The general position number of the Cartesian product of two trees

Jing Tian ${ }^{a}$, Kexiang Xu ${ }^{a}$, Sandi Klavžar ${ }^{b}, c, d$
${ }^{a}$ College of Science, Nanjing University of Aeronautics \& Astronautics, Nanjing, Jiangsu 210016, PR China
${ }^{b}$ Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
${ }^{c}$ Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia
${ }^{d}$ Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia
jingtian526@126.com (J. Tian)
kexxu1221@126.com (K. Xu)
sandi.klavzar@fmf.uni-lj.si (S. Klavžar)

Abstract

The general position number of a connected graph is the cardinality of a largest set of vertices such that no three pairwise-distinct vertices from the set lie on a common shortest path. In this paper it is proved that the general position number is additive on the Cartesian product of two trees.

Keywords: general position set; general position number; Cartesian product; trees AMS Math. Subj. Class. (2020): 05C05, 05C12, 05C35

1 Introduction

Let $d_{G}(x, y)$ denote, as usual, the number of edges on a shortest x, y-path in G. A set S of vertices of a connected graph G is a general position set if $d_{G}(x, y) \neq d_{G}(x, z)+$ $d_{G}(z, y)$ holds for every $\{x, y, z\} \in\binom{S}{3}$. The general position number $\operatorname{gp}(G)$ of G is the cardinality of a largest general position set in G. Such a set is briefly called a gp-set of G.

Before the general position number was introduced in [9], an equivalent concept was proposed in [14]. Much earlier, however, the general position problem has been studied by Körner [8] in the special case of hypercubes. Following [9], the graph theory general position problem has been investigated in [1, 3, 5, 6, 10, 11, 13].

The Cartesian product $G \square H$ of vertex-disjoint graphs G and H is the graph with vertex set $V(G) \times V(H)$, vertices (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ being adjacent if either $g=g^{\prime}$ and $h h^{\prime} \in E(H)$, or $h=h^{\prime}$ and $g g^{\prime} \in E(G)$. In this paper we are interested in $\operatorname{gp}(G \square H)$, a problem earlier studied in [3, 6, 10, 13]. More precisely, we are interested in Cartesian products of two (finite) trees. (For some of the other investigations of the Cartesian product of trees see [2, 12, 15].) An important reason for this interest is the fact that the general position number of products of paths is far from being trivial. First, denoting with P_{∞} the two-way infinite path, one of the main results from [10] asserts that $\operatorname{gp}\left(P_{\infty} \square P_{\infty}\right)=4$. Denoting further with G^{n} the n-fold Cartesian product of G, it was demonstrated in the same paper that $10 \leq \operatorname{gp}\left(P_{\infty}^{3}\right) \leq 16$. The lower bound 10 was improved to 14 in [6]. Very recently, these results were superseded in [7] by proving that if n is an arbitrary positive integer, then $\operatorname{gp}\left(P_{\infty}^{n}\right)=2^{2^{n-1}}$. Denoting with $n(G)$ the order of a graph G, in this paper we prove:

Theorem 1. If T and T^{*} are trees with $\min \left\{n(T), n\left(T^{*}\right)\right\} \geq 3$, then

$$
\operatorname{gp}\left(T \square T^{*}\right)=\operatorname{gp}(T)+\operatorname{gp}\left(T^{*}\right)
$$

Theorem 1 widely extends the above mentioned result $\operatorname{gp}\left(P_{\infty} \square P_{\infty}\right)=4$. Further, the equality $\operatorname{gp}\left(P_{\infty}^{n}\right)=2^{2^{n-1}}$ shows that Theorem 1 has no obvious (inductive) extension to Cartesian products of more than two trees. Hence, to determine the general position number of such products remains a challenging problem.

In the next section we give further definitions, recall known results needed, and prove several auxiliary new results. Then, in Section 3, we prove Theorem 11,

2 Preliminaries

Let T be a tree. The set of leaves of T will be denoted by $L(T)$, and let $\ell(T)=|L(T)|$. If u and v are vertices of T with $\operatorname{deg}(u) \geq 2$ and $\operatorname{deg}(v)=1$, then the unique u, v-path is a branching path of T. If u is not a leaf of T, then there are exactly $\ell(T)$ branching paths starting from u; we say that the u is the root of these branching paths and that the degree 1 vertex of a branching path P is the leaf of P.

Lemma 1. ([9) If T is a tree, then $\operatorname{gp}(T)=\ell(T)$.
We next describe which vertices of a tree lie in some gp-set of the tree.

Lemma 2. A non-leaf vertex u in a tree T belongs to a gp-set of T if and only if $T-u$ has exactly two components and at least one of them is a path.

Proof. First, let R be a gp-set of T containing the non-leaf vertex u. Suppose that $T-u$ has at least three components, say T_{1}, T_{2} and T_{3}. Since R is a gp-set containing u, R intersects with at most one of T_{1}, T_{2} and T_{3}. Assume without loss of generality that $R \cap V\left(T_{2}\right)=\emptyset$ and $R \cap V\left(T_{3}\right)=\emptyset$. Choose vertices v and w in T such that $v \in V\left(T_{2}\right)$ and $w \in V\left(T_{3}\right)$. Then $(R-\{u\}) \cup\{v, w\}$ is a larger gp-set than R in T, a contradiction. Hence $T-u$ has exactly two components, say T_{1} and T_{2}. Now suppose that neither T_{1} nor T_{2} is a path. Then as above, we have $R \cap V\left(T_{1}\right)=\emptyset$ or $R \cap V\left(T_{2}\right)=\emptyset$. By symmetry, we assume that $R \cap V\left(T_{2}\right)=\emptyset$. Since T_{2} is not a path, there are at least two leaves x_{1} and x_{2} in T_{2}. Then the set $(R-\{u\}) \cup\left\{x_{1}, x_{2}\right\}$ is a larger gp-set than R, again, in T. Therefore, at least one of T_{1} and T_{2} is a path.

Conversely, we observe that u is a non-leaf vertex on a pendant path in T. Then u belongs to a gp-set in T.

In $G \square H$, if $h \in V(H)$, then the subgraph of $G \square H$ induced by the vertices (g, h), $g \in V(G)$, is a G-layer, denoted with G^{h}. Analogously H-layers ${ }^{g} H$ are defined. G layers and H-layers are isomorphic to G and to H, respectively. The distance function in Cartesian products is additive, that is, if $\left(g_{1}, h_{1}\right),\left(g_{2}, h_{2}\right) \in V(G \square H)$, then

$$
\begin{equation*}
d_{G \square H}\left(\left(g_{1}, h_{1}\right),\left(g_{2}, h_{2}\right)\right)=d_{G}\left(g_{1}, g_{2}\right)+d_{H}\left(h_{1}, h_{2}\right) . \tag{1}
\end{equation*}
$$

If $u, v \in V(G)$, then the interval $I_{G}(u, v)$ between u and v in G is the set of all vertices lying on shortest u, v-paths, that is,

$$
I_{G}(u, v)=\left\{w: d_{G}(u, v)=d_{G}(u, w)+d_{G}(w, u)\right\}
$$

In what follows, the notations $d_{G}(u, v)$ and $I_{G}(u, v)$ may be simplified to $d(u, v)$ and $I(u, v)$ if G will be clear from the context. Equality (1) implies that intervals in Cartesian products have the following nice structure, cf. [4, Proposition 12.4].

Lemma 3. If G and H are connected graphs and $\left(g_{1}, h_{1}\right),\left(g_{2}, h_{2}\right) \in V(G \square H)$, then

$$
I_{G \square H}\left(\left(g_{1}, h_{1}\right),\left(g_{2}, h_{2}\right)\right)=I_{G}\left(g_{1}, g_{2}\right) \times I_{H}\left(h_{1}, h_{2}\right) .
$$

Equality (11) also easily implies the following fact (also proved in [13]).
Lemma 4. Let G and H be connected graphs and R a general position set of $G \square H$. If $u=(g, h) \in R$, then $V\left({ }^{g} H\right) \cap R=\{u\}$ or $V\left(G^{h}\right) \cap R=\{u\}$.

For finite paths the already mentioned result $\operatorname{gp}\left(P_{\infty} \square P_{\infty}\right)=4$ reduces to:

Lemma 5. ([10]) If $n_{1}, n_{2} \geq 2$, then

$$
\operatorname{gp}\left(P_{n_{1}} \square P_{n_{2}}\right)= \begin{cases}4 ; & \min \left\{n_{1}, n_{2}\right\} \geq 3, \\ 3 ; & \text { otherwise }\end{cases}
$$

To conclude the preliminaries we construct special maximal (with respect to inclusion) general position sets in products of trees.

Lemma 6. Let T and T^{*} be two trees with $\min \left\{n(T), n\left(T^{*}\right)\right\} \geq 3, v_{i} \in V(T) \backslash L(T)$, and $v_{j}^{*} \in V\left(T^{*}\right) \backslash L\left(T^{*}\right)$. Then $\left(L(T) \times\left\{v_{j}^{*}\right\}\right) \cup\left(\left\{v_{i}\right\} \times L\left(T^{*}\right)\right)$ is a maximal general position set of $T \square T^{*}$.

Proof. Set $R=\left(L(T) \times\left\{v_{j}^{*}\right\}\right) \cup\left(\left\{v_{i}\right\} \times L\left(T^{*}\right)\right)$ and let $V_{0}=\{u, v, w\} \subseteq R$. We first consider the case when $V_{0} \subseteq L(T) \times\left\{v_{j}^{*}\right\}$ or $V_{0} \subseteq\left\{v_{i}\right\} \times L\left(T^{*}\right)$. By symmetry, assume that $V_{0} \subseteq L(T) \times\left\{v_{j}^{*}\right\}$. Then each vertex of V_{0} is corresponding to a leaf of $L(T)$ in the layer $T^{v_{j}^{*}} \cong T$. Therefore u, v, w do not lie on a common geodesic in $T \square T^{*}$.

In the following, without loss of generality, we can assume that $u, w \in L(T) \times\left\{v_{j}^{*}\right\}$ with $u=\left(v_{k}, v_{j}^{*}\right), w=\left(v_{s}, v_{j}^{*}\right)$ and $v=\left(v_{i}, v_{\ell}^{*}\right) \in\left\{v_{i}\right\} \times L\left(T^{*}\right)$. By Equality (11), we have $d(u, v)=d_{T}\left(v_{k}, v_{i}\right)+d_{T^{*}}\left(v_{j}^{*}, v_{\ell}^{*}\right)$ and $d(u, w)=d_{T}\left(v_{k}, v_{s}\right), d(w, v)=d_{T}\left(v_{s}, v_{i}\right)+$ $d_{T^{*}}\left(v_{j}^{*}, v_{\ell}^{*}\right)$. Note that v_{k}, v_{s} are two distinct vertices in $L(T)$ of T and $v_{i} \in V(T) \backslash L(T)$. Then $d_{T}\left(v_{k}, v_{i}\right)<d_{T}\left(v_{k}, v_{s}\right)+d_{T}\left(v_{s}, v_{i}\right)$ whenever v_{i} lies on the v_{k}, v_{s}-geodesic or outside v_{k}, v_{s}-geodesic of T. This implies that $d(u, v)<d(u, w)+d(w, v)$ in $T \square T^{*}$. Therefore w does not lie on the u, v-geodesic in $T \square T^{*}$. Analogously, neither u lies on the v, w geodesic nor v lies on the u, w-geodesic of $T \square T^{*}$. Thus u, v, w do not lie on a common geodesic in $T \square T^{*}$, which implies that R is a general position set in $T \square T^{*}$.

Next we prove the maximality of $\left(L(T) \times\left\{v_{j}^{*}\right\}\right) \cup\left(\left\{v_{i}\right\} \times L\left(T^{*}\right)\right)$ as a general position set in $T \square T^{*}$. Otherwise, there is a general position set R^{\prime} in $T \square T^{*}$ of order greater than $\ell(T)+\ell\left(T^{*}\right)$ such that $R \subset R^{\prime}$. Then there exists a vertex $z \in R^{\prime} \backslash R$, say $z=\left(v_{p}, v_{q}^{*}\right)$. If $p=i$, then there exist two vertices $\left(v_{i}, v_{s}^{*}\right),\left(v_{i}, v_{t}^{*}\right) \in R$ such that $z \in I_{T \square T^{*}}\left(\left(v_{i}, v_{s}^{*}\right),\left(v_{i}, v_{t}^{*}\right)\right)$ (since $\left.{ }^{v_{i}} T^{*} \cong T^{*}\right)$. This is a contradiction showing that $p \neq i$. Similarly, we have $q \neq j$. Now we consider the positions of v_{p} in T and v_{q}^{*} in T^{*}. Suppose first that $v_{p} \in L(T), v_{q}^{*} \in L\left(T^{*}\right)$. Then there are two vertices $\left(v_{p}, v_{j}^{*}\right),\left(v_{i}, v_{q}^{*}\right)$ in R such that $z \in I_{T \square T^{*}}\left(\left(v_{p}, v_{j}^{*}\right),\left(v_{i}, v_{q}^{*}\right)\right)$, contracting that $R \cup\{z\}$ is a general position set of $T \square T^{*}$. If $v_{p} \in L(T)$ and $v_{q}^{*} \notin L\left(T^{*}\right)$, then we select a vertex $v_{q^{\prime}}^{*} \in L\left(T^{*}\right)$ such that $v_{q^{\prime}}^{*}$ is closer to the leaf of the corresponding branching path than v_{q}^{*} in T^{*}. Then $z \in I_{T \square T^{*}}\left(\left(v_{p}, v_{j}^{*}\right),\left(v_{i}, v_{q^{\prime}}^{*}\right)\right)$, a contradiction. Similarly, $v_{p} \notin L(T)$ and $v_{q}^{*} \in L\left(T^{*}\right)$ cannot occur. Finally we assume that $v_{p} \notin L(T), v_{q}^{*} \notin L\left(T^{*}\right)$. Now we select two vertices $v_{p^{\prime}} \in L(T)$ and $v_{q^{\prime}}^{*} \in L\left(T^{*}\right)$ such that $v_{p^{\prime}}$ is closer to the leaf of the branching path than v_{p} in T and $v_{q^{\prime}}^{*}$ is closer to the leaf of the branching path than v_{q}^{*} in T^{*}. But then $\left(v_{p}, v_{q}^{*}\right) \in I_{T \square T^{*}}\left(\left(v_{p^{\prime}}, v_{j}^{*}\right),\left(v_{i}, v_{q^{\prime}}^{*}\right)\right)$, a final contradiction.

3 Proof of Theorem 1

If T and T^{*} are both paths, then Theorem 1 holds by Lemma 5. In the following we may thus without loss of generality assume that T^{*} is not a path. Lemma 6 implies that $\operatorname{gp}\left(T \square T^{*}\right) \geq \operatorname{gp}(T)+\operatorname{gp}\left(T^{*}\right)$, hence it remains to prove that $\operatorname{gp}\left(T \square T^{*}\right) \leq \operatorname{gp}(T)+$ $\operatorname{gp}\left(T^{*}\right)$. Set $n=n(T), n^{*}=n\left(T^{*}\right), V(T)=\left\{v_{1}, \ldots, v_{n}\right\}$, and $V\left(T^{*}\right)=\left\{v_{1}^{*}, \ldots, v_{n^{*}}^{*}\right\}$.

Assume on the contrary that there exists a general position set R of T such that $|R|>\operatorname{gp}(T)+\operatorname{gp}\left(T^{*}\right)$. Since the restriction of R to a T-layer of $T \square T^{*}$ is a general position set of the layer (which is in turn isomorphic to T), the restriction contains at $\operatorname{most} \operatorname{gp}(T)=\ell(T)$ elements. Similarly, the restriction of R to a T^{*}-layer contains at most $\operatorname{gp}\left(T^{*}\right)=\ell\left(T^{*}\right)$ elements. We now distinguish the following cases.

Case 1. There exists a T-layer $T^{v_{j}^{*}}$ with $\left|V\left(T^{v_{j}^{*}}\right) \cap R\right|=\operatorname{gp}(T)$, or a T^{*}-layer ${ }^{v_{i}} T^{*}$ with $\left|V\left({ }^{v_{i}} T^{*}\right) \cap R\right|=\operatorname{gp}\left(T^{*}\right)$.

By the commutativity of the Cartesian product, we may without loss of generality assume that there is a layer ${ }^{v_{i}} T^{*}$ with $\left|R \cap V\left({ }^{v_{i}} T^{*}\right)\right|=\operatorname{gp}\left(T^{*}\right)$. Let $R=R_{1} \cup R_{2}$, where $R_{1}=R \cap V\left({ }^{v_{i}} T^{*}\right)$ and $R_{2}=R \backslash R_{1}$, that is, $R_{2}=\bigcup_{t \in[n \backslash \backslash\{i\}}\left(V\left({ }^{v_{t}} T^{*}\right) \cap R\right)$. Let further S^{*} be the projection of $R \cap V\left({ }^{v_{i}} T^{*}\right)$ on T^{*}, that is, $S^{*}=\left\{v_{j}^{*}:\left(v_{i}, v_{j}^{*}\right) \in R_{1}\right\}$. Since $\left|R_{1}\right|=\operatorname{gp}\left(T^{*}\right)$, our assumption implies $\left|R_{2}\right| \geq \operatorname{gp}(T)+1$. Then, as $\operatorname{gp}(T)=\ell(T)$, there exist two different vertices $w=\left(v_{p}, v_{q}^{*}\right)$ and $w^{\prime}=\left(v_{p^{\prime}}, v_{q^{\prime}}^{*}\right)$ from R_{2} such that v_{p} and $v_{p^{\prime}}$ lie on a same branching path P of T. (Note that it is possible that $v_{p}=v_{p^{\prime}}$.) We may assume that $d_{T}\left(v_{p^{\prime}}, x\right) \leq d_{T}\left(v_{p}, x\right)$, where x is the leaf of P. We proceed by distinguishing two subcases based on the position of v_{q}^{*} and $v_{q^{\prime}}^{*}$ in T^{*}.
Case 1.1. There exists a branching path P^{*} of T^{*} that contains both v_{q}^{*} and $v_{q^{\prime}}^{*}$.
Recall that T^{*} is not a path. Lemma 2 implies that a vertex of a tree belongs to a gp-set if and only if it lies on a pendant path and has degree 1 or 2 . Therefore, we can select P^{*} with the root of degree at least 3 . Assume that $d_{T^{*}}\left(v_{q^{\prime}}^{*}, y\right) \leq d_{T^{*}}\left(v_{q}^{*}, y\right)$, where y is the leaf of P^{*}. (The reverse case can be treated analogously.) Since S^{*} is a gp-set of T^{*} which is not isomorphic to a path, there is a vertex $v_{k}^{*} \in S^{*}$ lying on P^{*}. So we may consider that P^{*} is a branching path that contains $v_{q}^{*}, v_{q^{\prime}}^{*}$ and a vertex $v_{k}^{*} \in S^{*}$. (It is possible that some of these vertices are the same.) Let $z=\left(v_{i}, v_{k}^{*}\right)$. Then $z \in R_{1}$. We proceed by distinguishing the following subcases based on the position of $v_{p}, v_{p^{\prime}}$ and v_{i} in T.
Subcase 1.1.1. $v_{p^{\prime}} \in I\left(v_{i}, v_{p}\right)$.
In this subcase, if v_{k}^{*} is closer than $v_{q}^{*}, v_{q^{\prime}}^{*}$ to the leaf y of P^{*}, then, by Lemma 3, $w^{\prime} \in I_{T \square T^{*}}(w, z)$, a contradiction.

If $v_{k}^{*} \in I\left(v_{q}^{*}, v_{q^{\prime}}^{*}\right)$, then since $\ell\left(T^{*}\right) \geq 3$, there exists $z^{\prime}=\left(v_{i}, v_{k^{\prime}}^{*}\right) \in\left\{v_{i}\right\} \times S^{*}$ such
that $v_{k}^{*}, v_{q}^{*} \in I\left(v_{q^{\prime}}^{*}, v_{k^{\prime}}^{*}\right)$ in T^{*}. Then we have

$$
\begin{aligned}
d\left(w^{\prime}, z^{\prime}\right) & =d_{T}\left(v_{p^{\prime}}, v_{i}\right)+d_{T^{*}}\left(v_{q^{\prime}}^{*}, v_{k^{\prime}}^{*}\right) \\
& =d_{T}\left(v_{p^{\prime}}, v_{i}\right)+d_{T^{*}}\left(v_{q^{\prime}}^{*}, v_{k}^{*}\right)+d_{T^{*}}\left(v_{k}^{*}, v_{k^{\prime}}^{*}\right) \\
& =d\left(w^{\prime}, z\right)+d\left(z, z^{\prime}\right),
\end{aligned}
$$

which implies that $z \in I_{T \square T^{*}}\left(w^{\prime}, z^{\prime}\right)$, a contradiction.
Subcase 1.1.2. $v_{i} \in I\left(v_{p}, v_{p^{\prime}}\right)$.
In this subcase, if $v_{k}^{*} \in I\left(v_{q}^{*}, v_{q^{\prime}}^{*}\right)$ in P^{*}, then $z \in I_{T \square T^{*}}\left(w, w^{\prime}\right)$ by Lemma 3, a contradiction.

Assume that v_{k}^{*} is closer than $v_{q}^{*}, v_{q^{\prime}}^{*}$ to the leaf of P^{*}. Since $\left|S^{*}\right|=\ell\left(T^{*}\right) \geq 3$, there is a vertex $z^{\prime}=\left(v_{i}, v_{k^{\prime}}^{*}\right) \in\left\{v_{i}\right\} \times S^{*}$ such that $v_{q}^{*}, v_{q^{\prime}}^{*} \in I\left(v_{k}^{*}, v_{k^{\prime}}^{*}\right)$ in T^{*}. Let $v_{k^{\prime}}^{*}$ be on a branching path $P^{* *}$ in T^{*} where $P^{\prime *} \neq P^{*}$. Note that $\ell(T)+1 \geq 3$. There exists at least one vertex $a=\left(v_{x}, v_{y}^{*}\right) \in R_{2} \backslash\left\{w, w^{\prime}\right\}$. Next we consider the positions of v_{x}, v_{y}^{*} in T, T^{*}, respectively.

Suppose first that $v_{y}^{*} \in V\left(P^{*} \cup P^{\prime *}\right)$. If $v_{x}, v_{p}, v_{p^{\prime}}$ and v_{i} lie on a path in T, then there are five vertices $w, w^{\prime}, z, z^{\prime}$ and a in R_{2}, three of which lie on a common geodesic in $T \square T^{*}$, a contradiction. Note that if T is a path, then we are done as above. Therefore, assume that T is not isomorphic to a path in the following and the root of P has degree at least 3 . Otherwise, $v_{x} \notin P$ and v_{x}, v_{p} lie on a common branching path in T. Let V_{s} be the set of vertices of T but not contained in $T_{i p^{\prime}}$ where $T_{i p^{\prime}}$ is the subtree of $T-v_{p}$ containing v_{i} and $v_{p^{\prime}}$. If there is a vertex $a^{\prime}=\left(v_{s}, v_{l}^{*}\right) \in R_{2}$ with $v_{s} \in V_{s}$, then R_{2} contains $w, w^{\prime}, z, z^{\prime}$ and a^{\prime}, three of which are on a common geodesic, a contradiction. Therefore, the first coordinate of any vertex in R_{2} cannot be in V_{s}. Assume that $P^{\prime} \neq P$ is any branching path containing v_{p} and a leaf both in $T_{i p^{\prime}}$ and T. Then, besides $w, P^{\prime} \square T^{*}$ contains at most one vertex in R_{2} of $T \square T^{*}$. Otherwise, $P^{\prime} \square T^{*}$ contain two vertices h, h^{\prime} in R_{2}. Then there exist two vertices $h_{0}, h_{0}^{\prime} \in\left\{v_{i}\right\} \times S^{*}$ such that three vertices from $\left\{h, h^{\prime}, h_{0}, h_{0}^{\prime}, w\right\}$ lie on some geodesic in $T \square T^{*}$, a contradiction. (Here h_{0} may be equal to h_{0}^{\prime}.) Note that V_{s} contains at least two leaves of T since the root of $P\left(\right.$ just in $\left.V_{s}\right)$ has degree at least 3 . Then $T_{i p^{\prime}}$ has at most $\ell(T)-2$ leaves in T. Since $P \square T^{*}$ contains two vertices w and w^{\prime} in R_{2}, we have $\left|R_{2}\right| \leq \ell(T)-2+1<\ell(T)=\operatorname{gp}(T)$, a contradiction with the assumption.

Assume now that $v_{y}^{*} \notin V\left(P^{*} \cup P^{\prime *}\right)$. Then there exists a vertex $z^{\prime \prime}=\left(v_{i}, v_{k^{\prime \prime}}^{*}\right) \in$ $\left\{v_{i}\right\} \times S^{*}$ such that $v_{y}^{*}, v_{k^{\prime \prime}}^{*}$ lie on a common branching path in T^{*}. If v_{y}^{*} is closer to the leaf of the branching path than $v_{k^{\prime \prime}}^{*}$ in T^{*}, then $v_{i} \in I\left(v_{x}, v_{i}\right)$ and $v_{k^{\prime \prime}}^{*} \in I\left(v_{y}^{*}, v_{k}^{*}\right)$. Therefore, by Lemma 3, we get $z^{\prime \prime} \in I_{T \square T^{*}}(a, z)$, a contradiction. In the case that $v_{k^{\prime \prime}}^{*}$ is closer to the leaf of the branching path than v_{y}^{*} in T^{*}, we consider the positions of $v_{x}, v_{p}, v_{p^{\prime}}$ and v_{i} in T. Let $V_{1}=\left\{z, z^{\prime}, w, w^{\prime}, a, z^{\prime \prime}\right\}$. Then $V_{1} \subseteq R_{2}$. If $v_{x}, v_{p}, v_{p^{\prime}}$ and v_{i} lie on a path in T, then there exist three vertices in V_{1} lying on a common geodesic in
$T \square T^{*}$, a contradiction again. Otherwise, $v_{x} \notin P$ and v_{x}, v_{p} lie on a common branching path in T. Similarly as above, a contradiction occurs.
Subcase 1.1.3. $v_{p} \in I\left(v_{i}, v_{p^{\prime}}\right)$.
In this subcase, since $\ell\left(T^{*}\right) \geq 3$, there exists a vertex $z^{\prime}=\left(v_{i}, v_{k^{\prime}}^{*}\right) \in\left\{v_{i}\right\} \times S^{*}$ such that $v_{k^{\prime}}^{*} \notin P^{*}$ and $v_{q}^{*} \in I\left(v_{k^{\prime}}^{*}, v_{q^{\prime}}^{*}\right)$ in T^{*}. Since

$$
\begin{aligned}
d\left(z^{\prime}, w^{\prime}\right) & =d_{T}\left(v_{i}, v_{p^{\prime}}\right)+d_{T^{*}}\left(v_{k^{\prime}}^{*}, v_{q^{\prime}}^{*}\right) \\
& =d_{T}\left(v_{i}, v_{p}\right)+d_{T^{*}}\left(v_{k^{\prime}}^{*}, v_{q}^{*}\right)+d_{T}\left(v_{p}, v_{p^{\prime}}\right)+d_{T^{*}}\left(v_{q}^{*}, v_{q^{\prime}}^{*}\right) \\
& =d\left(z^{\prime}, w\right)+d\left(w, w^{\prime}\right),
\end{aligned}
$$

we have $w \in I_{T \square T^{*}}\left(z^{\prime}, w^{\prime}\right)$, a contradiction.
Subcase 1.1.4. $v_{i} \notin V(P)$ such that v_{i}, v_{p} lie on a same branching path in T.
In this subcase, since $\ell\left(T^{*}\right) \geq 3$, there is a vertex $z^{\prime}=\left(v_{i}, v_{k^{\prime}}^{*}\right) \in\left\{v_{i}\right\} \times S^{*}$ such that $v_{q}^{*} \in I\left(v_{k^{\prime}}^{*}, v_{k}^{*}\right)$ in T^{*}. If $v_{k}^{*} \in I\left(v_{q}^{*}, v_{q^{\prime}}^{*}\right)$, then obviously $v_{k}^{*} \in I\left(v_{q}^{*}, v_{k^{\prime}}^{*}\right)$ and therefore,

$$
\begin{aligned}
d\left(w^{\prime}, z^{\prime}\right) & =d_{T}\left(v_{p^{\prime}}, v_{i}\right)+d_{T^{*}}\left(v_{q^{\prime}}^{*}, v_{k^{\prime}}^{*}\right) \\
& =d_{T}\left(v_{p^{\prime}}, v_{i}\right)+d_{T^{*}}\left(v_{q^{\prime}}^{*}, v_{k}^{*}\right)+d_{T^{*}}\left(v_{k}^{*}, v_{k^{\prime}}^{*}\right) \\
& =d\left(w^{\prime}, z\right)+d\left(z, z^{\prime}\right) .
\end{aligned}
$$

We conclude that $z \in I_{T \square T^{*}}\left(w^{\prime}, z^{\prime}\right)$, a contradiction.
If v_{k}^{*} is closer to the leaf of P^{*} than $v_{q}^{*}, v_{q^{\prime}}^{*}$, then we get a contradiction similarly as in Subcase 1.1.2.

Case 1.2. v_{q}^{*} and $v_{q^{\prime}}^{*}$ do not lie on a same branching path in T^{*}.
In this subcase, we may assume that v_{q}^{*} and $v_{q^{\prime}}^{*}$ lie on distinct branching paths P^{*} and $P^{* *}$ in T^{*}, respectively. Since $\ell\left(T^{*}\right) \geq 3$ and T^{*} is not isomorphic to a path, there exist two vertices $z=\left(v_{i}, v_{k}^{*}\right)$ and $z^{\prime}=\left(v_{i}, v_{k^{\prime}}^{*}\right)$ from $\left\{v_{i}\right\} \times S^{*}$, such that $v_{k}^{*} \in P^{*}$ and $v_{k^{\prime}}^{*} \in P^{* *}$. We consider the following subcases based on the positions of $v_{p}, v_{p^{\prime}}$ and v_{i} in T.

Subcase 1.2.1. $v_{p^{\prime}} \in I\left(v_{i}, v_{p}\right)$.
In this subcase, if $v_{k^{\prime}}^{*}$ is closer than $v_{q^{\prime}}^{*}$ to the leaf of $P^{* *}$, then $v_{p^{\prime}} \in I\left(v_{p}, v_{i}\right)$ and $v_{q^{\prime}}^{*} \in I\left(v_{q}^{*}, v_{k^{\prime}}^{*}\right)$. Lemma 3 gives $w^{\prime} \in I_{T \square T^{*}}\left(w, z^{\prime}\right)$, a contradiction. On the other hand, if $v_{q^{\prime}}^{*}$ is closer than $v_{k^{\prime}}^{*}$ to the leaf of $P^{* *}$, then $v_{i} \in I\left(v_{i}, v_{p^{\prime}}\right)$ and $v_{k^{\prime}}^{*} \in I\left(v_{k}^{*}, v_{q^{\prime}}^{*}\right)$, hence Lemma 3 gives $z^{\prime} \in I_{T \square T^{*}}\left(w^{\prime}, z\right)$, a contradiction again.
Subcase 1.2.2. $v_{i} \in I\left(v_{p}, v_{p^{\prime}}\right)$.
In this subcase, we first assume that $v_{q^{\prime}}^{*}$ is closer than $v_{k^{\prime}}^{*}$ to the leaf of $P^{\prime *}$. Then $v_{i} \in I\left(v_{i}, v_{p^{\prime}}\right)$ and $v_{k^{\prime}}^{*} \in I\left(v_{k}^{*}, v_{q^{\prime}}^{*}\right)$. Therefore, by Lemma 3, we get $z^{\prime} \in I_{T \square T^{*}}\left(z, w^{\prime}\right)$ as a contradiction. Otherwise we suppose that $v_{k^{\prime}}^{*}$ is closer than $v_{q^{\prime}}^{*}$ to the leaf of $P^{\prime *}$. If v_{q}^{*}
is closer than v_{k}^{*} to the leaf of P^{*}, then $v_{i} \in I\left(v_{p}, v_{i}\right)$ and $v_{k}^{*} \in I\left(v_{q}^{*}, v_{k^{\prime}}^{*}\right)$. Therefore, by Lemma 3, we get $z \in I_{T \square T^{*}}\left(w, z^{\prime}\right)$, a contradiction. In the case that v_{k}^{*} is closer than v_{q}^{*} to the leaf of P^{*}, we find a contradiction similarly as the proof of Subcase 1.1.2.

Subcase 1.2.3. $v_{p} \in I\left(v_{i}, v_{p^{\prime}}\right)$.
In this subcase, if v_{k}^{*} is closer than v_{q}^{*} to the leaf of P^{*}, then $v_{p} \in I\left(v_{i}, v_{p^{\prime}}\right)$ and $v_{q}^{*} \in I\left(v_{k}^{*}, v_{q^{\prime}}^{*}\right)$. So Lemma 3 gives $w \in I_{T \square T^{*}}\left(z, w^{\prime}\right)$, a contradiction. And if v_{q}^{*} is closer than v_{k}^{*} to the leaf of P^{*}, then $v_{i} \in I\left(v_{i}, v_{p}\right)$ and $v_{k}^{*} \in I\left(v_{k^{\prime}}^{*}, v_{q}^{*}\right)$, hence we get $z \in I_{T \square T^{*}}\left(z^{\prime}, w\right)$.
Subcase 1.2.4. $v_{i} \notin V(P)$ such that v_{i}, v_{p} lie on a same branching path in T.
First suppose that v_{q}^{*} is closer to the leaf than v_{k}^{*} in P^{*}, then $v_{i} \in I\left(v_{i}, v_{p}\right)$ and $v_{k}^{*} \in I\left(v_{q}^{*}, v_{k^{\prime}}^{*}\right)$. Thus, by Lemma 3, we get $z \in I_{T \square T^{*}}\left(w, z^{\prime}\right)$.

Assume that v_{k}^{*} is closer than v_{q}^{*} to the leaf of P^{*}. If $v_{q^{\prime}}^{*}$ is closer to the leaf than $v_{k^{\prime}}^{*}$, then $v_{i} \in I\left(v_{i}, v_{p^{\prime}}\right)$ and $v_{k^{\prime}}^{*} \in I\left(v_{k}^{*}, v_{q^{\prime}}^{*}\right)$, which gives $z^{\prime} \in I_{T \square T^{*}}\left(z, w^{\prime}\right)$. If $v_{k^{\prime}}^{*}$ is closer than $v_{q^{\prime}}^{*}$ to the leaf of $P^{\prime *}$, we can proceed similarly as in Subcase 1.1.4.

Now we turn to the second case.
Case 2. $\left|R \cap V\left({ }^{v_{k}} T^{*}\right)\right|<\ell\left(T^{*}\right)$ for any $k \in[n]$, and $\left|R \cap V\left(T^{v_{t}^{*}}\right)\right|<\ell(T)$ for any $t \in\left[n^{*}\right]$.
In this case, let ${ }^{v_{i}} T^{*}$ be a layer with $\left|R \cap V\left({ }^{v_{i}} T^{*}\right)\right|=\max \left\{\left|R \cap V\left({ }^{v_{k}} T^{*}\right)\right|: k \in[n]\right\}$. Let $R=R_{1} \cup R_{2}$ where $R_{1}=R \cap V\left({ }^{v_{i}} T^{*}\right)$ and $R_{2}=R \backslash R_{1}$, that is, $R_{2}=\bigcup_{k \in[n] \backslash\{i\}}\left(V\left({ }^{v_{k}} T^{*}\right) \cap\right.$ $R)$. Set further $S^{*}=\left\{v_{j}^{*}:\left(v_{i}, v_{j}^{*}\right) \in R_{1}\right\}$. Then $1 \leq\left|S^{*}\right| \leq \ell\left(T^{*}\right)-1$.

Assume first $\left|S^{*}\right|=1$. Therefore $\left|R \cap V\left({ }^{v_{k}} T^{*}\right)\right| \leq 1$ for any $k \in[n]$. Next we only need to consider $\left|R \cap V\left(T_{j}^{v_{j}^{*}}\right)\right| \leq 1$ for any $j \in\left[n^{*}\right]$. (If $\left|R \cap V\left(T^{v_{j}^{*}}\right)\right| \geq 2$ for some $j \in\left[n^{*}\right]$, by commutativity of $T \square T^{*}$, the proof is similar to the subcase in which $2 \leq\left|S^{*}\right| \leq \ell\left(T^{*}\right)-1$.) Therefore, suppose that $\left|R \cap V\left(T^{v_{j}^{*}}\right)\right| \leq 1$ for any $j \in\left[n^{*}\right]$. Then $|R| \leq \min \left\{n, n^{*}\right\}$. We now claim that $|R| \leq \ell(T)+\ell\left(T^{*}\right)$. If not, then since $|R| \geq \ell(T)+\ell\left(T^{*}\right)+1 \geq 6$, there exist three vertices $u=\left(v_{p}, v_{j}^{*}\right), v=\left(v_{p^{\prime}}, v_{q}^{*}\right)$ and $w=\left(v_{s}, v_{\ell}^{*}\right)$ from R such that $v_{p}, v_{p^{\prime}}$ lie on a same branching path in T, and v_{j}^{*}, v_{ℓ}^{*} lie on a common branching path in T^{*}. Note that there may be $p^{\prime}=s, q=\ell$. But we can always select a vertex $h \in R \backslash\{u, v, w\}$ such that u, v, h or u, w, h lie on a same geodesic in $T \square T^{*}$, which is a contradiction. So our result holds when $\left|S^{*}\right|=1$.

Suppose second that $2 \leq\left|S^{*}\right| \leq \ell\left(T^{*}\right)-1$. As $\left|R_{1}\right|=\left|S^{*}\right|$, we need to prove that $\left|R_{2}\right| \leq \ell(T)+\ell\left(T^{*}\right)-\left|S^{*}\right|$. Assume on the contrary that $\left|R_{2}\right| \geq \ell(T)+\ell\left(T^{*}\right)-\left|S^{*}\right|+1$. Since $\left|S^{*}\right| \geq 2$, there are two distinct vertices $w=\left(v_{i}, v_{j}^{*}\right)$ and $w^{\prime}=\left(v_{i}, v_{j^{\prime}}^{*}\right)$ from $\left\{v_{i}\right\} \times S^{*}$. We distinguish the following cases based on the positions of $v_{j}^{*}, v_{j^{\prime}}^{*}$ in T^{*}.
Case 2.1. v_{j}^{*} and $v_{j^{\prime}}^{*}$ lie on a same branching path P^{*} of T^{*}.
In this subcase, we may without loss of generality assume that $v_{j^{\prime}}^{*}$ is closer than v_{j}^{*}
to the leaf of P^{*}. Let $T_{v_{j^{\prime}}}^{*}$ be the maximal subtree of $T^{*}-v_{j}^{*}$ containing $v_{j^{\prime}}^{*}$ and let $V_{s^{*}}=V\left(T^{*}\right) \backslash V\left(T_{v_{j^{\prime}}^{*}}^{*}\right)$. Let further $S_{1}^{*}=\left\{v_{q}^{*}: v_{q}^{*} \in I\left(v_{j}^{*}, v_{\ell}^{*}\right), v_{\ell}^{*} \in S^{*} \cap V\left(T_{v_{j^{\prime}}^{*}}^{*}\right)\right\}$. Now we prove the following claim.
Claim 1. If $z=\left(v_{p}, v_{t}^{*}\right) \in R_{2}$, then $v_{t}^{*} \in S_{1}^{*}$.
Proof of Claim 1. If not, suppose first that $v_{t}^{*} \in V\left(P^{*}\right)$ is closer than $v_{j^{\prime}}^{*}$ to the leaf of P^{*}. Then $v_{i} \in I\left(v_{i}, v_{p}\right)$ and $v_{j^{\prime}}^{*} \in I\left(v_{t}^{*}, v_{j}^{*}\right)$. Hence, $w^{\prime} \in I_{T \square T^{*}}(w, z)$. And if $v_{t}^{*} \in V_{s^{*}}$, then $v_{j}^{*} \in I\left(v_{t}^{*}, v_{j^{\prime}}^{*}\right)$. Combining this fact with $v_{i} \in I\left(v_{i}, v_{p}\right)$, we have $w \in I_{T \square T^{*}}\left(w^{\prime}, z\right)$. This proves Claim 1.

By Claim 1, we have $\left|\bigcup_{v_{t}^{*} \in S_{1}^{*}}\left(V\left(T^{v_{t}^{*}}\right) \cap R\right)\right| \geq \ell(T)+\ell\left(T^{*}\right)-\left|S^{*}\right|+1 \geq \ell(T)+1$.
Then there exist two vertices $z=\left(v_{p}, v_{\ell}^{*}\right)$ and $z^{\prime}=\left(v_{p^{\prime}}, v_{\ell^{\prime}}^{*}\right)$ from $\cup_{v_{t}^{*} \in S_{1}^{*}}\left(V\left(T^{v_{t}^{*}}\right) \cap R\right)$ such that $v_{\ell}^{*}, v_{\ell^{\prime}}^{*} \in S_{1}^{*}$ and $v_{p}, v_{p^{\prime}}$ lie on a same branching path P in T. Without loss of generality, let $v_{p^{\prime}}$ be closer than v_{p} to the leaf of P, and let $v_{\ell}^{*}, v_{\ell^{\prime}}^{*} \in I\left(v_{j}^{*}, v_{j^{\prime}}^{*}\right)$ (by the definition of $\left.S_{1}^{*}\right)$. We consider the following subcases according to the positions of $v_{i}, v_{p}, v_{p^{\prime}}$ in T.
Subcase 2.1.1. $v_{p^{\prime}} \in I\left(v_{i}, v_{p}\right)$.
If $v_{\ell^{\prime}}^{*}$ is closer than v_{ℓ}^{*} to $v_{j^{\prime}}^{*}$ in P^{*}, then we have $v_{p^{\prime}} \in I\left(v_{i}, v_{p}\right)$ and $v_{\ell^{\prime}}^{*} \in I\left(v_{\ell}^{*}, v_{j^{\prime}}^{*}\right)$. Therefore, $z^{\prime} \in I_{T \square T^{*}}\left(z, w^{\prime}\right)$. And if v_{ℓ}^{*} is closer than $v_{\ell^{\prime}}^{*}$ to $v_{j^{\prime}}^{*}$ in P^{*}, then we have $v_{p^{\prime}} \in I\left(v_{i}, v_{p}\right)$ and $v_{\ell^{\prime}}^{*} \in I\left(v_{\ell}^{*}, v_{j}^{*}\right)$ and so $z^{\prime} \in I_{T \square T^{*}}(z, w)$.

Subcase 2.1.2. $v_{i} \in I\left(v_{p}, v_{p^{\prime}}\right)$.
Note that $\ell(T)+\ell\left(T^{*}\right)-\left|S^{*}\right|+1 \geq 4$. Then there exists at least a vertex $a=\left(v_{x}, v_{y}^{*}\right) \in$ $\cup_{v_{t}^{*} \in S_{1}^{*}}\left(V\left(T^{v_{t}^{*}}\right) \cap R\right)$ different from z and z^{\prime}. Based on the position of $v_{y}^{*}\left(v_{y}^{*} \in P^{*}\right.$ or $\left.v_{y}^{*} \notin P^{*}\right)$ in T^{*}, and the positions of v_{x}, v_{i}, v_{p} and $v_{p^{\prime}}$ in T, we get contradictions using a similar proof as in Subcase 1.1.2.
Subcase 2.1.3. $v_{p} \in I\left(v_{i}, v_{p^{\prime}}\right)$.
If $v_{\ell^{\prime}}^{*}$ is closer than v_{ℓ}^{*} to $v_{j^{\prime}}^{*}$ in T^{*}, then $v_{p} \in I\left(v_{i}, v_{p^{\prime}}\right)$ and $v_{\ell}^{*} \in I\left(v_{j}^{*}, v_{\ell^{\prime}}^{*}\right)$, therefore $z \in I_{T \square T^{*}}\left(w, z^{\prime}\right)$. And if v_{ℓ}^{*} is closer than $v_{\ell^{\prime}}^{*}$ to $v_{j^{\prime}}^{*}$ in T^{*}, then $v_{p} \in I\left(v_{i}, v_{p^{\prime}}\right)$ and $v_{\ell}^{*} \in I\left(v_{j^{\prime}}^{*}, v_{\ell^{\prime}}^{*}\right)$, hence $z \in I_{T \square T^{*}}\left(w, z^{\prime}\right)$.
Subcase 2.1.4. $v_{i} \notin V(P)$ such that v_{i}, v_{p} lie on a same branching path in T.
Since $\ell(T)+\ell\left(T^{*}\right)-\left|S^{*}\right|+1 \geq 4$, there exists a vertex $\left(v_{x}, v_{y}^{*}\right) \in \cup_{v_{t}^{*} \in S_{1}^{*}}\left(V\left(T^{v_{t}^{*}}\right) \cap R\right)$. Proceeding similarly as in Subcase 1.1.4, we get required contradictions. But then $\left|\cup_{v_{t}^{*} \in S_{1}^{*}}\left(V\left(T^{v_{t}^{*}}\right) \cap R\right)\right| \leq \ell(T)+\ell\left(T^{*}\right)-\left|S^{*}\right|$, a contradiction with the assumption.
Case 2.2. $v_{j}^{*}, v_{j^{\prime}}^{*}$ lie on different branching paths $P^{*}, P^{* *}$ in T^{*}, respectively.
In this subcase, let S_{2}^{*} be a set of vertices of ${ }^{v_{i}} T^{*}$ closer to the leaf of a branching path than v_{g}^{*} for any $v_{g}^{*} \in S^{*}$. Note that $S^{*} \cap S_{2}^{*}=\emptyset$. We prove the following claim.
Claim 2. If $\left(v_{p}, v_{t}^{*}\right)$ in R_{2}, then $v_{t}^{*} \in V\left(T^{*}\right) \backslash\left(S^{*} \cup S_{2}^{*}\right)$.

Proof of Claim 2. Lemma 4 implies $v_{t}^{*} \notin S^{*}$. Assume that $v_{t}^{*} \in S_{2}^{*}$ lies on a same branching path for some v_{g}^{*} in T^{*}. Note that $\left|S^{*}\right| \geq 2$. Then there exists another vertex $v_{g^{\prime}}^{*}$ such that $v_{g}^{*} \in I\left(v_{t}^{*}, v_{g^{\prime}}^{*}\right)$. Combining this fact with $v_{i} \in I\left(v_{i}, v_{p}\right)$, we arrive at a contradiction $w \in I_{T \square T^{*}}\left(z, w^{\prime}\right)$. This proves Claim 2.

Let now $S_{1^{\prime}}^{*}=\left\{v_{q}^{*}: v_{q}^{*} \in I\left(v_{g}^{*}, v_{g^{\prime}}^{*}\right), v_{g}^{*}, v_{g^{\prime}}^{*} \in S^{*}\right\}$. By a parallel reasoning as in Subcase 2.1 and with Claim 2 in hands we infer that $\left|\cup_{v_{t}^{*} \in S_{1^{\prime}}^{*}}\left(V\left(T^{v_{t}^{*}}\right) \cap R\right)\right| \leq \ell(T)$.

Let $S=\left\{v_{k}: \quad\left(v_{k}, v_{t}^{*}\right) \in \cup_{v_{t}^{*} \in S_{1^{\prime}}^{*}}\left(V\left(T^{v_{t}^{*}}\right) \cap R\right)\right\}$ and set $S^{* *}=V\left(T^{*}\right) \backslash\left(S^{*} \cup S_{1^{\prime}}^{*}\right)$. From the assumption we have $\left|\cup_{v_{t}^{*} \in S^{* *}}\left(V\left(T^{v_{t}^{*}}\right) \cap R\right)\right| \geq \ell(T)+\ell\left(T^{*}\right)-|S|-\left|S^{*}\right|+1$. So there exists a vertex $z=\left(v_{p}, v_{\ell}^{*}\right) \in \cup_{v_{t}^{*} \in S^{* *}}\left(V\left(T^{v_{t}^{*}}\right) \cap R\right)$, and we can always select two distinct vertices $u=\left(v_{h}, v_{g}^{*}\right)$ and $v=\left(v_{h^{\prime}}, v_{g^{\prime}}^{*}\right)$ from R such that v_{p} and v_{h} lie on a same branching path in T, while v_{ℓ}^{*} and $v_{g^{\prime}}^{*}$ lie on a common branching path in T^{*}. But we can choose another vertex $w \in R$ such that either u, w, z or u, v, z lie on a same geodesic in $T \square T^{*}$ as a contradiction. Therefore,

$$
\left|\bigcup_{v_{t}^{*} \in S^{* *}}\left(V\left(T^{v_{t}^{*}}\right) \cap R\right)\right| \leq \ell(T)+\ell\left(T^{*}\right)-|S|-\left|S^{*}\right| .
$$

and we are done.

Acknowledgements

Kexiang Xu is supported by NNSF of China (grant No. 11671202, and the ChinaSlovene bilateral grant 12-9). Sandi Klavžar acknowledges the financial support from the Slovenian Research Agency (research core funding P1-0297, projects J1-9109, J11693, N1-0095, and the bilateral grant BI-CN-18-20-008).

References

[1] B. S. Anand, S. V. Ullas Chandran, M. Changat, S. Klavžar, E. J. Thomas, Characterization of general position sets and its applications to cographs and bipartite graphs, Appl. Math. Comput. 359 (2019) 84-89.
[2] R. Balakrishnan, S. F. Raj, T. Kavaskar, b-coloring of Cartesian product of trees, Taiwanese J. Math. 20 (2016) 1-11.
[3] M. Ghorbani, S. Klavžar, H.R. Maimani, M. Momeni, F. Rahimi-Mahid, G. Rus, The general position problem on Kneser graphs and on some graph operations, Discuss. Math. Graph Theory (2019) doi:10.7151/dmgt.2269.
[4] W. Imrich, S. Klavžar, D. F. Rall, Topics in Graph Theory: Graphs and their Cartesian Product, A K Peters, Wellesley, MA, 2008.
[5] S. Klavžar, I. G. Yero, The general position problem and strong resolving graphs, Open Math. 17 (2019) 1126-1135.
[6] S. Klavžar, B. Patkós, G. Rus, I. G. Yero, On general position sets in Cartesian grids, arXiv:1907.04535 [math.CO] (July 25, 2019).
[7] S. Klavžar, G. Rus, The general position number of integer lattices, Appl. Math. Comput., to appear.
[8] J. Körner, On the extremal combinatorics of the Hamming space, J. Combin. Theory Ser A 71 (1995) 112-126.
[9] P. Manuel, S. Klavžar, A general position problem in graph theory, Bull. Aust. Math. Soc. 98 (2018) 177-187.
[10] P. Manuel, S. Klavžar, The graph theory general position problem on some interconnection networks, Fund. Inform. 163 (2018) 339-350.
[11] B. Patkós, On the general position problem on Kneser graphs, Ars Math. Contemp. (2020), date accessed: 01 Sep. 2020, doi:https://doi.org/10.26493/18553974.1957.a0f.
[12] W. C. Shiu, R. M. Low, The integer-magic spectra and null sets of the Cartesian product of trees, Australas. J. Combin. 70 (2018) 157-167.
[13] J. Tian, K. Xu, The general position number of Cartesian products of trees or cycles with general graphs, submitted.
[14] S. V. Ullas Chandran, G. Jaya Parthasarathy, The geodesic irredundant sets in graphs, Int. J. Math. Combin. 4 (2016) 135-143.
[15] D. R. Wood, Colouring the square of the Cartesian product of trees, Discrete Math. Theor. Comput. Sci. 13 (2011) 109-111.

