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Abstract

The general position number of a connected graph is the cardinality of a
largest set of vertices such that no three pairwise-distinct vertices from the set
lie on a common shortest path. In this paper it is proved that the general position
number is additive on the Cartesian product of two trees.
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1 Introduction

Let dG(x, y) denote, as usual, the number of edges on a shortest x, y-path in G. A set
S of vertices of a connected graph G is a general position set if dG(x, y) 6= dG(x, z) +
dG(z, y) holds for every {x, y, z} ∈

(

S

3

)

. The general position number gp(G) of G is the
cardinality of a largest general position set in G. Such a set is briefly called a gp-set of
G.
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Before the general position number was introduced in [9], an equivalent concept
was proposed in [14]. Much earlier, however, the general position problem has been
studied by Körner [8] in the special case of hypercubes. Following [9], the graph theory
general position problem has been investigated in [1, 3, 5, 6, 10, 11, 13].

The Cartesian product G�H of vertex-disjoint graphs G and H is the graph with
vertex set V (G)× V (H), vertices (g, h) and (g′, h′) being adjacent if either g = g′ and
hh′ ∈ E(H), or h = h′ and gg′ ∈ E(G). In this paper we are interested in gp(G�H), a
problem earlier studied in [3, 6, 10, 13]. More precisely, we are interested in Cartesian
products of two (finite) trees. (For some of the other investigations of the Cartesian
product of trees see [2, 12, 15].) An important reason for this interest is the fact
that the general position number of products of paths is far from being trivial. First,
denoting with P∞ the two-way infinite path, one of the main results from [10] asserts
that gp(P∞�P∞) = 4. Denoting further with Gn the n-fold Cartesian product of G, it
was demonstrated in the same paper that 10 ≤ gp(P 3

∞) ≤ 16. The lower bound 10 was
improved to 14 in [6]. Very recently, these results were superseded in [7] by proving
that if n is an arbitrary positive integer, then gp(P n

∞) = 22
n−1

. Denoting with n(G)
the order of a graph G, in this paper we prove:

Theorem 1. If T and T ∗ are trees with min{n(T ), n(T ∗)} ≥ 3, then

gp(T �T ∗) = gp(T ) + gp(T ∗) .

Theorem 1 widely extends the above mentioned result gp(P∞ �P∞) = 4. Further, the
equality gp(P n

∞) = 22
n−1

shows that Theorem 1 has no obvious (inductive) extension to
Cartesian products of more than two trees. Hence, to determine the general position
number of such products remains a challenging problem.

In the next section we give further definitions, recall known results needed, and
prove several auxiliary new results. Then, in Section 3, we prove Theorem 1.

2 Preliminaries

Let T be a tree. The set of leaves of T will be denoted by L(T ), and let ℓ(T ) = |L(T )|.
If u and v are vertices of T with deg(u) ≥ 2 and deg(v) = 1, then the unique u, v-path
is a branching path of T . If u is not a leaf of T , then there are exactly ℓ(T ) branching
paths starting from u; we say that the u is the root of these branching paths and that
the degree 1 vertex of a branching path P is the leaf of P .

Lemma 1. ([9]) If T is a tree, then gp(T ) = ℓ(T ).

We next describe which vertices of a tree lie in some gp-set of the tree.
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Lemma 2. A non-leaf vertex u in a tree T belongs to a gp-set of T if and only if T −u
has exactly two components and at least one of them is a path.

Proof. First, let R be a gp-set of T containing the non-leaf vertex u. Suppose that
T−u has at least three components, say T1, T2 and T3. Since R is a gp-set containing u,
R intersects with at most one of T1, T2 and T3. Assume without loss of generality that
R ∩ V (T2) = ∅ and R ∩ V (T3) = ∅. Choose vertices v and w in T such that v ∈ V (T2)
and w ∈ V (T3). Then (R−{u})∪{v, w} is a larger gp-set than R in T , a contradiction.
Hence T − u has exactly two components, say T1 and T2. Now suppose that neither
T1 nor T2 is a path. Then as above, we have R ∩ V (T1) = ∅ or R ∩ V (T2) = ∅. By
symmetry, we assume that R ∩ V (T2) = ∅. Since T2 is not a path, there are at least
two leaves x1 and x2 in T2. Then the set (R − {u}) ∪ {x1, x2} is a larger gp-set than
R, again, in T . Therefore, at least one of T1 and T2 is a path.

Conversely, we observe that u is a non-leaf vertex on a pendant path in T . Then u
belongs to a gp-set in T .

In G�H , if h ∈ V (H), then the subgraph of G�H induced by the vertices (g, h),
g ∈ V (G), is a G-layer, denoted with Gh. Analogously H-layers gH are defined. G-
layers and H-layers are isomorphic to G and to H , respectively. The distance function
in Cartesian products is additive, that is, if (g1, h1), (g2, h2) ∈ V (G�H), then

dG�H((g1, h1), (g2, h2)) = dG(g1, g2) + dH(h1, h2). (1)

If u, v ∈ V (G), then the interval IG(u, v) between u and v in G is the set of all vertices
lying on shortest u, v-paths, that is,

IG(u, v) = {w : dG(u, v) = dG(u, w) + dG(w, u)} .

In what follows, the notations dG(u, v) and IG(u, v) may be simplified to d(u, v) and
I(u, v) if G will be clear from the context. Equality (1) implies that intervals in
Cartesian products have the following nice structure, cf. [4, Proposition 12.4].

Lemma 3. If G and H are connected graphs and (g1, h1), (g2, h2) ∈ V (G�H), then

IG�H((g1, h1), (g2, h2)) = IG(g1, g2)× IH(h1, h2) .

Equality (1) also easily implies the following fact (also proved in [13]).

Lemma 4. Let G and H be connected graphs and R a general position set of G�H.

If u = (g, h) ∈ R, then V (gH) ∩ R = {u} or V (Gh) ∩ R = {u}.

For finite paths the already mentioned result gp(P∞�P∞) = 4 reduces to:
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Lemma 5. ([10]) If n1, n2 ≥ 2, then

gp(Pn1
�Pn2

) =







4; min{n1, n2} ≥ 3,

3; otherwise .

To conclude the preliminaries we construct special maximal (with respect to inclu-
sion) general position sets in products of trees.

Lemma 6. Let T and T ∗ be two trees with min{n(T ), n(T ∗)} ≥ 3, vi ∈ V (T ) \ L(T ),
and v∗j ∈ V (T ∗) \ L(T ∗). Then (L(T ) × {v∗j}) ∪ ({vi} × L(T ∗)) is a maximal general

position set of T �T ∗.

Proof. Set R = (L(T ) × {v∗j}) ∪ ({vi} × L(T ∗)) and let V0 = {u, v, w} ⊆ R. We first
consider the case when V0 ⊆ L(T )×{v∗j} or V0 ⊆ {vi}×L(T ∗). By symmetry, assume
that V0 ⊆ L(T ) × {v∗j}. Then each vertex of V0 is corresponding to a leaf of L(T ) in

the layer T v∗j ∼= T . Therefore u, v, w do not lie on a common geodesic in T �T ∗.
In the following, without loss of generality, we can assume that u, w ∈ L(T )×{v∗j}

with u = (vk, v
∗
j ), w = (vs, v

∗
j ) and v = (vi, v

∗
ℓ ) ∈ {vi} × L(T ∗). By Equality (1), we

have d(u, v) = dT (vk, vi) + dT ∗(v∗j , v
∗
ℓ ) and d(u, w) = dT (vk, vs), d(w, v) = dT (vs, vi) +

dT ∗(v∗j , v
∗
ℓ ). Note that vk, vs are two distinct vertices in L(T ) of T and vi ∈ V (T )\L(T ).

Then dT (vk, vi) < dT (vk, vs)+dT (vs, vi) whenever vi lies on the vk, vs-geodesic or outside
vk, vs-geodesic of T . This implies that d(u, v) < d(u, w)+ d(w, v) in T �T ∗. Therefore
w does not lie on the u, v-geodesic in T �T ∗. Analogously, neither u lies on the v, w-
geodesic nor v lies on the u, w-geodesic of T �T ∗. Thus u, v, w do not lie on a common
geodesic in T �T ∗, which implies that R is a general position set in T �T ∗.

Next we prove the maximality of (L(T ) × {v∗j}) ∪ ({vi} × L(T ∗)) as a general
position set in T �T ∗. Otherwise, there is a general position set R′ in T �T ∗ of order
greater than ℓ(T ) + ℓ(T ∗) such that R ⊂ R′. Then there exists a vertex z ∈ R′\R,
say z = (vp, v

∗
q ). If p = i, then there exist two vertices (vi, v

∗
s), (vi, v

∗
t ) ∈ R such that

z ∈ IT �T ∗((vi, v
∗
s), (vi, v

∗
t )) (since viT ∗ ∼= T ∗). This is a contradiction showing that

p 6= i. Similarly, we have q 6= j. Now we consider the positions of vp in T and v∗q in T ∗.
Suppose first that vp ∈ L(T ), v∗q ∈ L(T ∗). Then there are two vertices (vp, v

∗
j ), (vi, v

∗
q )

in R such that z ∈ IT �T ∗((vp, v
∗
j ), (vi, v

∗
q)), contracting that R∪{z} is a general position

set of T �T ∗. If vp ∈ L(T ) and v∗q /∈ L(T ∗), then we select a vertex v∗q′ ∈ L(T ∗) such
that v∗q′ is closer to the leaf of the corresponding branching path than v∗q in T ∗. Then
z ∈ IT �T ∗((vp, v

∗
j ), (vi, v

∗
q′)), a contradiction. Similarly, vp /∈ L(T ) and v∗q ∈ L(T ∗)

cannot occur. Finally we assume that vp /∈ L(T ), v∗q /∈ L(T ∗). Now we select two
vertices vp′ ∈ L(T ) and v∗q′ ∈ L(T ∗) such that vp′ is closer to the leaf of the branching
path than vp in T and v∗q′ is closer to the leaf of the branching path than v∗q in T ∗. But
then (vp, v

∗
q ) ∈ IT �T ∗((vp′, v

∗
j ), (vi, v

∗
q′)), a final contradiction.
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3 Proof of Theorem 1

If T and T ∗ are both paths, then Theorem 1 holds by Lemma 5. In the following we
may thus without loss of generality assume that T ∗ is not a path. Lemma 6 implies that
gp(T �T ∗) ≥ gp(T ) + gp(T ∗), hence it remains to prove that gp(T �T ∗) ≤ gp(T ) +
gp(T ∗). Set n = n(T ), n∗ = n(T ∗), V (T ) = {v1, . . . , vn}, and V (T ∗) = {v∗1, . . . , v

∗
n∗}.

Assume on the contrary that there exists a general position set R of T such that
|R| > gp(T ) + gp(T ∗). Since the restriction of R to a T -layer of T �T ∗ is a general
position set of the layer (which is in turn isomorphic to T ), the restriction contains at
most gp(T ) = ℓ(T ) elements. Similarly, the restriction of R to a T ∗-layer contains at
most gp(T ∗) = ℓ(T ∗) elements. We now distinguish the following cases.

Case 1. There exists a T -layer T v∗j with |V (T v∗j )∩R| = gp(T ), or a T ∗-layer viT ∗ with
|V (viT ∗) ∩R| = gp(T ∗).

By the commutativity of the Cartesian product, we may without loss of generality
assume that there is a layer viT ∗ with |R∩V (viT ∗)| = gp(T ∗). Let R = R1∪R2, where

R1 = R ∩ V (viT ∗) and R2 = R \ R1, that is, R2 =
⋃

t∈[n]\{i}

(

V (vtT ∗) ∩ R
)

. Let further

S∗ be the projection of R ∩ V (viT ∗) on T ∗, that is, S∗ = {v∗j : (vi, v
∗
j ) ∈ R1}. Since

|R1| = gp(T ∗), our assumption implies |R2| ≥ gp(T ) + 1. Then, as gp(T ) = ℓ(T ),
there exist two different vertices w = (vp, v

∗
q ) and w′ = (vp′, v

∗
q′) from R2 such that vp

and vp′ lie on a same branching path P of T . (Note that it is possible that vp = vp′.)
We may assume that dT (vp′, x) ≤ dT (vp, x), where x is the leaf of P . We proceed by
distinguishing two subcases based on the position of v∗q and v∗q′ in T ∗.

Case 1.1. There exists a branching path P ∗ of T ∗ that contains both v∗q and v∗q′.
Recall that T ∗ is not a path. Lemma 2 implies that a vertex of a tree belongs to a
gp-set if and only if it lies on a pendant path and has degree 1 or 2. Therefore, we can
select P ∗ with the root of degree at least 3. Assume that dT ∗(v∗q′, y) ≤ dT ∗(v∗q , y), where
y is the leaf of P ∗. (The reverse case can be treated analogously.) Since S∗ is a gp-set
of T ∗ which is not isomorphic to a path, there is a vertex v∗k ∈ S∗ lying on P ∗. So we
may consider that P ∗ is a branching path that contains v∗q , v

∗
q′ and a vertex v∗k ∈ S∗.

(It is possible that some of these vertices are the same.) Let z = (vi, v
∗
k). Then z ∈ R1.

We proceed by distinguishing the following subcases based on the position of vp, vp′
and vi in T .

Subcase 1.1.1. vp′ ∈ I(vi, vp).
In this subcase, if v∗k is closer than v∗q , v

∗
q′ to the leaf y of P ∗, then, by Lemma 3,

w′ ∈ IT �T ∗(w, z), a contradiction.
If v∗k ∈ I(v∗q , v

∗
q′), then since ℓ(T ∗) ≥ 3, there exists z′ = (vi, v

∗
k′) ∈ {vi} × S∗ such

5



that v∗k,v
∗
q ∈ I(v∗q′, v

∗
k′) in T ∗. Then we have

d(w′, z′) = dT (vp′, vi) + dT ∗(v∗q′, v
∗
k′)

= dT (vp′, vi) + dT ∗(v∗q′, v
∗
k) + dT ∗(v∗k, v

∗
k′)

= d(w′, z) + d(z, z′),

which implies that z ∈ IT � T ∗(w′, z′), a contradiction.

Subcase 1.1.2. vi ∈ I(vp, vp′).
In this subcase, if v∗k ∈ I(v∗q , v

∗
q′) in P ∗, then z ∈ IT � T ∗(w,w′) by Lemma 3, a contra-

diction.
Assume that v∗k is closer than v∗q , v

∗
q′ to the leaf of P ∗. Since |S∗| = ℓ(T ∗) ≥ 3, there

is a vertex z′ = (vi, v
∗
k′) ∈ {vi} × S∗ such that v∗q , v

∗
q′ ∈ I(v∗k, v

∗
k′) in T ∗. Let v∗k′ be on

a branching path P ′∗ in T ∗ where P ′∗ 6= P ∗. Note that ℓ(T ) + 1 ≥ 3. There exists at
least one vertex a = (vx, v

∗
y) ∈ R2 \ {w,w

′}. Next we consider the positions of vx, v
∗
y in

T, T ∗, respectively.
Suppose first that v∗y ∈ V (P ∗ ∪ P ′∗). If vx, vp, vp′ and vi lie on a path in T , then

there are five vertices w, w′, z, z′ and a in R2, three of which lie on a common geodesic
in T �T ∗, a contradiction. Note that if T is a path, then we are done as above.
Therefore, assume that T is not isomorphic to a path in the following and the root
of P has degree at least 3. Otherwise, vx /∈ P and vx, vp lie on a common branching
path in T . Let Vs be the set of vertices of T but not contained in Tip′ where Tip′ is
the subtree of T − vp containing vi and vp′. If there is a vertex a′ = (vs, v

∗
l ) ∈ R2

with vs ∈ Vs, then R2 contains w, w′, z, z′ and a′, three of which are on a common
geodesic, a contradiction. Therefore, the first coordinate of any vertex in R2 cannot
be in Vs. Assume that P ′ 6= P is any branching path containing vp and a leaf both
in Tip′ and T . Then, besides w, P ′

�T ∗ contains at most one vertex in R2 of T �T ∗.
Otherwise, P ′

�T ∗ contain two vertices h, h′ in R2. Then there exist two vertices
h0, h

′
0 ∈ {vi} × S∗ such that three vertices from {h, h′, h0, h

′
0, w} lie on some geodesic

in T �T ∗, a contradiction. (Here h0 may be equal to h′
0.) Note that Vs contains at

least two leaves of T since the root of P (just in Vs) has degree at least 3. Then Tip′

has at most ℓ(T )− 2 leaves in T . Since P �T ∗ contains two vertices w and w′ in R2,
we have |R2| ≤ ℓ(T )− 2 + 1 < ℓ(T ) = gp(T ), a contradiction with the assumption.

Assume now that v∗y /∈ V (P ∗ ∪ P ′∗). Then there exists a vertex z′′ = (vi, v
∗
k′′) ∈

{vi} × S∗ such that v∗y , v
∗
k′′ lie on a common branching path in T ∗. If v∗y is closer to

the leaf of the branching path than v∗k′′ in T ∗, then vi ∈ I(vx, vi) and v∗k′′ ∈ I(v∗y , v
∗
k).

Therefore, by Lemma 3, we get z′′ ∈ IT �T ∗(a, z), a contradiction. In the case that v∗k′′
is closer to the leaf of the branching path than v∗y in T ∗, we consider the positions of
vx, vp, vp′ and vi in T . Let V1 = {z, z′, w, w′, a, z′′}. Then V1 ⊆ R2. If vx, vp, vp′ and vi
lie on a path in T , then there exist three vertices in V1 lying on a common geodesic in

6



T �T ∗, a contradiction again. Otherwise, vx /∈ P and vx, vp lie on a common branching
path in T . Similarly as above, a contradiction occurs.

Subcase 1.1.3. vp ∈ I(vi, vp′).
In this subcase, since ℓ(T ∗) ≥ 3, there exists a vertex z′ = (vi, v

∗
k′) ∈ {vi} × S∗ such

that v∗k′ /∈ P ∗ and v∗q ∈ I(v∗k′, v
∗
q′) in T ∗. Since

d(z′, w′) = dT (vi, vp′) + dT ∗(v∗k′ , v
∗
q′)

= dT (vi, vp) + dT ∗(v∗k′, v
∗
q ) + dT (vp, vp′) + dT ∗(v∗q , v

∗
q′)

= d(z′, w) + d(w,w′),

we have w ∈ IT �T ∗(z′, w′), a contradiction.

Subcase 1.1.4. vi /∈ V (P ) such that vi, vp lie on a same branching path in T .
In this subcase, since ℓ(T ∗) ≥ 3, there is a vertex z′ = (vi, v

∗
k′) ∈ {vi} × S∗ such that

v∗q ∈ I(v∗k′, v
∗
k) in T ∗. If v∗k ∈ I(v∗q , v

∗
q′) , then obviously v∗k ∈ I(v∗q , v

∗
k′) and therefore,

d(w′, z′) = dT (vp′, vi) + dT ∗(v∗q′, v
∗
k′)

= dT (vp′, vi) + dT ∗(v∗q′, v
∗
k) + dT ∗(v∗k, v

∗
k′)

= d(w′, z) + d(z, z′) .

We conclude that z ∈ IT �T ∗(w′, z′), a contradiction.
If v∗k is closer to the leaf of P ∗ than v∗q , v

∗
q′ , then we get a contradiction similarly as

in Subcase 1.1.2.

Case 1.2. v∗q and v∗q′ do not lie on a same branching path in T ∗.
In this subcase, we may assume that v∗q and v∗q′ lie on distinct branching paths P ∗ and
P ′∗ in T ∗, respectively. Since ℓ(T ∗) ≥ 3 and T ∗ is not isomorphic to a path, there
exist two vertices z = (vi, v

∗
k) and z′ = (vi, v

∗
k′) from {vi} × S∗, such that v∗k ∈ P ∗ and

v∗k′ ∈ P ′∗. We consider the following subcases based on the positions of vp, vp′ and vi
in T .

Subcase 1.2.1. vp′ ∈ I(vi, vp).
In this subcase, if v∗k′ is closer than v∗q′ to the leaf of P ′∗, then vp′ ∈ I(vp, vi) and
v∗q′ ∈ I(v∗q , v

∗
k′). Lemma 3 gives w′ ∈ IT � T ∗(w, z′), a contradiction. On the other hand,

if v∗q′ is closer than v∗k′ to the leaf of P ′∗, then vi ∈ I(vi, vp′) and v∗k′ ∈ I(v∗k, v
∗
q′), hence

Lemma 3 gives z′ ∈ IT � T ∗(w′, z), a contradiction again.

Subcase 1.2.2. vi ∈ I(vp, vp′).
In this subcase, we first assume that v∗q′ is closer than v∗k′ to the leaf of P ′∗. Then
vi ∈ I(vi, vp′) and v∗k′ ∈ I(v∗k, v

∗
q′). Therefore, by Lemma 3, we get z′ ∈ IT � T ∗(z, w′) as

a contradiction. Otherwise we suppose that v∗k′ is closer than v∗q′ to the leaf of P ′∗. If v∗q

7



is closer than v∗k to the leaf of P ∗, then vi ∈ I(vp, vi) and v∗k ∈ I(v∗q , v
∗
k′). Therefore, by

Lemma 3, we get z ∈ IT �T ∗(w, z′), a contradiction. In the case that v∗k is closer than
v∗q to the leaf of P ∗, we find a contradiction similarly as the proof of Subcase 1.1.2.

Subcase 1.2.3. vp ∈ I(vi, vp′).
In this subcase, if v∗k is closer than v∗q to the leaf of P ∗, then vp ∈ I(vi, vp′) and
v∗q ∈ I(v∗k, v

∗
q′). So Lemma 3 gives w ∈ IT �T ∗(z, w′), a contradiction. And if v∗q is

closer than v∗k to the leaf of P ∗, then vi ∈ I(vi, vp) and v∗k ∈ I(v∗k′, v
∗
q ), hence we get

z ∈ IT �T ∗(z′, w).

Subcase 1.2.4. vi /∈ V (P ) such that vi, vp lie on a same branching path in T .
First suppose that v∗q is closer to the leaf than v∗k in P ∗, then vi ∈ I(vi, vp) and
v∗k ∈ I(v∗q , v

∗
k′). Thus, by Lemma 3, we get z ∈ IT � T ∗(w, z′).

Assume that v∗k is closer than v∗q to the leaf of P ∗. If v∗q′ is closer to the leaf than
v∗k′ , then vi ∈ I(vi, vp′) and v∗k′ ∈ I(v∗k, v

∗
q′), which gives z′ ∈ IT �T ∗(z, w′). If v∗k′ is closer

than v∗q′ to the leaf of P ′∗, we can proceed similarly as in Subcase 1.1.4.
Now we turn to the second case.

Case 2. |R ∩ V (vkT ∗)| < ℓ(T ∗) for any k ∈ [n], and |R ∩ V (T v∗t )| < ℓ(T ) for any
t ∈ [n∗].
In this case, let viT ∗ be a layer with |R∩V (viT ∗)| = max{|R∩V (vkT ∗)| : k ∈ [n]}. Let

R = R1∪R2 where R1 = R∩V (viT ∗) and R2 = R\R1, that is, R2 =
⋃

k∈[n]\{i}

(

V (vkT ∗)∩

R
)

. Set further S∗ = {v∗j : (vi, v
∗
j ) ∈ R1}. Then 1 ≤ |S∗| ≤ ℓ(T ∗)− 1.

Assume first |S∗| = 1. Therefore |R ∩ V (vkT ∗)| ≤ 1 for any k ∈ [n]. Next we only
need to consider |R ∩ V (T v∗j )| ≤ 1 for any j ∈ [n∗]. (If |R ∩ V (T v∗j )| ≥ 2 for some
j ∈ [n∗], by commutativity of T �T ∗, the proof is similar to the subcase in which
2 ≤ |S∗| ≤ ℓ(T ∗) − 1.) Therefore, suppose that |R ∩ V (T v∗j )| ≤ 1 for any j ∈ [n∗].
Then |R| ≤ min{n, n∗}. We now claim that |R| ≤ ℓ(T ) + ℓ(T ∗). If not, then since
|R| ≥ ℓ(T ) + ℓ(T ∗) + 1 ≥ 6, there exist three vertices u = (vp, v

∗
j ), v = (vp′, v

∗
q ) and

w = (vs, v
∗
ℓ ) from R such that vp, vp′ lie on a same branching path in T , and v∗j , v

∗
ℓ lie

on a common branching path in T ∗. Note that there may be p′ = s, q = ℓ. But we
can always select a vertex h ∈ R \ {u, v, w} such that u, v, h or u, w, h lie on a same
geodesic in T �T ∗, which is a contradiction. So our result holds when |S∗| = 1.

Suppose second that 2 ≤ |S∗| ≤ ℓ(T ∗) − 1. As |R1| = |S∗|, we need to prove that
|R2| ≤ ℓ(T )+ ℓ(T ∗)−|S∗|. Assume on the contrary that |R2| ≥ ℓ(T )+ ℓ(T ∗)−|S∗|+1.
Since |S∗| ≥ 2, there are two distinct vertices w = (vi, v

∗
j ) and w′ = (vi, v

∗
j′) from

{vi} × S∗. We distinguish the following cases based on the positions of v∗j , v
∗
j′ in T ∗.

Case 2.1. v∗j and v∗j′ lie on a same branching path P ∗ of T ∗.
In this subcase, we may without loss of generality assume that v∗j′ is closer than v∗j
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to the leaf of P ∗. Let T ∗
v∗
j′
be the maximal subtree of T ∗ − v∗j containing v∗j′ and let

Vs∗ = V (T ∗) \ V (T ∗
v∗
j′
). Let further S∗

1 = {v∗q : v∗q ∈ I(v∗j , v
∗
ℓ ), v

∗
ℓ ∈ S∗ ∩ V (T ∗

v∗
j′
)}. Now

we prove the following claim.

Claim 1. If z = (vp, v
∗
t ) ∈ R2, then v∗t ∈ S∗

1 .

Proof of Claim 1. If not, suppose first that v∗t ∈ V (P ∗) is closer than v∗j′ to the leaf of
P ∗. Then vi ∈ I(vi, vp) and v∗j′ ∈ I(v∗t , v

∗
j ). Hence, w′ ∈ IT � T ∗(w, z). And if v∗t ∈ Vs∗ ,

then v∗j ∈ I(v∗t , v
∗
j′). Combining this fact with vi ∈ I(vi, vp), we have w ∈ IT � T ∗(w′, z).

This proves Claim 1.
By Claim 1, we have |

⋃

v∗t ∈S
∗

1

(

V (T v∗t ) ∩ R
)

| ≥ ℓ(T ) + ℓ(T ∗) − |S∗| + 1 ≥ ℓ(T ) + 1.

Then there exist two vertices z = (vp, v
∗
ℓ ) and z′ = (vp′, v

∗
ℓ′) from ∪v∗t ∈S

∗

1

(

V (T v∗t ) ∩ R
)

such that v∗ℓ , v
∗
ℓ′ ∈ S∗

1 and vp, vp′ lie on a same branching path P in T . Without loss
of generality, let vp′ be closer than vp to the leaf of P , and let v∗ℓ , v

∗
ℓ′ ∈ I(v∗j , v

∗
j′) (by

the definition of S∗
1). We consider the following subcases according to the positions of

vi, vp, vp′ in T .

Subcase 2.1.1. vp′ ∈ I(vi, vp).
If v∗ℓ′ is closer than v∗ℓ to v∗j′ in P ∗, then we have vp′ ∈ I(vi, vp) and v∗ℓ′ ∈ I(v∗ℓ , v

∗
j′).

Therefore, z′ ∈ IT �T ∗(z, w′). And if v∗ℓ is closer than v∗ℓ′ to v∗j′ in P ∗, then we have
vp′ ∈ I(vi, vp) and v∗ℓ′ ∈ I(v∗ℓ , v

∗
j ) and so z′ ∈ IT �T ∗(z, w).

Subcase 2.1.2. vi ∈ I(vp, vp′).
Note that ℓ(T )+ ℓ(T ∗)−|S∗|+1 ≥ 4. Then there exists at least a vertex a = (vx, v

∗
y) ∈

∪v∗t ∈S
∗

1

(

V (T v∗t ) ∩ R
)

different from z and z′. Based on the position of v∗y (v∗y ∈ P ∗ or
v∗y /∈ P ∗) in T ∗, and the positions of vx, vi, vp and vp′ in T , we get contradictions using
a similar proof as in Subcase 1.1.2.

Subcase 2.1.3. vp ∈ I(vi, vp′).
If v∗ℓ′ is closer than v∗ℓ to v∗j′ in T ∗, then vp ∈ I(vi, vp′) and v∗ℓ ∈ I(v∗j , v

∗
ℓ′), therefore

z ∈ IT �T ∗(w, z′). And if v∗ℓ is closer than v∗ℓ′ to v∗j′ in T ∗, then vp ∈ I(vi, vp′) and
v∗ℓ ∈ I(v∗j′, v

∗
ℓ′), hence z ∈ IT � T ∗(w, z′).

Subcase 2.1.4. vi /∈ V (P ) such that vi, vp lie on a same branching path in T .
Since ℓ(T ) + ℓ(T ∗)− |S∗|+ 1 ≥ 4, there exists a vertex (vx, v

∗
y) ∈ ∪v∗t ∈S

∗

1

(

V (T v∗t ) ∩R
)

.
Proceeding similarly as in Subcase 1.1.4, we get required contradictions. But then
| ∪v∗t ∈S

∗

1

(

V (T v∗t ) ∩ R
)

| ≤ ℓ(T ) + ℓ(T ∗)− |S∗|, a contradiction with the assumption.

Case 2.2. v∗j ,v
∗
j′ lie on different branching paths P ∗, P ′∗ in T ∗, respectively.

In this subcase, let S∗
2 be a set of vertices of viT ∗ closer to the leaf of a branching path

than v∗g for any v∗g ∈ S∗. Note that S∗ ∩ S∗
2 = ∅. We prove the following claim.

Claim 2. If (vp, v
∗
t ) in R2, then v∗t ∈ V (T ∗) \ (S∗ ∪ S∗

2).
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Proof of Claim 2. Lemma 4 implies v∗t /∈ S∗. Assume that v∗t ∈ S∗
2 lies on a same

branching path for some v∗g in T ∗. Note that |S∗| ≥ 2. Then there exists another
vertex v∗g′ such that v∗g ∈ I(v∗t , v

∗
g′). Combining this fact with vi ∈ I(vi, vp), we arrive

at a contradiction w ∈ IT � T ∗(z, w′). This proves Claim 2.
Let now S∗

1′ = {v∗q : v∗q ∈ I(v∗g , v
∗
g′), v

∗
g , v

∗
g′ ∈ S∗}. By a parallel reasoning as in

Subcase 2.1 and with Claim 2 in hands we infer that | ∪v∗t ∈S
∗

1′

(

V (T v∗t ) ∩R
)

| ≤ ℓ(T ).

Let S = {vk : (vk, v
∗
t ) ∈ ∪v∗t ∈S

∗

1′

(

V (T v∗t ) ∩ R
)

} and set S∗∗ = V (T ∗) \ (S∗ ∪ S∗
1′).

From the assumption we have | ∪v∗t ∈S
∗∗

(

V (T v∗t ) ∩R
)

| ≥ ℓ(T ) + ℓ(T ∗)− |S| − |S∗|+ 1.
So there exists a vertex z = (vp, v

∗
ℓ ) ∈ ∪v∗t ∈S

∗∗

(

V (T v∗t ) ∩ R
)

, and we can always select
two distinct vertices u = (vh, v

∗
g) and v = (vh′, v∗g′) from R such that vp and vh lie on

a same branching path in T , while v∗ℓ and v∗g′ lie on a common branching path in T ∗.
But we can choose another vertex w ∈ R such that either u, w, z or u, v, z lie on a same
geodesic in T �T ∗ as a contradiction. Therefore,

|
⋃

v∗t ∈S
∗∗

(

V (T v∗t ) ∩ R
)

| ≤ ℓ(T ) + ℓ(T ∗)− |S| − |S∗|.

and we are done.
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[4] W. Imrich, S. Klavžar, D. F. Rall, Topics in Graph Theory: Graphs and their
Cartesian Product, A K Peters, Wellesley, MA, 2008.
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[10] P. Manuel, S. Klavžar, The graph theory general position problem on some inter-
connection networks, Fund. Inform. 163 (2018) 339–350.

[11] B. Patkós, On the general position problem on Kneser graphs, Ars Math. Con-
temp. (2020), date accessed: 01 Sep. 2020, doi:https://doi.org/10.26493/1855-
3974.1957.a0f.

[12] W. C. Shiu, R. M. Low, The integer-magic spectra and null sets of the Cartesian
product of trees, Australas. J. Combin. 70 (2018) 157–167.

[13] J. Tian, K. Xu, The general position number of Cartesian products of trees or
cycles with general graphs, submitted.

[14] S. V. Ullas Chandran, G. Jaya Parthasarathy, The geodesic irredundant sets in
graphs, Int. J. Math. Combin. 4 (2016) 135–143.

[15] D. R. Wood, Colouring the square of the Cartesian product of trees, Discrete
Math. Theor. Comput. Sci. 13 (2011) 109–111.

11

http://arxiv.org/abs/1907.04535

	1 Introduction
	2 Preliminaries
	3 Proof of Theorem 1

