxyÞ ¼ i. Then, by the above, x and y are in different

components of GnFi. Moreover, they belong to the same component in any of the

graphs GnFj, j 6¼ i. It follows that f maps edges to edges and the claim is proved.

Hence, G ¼ f ðGÞ is an induced subgraph of G=F1
&G=F2

& � � �&G=Fk.

To complete the proof we show that G is also an induced subgraph of the

Hamming graph

KjG=F1j &KjG=F2j & � � �&KjG=Fkj :

Let x and y be non-adjacent vertices of G. Then, by the same reasoning as

above, x and y are in different components of at least two graphs GnFi. It follows

that f ðxÞ and f ðyÞ differ in at least two coordinates which remains valid after

adding edges to the factor graphs. &

Note that the quotient graphs obtained in the proof of Theorem 3.3 need not be

complete. For instance, consider the path P4 together with the labeling 1, 2, 1.

Theorem 3.3 (and its proof) are illustrated in Figure 2, where an admissible

labeling is assigned to C7, that is in turn embedded into K2
&K3

&K2.

4. ISOMETRIC SUBGRAPHS OF HAMMING GRAPHS

We have already mentioned that isometric subgraphs are induced. It is well

known that C7 is an induced but not an isometric subgraph of a Hamming graph.
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Hence, in order to characterize partial Hamming graphs, we add another labeling

condition.

Condition D. Let G be a labeled graph. Then the labels of any shortest path are

pairwise different.

Theorem 4.1. Let G be a connected graph. Then G is a partial Hamming graph

if and only if there exists a labeling of G that fulfills Conditions B, C, and D.

Proof. Let G be an isometric subgraph of a Hamming graph H. Consider the

labeling of EðGÞ induced by the color map c of H. By the proof of Theorem 3.3,

c fulfills Conditions B and C. Moreover, as G is isometric in H, any shortest path

of G is a shortest path of H, hence c fulfills Condition D as well.

Conversely, let ‘ be a labeling of G that satisfies Conditions B, C, and D. Let

F ¼ fF1;F2; . . . ;Fkg be the partition of EðGÞ induced by ‘ and let f be the

corresponding embedding into H ¼ G=F1
&G=F2

& � � �&G=Fk. By Conditions B

and C and the proof of Theorem 3.3 we know that G is an induced subgraph of H.

We claim it is also isometric. Let u and v be any vertices of G and let P ¼
x1x2 � � � xr (x1 ¼ u, xr ¼ v) be a shortest u; v-path in G. Then as the embedding is

induced, f ðxiÞ f ðxiþ1Þ is an edge of H and hence dHð f ðuÞ; f ðvÞÞ � dGðu; vÞ.
Moreover, by Condition D, edges of P receive pairwise different labels which

implies that f ðuÞ and f ðvÞ differ in at least dGðu; vÞ coordinates. Hence,

dHð f ðuÞf ðvÞÞ � dGðu; vÞ and so dHð f ðuÞf ðvÞÞ ¼ dGðu; vÞ.
To complete the proof we show that G=Fi is a complete graph for

i ¼ 1; 2; . . . ; k. Let C and C0 be connected components of GnFi and assume

there is no edge in Fi connecting a vertex of C with a vertex of C0. Then a shortest

path between a vertex of C and a vertex of C0 contains at least two edges of label

i, a contradiction with Condition D. &

FIGURE 2. C7 as an induced subgraph of K2
&K3

&K2.
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An isometric embedding � : G ! H1
&H2

& � � �&Hn is called irredundant if

jHij � 2 for all i and if every vertex u 2 [n
i¼1Hi occurs as a coordinate value of

the image of some w 2 G. In [14] (cf. also [7,17]) it is proved that any isometric

irredundant embedding of a graph G into a product of complete graphs is the

canonical isometric embedding. Hence,

Corollary 4.2. Let G be a connected graph equipped with a labeling that fulfills

Conditions B, C, and D. Then this labeling coincides with the partition induced

by ��.
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[4] B. Brešar, Partial Hamming graphs and expansion procedures, Discrete Math

237 (2001), 13–27.
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