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Abstract

The general position number of a connected graph is the cardinality of a
largest set of vertices such that no three pairwise-distinct vertices from the set
lie on a common shortest path. In this paper it is proved that the general position
number is additive on the Cartesian product of two trees.
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1 Introduction

Let dg(x,y) denote, as usual, the number of edges on a shortest x, y-path in G. A set
S of vertices of a connected graph G is a general position set if dg(x,y) # da(z, z) +
dg(z,y) holds for every {x,y, z} € (‘g) The general position number gp(G) of G is the
cardinality of a largest general position set in G. Such a set is briefly called a gp-set of

G.
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Before the general position number was introduced in [9], an equivalent concept
was proposed in [14]. Much earlier, however, the general position problem has been
studied by Kérner [§] in the special case of hypercubes. Following [9], the graph theory
general position problem has been investigated in [II, 3] 5, [6} [10] 1TT], 13].

The Cartesian product G H of vertex-disjoint graphs G and H is the graph with
vertex set V(G) x V(H), vertices (g, h) and (¢’, ') being adjacent if either g = ¢’ and
hh' € E(H),or h =h and g¢’ € E(G). In this paper we are interested in gp(GO H), a
problem earlier studied in [3] 6], (10, [13]. More precisely, we are interested in Cartesian
products of two (finite) trees. (For some of the other investigations of the Cartesian
product of trees see [2, 12, I5].) An important reason for this interest is the fact
that the general position number of products of paths is far from being trivial. First,
denoting with P, the two-way infinite path, one of the main results from [10] asserts
that gp(Ps O Py ) = 4. Denoting further with G™ the n-fold Cartesian product of G, it
was demonstrated in the same paper that 10 < gp(P2) < 16. The lower bound 10 was
improved to 14 in [6]. Very recently, these results were superseded in [7] by proving
that if n is an arbitrary positive integer, then gp(P2) = 2" . Denoting with n(G)
the order of a graph G, in this paper we prove:

Theorem 1. If T and T* are trees with min{n(T"),n(T*)} > 3, then

gp(TOT*) = gp(T) + gp(T™) .

Theorem [[] widely extends the above mentioned result gp(Ps O Ps) = 4. Further, the
equality gp(P2) = 22" shows that Theorem [ has no obvious (inductive) extension to
Cartesian products of more than two trees. Hence, to determine the general position
number of such products remains a challenging problem.

In the next section we give further definitions, recall known results needed, and
prove several auxiliary new results. Then, in Section [3] we prove Theorem [Il

2 Preliminaries

Let T be a tree. The set of leaves of T' will be denoted by L(T'), and let ¢(T) = |L(T)|.
If u and v are vertices of T with deg(u) > 2 and deg(v) = 1, then the unique u, v-path
is a branching path of T. If u is not a leaf of T', then there are exactly ¢(T") branching
paths starting from u; we say that the u is the root of these branching paths and that
the degree 1 vertex of a branching path P is the leaf of P.

Lemma 1. ([9)) If T is a tree, then gp(T) = ¢(T).

We next describe which vertices of a tree lie in some gp-set of the tree.



Lemma 2. A non-leaf vertex u in a tree T' belongs to a gp-set of T if and only if T —u
has ezxactly two components and at least one of them is a path.

Proof. First, let R be a gp-set of T containing the non-leaf vertex u. Suppose that
T —wu has at least three components, say 17, T, and T3. Since R is a gp-set containing u,
R intersects with at most one of T3, T3 and T3. Assume without loss of generality that
RNV(Ty) =0 and RNV(T3) = 0. Choose vertices v and w in T such that v € V(T3)
and w € V(T3). Then (R—{u})U{v,w} is a larger gp-set than R in T, a contradiction.
Hence T' — u has exactly two components, say T} and T,. Now suppose that neither
Ti nor Ty is a path. Then as above, we have RNV (Ty) = 0 or RNV (Ty) = (. By
symmetry, we assume that R NV (Ty) = (. Since T, is not a path, there are at least
two leaves x; and x5 in Ty. Then the set (R — {u}) U {z1, 22} is a larger gp-set than
R, again, in T'. Therefore, at least one of T} and 75 is a path.

Conversely, we observe that u is a non-leaf vertex on a pendant path in 7. Then u
belongs to a gp-set in T. O

In GOH, if h € V(H), then the subgraph of G H induced by the vertices (g, h),
g € V(G), is a G-layer, denoted with G". Analogously H-layers 9H are defined. G-
layers and H-layers are isomorphic to G and to H, respectively. The distance function
in Cartesian products is additive, that is, if (g1, k1), (92, h2) € V(GO H), then

daou((g1,h1), (92, he)) = da(g1, 92) + dp(ha, he). (1)

If u,v € V(G), then the interval I (u,v) between u and v in G is the set of all vertices
lying on shortest w, v-paths, that is,

Ig(u,v) ={w: dg(u,v) =dg(u,w) + dg(w,u)}.

In what follows, the notations dg(u,v) and Ig(u,v) may be simplified to d(u,v) and
I(u,v) if G will be clear from the context. Equality (I) implies that intervals in
Cartesian products have the following nice structure, cf. [4, Proposition 12.4].

Lemma 3. If G and H are connected graphs and (g1, h1), (g2, he) € V(GO H), then

[GDH((Qh h1)7 (92, h2)) = IG(91,Q2) X [H(hla h2)-

Equality () also easily implies the following fact (also proved in [13]).

Lemma 4. Let G and H be connected graphs and R a general position set of GL H.
Ifu=1(g,h) € R, then V(H)N R = {u} or V(G") N R = {u}.

For finite paths the already mentioned result gp(P, O P,,) = 4 reduces to:
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Lemma 5. ([10]) If n1,ne > 2, then

4; min{ny,ne} > 3,
gp(Pn, O Pyy) =
3; otherwise.

To conclude the preliminaries we construct special maximal (with respect to inclu-
sion) general position sets in products of trees.

Lemma 6. Let T and T* be two trees with min{n(T),n(T*)} > 3, v; € V(T) \ L(T),
and v € V(T*)\ L(T*). Then (L(T) x {vj}) U ({vi} x L(T™)) is a mazimal general
position set of T L1T™.

Proof. Set R = (L(T) x {v;}) U ({vi} x L(T*)) and let Vy = {u,v,w} C R. We first
consider the case when Vo C L(T') x {vj} or Vo C {v;} x L(T™). By symmetry, assume
that Vo C L(T') x {v;}. Then each vertex of V; is corresponding to a leaf of L(T') in
the layer T% = T. Therefore u, v, w do not lie on a common geodesic in 7 O T*.

In the following, without loss of generality, we can assume that u,w € L(T') x {v}}
with u = (vg,v]), w = (vs,0}) and v = (v, v7) € {vi} x L(T*). By Equality (), we
have d(u,v) = dr(vg,v;) + dr- (v}, v;) and d(u, w) = dr(vg, vs), d(w,v) = dr(vs, v;) +
dr«(v;,v;). Note that vy, v, are two distinct vertices in L(T') of T and v; € V/(T')\ L(T).
Then dp(vg, v;) < dp(vg, vs)+dr(vs, v;) whenever v; lies on the vy, vs-geodesic or outside
Uk, Vs-geodesic of T'. This implies that d(u,v) < d(u,w) + d(w,v) in T OT*. Therefore
w does not lie on the u, v-geodesic in T'[1T*. Analogously, neither u lies on the v, w-
geodesic nor v lies on the u, w-geodesic of T'L1T™. Thus u, v, w do not lie on a common
geodesic in T'LJ7T™, which implies that R is a general position set in 7' []7™.

Next we prove the maximality of (L(T) x {vj}) U ({vi} x L(T*)) as a general
position set in 7' T™*. Otherwise, there is a general position set R’ in T'J7T™* of order
greater than ¢(7T) + ¢(T*) such that R C R'. Then there exists a vertex z € R'\R,
say 2z = (vp,v;). If p =i, then there exist two vertices (v;,v}), (v;,vf) € R such that
z € Irop((vi,v)), (v, vf)) (since “T* = T*). This is a contradiction showing that
p # i. Similarly, we have ¢ # j. Now we consider the positions of v, in T" and v} in T™.
Suppose first that v, € L(T), v; € L(T™*). Then there are two vertices (v,, v}), (v, v;)
in R such that z € Iror-((vp, v}), (vi,v})), contracting that RU{z} is a general position
set of TOT™. If v, € L(T) and v; ¢ L(T*), then we select a vertex v}, € L(T*) such
that vy is closer to the leaf of the corresponding branching path than vy in 7. Then
z € Iror-((vp,v}), (vi,v))), a contradiction. Similarly, v, ¢ L(T) and v; € L(T)
cannot occur. Finally we assume that v, ¢ L(T), v; ¢ L(T*). Now we select two
vertices vy € L(T) and v}, € L(T™) such that v, is closer to the leaf of the branching
path than v, in T and v, is closer to the leaf of the branching path than v} in 7. But
then (v,,v;) € Irar-((vy,v}), (vi,vy)), a final contradiction. O
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3 Proof of Theorem 1

If T and T* are both paths, then Theorem [l holds by Lemma [l In the following we
may thus without loss of generality assume that 7% is not a path. Lemmal[@limplies that
egp(TOT*) > gp(T) + gp(T*), hence it remains to prove that gp(TOT*) < gp(T) +
gp(T™). Set n=n(T), n* =n(T*), V(T) ={v1,...,0,}, and V(T*) = {v],..., v} }.

Assume on the contrary that there exists a general position set R of T such that
|R| > gp(T) + gp(T™). Since the restriction of R to a T-layer of TT™* is a general
position set of the layer (which is in turn isomorphic to T'), the restriction contains at
most gp(7') = ¢(T") elements. Similarly, the restriction of R to a T*-layer contains at
most gp(T*) = ¢(T*) elements. We now distinguish the following cases.

Case 1. There exists a T-layer 7% with |V(T% )N R| = gp(T), or a T*-layer “'T* with
V(“T*) (1 R = gp(T*).

By the commutativity of the Cartesian product, we may without loss of generality
assume that there is a layer 7™ with |[RNV (V'T*)| = gp(T™). Let R = R; U Ry, where
Ry = RNV("T*) and Ry = R\ Ry, thatis, Ry = | (V("T*)N R). Let further

te[n]\{i}
S* be the projection of RN V("T™) on T*, that is, S* = {v} : (v;,v]) € Ry}. Since
|Ry| = gp(T™), our assumption implies |Rs| > gp(7) + 1. Then, as gp(T) = (7)),
there exist two different vertices w = (vp, v;) and w’ = (vy, v},) from Ry such that v,
and v, lie on a same branching path P of T'. (Note that it is possible that v, = v,.)
We may assume that dr(vy,x) < dr(v,, ), where z is the leaf of P. We proceed by

distinguishing two subcases based on the position of v; and v}, in T™.

Case 1.1. There exists a branching path P* of 7" that contains both vy and v},.
Recall that T™ is not a path. Lemma [2] implies that a vertex of a tree belongs to a
gp-set if and only if it lies on a pendant path and has degree 1 or 2. Therefore, we can
select P* with the root of degree at least 3. Assume that dr- (v}, y) < dr-(v},y), where
y is the leaf of P*. (The reverse case can be treated analogously.) Since S* is a gp-set
of T™ which is not isomorphic to a path, there is a vertex v; € S* lying on P*. So we
may consider that P* is a branching path that contains vy, vy and a vertex v; € S*.
(It is possible that some of these vertices are the same.) Let z = (v;, v5). Then z € R;.
We proceed by distinguishing the following subcases based on the position of v,, vy
and v; in T

Subcase 1.1.1. vy € I(v;,v,).
In this subcase, if v} is closer than vy, vy to the leaf y of P*, then, by Lemma [3]
w' € Irgr«(w, 2), a contradiction.

If v; € I(v;,v}), then since £(T*) > 3, there exists 2’ = (v;,v};) € {v;} x S* such



that vy,vy € I(v},vf,) in T*. Then we have

dw',2") = dp(vy,vi) +dp- (v}, v3)
= dr(vy,v;) + dr-(vy, vg) + dp=(vg, vg)
= d(w',z) +d(z,2),

which implies that z € Irpp«(w', 2’), a contradiction.

Subcase 1.1.2. v; € I(vy, vy).
In this subcase, if v; € I(v},v) in P*, then z € Iror«(w,w’) by Lemma[3, a contra-
diction.

Assume that v} is closer than v}, v}, to the leaf of P*. Since |S*| = ((T*) > 3, there
is a vertex 2’ = (v;,v),) € {vi} x S* such that vy, vy, € I(v;,vp) in T". Let v}, be on
a branching path P in T* where P"* # P*. Note that ¢(T) + 1 > 3. There exists at
least one vertex a = (vy,v;) € Ry \ {w,w'}. Next we consider the positions of v,,v; in
T,T*, respectively.

Suppose first that v; € V(P*U P™). If vy, vy, vy and v; lie on a path in T, then
there are five vertices w, w’, z, 2’ and a in Ry, three of which lie on a common geodesic
in 70T, a contradiction. Note that if 7" is a path, then we are done as above.
Therefore, assume that 7' is not isomorphic to a path in the following and the root
of P has degree at least 3. Otherwise, v, ¢ P and v,,v, lie on a common branching
path in T'. Let V, be the set of vertices of T" but not contained in 7;, where T}, is
the subtree of T' — v, containing v; and v,. If there is a vertex a’ = (vs,v]) € Ry
with v, € Vi, then Ry contains w, w’, z, 2z’ and @, three of which are on a common
geodesic, a contradiction. Therefore, the first coordinate of any vertex in Ry cannot
be in Vi. Assume that P’ # P is any branching path containing v, and a leaf both
in T,y and T. Then, besides w, P'0T™* contains at most one vertex in Ry of T'0OT™.
Otherwise, P'0T* contain two vertices h, h’ in Ry,. Then there exist two vertices
ho, hy € {v;} x S* such that three vertices from {h, R’ ho, hy, w} lie on some geodesic
in TOT*, a contradiction. (Here hy may be equal to hj.) Note that V; contains at
least two leaves of T since the root of P (just in V;) has degree at least 3. Then T},
has at most ¢(T") — 2 leaves in 7. Since PO T™* contains two vertices w and w’ in Ry,
we have |Ro| < U(T)—2+1 < ¢T) = gp(T), a contradiction with the assumption.

Assume now that v; ¢ V(P*U P™). Then there exists a vertex 2" = (v;, vjn) €
{vi} x S* such that vy, vy, lie on a common branching path in 7. If v} is closer to
the leaf of the branching path than vy, in T, then v; € I(v,,v;) and vin € I(vy, v5).
Therefore, by Lemma [3, we get 2 € Irgr+(a, 2), a contradiction. In the case that v},
is closer to the leaf of the branching path than v, in T, we consider the positions of
Vg, Up, Uy and v; in T'. Let Vi = {2, 2/, w,w',a,2"}. Then V; C Ry. If v,, v,, vy and v;
lie on a path in 7', then there exist three vertices in V; lying on a common geodesic in

6



TOT*, a contradiction again. Otherwise, v, ¢ P and v,, v, lie on a common branching
path in 7'. Similarly as above, a contradiction occurs.

Subcase 1.1.3. v, € I(v;,vy).
In this subcase, since ¢(T*) > 3, there exists a vertex 2’ = (v;,v},) € {v;} x S* such
that vy, ¢ P* and vy € I(vj,,v}) in T*. Since

d(Z',w') = dp(vi,vy) + dp- (v, v))
dr(vi, vp) + dr= (Vi vy) + dp(vp, vy) + dp-(v,, V)
(2, w) + d(w,w’),

we have w € Ipgor«(2/,w'), a contradiction.

Subcase 1.1.4. v; ¢ V(P) such that v;, v, lie on a same branching path in 7.
In this subcase, since ¢(T*) > 3, there is a vertex 2z’ = (v;, v},) € {v;} x S* such that
vy € I(vg,vp) in T*. If v € I(v;,vy) , then obviously vy € I(v;,v},) and therefore,

dw',2") = dp(vy,v;) + dp- (v, v3)
= dr(vy,vi) + dp-(vy, vp) + dr(vy, vp)
= d(w', z)+d(z,7).

We conclude that z € Irgp«(w', 2’), a contradiction.
If vy, is closer to the leaf of P* than vy, vy, then we get a contradiction similarly as
in Subcase 1.1.2.

Case 1.2. v; and v}, do not lie on a same branching path in 7.

In this subcase, we may assume that v; and vy, lie on distinct branching paths P* and
P in T*, respectively. Since ¢(T*) > 3 and T* is not isomorphic to a path, there
exist two vertices z = (v;,vy) and 2’ = (v;,v},) from {v;} x S*, such that v; € P* and
vy, € P™. We consider the following subcases based on the positions of v,, v, and v;
inT.

Subcase 1.2.1. vy € I(v;,v,).

In this subcase, if v}, is closer than v}, to the leaf of P™, then v, € I(vp,v;) and
vy € I(vy, v3). Lemma [ gives w’ € Irgr-(w, 2'), a contradiction. On the other hand,
if v}, is closer than v}, to the leaf of P, then v; € I(v;,vy) and vj, € I(vf, v},), hence
Lemma [ gives 2’ € Irgr«(w', 2), a contradiction again.

Subcase 1.2.2. v; € I(vy, vy).

In this subcase, we first assume that v, is closer than vy, to the leaf of P™. Then
v; € 1(vi,vy) and vy, € I(vj,vy). Therefore, by Lemma [3 we get 2’ € Irgr-(2,w') as
a contradiction. Otherwise we suppose that v}, is closer than v}, to the leaf of P™. If v}
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is closer than v} to the leaf of P*, then v; € I(v,,v;) and vi € I(v},v}). Therefore, by
Lemma [3] we get z € Iror-(w, 2’), a contradiction. In the case that v} is closer than
v; to the leaf of P*, we find a contradiction similarly as the proof of Subcase 1.1.2.

Subcase 1.2.3. v, € I(v;, vy).

In this subcase, if vj is closer than v} to the leaf of P*, then v, € I(v;,vy) and
vy € I(vg,vy). So Lemma [ gives w € Irgr«(z,w’), a contradiction. And if vy is
closer than vy to the leaf of P*, then v; € I(v;,v,) and v € I(vj,v}), hence we get
z € Ipore (z’,w).

Subcase 1.2.4. v; ¢ V(P) such that v;, v, lie on a same branching path in 7.
First suppose that v} is closer to the leaf than vy in P*, then v; € I(v;,v,) and
vy € I(v},v5,). Thus, by Lemma [ we get 2z € Irgr-(w, 2').

Assume that v is closer than vy to the leaf of P*. If v}, is closer to the leaf than
v, then v; € I(v;,vy) and vy, € I(vg, vy), which gives 2" € Irgp-(2,w'). If vf, is closer
than v}, to the leaf of P’ *, we can proceed similarly as in Subcase 1.1.4.

Now we turn to the second case.

Case 2. |RNV(*T*)| < £(T*) for any k € [n], and |[RNV(T%)| < {(T) for any

t € [n*].

In this case, let “T™ be a layer with |[RNV (YT*)| = max{|RNV (**T*)| : k € [n]}. Let

R = R,UR, where R, = ROV (“T*) and Ry = R\R,, thatis, R = |J (V(”kT*)m
ke[n]\{i}

R). Set further S* = {v} : (v;,v}) € Ry} Then 1 < [S*] < ((T*) — 1.

Assume first |S*| = 1. Therefore |[R NV (**T*)| < 1 for any k € [n]. Next we only
need to consider |[R NV(T%)| < 1 for any j € [n*]. (If [RNV(T")| > 2 for some
Jj € [n*], by commutativity of T'OT*, the proof is similar to the subcase in which
2 < |S*| < 4(T*) — 1.) Therefore, suppose that |[R NV (T%)| < 1 for any j € [n*].
Then |R| < min{n,n*}. We now claim that |R| < ¢(T') + ¢(T*). If not, then since
|R| > (T) + £(T*) + 1 > 6, there exist three vertices u = (v, v}), v = (vy,v}) and
w = (vs,v;) from R such that v,, v, lie on a same branching path in T', and v, vy lie
on a common branching path in 7. Note that there may be p’ = s,q = £. But we
can always select a vertex h € R\ {u,v,w} such that w,v, h or u,w, h lie on a same
geodesic in T'0T™, which is a contradiction. So our result holds when |S*| = 1.

Suppose second that 2 < |S*| < ((T*) — 1. As |Ry| = |S*|, we need to prove that
|Ro| < €(T)+£(T*) —|S*|. Assume on the contrary that |Rs| > (T)+£(T*) — |S*| + 1.
Since [S*| > 2, there are two distinct vertices w = (v;,v}) and w' = (v;,v},) from
{vi} x S*. We distinguish the following cases based on the positions of v}, vj, in T™.
Case 2.1. vj and v}, lie on a same branching path P* of T™.

In this subcase, we may without loss of generality assume that v} is closer than v}



to the leaf of P*. Let T:;, be the maximal subtree of T* — v} containing v}, and let
Vee = V(T%)\ V(T;‘;/). Let further S} = {v} : vy € I(v},v7),v; € S*N V(T:;/)}. Now
we prove the following claim.

Claim 1. If z = (v,,v]) € Ry, then vy € ST .

Proof of Claim 1. If not, suppose first that v; € V(P”) is closer than v, to the leaf of
P*. Then v; € I(v;,v,) and v}, € I(vf,v}). Hence, w’ € Iror+(w,2). And if vf € Vi,
then vi € I(v;,v},). Combining this fact with v; € I(vi,v,), we have w € Iror-(w', 2).
This proves Claim 1.

By Claim 1, we have | |J (V(T")NR)| > ((T) + €(T*) —|S*|+1> T)+ 1.

v €ST

Then there exist two vertices z = (v, v}) and 2’ = (v, v}) from Upes: (V(T%) N R)
such that v;,v;, € ST and v, vy lie on a same branching path P in 7. Without loss
of generality, let v, be closer than v, to the leaf of P, and let v;,v};, € I (vj,v;,) (by
the definition of S}). We consider the following subcases according to the positions of

Vi, Up, Uy In T

Subcase 2.1.1. v, € I(v;,v,).

If vy is closer than vy to v}, in P*, then we have vy € I(vi,v,) and v; € I(vy,v5).
Therefore, 2/ € Irpr«(z,w'). And if v} is closer than v}, to v}, in P*, then we have
vy € I(vi,vp) and vy, € I(vy,v}) and so 2" € Ipgr-(2,w).

Subcase 2.1.2. v; € I(vy, vy).

Note that £(T') +£(T*) — [S*|+1 > 4. Then there exists at least a vertex a = (v,,v}) €
Upres: (V(T%) N R) different from z and 2’. Based on the position of v} (v} € P* or
vy, ¢ P*)in T*, and the positions of v,, v;, v, and vy in T', we get contradictions using
a similar proof as in Subcase 1.1.2.

Subcase 2.1.3. v, € I(v;, vy).

If v}, is closer than vy to v} in T™, then v, € I(v;,vy) and v; € I(v},v}), therefore
z € Iror-(w,2'). And if vj is closer than vj to v}, in T, then v, € I(v;,vy) and
v; € I(vj,v), hence 2 € Ipor«(w, 2').

Subcase 2.1.4. v; ¢ V(P) such that v;, v, lie on a same branching path in 7.

Since /(T) + £(T*) — |S*| + 1 > 4, there exists a vertex (v,, v}) € Uyres: (V(T%) N R).
Proceeding similarly as in Subcase 1.1.4, we get required contradictions. But then
| Upres: (V(T) N R)| < {(T) + €(T*) — |S*|, a contradiction with the assumption.

Case 2.2. v7,v}, lie on different branching paths P~, P™ in T*, respectively.
In this subcase, let S5 be a set of vertices of "1™ closer to the leaf of a branching path
than vy for any v; € S*. Note that S*M.S5 = (). We prove the following claim.

Claim 2. If (v, v}) in Ra, then vy € V(T7)\ (S*US;).
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Proof of Claim 2. Lemma M implies v; ¢ S*. Assume that v} € S5 lies on a same
branching path for some vy in T*. Note that [S*[ > 2. Then there exists another
vertex vy, such that vy € I(v;,v}). Combining this fact with v; € I(v;,v,), we arrive
at a contradiction w € Ippp«(z,w’). This proves Claim 2.

Let now S}, = {v; : v; € I(v},v}),v;,v; € S*}. By a parallel reasoning as in
Subcase 2.1 and with Claim 2 in hands we infer that | Uy;esr, (V(T")NR)| < U(T).

Let S = {vr : (vk,v]) € Upzess, (V(T%) N R)} and set S** = V(T*) \ (S* U S}).
From the assumption we have | Uyrege (V(T%) N R)| > ¢(T) + ((T*) — |S] — |S*| + 1.
So there exists a vertex z = (v, v}) € Uyres=(V(T%) N R), and we can always select
two distinct vertices u = (v, v;) and v = (v, v},) from R such that v, and vy, lie on
a same branching path in 7', while v; and v}, lie on a common branching path in 7™.
But we can choose another vertex w € R such that either u, w, z or u, v, z lie on a same

geodesic in T'LJT™ as a contradiction. Therefore,

LU (v nr) < ar) + 1) - 18] - 157,

v ES**

and we are done.
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