The general position number of the Cartesian product of two trees

Jing Tian^a, Kexiang Xu^a, Sandi Klavžar^{b,c,d}

^a College of Science, Nanjing University of Aeronautics & Astronautics, Nanjing, Jiangsu 210016, PR China

^b Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

 $^{c}\,$ Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia

 $^{d}\,$ Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

jingtian526@126.com (J. Tian)

kexxu1221@126.com (K. Xu)

sandi.klavzar@fmf.uni-lj.si (S. Klavžar)

Abstract

The general position number of a connected graph is the cardinality of a largest set of vertices such that no three pairwise-distinct vertices from the set lie on a common shortest path. In this paper it is proved that the general position number is additive on the Cartesian product of two trees.

Keywords: general position set; general position number; Cartesian product; trees AMS Math. Subj. Class. (2020): 05C05, 05C12, 05C35

1 Introduction

Let $d_G(x, y)$ denote, as usual, the number of edges on a shortest x, y-path in G. A set S of vertices of a connected graph G is a general position set if $d_G(x, y) \neq d_G(x, z) + d_G(z, y)$ holds for every $\{x, y, z\} \in {S \choose 3}$. The general position number gp(G) of G is the cardinality of a largest general position set in G. Such a set is briefly called a gp-set of G.

Before the general position number was introduced in [9], an equivalent concept was proposed in [14]. Much earlier, however, the general position problem has been studied by Körner [8] in the special case of hypercubes. Following [9], the graph theory general position problem has been investigated in [1, 3, 5, 6, 10, 11, 13].

The Cartesian product $G \square H$ of vertex-disjoint graphs G and H is the graph with vertex set $V(G) \times V(H)$, vertices (g, h) and (g', h') being adjacent if either g = g' and $hh' \in E(H)$, or h = h' and $gg' \in E(G)$. In this paper we are interested in $gp(G \square H)$, a problem earlier studied in [3, 6, 10, 13]. More precisely, we are interested in Cartesian products of two (finite) trees. (For some of the other investigations of the Cartesian product of trees see [2, 12, 15].) An important reason for this interest is the fact that the general position number of products of paths is far from being trivial. First, denoting with P_{∞} the two-way infinite path, one of the main results from [10] asserts that $gp(P_{\infty} \square P_{\infty}) = 4$. Denoting further with G^n the *n*-fold Cartesian product of G, it was demonstrated in the same paper that $10 \leq gp(P_{\infty}^3) \leq 16$. The lower bound 10 was improved to 14 in [6]. Very recently, these results were superseded in [7] by proving that if n is an arbitrary positive integer, then $gp(P_{\infty}^n) = 2^{2^{n-1}}$. Denoting with n(G)the order of a graph G, in this paper we prove:

Theorem 1. If T and T^* are trees with $\min\{n(T), n(T^*)\} \ge 3$, then

 $\operatorname{gp}(T \Box T^*) = \operatorname{gp}(T) + \operatorname{gp}(T^*).$

Theorem 1 widely extends the above mentioned result $gp(P_{\infty} \Box P_{\infty}) = 4$. Further, the equality $gp(P_{\infty}^n) = 2^{2^{n-1}}$ shows that Theorem 1 has no obvious (inductive) extension to Cartesian products of more than two trees. Hence, to determine the general position number of such products remains a challenging problem.

In the next section we give further definitions, recall known results needed, and prove several auxiliary new results. Then, in Section 3, we prove Theorem 1.

2 Preliminaries

Let T be a tree. The set of leaves of T will be denoted by L(T), and let $\ell(T) = |L(T)|$. If u and v are vertices of T with $\deg(u) \ge 2$ and $\deg(v) = 1$, then the unique u, v-path is a branching path of T. If u is not a leaf of T, then there are exactly $\ell(T)$ branching paths starting from u; we say that the u is the root of these branching paths and that the degree 1 vertex of a branching path P is the leaf of P.

Lemma 1. ([9]) If T is a tree, then $gp(T) = \ell(T)$.

We next describe which vertices of a tree lie in some gp-set of the tree.

Lemma 2. A non-leaf vertex u in a tree T belongs to a gp-set of T if and only if T - u has exactly two components and at least one of them is a path.

Proof. First, let R be a gp-set of T containing the non-leaf vertex u. Suppose that T-u has at least three components, say T_1, T_2 and T_3 . Since R is a gp-set containing u, R intersects with at most one of T_1, T_2 and T_3 . Assume without loss of generality that $R \cap V(T_2) = \emptyset$ and $R \cap V(T_3) = \emptyset$. Choose vertices v and w in T such that $v \in V(T_2)$ and $w \in V(T_3)$. Then $(R - \{u\}) \cup \{v, w\}$ is a larger gp-set than R in T, a contradiction. Hence T - u has exactly two components, say T_1 and T_2 . Now suppose that neither T_1 nor T_2 is a path. Then as above, we have $R \cap V(T_1) = \emptyset$ or $R \cap V(T_2) = \emptyset$. By symmetry, we assume that $R \cap V(T_2) = \emptyset$. Since T_2 is not a path, there are at least two leaves x_1 and x_2 in T_2 . Then the set $(R - \{u\}) \cup \{x_1, x_2\}$ is a larger gp-set than R, again, in T. Therefore, at least one of T_1 and T_2 is a path.

Conversely, we observe that u is a non-leaf vertex on a pendant path in T. Then u belongs to a gp-set in T.

In $G \square H$, if $h \in V(H)$, then the subgraph of $G \square H$ induced by the vertices (g, h), $g \in V(G)$, is a *G*-layer, denoted with G^h . Analogously *H*-layers ${}^{g}H$ are defined. *G*layers and *H*-layers are isomorphic to *G* and to *H*, respectively. The distance function in Cartesian products is additive, that is, if $(g_1, h_1), (g_2, h_2) \in V(G \square H)$, then

$$d_{G\square H}((g_1, h_1), (g_2, h_2)) = d_G(g_1, g_2) + d_H(h_1, h_2).$$
(1)

If $u, v \in V(G)$, then the *interval* $I_G(u, v)$ between u and v in G is the set of all vertices lying on shortest u, v-paths, that is,

$$I_G(u, v) = \{ w : d_G(u, v) = d_G(u, w) + d_G(w, u) \}.$$

In what follows, the notations $d_G(u, v)$ and $I_G(u, v)$ may be simplified to d(u, v) and I(u, v) if G will be clear from the context. Equality (1) implies that intervals in Cartesian products have the following nice structure, cf. [4, Proposition 12.4].

Lemma 3. If G and H are connected graphs and $(g_1, h_1), (g_2, h_2) \in V(G \square H)$, then

$$I_{G \square H}((g_1, h_1), (g_2, h_2)) = I_G(g_1, g_2) \times I_H(h_1, h_2).$$

Equality (1) also easily implies the following fact (also proved in [13]).

Lemma 4. Let G and H be connected graphs and R a general position set of $G \square H$. If $u = (g, h) \in R$, then $V({}^{g}H) \cap R = \{u\}$ or $V(G^{h}) \cap R = \{u\}$.

For finite paths the already mentioned result $gp(P_{\infty} \Box P_{\infty}) = 4$ reduces to:

Lemma 5. ([10]) If $n_1, n_2 \ge 2$, then

$$gp(P_{n_1} \Box P_{n_2}) = \begin{cases} 4; & \min\{n_1, n_2\} \ge 3, \\ \\ 3; & \text{otherwise}. \end{cases}$$

To conclude the preliminaries we construct special maximal (with respect to inclusion) general position sets in products of trees.

Lemma 6. Let T and T^* be two trees with $\min\{n(T), n(T^*)\} \ge 3$, $v_i \in V(T) \setminus L(T)$, and $v_j^* \in V(T^*) \setminus L(T^*)$. Then $(L(T) \times \{v_j^*\}) \cup (\{v_i\} \times L(T^*))$ is a maximal general position set of $T \square T^*$.

Proof. Set $R = (L(T) \times \{v_j^*\}) \cup (\{v_i\} \times L(T^*))$ and let $V_0 = \{u, v, w\} \subseteq R$. We first consider the case when $V_0 \subseteq L(T) \times \{v_j^*\}$ or $V_0 \subseteq \{v_i\} \times L(T^*)$. By symmetry, assume that $V_0 \subseteq L(T) \times \{v_j^*\}$. Then each vertex of V_0 is corresponding to a leaf of L(T) in the layer $T^{v_j^*} \cong T$. Therefore u, v, w do not lie on a common geodesic in $T \square T^*$.

In the following, without loss of generality, we can assume that $u, w \in L(T) \times \{v_j^*\}$ with $u = (v_k, v_j^*)$, $w = (v_s, v_j^*)$ and $v = (v_i, v_\ell^*) \in \{v_i\} \times L(T^*)$. By Equality (1), we have $d(u, v) = d_T(v_k, v_i) + d_{T^*}(v_j^*, v_\ell^*)$ and $d(u, w) = d_T(v_k, v_s)$, $d(w, v) = d_T(v_s, v_i) + d_{T^*}(v_j^*, v_\ell^*)$. Note that v_k, v_s are two distinct vertices in L(T) of T and $v_i \in V(T) \setminus L(T)$. Then $d_T(v_k, v_i) < d_T(v_k, v_s) + d_T(v_s, v_i)$ whenever v_i lies on the v_k, v_s -geodesic or outside v_k, v_s -geodesic of T. This implies that d(u, v) < d(u, w) + d(w, v) in $T \square T^*$. Therefore w does not lie on the u, v-geodesic in $T \square T^*$. Analogously, neither u lies on the v, wgeodesic nor v lies on the u, w-geodesic of $T \square T^*$. Thus u, v, w do not lie on a common geodesic in $T \square T^*$, which implies that R is a general position set in $T \square T^*$.

Next we prove the maximality of $(L(T) \times \{v_i^*\}) \cup (\{v_i\} \times L(T^*))$ as a general position set in $T \square T^*$. Otherwise, there is a general position set R' in $T \square T^*$ of order greater than $\ell(T) + \ell(T^*)$ such that $R \subset R'$. Then there exists a vertex $z \in R' \setminus R$, say $z = (v_p, v_q^*)$. If p = i, then there exist two vertices $(v_i, v_s^*), (v_i, v_t^*) \in R$ such that $z \in I_{T \square T^*}((v_i, v_s^*), (v_i, v_t^*))$ (since $v_i T^* \cong T^*$). This is a contradiction showing that $p \neq i$. Similarly, we have $q \neq j$. Now we consider the positions of v_p in T and v_q^* in T^* . Suppose first that $v_p \in L(T), v_q^* \in L(T^*)$. Then there are two vertices $(v_p, v_j^*), (v_i, v_q^*)$ in R such that $z \in I_{T \square T^*}((v_p, v_i^*), (v_i, v_a^*))$, contracting that $R \cup \{z\}$ is a general position set of $T \square T^*$. If $v_p \in L(T)$ and $v_q^* \notin \hat{L}(T^*)$, then we select a vertex $v_{q'}^* \in L(T^*)$ such that $v_{q'}^*$ is closer to the leaf of the corresponding branching path than v_q^* in T^* . Then $z \in I_{T \square T^*}((v_p, v_j^*), (v_i, v_{q'}^*))$, a contradiction. Similarly, $v_p \notin L(T)$ and $v_q^* \in L(T^*)$ cannot occur. Finally we assume that $v_p \notin L(T), v_q^* \notin L(T^*)$. Now we select two vertices $v_{p'} \in L(T)$ and $v_{q'}^* \in L(T^*)$ such that $v_{p'}$ is closer to the leaf of the branching path than v_p in T and $v_{q'}^*$ is closer to the leaf of the branching path than v_q^* in T^* . But then $(v_p, v_q^*) \in I_{T \square T^*}((v_{p'}, v_j^*), (v_i, v_{q'}^*))$, a final contradiction.

3 Proof of Theorem 1

If T and T^* are both paths, then Theorem 1 holds by Lemma 5. In the following we may thus without loss of generality assume that T^* is not a path. Lemma 6 implies that $gp(T \square T^*) \ge gp(T) + gp(T^*)$, hence it remains to prove that $gp(T \square T^*) \le gp(T) + gp(T^*)$. Set n = n(T), $n^* = n(T^*)$, $V(T) = \{v_1, \ldots, v_n\}$, and $V(T^*) = \{v_1^*, \ldots, v_{n^*}^*\}$.

Assume on the contrary that there exists a general position set R of T such that $|R| > \operatorname{gp}(T) + \operatorname{gp}(T^*)$. Since the restriction of R to a T-layer of $T \Box T^*$ is a general position set of the layer (which is in turn isomorphic to T), the restriction contains at most $\operatorname{gp}(T) = \ell(T)$ elements. Similarly, the restriction of R to a T^* -layer contains at most $\operatorname{gp}(T^*) = \ell(T^*)$ elements. We now distinguish the following cases.

Case 1. There exists a *T*-layer $T^{v_j^*}$ with $|V(T^{v_j^*}) \cap R| = \operatorname{gp}(T)$, or a T^* -layer $v_i T^*$ with $|V(v_i T^*) \cap R| = \operatorname{gp}(T^*)$.

By the commutativity of the Cartesian product, we may without loss of generality assume that there is a layer ${}^{v_i}T^*$ with $|R \cap V({}^{v_i}T^*)| = \operatorname{gp}(T^*)$. Let $R = R_1 \cup R_2$, where $R_1 = R \cap V({}^{v_i}T^*)$ and $R_2 = R \setminus R_1$, that is, $R_2 = \bigcup_{t \in [n] \setminus \{i\}} \left(V({}^{v_t}T^*) \cap R \right)$. Let further S^* be the projection of $R \cap V({}^{v_i}T^*)$ on T^* , that is, $S^* = \{v_j^* : (v_i, v_j^*) \in R_1\}$. Since $|R_1| = \operatorname{gp}(T^*)$, our assumption implies $|R_2| \ge \operatorname{gp}(T) + 1$. Then, as $\operatorname{gp}(T) = \ell(T)$, there exist two different vertices $w = (v_p, v_q^*)$ and $w' = (v_{p'}, v_{q'}^*)$ from R_2 such that v_p and $v_{p'}$ lie on a same branching path P of T. (Note that it is possible that $v_p = v_{p'}$.) We may assume that $d_T(v_{p'}, x) \le d_T(v_p, x)$, where x is the leaf of P. We proceed by distinguishing two subcases based on the position of v_q^* and $v_{q'}^*$ in T^* .

Case 1.1. There exists a branching path P^* of T^* that contains both v_q^* and $v_{q'}^*$. Recall that T^* is not a path. Lemma 2 implies that a vertex of a tree belongs to a gp-set if and only if it lies on a pendant path and has degree 1 or 2. Therefore, we can select P^* with the root of degree at least 3. Assume that $d_{T^*}(v_{q'}^*, y) \leq d_{T^*}(v_q^*, y)$, where y is the leaf of P^* . (The reverse case can be treated analogously.) Since S^* is a gp-set of T^* which is not isomorphic to a path, there is a vertex $v_k^* \in S^*$ lying on P^* . So we may consider that P^* is a branching path that contains v_q^* , $v_{q'}^*$ and a vertex $v_k^* \in S^*$. (It is possible that some of these vertices are the same.) Let $z = (v_i, v_k^*)$. Then $z \in R_1$. We proceed by distinguishing the following subcases based on the position of v_p , $v_{p'}$ and v_i in T.

Subcase 1.1.1. $v_{p'} \in I(v_i, v_p)$.

In this subcase, if v_k^* is closer than v_q^* , $v_{q'}^*$ to the leaf y of P^* , then, by Lemma 3, $w' \in I_{T \square T^*}(w, z)$, a contradiction.

If $v_k^* \in I(v_q^*, v_{q'}^*)$, then since $\ell(T^*) \geq 3$, there exists $z' = (v_i, v_{k'}^*) \in \{v_i\} \times S^*$ such

that $v_k^*, v_q^* \in I(v_{q'}^*, v_{k'}^*)$ in T^* . Then we have

$$d(w', z') = d_T(v_{p'}, v_i) + d_{T^*}(v_{q'}^*, v_{k'}^*)$$

= $d_T(v_{p'}, v_i) + d_{T^*}(v_{q'}^*, v_k^*) + d_{T^*}(v_k^*, v_{k'}^*)$
= $d(w', z) + d(z, z'),$

which implies that $z \in I_{T \square T^*}(w', z')$, a contradiction.

Subcase 1.1.2. $v_i \in I(v_p, v_{p'})$.

In this subcase, if $v_k^* \in I(v_q^*, v_{q'}^*)$ in P^* , then $z \in I_{T \square T^*}(w, w')$ by Lemma 3, a contradiction.

Assume that v_k^* is closer than v_q^* , $v_{q'}^*$ to the leaf of P^* . Since $|S^*| = \ell(T^*) \ge 3$, there is a vertex $z' = (v_i, v_{k'}^*) \in \{v_i\} \times S^*$ such that $v_q^*, v_{q'}^* \in I(v_k^*, v_{k'}^*)$ in T^* . Let $v_{k'}^*$ be on a branching path P'^* in T^* where $P'^* \ne P^*$. Note that $\ell(T) + 1 \ge 3$. There exists at least one vertex $a = (v_x, v_y^*) \in R_2 \setminus \{w, w'\}$. Next we consider the positions of v_x, v_y^* in T, T^* , respectively.

Suppose first that $v_u^* \in V(P^* \cup P'^*)$. If $v_x, v_p, v_{p'}$ and v_i lie on a path in T, then there are five vertices w, w', z, z' and a in R_2 , three of which lie on a common geodesic in $T \square T^*$, a contradiction. Note that if T is a path, then we are done as above. Therefore, assume that T is not isomorphic to a path in the following and the root of P has degree at least 3. Otherwise, $v_x \notin P$ and v_x, v_p lie on a common branching path in T. Let V_s be the set of vertices of T but not contained in $T_{ip'}$ where $T_{ip'}$ is the subtree of $T - v_p$ containing v_i and $v_{p'}$. If there is a vertex $a' = (v_s, v_l^*) \in R_2$ with $v_s \in V_s$, then R_2 contains w, w', z, z' and a', three of which are on a common geodesic, a contradiction. Therefore, the first coordinate of any vertex in R_2 cannot be in V_s . Assume that $P' \neq P$ is any branching path containing v_p and a leaf both in $T_{ip'}$ and T. Then, besides $w, P' \square T^*$ contains at most one vertex in R_2 of $T \square T^*$. Otherwise, $P' \square T^*$ contain two vertices h, h' in R_2 . Then there exist two vertices $h_0, h'_0 \in \{v_i\} \times S^*$ such that three vertices from $\{h, h', h_0, h'_0, w\}$ lie on some geodesic in $T \square T^*$, a contradiction. (Here h_0 may be equal to h'_0 .) Note that V_s contains at least two leaves of T since the root of P (just in V_s) has degree at least 3. Then $T_{ip'}$ has at most $\ell(T) - 2$ leaves in T. Since $P \square T^*$ contains two vertices w and w' in R_2 , we have $|R_2| \leq \ell(T) - 2 + 1 < \ell(T) = gp(T)$, a contradiction with the assumption.

Assume now that $v_y^* \notin V(P^* \cup P'^*)$. Then there exists a vertex $z'' = (v_i, v_{k''}^*) \in \{v_i\} \times S^*$ such that $v_y^*, v_{k''}^*$ lie on a common branching path in T^* . If v_y^* is closer to the leaf of the branching path than $v_{k''}^*$ in T^* , then $v_i \in I(v_x, v_i)$ and $v_{k''}^* \in I(v_y^*, v_k^*)$. Therefore, by Lemma 3, we get $z'' \in I_{T \square T^*}(a, z)$, a contradiction. In the case that $v_{k''}^*$ is closer to the leaf of the branching path than v_y^* in T^* , we consider the positions of $v_x, v_p, v_{p'}$ and v_i in T. Let $V_1 = \{z, z', w, w', a, z''\}$. Then $V_1 \subseteq R_2$. If $v_x, v_p, v_{p'}$ and v_i lie on a path in T, then there exist three vertices in V_1 lying on a common geodesic in

 $T \square T^*$, a contradiction again. Otherwise, $v_x \notin P$ and v_x, v_p lie on a common branching path in T. Similarly as above, a contradiction occurs.

Subcase 1.1.3. $v_p \in I(v_i, v_{p'})$.

In this subcase, since $\ell(T^*) \geq 3$, there exists a vertex $z' = (v_i, v_{k'}^*) \in \{v_i\} \times S^*$ such that $v_{k'}^* \notin P^*$ and $v_q^* \in I(v_{k'}^*, v_{q'}^*)$ in T^* . Since

$$d(z', w') = d_T(v_i, v_{p'}) + d_{T^*}(v_{k'}^*, v_{q'}^*)$$

= $d_T(v_i, v_p) + d_{T^*}(v_{k'}^*, v_q^*) + d_T(v_p, v_{p'}) + d_{T^*}(v_q^*, v_{q'}^*)$
= $d(z', w) + d(w, w'),$

we have $w \in I_{T \square T^*}(z', w')$, a contradiction.

Subcase 1.1.4. $v_i \notin V(P)$ such that v_i, v_p lie on a same branching path in T. In this subcase, since $\ell(T^*) \geq 3$, there is a vertex $z' = (v_i, v_{k'}^*) \in \{v_i\} \times S^*$ such that $v_q^* \in I(v_{k'}^*, v_k^*)$ in T^* . If $v_k^* \in I(v_q^*, v_{q'}^*)$, then obviously $v_k^* \in I(v_q^*, v_{k'}^*)$ and therefore,

$$d(w', z') = d_T(v_{p'}, v_i) + d_{T^*}(v_{q'}^*, v_{k'}^*)$$

= $d_T(v_{p'}, v_i) + d_{T^*}(v_{q'}^*, v_k^*) + d_{T^*}(v_k^*, v_{k'}^*)$
= $d(w', z) + d(z, z')$.

We conclude that $z \in I_{T \square T^*}(w', z')$, a contradiction.

If v_k^* is closer to the leaf of P^* than $v_q^*, v_{q'}^*$, then we get a contradiction similarly as in Subcase 1.1.2.

Case 1.2. v_q^* and $v_{q'}^*$ do not lie on a same branching path in T^* .

In this subcase, we may assume that v_q^* and $v_{q'}^*$ lie on distinct branching paths P^* and P'^* in T^* , respectively. Since $\ell(T^*) \geq 3$ and T^* is not isomorphic to a path, there exist two vertices $z = (v_i, v_k^*)$ and $z' = (v_i, v_{k'}^*)$ from $\{v_i\} \times S^*$, such that $v_k^* \in P^*$ and $v_{k'}^* \in P'^*$. We consider the following subcases based on the positions of v_p , $v_{p'}$ and v_i in T.

Subcase 1.2.1. $v_{p'} \in I(v_i, v_p)$.

In this subcase, if $v_{k'}^*$ is closer than $v_{q'}^*$ to the leaf of P'^* , then $v_{p'} \in I(v_p, v_i)$ and $v_{q'}^* \in I(v_q^*, v_{k'}^*)$. Lemma 3 gives $w' \in I_{T \square T^*}(w, z')$, a contradiction. On the other hand, if $v_{q'}^*$ is closer than $v_{k'}^*$ to the leaf of P'^* , then $v_i \in I(v_i, v_{p'})$ and $v_{k'}^* \in I(v_k^*, v_{q'}^*)$, hence Lemma 3 gives $z' \in I_{T \square T^*}(w', z)$, a contradiction again.

Subcase 1.2.2. $v_i \in I(v_p, v_{p'})$.

In this subcase, we first assume that $v_{q'}^*$ is closer than $v_{k'}^*$ to the leaf of P'^* . Then $v_i \in I(v_i, v_{p'})$ and $v_{k'}^* \in I(v_k^*, v_{q'}^*)$. Therefore, by Lemma 3, we get $z' \in I_{T \square T^*}(z, w')$ as a contradiction. Otherwise we suppose that $v_{k'}^*$ is closer than $v_{q'}^*$ to the leaf of P'^* . If v_q^*

is closer than v_k^* to the leaf of P^* , then $v_i \in I(v_p, v_i)$ and $v_k^* \in I(v_q^*, v_{k'}^*)$. Therefore, by Lemma 3, we get $z \in I_{T \square T^*}(w, z')$, a contradiction. In the case that v_k^* is closer than v_q^* to the leaf of P^* , we find a contradiction similarly as the proof of Subcase 1.1.2.

Subcase 1.2.3. $v_p \in I(v_i, v_{p'})$.

In this subcase, if v_k^* is closer than v_q^* to the leaf of P^* , then $v_p \in I(v_i, v_{p'})$ and $v_q^* \in I(v_k^*, v_{q'}^*)$. So Lemma 3 gives $w \in I_{T \square T^*}(z, w')$, a contradiction. And if v_q^* is closer than v_k^* to the leaf of P^* , then $v_i \in I(v_i, v_p)$ and $v_k^* \in I(v_{k'}^*, v_q^*)$, hence we get $z \in I_{T \square T^*}(z', w)$.

Subcase 1.2.4. $v_i \notin V(P)$ such that v_i, v_p lie on a same branching path in T. First suppose that v_q^* is closer to the leaf than v_k^* in P^* , then $v_i \in I(v_i, v_p)$ and $v_k^* \in I(v_q^*, v_{k'}^*)$. Thus, by Lemma 3, we get $z \in I_{T \square T^*}(w, z')$.

Assume that v_k^* is closer than v_q^* to the leaf of P^* . If $v_{q'}^*$ is closer to the leaf than $v_{k'}^*$, then $v_i \in I(v_i, v_{p'})$ and $v_{k'}^* \in I(v_k^*, v_{q'}^*)$, which gives $z' \in I_{T \square T^*}(z, w')$. If $v_{k'}^*$ is closer than $v_{q'}^*$ to the leaf of P'^* , we can proceed similarly as in Subcase 1.1.4.

Now we turn to the second case.

Case 2. $|R \cap V(v_k T^*)| < \ell(T^*)$ for any $k \in [n]$, and $|R \cap V(T^{v_t^*})| < \ell(T)$ for any $t \in [n^*]$.

In this case, let ${}^{v_i}T^*$ be a layer with $|R \cap V({}^{v_i}T^*)| = \max\{|R \cap V({}^{v_k}T^*)| : k \in [n]\}$. Let $R = R_1 \cup R_2$ where $R_1 = R \cap V({}^{v_i}T^*)$ and $R_2 = R \setminus R_1$, that is, $R_2 = \bigcup_{k \in [n] \setminus \{i\}} \left(V({}^{v_k}T^*) \cap V({}^{v_k}T^*)\right)$

R). Set further $S^* = \{v_j^* : (v_i, v_j^*) \in R_1\}$. Then $1 \le |S^*| \le \ell(T^*) - 1$.

Assume first $|S^*| = 1$. Therefore $|R \cap V(v_k T^*)| \leq 1$ for any $k \in [n]$. Next we only need to consider $|R \cap V(T^{v_j^*})| \leq 1$ for any $j \in [n^*]$. (If $|R \cap V(T^{v_j^*})| \geq 2$ for some $j \in [n^*]$, by commutativity of $T \square T^*$, the proof is similar to the subcase in which $2 \leq |S^*| \leq \ell(T^*) - 1$.) Therefore, suppose that $|R \cap V(T^{v_j^*})| \leq 1$ for any $j \in [n^*]$. Then $|R| \leq \min\{n, n^*\}$. We now claim that $|R| \leq \ell(T) + \ell(T^*)$. If not, then since $|R| \geq \ell(T) + \ell(T^*) + 1 \geq 6$, there exist three vertices $u = (v_p, v_j^*)$, $v = (v_{p'}, v_q^*)$ and $w = (v_s, v_\ell^*)$ from R such that $v_p, v_{p'}$ lie on a same branching path in T, and v_j^*, v_ℓ^* lie on a common branching path in T^* . Note that there may be $p' = s, q = \ell$. But we can always select a vertex $h \in R \setminus \{u, v, w\}$ such that u, v, h or u, w, h lie on a same geodesic in $T \square T^*$, which is a contradiction. So our result holds when $|S^*| = 1$.

Suppose second that $2 \leq |S^*| \leq \ell(T^*) - 1$. As $|R_1| = |S^*|$, we need to prove that $|R_2| \leq \ell(T) + \ell(T^*) - |S^*|$. Assume on the contrary that $|R_2| \geq \ell(T) + \ell(T^*) - |S^*| + 1$. Since $|S^*| \geq 2$, there are two distinct vertices $w = (v_i, v_j^*)$ and $w' = (v_i, v_{j'}^*)$ from $\{v_i\} \times S^*$. We distinguish the following cases based on the positions of $v_j^*, v_{j'}^*$ in T^* .

Case 2.1. v_j^* and $v_{j'}^*$ lie on a same branching path P^* of T^* . In this subcase, we may without loss of generality assume that $v_{j'}^*$ is closer than v_j^* to the leaf of P^* . Let $T^*_{v^*_{j'}}$ be the maximal subtree of $T^* - v^*_j$ containing $v^*_{j'}$ and let $V_{s^*} = V(T^*) \setminus V(T^*_{v^*_{j'}})$. Let further $S^*_1 = \{v^*_q : v^*_q \in I(v^*_j, v^*_\ell), v^*_\ell \in S^* \cap V(T^*_{v^*_{j'}})\}$. Now we prove the following claim.

Claim 1. If $z = (v_p, v_t^*) \in R_2$, then $v_t^* \in S_1^*$.

Proof of Claim 1. If not, suppose first that $v_t^* \in V(P^*)$ is closer than $v_{j'}^*$ to the leaf of P^* . Then $v_i \in I(v_i, v_p)$ and $v_{j'}^* \in I(v_t^*, v_j^*)$. Hence, $w' \in I_{T \square T^*}(w, z)$. And if $v_t^* \in V_{s^*}$, then $v_j^* \in I(v_t^*, v_{j'}^*)$. Combining this fact with $v_i \in I(v_i, v_p)$, we have $w \in I_{T \square T^*}(w', z)$. This proves Claim 1.

By Claim 1, we have $|\bigcup_{v_t^* \in S_1^*} (V(T^{v_t^*}) \cap R)| \ge \ell(T) + \ell(T^*) - |S^*| + 1 \ge \ell(T) + 1.$

Then there exist two vertices $z = (v_p, v_\ell^*)$ and $z' = (v_{p'}, v_{\ell'}^*)$ from $\bigcup_{v_t^* \in S_1^*} (V(T^{v_t^*}) \cap R)$ such that $v_\ell^*, v_{\ell'}^* \in S_1^*$ and $v_p, v_{p'}$ lie on a same branching path P in T. Without loss of generality, let $v_{p'}$ be closer than v_p to the leaf of P, and let $v_\ell^*, v_{\ell'}^* \in I(v_j^*, v_{j'}^*)$ (by the definition of S_1^*). We consider the following subcases according to the positions of $v_i, v_p, v_{p'}$ in T.

Subcase 2.1.1. $v_{p'} \in I(v_i, v_p)$.

If $v_{\ell'}^*$ is closer than v_{ℓ}^* to $v_{j'}^*$ in P^* , then we have $v_{p'} \in I(v_i, v_p)$ and $v_{\ell'}^* \in I(v_{\ell}^*, v_{j'}^*)$. Therefore, $z' \in I_{T \square T^*}(z, w')$. And if v_{ℓ}^* is closer than $v_{\ell'}^*$ to $v_{j'}^*$ in P^* , then we have $v_{p'} \in I(v_i, v_p)$ and $v_{\ell'}^* \in I(v_{\ell}^*, v_j^*)$ and so $z' \in I_{T \square T^*}(z, w)$.

Subcase 2.1.2. $v_i \in I(v_p, v_{p'})$.

Note that $\ell(T) + \ell(T^*) - |S^*| + 1 \ge 4$. Then there exists at least a vertex $a = (v_x, v_y^*) \in \bigcup_{v_t^* \in S_1^*} (V(T^{v_t^*}) \cap R)$ different from z and z'. Based on the position of v_y^* ($v_y^* \in P^*$ or $v_y^* \notin P^*$) in T^* , and the positions of v_x , v_i , v_p and $v_{p'}$ in T, we get contradictions using a similar proof as in Subcase 1.1.2.

Subcase 2.1.3. $v_p \in I(v_i, v_{p'})$.

If $v_{\ell'}^*$ is closer than v_{ℓ}^* to $v_{j'}^*$ in T^* , then $v_p \in I(v_i, v_{p'})$ and $v_{\ell}^* \in I(v_j^*, v_{\ell'}^*)$, therefore $z \in I_{T \square T^*}(w, z')$. And if v_{ℓ}^* is closer than $v_{\ell'}^*$ to $v_{j'}^*$ in T^* , then $v_p \in I(v_i, v_{p'})$ and $v_{\ell}^* \in I(v_{j'}^*, v_{\ell'}^*)$, hence $z \in I_{T \square T^*}(w, z')$.

Subcase 2.1.4. $v_i \notin V(P)$ such that v_i, v_p lie on a same branching path in T. Since $\ell(T) + \ell(T^*) - |S^*| + 1 \ge 4$, there exists a vertex $(v_x, v_y^*) \in \bigcup_{v_t^* \in S_1^*} (V(T^{v_t^*}) \cap R)$. Proceeding similarly as in Subcase 1.1.4, we get required contradictions. But then $|\bigcup_{v_t^* \in S_1^*} (V(T^{v_t^*}) \cap R)| \le \ell(T) + \ell(T^*) - |S^*|$, a contradiction with the assumption.

Case 2.2. $v_j^*, v_{j'}^*$ lie on different branching paths P^* , P'^* in T^* , respectively. In this subcase, let S_2^* be a set of vertices of $v_i T^*$ closer to the leaf of a branching path than v_g^* for any $v_g^* \in S^*$. Note that $S^* \cap S_2^* = \emptyset$. We prove the following claim.

Claim 2. If (v_p, v_t^*) in R_2 , then $v_t^* \in V(T^*) \setminus (S^* \cup S_2^*)$.

Proof of Claim 2. Lemma 4 implies $v_t^* \notin S^*$. Assume that $v_t^* \in S_2^*$ lies on a same branching path for some v_g^* in T^* . Note that $|S^*| \ge 2$. Then there exists another vertex $v_{g'}^*$ such that $v_g^* \in I(v_t^*, v_{g'}^*)$. Combining this fact with $v_i \in I(v_i, v_p)$, we arrive at a contradiction $w \in I_{T \square T^*}(z, w')$. This proves Claim 2.

Let now $S_{1'}^* = \{v_q^* : v_q^* \in I(v_g^*, v_{g'}^*), v_g^*, v_{g'}^* \in S^*\}$. By a parallel reasoning as in Subcase 2.1 and with Claim 2 in hands we infer that $|\bigcup_{v_t^* \in S_{1'}^*} (V(T^{v_t^*}) \cap R)| \leq \ell(T)$.

Let $S = \{v_k : (v_k, v_t^*) \in \bigcup_{v_t^* \in S_{1'}^*} (V(T^{v_t^*}) \cap R)\}$ and set $S^{**} = V(T^*) \setminus (S^* \cup S_{1'}^*)$. From the assumption we have $|\bigcup_{v_t^* \in S^{**}} (V(T^{v_t^*}) \cap R)| \ge \ell(T) + \ell(T^*) - |S| - |S^*| + 1$. So there exists a vertex $z = (v_p, v_\ell^*) \in \bigcup_{v_t^* \in S^{**}} (V(T^{v_t^*}) \cap R)$, and we can always select two distinct vertices $u = (v_h, v_g^*)$ and $v = (v_{h'}, v_{g'}^*)$ from R such that v_p and v_h lie on a same branching path in T, while v_ℓ^* and $v_{g'}^*$ lie on a common branching path in T^* . But we can choose another vertex $w \in R$ such that either u, w, z or u, v, z lie on a same geodesic in $T \Box T^*$ as a contradiction. Therefore,

$$\left|\bigcup_{v_t^* \in S^{**}} \left(V(T^{v_t^*}) \cap R \right) \right| \le \ell(T) + \ell(T^*) - |S| - |S^*|.$$

and we are done.

Acknowledgements

Kexiang Xu is supported by NNSF of China (grant No. 11671202, and the China-Slovene bilateral grant 12-9). Sandi Klavžar acknowledges the financial support from the Slovenian Research Agency (research core funding P1-0297, projects J1-9109, J1-1693, N1-0095, and the bilateral grant BI-CN-18-20-008).

References

- B. S. Anand, S. V. Ullas Chandran, M. Changat, S. Klavžar, E. J. Thomas, Characterization of general position sets and its applications to cographs and bipartite graphs, Appl. Math. Comput. 359 (2019) 84–89.
- [2] R. Balakrishnan, S. F. Raj, T. Kavaskar, b-coloring of Cartesian product of trees, Taiwanese J. Math. 20 (2016) 1–11.
- [3] M. Ghorbani, S. Klavžar, H.R. Maimani, M. Momeni, F. Rahimi-Mahid, G. Rus, The general position problem on Kneser graphs and on some graph operations, Discuss. Math. Graph Theory (2019) doi:10.7151/dmgt.2269.

- [4] W. Imrich, S. Klavžar, D. F. Rall, Topics in Graph Theory: Graphs and their Cartesian Product, A K Peters, Wellesley, MA, 2008.
- [5] S. Klavžar, I. G. Yero, The general position problem and strong resolving graphs, Open Math. 17 (2019) 1126–1135.
- [6] S. Klavžar, B. Patkós, G. Rus, I. G. Yero, On general position sets in Cartesian grids, arXiv:1907.04535 [math.CO] (July 25, 2019).
- [7] S. Klavžar, G. Rus, The general position number of integer lattices, Appl. Math. Comput., to appear.
- [8] J. Körner, On the extremal combinatorics of the Hamming space, J. Combin. Theory Ser A 71 (1995) 112–126.
- [9] P. Manuel, S. Klavžar, A general position problem in graph theory, Bull. Aust. Math. Soc. 98 (2018) 177–187.
- [10] P. Manuel, S. Klavžar, The graph theory general position problem on some interconnection networks, Fund. Inform. 163 (2018) 339–350.
- [11] B. Patkós, On the general position problem on Kneser graphs, Ars Math. Contemp. (2020), date accessed: 01 Sep. 2020, doi:https://doi.org/10.26493/1855-3974.1957.a0f.
- [12] W. C. Shiu, R. M. Low, The integer-magic spectra and null sets of the Cartesian product of trees, Australas. J. Combin. 70 (2018) 157–167.
- [13] J. Tian, K. Xu, The general position number of Cartesian products of trees or cycles with general graphs, submitted.
- [14] S. V. Ullas Chandran, G. Jaya Parthasarathy, The geodesic irredundant sets in graphs, Int. J. Math. Combin. 4 (2016) 135–143.
- [15] D. R. Wood, Colouring the square of the Cartesian product of trees, Discrete Math. Theor. Comput. Sci. 13 (2011) 109–111.