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Abstract

Let γg(G) be the game domination number of a graph G. Rall conjectured
that if G is a traceable graph, then γg(G) ≤

⌈

1
2n(G)

⌉

. Our main result verifies
the conjecture over the class of line graphs. Moreover, in this paper we put
forward the conjecture that if δ(G) ≥ 2, then γg(G) ≤

⌈

1
2n(G)

⌉

. We show that
both conjectures hold true for claw-free cubic graphs. We further prove the
upper bound γg(G) ≤

⌈

11
20 n(G)

⌉

over the class of claw-free graphs of minimum
degree at least 2. Computer experiments supporting the new conjecture and
sharpness examples are also presented.
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1 Introduction

Papers [3, 22] are the milestones for the success of the domination game. The first
of them introduced the game, proved some fundamental results, and described the
imagination strategy which turned out to be one of the main proof techniques for
the game. The second paper delivered the Continuation Principle which is a tool
used to derive many important results, and the 3/5-conjecture which asserts that if
G is an isolate-free graph, then γg(G) ≤ 3

5
n(G), where n(G) denotes the order of G.

These two papers caused the area to flourish—well above fifty papers have already
been written. We emphasize papers [12, 21, 23, 24, 26, 28] and investigations of
different variants of the game [2, 5, 8, 13, 15, 17, 20].

A lot of research has been done on the 3/5-conjecture, the first results being
reported in [22]. In [4] the conjecture was verified for all trees on at most 20 vertices
and all trees which meet the conjectured bound with equality were listed. A large
family of extremal trees was subsequently presented in [18] and it was conjectured
that there are no other such trees. Proofs of many results on the 3/5-conjecture
as a key tool use the discharging method, the method being initiated in [6]. In
2016, Henning and Kinnersley [16] proved a fundamental result that the conjecture
holds for all graphs with minimum degree at least 2. For bigger minimum degrees,
better upper bounds were earlier proved in [7]. In particular, we know that γg(G) <
0.4803n(G) holds whenever δ(G) ≥ 5. The best general upper bound was recently
published in [9]: if G is an isolate-free graph, then γg(G) ≤ 5

8
n(G). Further, Rall

conjectured that the 3/5-conjecture can be improved for traceable graphs as follows.

Conjecture 1.1 If G is a traceable graph, then γg(G) ≤
⌈

1
2
n(G)

⌉

.

Rall’s conjecture was published for the first time in [19], see also [10]. Now,
knowing that if δ(G) ≥ 2, then γg(G) ≤ 3

5
n(G) holds, and on the other hand not

being aware of minimum degree 2 graphs G for which γg(G) >
⌈

1
2
n(G)

⌉

would hold,
we pose in this paper the following:

Conjecture 1.2 If δ(G) ≥ 2, then γg(G) ≤
⌈

1
2
n(G)

⌉

.

In this paper we provide different supports for both conjectures and proceed as
follows. In the next section we first give definitions and concepts needed, and then
present a set up for our proofs, as well as the intuition behind it. In Section 3 we
prove that both conjectures hold true for claw-free cubic graphs. In Section 4 we turn
our attention to Hamiltonian line graphs, another rich subclass of claw-free graphs.
We first consider the edge domination game which was, to the best of our knowledge,
considered by now only in the unpublished paper [27]. We prove upper bounds on
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the game edge domination number for graphs with edge dominating circuits or with
edge dominating trails. As a consequence we deduce that Conjecture 1.1 is valid
on the class of line graphs. In Section 5 we consider claw-free graphs of minimum
degree 2 and prove for them a weakened version of Conjecture 1.2, that is, γg(G) ≤
⌈

11
20
n(G)

⌉

holds for claw-free graphs G with δ(G) ≥ 2. In the concluding section we
present our computer experiments and a variety of examples that demonstrate that
Conjecture 1.2 is sharp, of course provided it holds true.

2 Preliminaries

The domination game on a graph G is played by Dominator and Staller. If Dom-
inator starts the game, we speak of a D-game, otherwise it is an S-game. During
the game, the players alternately select vertices that are not dominated by the set
of previously selected vertices. When no such vertex is available the game is over.
Dominator’s goal is to end the game as soon as possible, Staller’s goal is the oppo-
site. The unique number of moves played in the D-game when both players play
optimally is the game domination number γg(G). In the S-game the corresponding
graph invariant is the Staller-start game domination number γ′

g(G) of G.
If v is a vertex of a graph G, then the open neighborhood NG(v) is the set of

neighbors of v, while the closed neighborhood is NG[v] = NG(v) ∪ {v}. Vertices u
and v are true twins in G, if NG[u] = NG[v]. The closed neighborhood of a set
S ⊆ V (G) of vertices is NG[S] =

⋃

v∈S NG[v]. If G will be clear from the context,
we may omit the subscript G in this notation.

A claw is a star K1,3. A graph is called claw-free if it does not contain an
induced subgraph isomorphic to a claw. A diamond is a K4 − e. The two vertices
of a diamond that are of degree 3 (and incident with two triangles) are called the
central vertices of the diamond. Note that the two central vertices of a diamond are
true twins in every cubic graph.

Denoting by e1, . . . , em the edges of a graph G, the line graph L(G) of G contains
one vertex vi for every ei, i ∈ [m]. Two vertices vi and vj are adjacent in L(G) if ei
and ej share a vertex in G. By definition, the vertices in L(G) represent the edges
of G so that every edge dominating set in G corresponds to a (vertex) dominating
set in L(G).

2.1 On the proof methods

We first introduce the terminology that will be used throughout the proofs of our
main theorems. At the end of this subsection, we provide an informal hint about
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the ideas and working methods that may result a potential function which can be
successfully applied for proving upper bounds on graph invariants.

Given a graph G and a set D ⊆ V (G), the (vertex) residual graph GD is the
graph G together with the following color assigment to its vertices:

• A vertex v is white if v /∈ N [D].

• A vertex v is blue if v ∈ N [D] and N [v] 6⊆ N [D].

• A vertex v is red if N [v] ⊆ N [D].

Moreover, in GD, the sets of white, blue and red vertices, respectively, are denoted
by W , B, and R. In the domination game, D is interpreted as the set of vertices
which have been played until a point in the game. Then, v is undominated if and
only if v ∈ W , while u is a legal move in GD if and only if v ∈ W ∪ B. The game
starts with W = V (G) in G∅, and ends when R = V (G). The latter equivalently
means W = ∅ and N [D] = V (G).

For a vertex v in the residual graph GD, the white-degree (or shortly, W-degree)
of v is the number of its white neighbors, that is, degW (v) = |N [v] ∩ W |. By
definition, degW (v) = 0 if v is red, and degW (v) ≥ 1 if v is blue. The maximum
W-degree over the white vertices of GD is denoted by ∆W (W ), while GD[W ] stands
for the subgraph induced by the white vertices in GD.

In the proofs we introduce a weight function fD : V (G) → R for each GD, where
the weight of a vertex v depends on its color and, maybe, on some further properties.
The weight of the residual graph is defined as f(GD) =

∑

v∈V (G) f
D(v). It is also

called the potential function over the residual graphs. If GD is fixed and v ∈ V (G),
then s(v) denotes the decrease in the potential function when v is played in GD (for
unplayable vertices s(v) = 0). Formally, s(v) = f(GD) − f(GD∪{v}). We specify
f(GD) in the proofs such that s(v) ≥ 0 holds for every v ∈ V (G).

In Section 4, we use an analogous terminology for edges instead of vertices.
Two (different) edges e and f are adjacent in a simple graph G, if they share a
vertex that is, if e ∩ f 6= ∅. We say that an edge e ∈ E(G) dominates itself
and the adjacent edges. This set of edges is the closed neighborhood of e defined
formally as NG[e] = {f : f ∈ E(G) and e ∩ f 6= ∅}. The open neighborhood of e is
NG(e) = NG[e] \ {e}. A set D of edges is an edge dominating set in G if

NG[D] =
⋃

e∈D

NG[e] = E(G).

For a graph G and a set D ⊆ E(G), the (edge) residual graph GD is the graph
G together with the following color assignment. An edge e is white if e /∈ N [D];
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e is blue if e ∈ N [D] and N [e] 6⊆ N [D]; and e is red if N [e] ⊆ N [D] holds. For a
fixed (edge) residual graph GD, the sets of white, blue and red edges, respectively,
are denoted by W , B, and R. An edge e is undominated if and only if e ∈ W and
it can be played in the next turn if and only if e ∈ W ∪ B.

We also introduce an (edge) weight function fD : E(G) → R for each D ⊆ E(G)
and the weight of the residual graph is defined as f(GD) =

∑

e∈E(G) f
D(e). If GD is

fixed and e ∈ E(G), then let s(e) = f(GD)− f(GD∪{e}).
In the proofs, we consider the vertex or edge domination games with specified

potential functions f such that f(GD) = 0 holds when the game is over. Our aim
is to prove that Dominator has a strategy which ensures that the average decrease
of f(GD) in a move of the game exceeds a given constant c. This implies that,
assuming that the players follow optimal strategies, the number of moves is at most
⌊f(G∅)/c⌋.

The formal description of the proofs starts with the definition of a potential
function which needs the preceding specification of the weights. This preliminary
work on the problem does not appear in the manuscript, and therefore, it might
seem a bit mysterious. In fact, the first step is designing an algorithm (or a strategy
for Dominator), finding the key points in it, and, by representing the weights of the
vertices with variables, constructing a set of linear inequalities. These constraints
typically express the aim that Dominator’s move, together with Staller’s next move,
decreases the sum of the weights by at least 1 on average. The next step is routine.
We want to minimize the potential function’s value at the beginning of the game
while all the mentioned inequalities are satisfied. Usually, it suffices to solve an
LP-problem with a linear objective function.

However, the first (and the second, the third) attempt does not typically result
in the desired minimum. In this case, we may modify the algorithm and replace
some sharp inequalities with weaker constraints. We may also introduce a more
subtle weight assignment by making differences between vertices of the same color.
Another option is to discharge the weights at a point in the game, or to supplement
the potential function by terms depending on some general properties or subgraphs
of the residual graph. After including several ideas, we hopefully obtain a potential
function that is appropriate for the proof.

3 Claw-free cubic graphs

Our main aim in this section is proving Conjecture 1.1 and Conjecture 1.2 for the
class of claw-free cubic graphs.

An edge e is called triangle edge if it is incident with a triangle; otherwise, e
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is a flat edge. It is easy to see that in a claw-free cubic graph a vertex v is either
contained in a K4-component or v is a central vertex of a diamond or, in the third
case, v is incident to exactly one flat edge and one triangle.

Theorem 3.1 If G is a claw-free cubic graph, then γg(G) ≤ n(G)
2

.

Proof. Throughout the proof, we assume that G is a claw-free cubic graph on
n = n(G) vertices and D ⊆ V (G) does not dominate G. We define a potential
function f on the possible residual graphs such that f assigns 3n and 0, respectively,
to the residual graph at the beginning and at the end of the game. Then, we describe
a strategy for Dominator which ensures that the average decrease of f in a move of
the game will be at least 6 when the game ends. This will directly imply that the
number of moves in the game is at most 3n−0

6
= n

2
.

In a residual graph GD, a diamond subgraph is called K-subgraph if its central
vertices are white and the remaining two vertices are blue. Observe that, in a
K-subgraph S, only the blue vertices are adjacent to vertices outside S. By the
definition of blue vertices, all these neighbors outside S must be red as they belong
to D. This implies that K-subgraphs are pairwise vertex disjoint and there is no
edge between them.

For a residual graph GD, we define the potential function

f(GD) = 3|W |+ |B|

which can also be interpreted as a weight assignment fD : V (G) → {0, 1, 3}. In this
assignment, every white (that is, undominated) vertex gets a weight of 3, while blue
and red vertices are assigned to 1 and 0, respectively. We will also use the notation
s(v) for the nonnegative difference f(GD)− f(GD∪{v}).

The following claim relates to the case when v is a legal move in the domination
game that is, if v ∈ W ∪B. We will use this result when estimate the decrease s(v)
for a move v of Staller.

Claim 3.2 If v is a legal move on GD in the domination game, then s(v) ≥ 3.

Proof. If v ∈ W , then v is recolored red and already this change ensures s(v) ≥ 3.
If v ∈ B, then v becomes red and since, by definition of a legal move, v has at least
one white neighbor in GD that becomes blue or red in GD∪{v}, the decrease s(w) is
at least (1− 0) + (3− 1) = 3. This establishes the claim. (�)

In some cases we will need a stricter result on the move of Staller. In the
continuation, GD[W ] denotes the subgraph induced by the white vertices of GD.
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Claim 3.3 If v is a move which dominates a vertex u from a P1 component of
GD[W ], or from a cycle component Ci with i ≥ 4 of GD[W ], or from a K-subgraph
of GD, then s(v) ≥ 5.

Proof. First suppose that u forms a P1 component in GD[W ]. Then, the neighbors
u1, u2, and u3 of u are blue. Note that u cannot be a central vertex of a diamond
or a vertex from a K4 component as in these cases the true twin neighbor(s) of u
would be white as well. Therefore, u is incident with a triangle, say it is uu1u2, and
with a flat edge uu3 in G. By definition, each blue vertex has a red neighbor from
D. Then, the triangle incident with u3 has a red vertex and the only white neighbor
of u3 is u. The same is true for u1 and u2 since their neighbors outside uu1u2 must
be red. Then, an arbitrary move which dominates u turns u, u1, u2, and u3 to be
red. As follows, we have s(v) ≥ 3 + 3 · 1 = 6 in the first case.

Now, suppose that u belongs to a cycle component Ci of G
D[W ] such that i ≥

4. This white cycle cannot contain central vertices from a diamond subgraph and
therefore, every vertex x from Ci is incident with one flat edge and with one triangle
in G. Since Ci is not a triangle and it is an induced subgraph in GD[W ], flat
and triangle edges alternate along the white cycle Ci. Thus, if the played vertex v
dominates u and v ∈ B, then there is a vuu′ triangle with u, u′ ∈ V (Ci) ⊆ W . As
u and u′ are blue in GD∪{v}, s(v) ≥ 2 · (3 − 1) + 1 = 5 holds. In the other case,
the played vertex v is white. To dominate u, vertex v must belong to V (Ci). With
this move, v becomes red and its neighbors from V (Ci) become blue. We conclude
s(v) ≥ 3 + 2 · (3− 1) = 7.

Finally, we suppose that the white vertex u is a central vertex of a K-subgraph.
When u is dominated, its true twin u′ also becomes dominated. Since N [u]\{u, u′} ⊆
B and N [u′] \ {u, u′} ⊆ B hold in GD, both u and u′ turn into red after the move
v. This shows that s(v) ≥ 2 · 3 = 6. (�)

In the main part of the proof we argue that the following property is true for
any residual graph GD:

(Q) If Dominator plays first in GD, he can ensure that at least one of the following
statements will be satisfied:

(Q1) Dominator finishes the game with the first move and decreases f(GD) by
at least 6;

(Q2) The first two moves on GD decrease f(GD) by at least 12;

(Q3) Dominator finishes the game with the third move and these three moves
decrease f(GD) by at least 18;

(Q4) The first four moves on GD decrease f(GD) by at least 24.
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Claim 3.4 If D ⊂ V (G) is not a dominating set in G, then GD satisfies property
(Q).

Proof. We consider all possibilities concerning the subgraphs of GD and prove that
(Q) is true in every case. By our assumption, D is not a dominating set and hence,
there is an undominated vertex; i.e. W 6= ∅.

(C1) There exists a white vertex v with 3 white neighbors.
In this case, Dominator plays v that results in the following changes: v becomes red
and its neighbors become blue or red. We obtain s(v) ≥ 3+3(3−1) = 9. If the game
finishes with this move, then (Q1) is satisfied. Otherwise, by Claim 3.2, together
with the next move of Staller, the potential function is decreased by at least 12 in
two moves and (Q2) holds.

From now on we assume that (C1) is not true for GD. In other words, GD[W ]
has maximum degree at most 2 and, consequently, it consists of path and cycle
components. In particular, each K4 component of G (if exists) is completely red in
GD.

(C2) (C1) is not true and there exists a triangle induced by three white vertices.
Let v1v2v3 be such a triangle in GD. Since (C1) is not true, the neighbor of vi outside
the triangle must be blue, for i ∈ [3]. Thus, if Dominator plays v1, all the three
vertices of the triangle are recolored red and we have s(v1) ≥ 3 · 3 = 9. Together
with Claim 3.2 this prove that GD satisfies (Q1) or (Q2).

(C3) Neither (C1) nor (C2) is true and there is a path component Pj with j ≥ 3
in GD[W ].
Let Pj = v1v2 . . . vj be a path component in GD[W ]. Since (C1) and (C2) do
not hold, GD[W ] is triangle-free and Pj does not contain two edges from the same
triangle. Since the two central vertices of a diamond subgraph are true twins, they
are of the same color and hence, as GD[W ] is triangle-free, at most two of the four
vertices of a diamond may be white. This proves that Pj does not contain two
consecutive triangle edges. As every vertex of G is incident with at most one flat
edge, Pj cannot contain two consecutive flat edges either. Consequently, flat and
triangle edges alternate along this path. Now, suppose that Dominator plays v2.
With this move both v1 and v2 become red since before this move v2 was the only
undominated neighbor of v1. Vertex v3 turns to be blue or red. Moreover, one of
v1v2 and v2v3 is a triangle edge. The third vertex u of this triangle was a blue vertex
and had two white neighbors in GD. Hence, u becomes red with the move v2. This
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yields s(v2) ≥ 2 · 3 + 2 + 1 = 9 and we get, by Claim 3.2, that GD satisfies (Q1) or
(Q2).

(C4) None of (C1)–(C3) is true and there is a P2 component in GD[W ] which does
not belong to a K-subgraph.
First suppose that the P2 component uv is a flat edge in G. Then, u is incident with
a triangle uu1u2 where ui is blue and its third neighbor (outside the triangle uu1u2)
must be red, for i ∈ [2]. The situation is similar for v and for the triangle vv1v2.
Since the graph is cubic and ui has a red neighbor, ui is different from vj, and they
cannot be adjacent vertices. This is true for every pair (i, j) ∈ [2]× [2]. Then, the
move u of Dominator makes all the six vertices red and s(u) ≥ 2 · 3 + 4 · 1 = 10.

Now, suppose that the P2 component uv is an edge of the triangle uvw where w
must be blue. Let u′ and v′ denote the other blue neighbors of u and v, respectively.
Since it is not a K-subgraph, u′ 6= v′. Then, uu′ is a flat edge and u′ is dominated via
a triangle edge. We may conclude that u is the only white neighbor of u′ and that
the same is true for v and v′. Remark that N [w]∩W = {u, v} also holds as the third
neighbor of w (that is the vertex in N(w)\{u, v}) has to be red. If Dominator plays
u, all the five vertices u, v, w, u′, v′ become red and we have s(u) ≥ 2 · 3+ 3 · 1 = 9.
This ensures that GD satisfies (Q).

(C5) None of (C1)–(C4) is true and there exists a K-subgraph in GD.
In this case, Dominator may play any vertex v from the K-subgraph, all the four
vertices are recolored red and s(v) ≥ 2 · 3 + 2 · 1 = 8. If the game is over with this
move, then (Q1) is satisfied. Otherwise, observe that the vertices of this K-subgraph
S were adjacent only to two red vertices from GD − S. Then, it remains true in
GD∪{v} that none of (C1)-(C4) is satisfied. In particular, each legal move of Staller
in GD∪{v} satisfies the condition in Claim 3.3 and hence, it decreases the potential
function by at least 5. That is, independently of Staller’s choice, the two moves
together decreases f(GD) by at least 13.

(C6) None of (C1)–(C5) is true and there exists a cycle component in GD[W ].
Since (C2) is not satisfied, this cycle component Cj is of length j ≥ 4. As it
was shown in the proof of Claim 3.3, flat and triangle edges alternate along this
white cycle. It also follows that j is even. Let Cj = v1v2 . . . vj such that v1v2,
v3v4, . . . , vj−1vj are the triangle edges. N [V (Cj)] contains j/2 blue vertices which
we denote by u2, u4, . . . , uj such that the triangles incident to the white cycle are
v1v2u2, v3v4u4,. . . ,vj−1vjuj. Each ui ∈ {u2, u4, . . . , uj} is blue and, by definition, it
has a red neighbor from D. Consequently, we have N [ui] ∩W = {vi−1, vi} for each
even i, 2 ≤ i ≤ j. Suppose that Dominator plays v2 from GD. Then, v2 and u2
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become red, while v1 and v3 become blue. We have s(v2) = 3 + 1 + 2 · 2 = 8. With
this move, the Cj component is replaced with a Pj−3 component in G[W ], but the
other components remain untouched. If Staller replies by dominating a vertex from
a white component different from Pj−3, Claim 3.3 implies that the decrease in the
potential function is at least 5. Together with the move of Dominator, f(GD) is
decreased by at least 13 and (Q2) is satisfied. The same is true if j = 4 and Staller
dominates a vertex from the remaining part of the white cycle C4. Indeed, in this
case Pj−3 is a P1 and we can refer to Claim 3.3 again.

Suppose that j ≥ 6 and Staller dominates a white vertex from P ′ = v4, . . . , vj .
If she plays a white vertex vs from P ′, it becomes red and its white neighbor (which
exists as j ≥ 6) becomes blue or red. Then, s(vs) ≥ 3 + 2 = 5. If Staller plays ui

with i ≥ 6, as this blue vertex still has two white neighbors, namely vi−1 and vi, we
have s(ui) ≥ 1 + 2 · 2 = 5. If she plays v3 or u4, the result is the same: v3 and u4

become red, v4 becomes blue. This gives s(v3) = s(u4) = 2 · 1 + 2 = 4. In all these
cases, (Q2) is satisfied.

The last possible case is when Staller plays the blue vertex v1 and dominates vj .
Then, v1 turns into red and vj turns into blue but there are no further changes in
colors. So, we have only s(v1) = 1+2 = 3. But in this situation Dominator can reply
by playing vj−2. If j ≥ 8, the white vertices vj−2, vj−1 and the blue vertices uj, uj−2

become red, while vj−3 becomes blue. Then, we have s(vj−2) = 2 · 3+ 2 · 1+ 2 = 10.
Together with the next move of Staller which decreases the potential function by at
least 3 according to Claim 3.2, f(GD) drops by at least 8+3+10+3 = 24 and (Q4)
is fulfilled. If j = 6, the move vj−2 = v4 of Dominator turns the white vertices v5
and v4 into red and the blue vertices u6, u4 and v6, v3 also become red. We conclude
s(v4) = 2 · 3 + 4 · 1 = 10 again. If this move finishes the game, (Q3) is satisfied,
otherwise together with Staller’s next move (Q4) holds.

(C7) None of (C1)–(C6) is true and there exists a P1 component in GD[W ].
If v forms a P1 component in GD[W ], all its neighbors are blue. Note that v cannot
be a central vertex of a diamond subgraph of G. If uvw is the triangle containing
v, then u is dominated from a vertex which is outside of this triangle. Therefore,
N [u] ∩ W = {v} and similarly, N [w] ∩ W = {v} holds. If N(v) \ {u, w} = {x},
then vx is a flat edge and x is dominated by a vertex of the incident triangle xx′x′′.
Consequently, x cannot have a white neighbor different from v. This means that
each move which dominates v turns v, u, w, and x into red. For Dominator’s move,
this gives s(v) = 3+3 ·1 = 6. If the game finishes with this move, GD satisfies (Q1).
Otherwise, Staller replies in a residual graph where (C7) still holds and her move y
gives s(y) = 6 again. We conclude that (Q) is satisfied.

If none of (C1)–(C7) holds for the residual graph GD, then W = ∅ and D is a
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dominating set in G. This finishes the proof of Claim 3.4. (�)

Starting with G∅ and repeatedly applying Claim 3.4 for the residual graphs until
the game ends, we get that Dominator may ensure that the average decrease in the
potential function in a move is at least 6. Since f(G∅) = 3n and we have f(GD) = 0
when the game finishes, there are at most 3n/6 moves. We conclude γg(G) ≤ n/2.
�

If Staller starts the domination game on a claw-free cubic graph G, her first move
v turns the white vertex v into red and turns the three white neighbors into blue
or red. Hence, the first move gives s(v) ≥ 3 + 3 · 2 = 9. Starting with G{v} and
with the next move of Dominator, we may apply Claim 3.4 repeatedly again. The
conclusion is that

γ′
g(G) ≤

3n− 9

6
+ 1 =

n− 1

2
.

Corollary 3.5 If G is a claw-free cubic graph, then γ′
g(G) ≤ n(G)−1

2
.

We have thus proved that Conjectures 1.1 and 1.2 hold true for claw-free cubic
graphs. With respect to the first conjecture we argue in the rest of this section that
the class of Hamiltonian (and consequently traceable) claw-free graphs is quite rich,
so that Theorem 3.1 gives a large, non-trivial class of graphs for which Conjecture 1.1
holds true.

Recall that a diamond is defined as a K4 − e that is equivalently a C4 + e. Let
us now introduce the notation C+

6 for the simple graph obtained from two vertex
disjoint triangles by adding two vertex disjoint edges to it.

Suppose that G is a claw-free cubic graph and it is also (K4, C4 + e, C+
6 )-free.

Then, every vertex is incident with exactly one triangle and one flat edge. More-
over, any two triangles are vertex disjoint and there is at most one edge between
them. These properties ensure that every triangle is adjacent to exactly three
other triangles in G. Now, define G∗ such that each vertex from V (G∗) repre-
sents a triangle from G and two vertices are adjacent in G∗ if and only if there
is an edge between the corresponding triangles in G. Observe that G∗ is a cubic
graph and that every cubic graph F can be obtained this way from a cubic graph
G which is (K1,3, K4, C4 + e, C+

6 )-free. The latter claim is true even if F contains
K1,3, K4, C4 + e, C+

6 subgraphs. To see this, just replace every vertex of F by a
triangle and, for every edge uv ∈ E(F ), make adjacent two vertices from the corre-
sponding triangles t(u) and t(v) such that the maximum degree does not exceed 3
in the constructed graph.

Now consider a claw-free cubic graph G which is also (K4, C4 + e, C+
6 )-free. If G

is Hamiltonian, then every triangle must be induced by three consecutive vertices
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of the Hamiltonian cycle. This directly yields a Hamiltonian cycle for G∗ and vice
versa, if we are given a Hamiltonian cycle in the cubic graph F = G∗, this directly
defines a Hamiltonian cycle in G. It is proved in [25] that, among n-vertex cubic
graphs, the proportion of the Hamiltonian ones tends to 1 as n → ∞. Hence the
class of the Hamiltonian cubic graphs is quite rich, the same is then true for the
Hamiltonian claw-free cubic graphs. We note that the class of the non-Hamiltonian
cubic graphs and hence, that of the non-Hamiltonian claw-free cubic graphs are
quite rich as well. This fact is demonstrated by NP-completeness of the problem of
deciding whether a 2-connected cubic bipartite planar graph admits a Hamiltonian
cycle [1].

4 Hamiltonian line graphs

In this section we first revitalize the edge domination game which was inroduced in
2014 in the manuscript [27], but received no attention afterwards. Then we prove
upper bounds on the game edge domination number for graphs with edge dominating
circuits or trails. As a consequence we then obtain the main result of this section
which asserts that Conjecture 1.1 is valid on the class of line graphs.

4.1 Edge domination game

An open (resp. closed) trail is an open (resp. closed) walk in a graph with no
repeated edge. As we consider only simple graphs, a trail will be represented by the
corresponding sequence of (not necessarily different) vertices. A closed trail is also
called circuit. An edge dominating circuit is a circuit v0, . . . , vℓ, v0 such that every
e ∈ E(G) is dominated by an edge vivi+1, that is e∩{v0, . . . , vℓ} 6= ∅ holds for every
e ∈ E(G). Similarly, an edge dominating trail is a trail v0, . . . , vℓ, the vertex set of
which forms a vertex cover in G.

The edge domination game, first discussed in [27], is defined analogously to the
domination game. Two players, Dominator and Staller, take turns choosing an edge
of G. Playing an edge e is legal if NG[e] contains at least one edge not dominated
by the edges previously chosen. The game finishes when the set of the played edges
becomes an edge dominating set in G. Dominator wants to minimize the length of
the game (i.e., the number of played edges) while Staller wants to maximize it. The
game edge domination number γe,g(G) (S-game edge domination number γ′

e,g(G)) is
the length of the game when Dominator (Staller) starts the game and both players
follow an optimal strategy according to their goals.
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By the definition of the line graph, every edge domination game played on G
naturally corresponds to a domination game on L(G), and it also holds in the other
way around, therefore the following fact holds.

Observation 4.1 ([27]) For every graph G and its line graph F = L(G) we have
γg(F ) = γe,g(G) and γ′

g(F ) = γ′
e,g(G).

4.2 Graphs with edge dominating circuits

We introduce some new concepts before proving our main result concerning the edge
domination game on graphs which admit edge dominating circuits.

For a graph G and a set D ⊆ E(G), we will refer to the (edge) residual graph
GD and related notations as introduced in Section 2.1. Furthermore, we also assign
colors to the vertices based on the colors of the incident edges. A vertex v is white
if it is incident to at least one white edge, otherwise v is red.

Consider an edge e = uv in GD. By definition, if e is white then u and v are
white vertices; if e is red then so are u and v. If e is blue, then it is adjacent to a
white edge and therefore, at least one of u and v is white. Moreover, as e ∈ N [D],
there is an adjacent edge f ∈ D. As follows, the common end of e and f is a red
vertex. This gives the following property.

Observation 4.2 For every D ⊆ E(G), each blue edge of GD is incident to one
white and one red vertex.

If we fix an edge dominating circuit C = v0 . . . vℓv0 in a graph G, the edges of
the circuit are called C-edges while the remaining ones are the outer edges in G.

Lemma 4.3 If G admits an edge dominating circuit C, then every edge e ∈ E(G)
has at least two adjacent C-edges. In particular, if e is white in a residual graph
GD, then it is adjacent to at least two C-edges from W ∪ B.

Proof. If e = vivi+1 is an edge from the circuit C = v0 . . . vℓv0, then vi−1vi and
vi+1vi+2 are C-edges adjacent to e. Since C is an edge dominating circuit, every
outer edge e is incident to at least one vertex from C. If vi is such a vertex for e,
then e is adjacent with the C-edges vi−1vi and vivi+1. For the second part of the
statement, recall that both ends of a white edge are white vertices and hence, there
cannot be adjacent red edges. �
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Theorem 4.4 If G is a graph with an edge dominating circuit, then

γe,g(G) ≤

⌈

m(G)

2

⌉

and, if G is not a cycle of length n ≡ 1 mod 4, then

γe,g(G) ≤

⌊

m(G)

2

⌋

also holds under the given conditions.

Proof. First suppose that G is a cycle Cn. Then its line graph is also isomorphic to
Cn and m(G) = n(L(G)) = n holds. By Observation 4.1, γe,g(G) = γg(L(G)). Thus,
γe,g(G) = γg(Cn) ≤ ⌈n/2⌉ holds and moreover, γe,g(Cn) ≤ n/2 is also true whenever
n 6≡ 1 mod 4. (We have used here the known formula for γg(Cn), see [23].) This
verifies the statement for cycles.

From now on, we assume that G is not a cycle but admits an edge dominating
circuit C = v0 . . . vℓv0 and, therefore, ∆(G) ≥ 3. For every D ⊆ E(G), we define a
weight function fD on the edges of GD.

Type of e fD(e)
White edge 2
Blue C-edge 1
Blue outer edge 0
Red edge 0

The weight of GD is defined as the sum of the weights assigned to its edges. Formally,
f(GD) =

∑

e∈E(G) f
D(e) is the potential funcion that we consider in the proof.

Further, as introduced earlier, s(e) stands for the difference f(GD) − f(GD∪{e}).
Remark that w(e) is always positive if e is a playable edge in GD. As for Dominator’s
moves, we will assume that he always chooses an edge to play which maximizes the
decrease s(e) in the current residual graph. Our aim is proving that this greedy
strategy of Dominator ensures that in every two consecutive moves di and si, f(G

D)
decreases by at least 8. We realize this plan by proving a series of claims.

Claim 4.5 If a white edge e is played in GD, then every adjacent blue edge becomes
red and every adjacent white edge becomes blue or red. If a blue edge e = uv is
played and u is a white vertex, then every white edge incident with u becomes blue
or red and every blue edge incident with u becomes red.
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Proof. If an edge e = uv is played, then all adjacent edges become dominated (i.e.,
blue or red) and therefore, u and v will be red in GD∪{e}. Suppose first that e is
white in GD and that it is adjacent to f ∈ B. We may assume, without loss of
generality, that f = uu′. Then, u is the white end of f and, by Observation 4.2, the
other end u′ is red. As both u and u′ are red in GD∪{e}, the edge f becomes red
too. The situation is similar if e is blue in GD and f is adjacent to e in its white
end vertex u. (�)

Claim 4.6 Each move of Staller decreases f(GD) by at least 2.

Proof. Suppose that Staller plays e in GD. Since e is playable, e ∈ W ∪ B in GD

and, with this move, e becomes red. Hence, if e ∈ W in GD, its weight reduces from
2 to 0 that proves s(e) ≥ 2. If e is blue and adjacent to an outer white edge e′, then
e′ becomes dominated in GD∪{e}. No matter whether e′ is blue or red in GD∪{e},
its weight will be 0 there. This fact itself ensures s(e) ≥ 2. In the remaining case,
Staller plays a blue edge e that is adjacent to a white edge e1 from the circuit. This
implies that the white end u of e is incident to the circuit. Let a C-edge which is
incident to u and different from e1 be denoted by e2. (Note that e2 = e is possible.)
When Staller plays e, the white e1 becomes blue or red and this change decreases
the weight by at least 1. If e2 is white then it also turns blue or red and fD(e2) drops
by at least 1. If e2 is a blue edge in GD then its white end is u and, by Claim 4.5, e2
will be red in GD∪{e}. In this case, again, fD(e2) decreases by 1 as e2 is a C-edge.
Therefore, the inequality s(e) ≥ 1 + 1 = 2 also holds if e is blue. (�)

Claim 4.7 If GD contains two adjacent white edges, then Dominator can play an
edge e such that f(GD) decreases by at least 6.

Proof. Consider the first move d1 of Dominator in G∅. By our assumption, G is
not a cycle. If there is an outer edge e, let e1 be a C-edge adjacent to e and set
d1 = e1. In GD∪{e1}, the edge e1 is red that decreses the weight by 2. In addition,
by Lemma 4.3, there are at least two C-edges adjacent to e1. These edges become
blue (or red) that results a further decrease of at least 1+1 = 2 in f(G∅). As e is an
outer edge and becomes blue or red, its weight decreases by 2. This proves s(e) ≥ 6.

In the other case, there are no outer edges and C is not a cycle. Hence, there
is a vertex vj that is incident to at least four C-edges, denote them by e1, e2, e3, e4.
Each of these four edges is adjacent with an edge wich is not incident to vj . Let f1
be such a neighbor of e1. If Dominator plays e1, it will be red and each of the edges
f1, e2, e3, e4 becomes blue or red. This yields s(e1) ≥ 2 + 4 · 1 = 6 as required.

In the later turns of Dominator, D is not empty. Since every edge of G is
incident to at least one vertex from C, we have some red vertices on the circuit.
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While GD contains white edges, there must be white vertices on C. Therefore,
between consecutive white and red vertices of C, we have some blue edges on the
circuit.

First we suppose that the circuit C contains a white edge vjvj+1 such that vj
is incident to more than two C-edges. Then, there are at least four C-edges being
incident to vj so that each of them belongs to W ∪ B. Choose four such C-edges
and denote them by e = vjvj+1, e1, e2 and e3. Observe that e is adjacent with the
C-edge f = vj+1vj+2 and f 6= ei for every i ∈ [3]. Suppose that Dominator plays e.
The edge e becomes red that decreases the weight by 2. For every i, if ei is white
in GD, it is recolored blue or red that reduces the weight by at least 1; if ei is blue
than, by Claim 3.3, it becomes red and the weight drops by 1. The situation is the
same for the C-edge f . We may infer that s(e) ≥ 2+4 ·1 = 6. From now on we may
assume that each white vertex vj (j ∈ [ℓ] ∪ {0}) is incident to exactly two C-edges.
Consider the following three cases on the types of adjacent white edges in G.

• Suppose that there exist two adjacent white outer edges e1 and e2. When e1 is
played, it is recolored red and e2 becomes blue or red. These changes decrease
the weight by 2 · 2. By Lemma 4.3, there exist two different C-edges f1 and
f2 that are adjacent to e1. Then, fi ∈ B ∪W in GD for i ∈ [2]. If fi ∈ W , it
becomes blue or red in GD∪{e1} and therefore, its weight decreases by at least
1. If fi ∈ B then, by Claim 4.5, it becomes red and the weight decreases by
1. We may infer that s(e1) ≥ 2 · 2 + 2 · 1 = 6.

• Suppose that there exist two adjacent white edges e1 and e2 such that e1 is a
C-edge and e2 is an outer edge. When e1 is played, e1 becomes red and the
outer edge e2 becomes blue or red. This decreses the weight by 2 · 2. Further,
by Lemma 4.3, e1 is adjacent to two C-edges f1 and f2 both are from W ∪B.
It does not matter whether fi is white or blue, its weight decreases by at least
1 when e1 is played. This proves s(e1) ≥ 2 · 2 + 2 · 1 = 6 for the second case.

• Otherwise, every two adjacent white edges are both C-edges. Recall that, since
D 6= ∅, there are both white and red vertices among v0, . . . , vℓ. Then, as there
exist two adjacent white edges on C, we can find a vertex vj such that the edge
vj−1vj is blue, and both vjvj+1 and vj+1vj+2 are white. Therefore, the vertex
vj−1 is red while vj, vj+1 and vj+2 are white. By our present condition, vj is
incident to exactly two C-edges and it is not incident to any outer white edges.
Thus, vjvj+1 is the only white edge being incident to vj . Consequently, if the
edge vjvj+1 becomes dominated, then the vertex vj turns red and, additionally,
the edge vj−1vj is recolored red as both of its vertices become red. We conclude
that when e = vj+1vj+2 is played, all the three vertices vj, vj+1, vj+2 and the
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three edges vj−1vj, vjvj+1, e = vj+1vj+2 become red. Moreover, as vj+2 is a
white vertex in GD, the edge vj+2vj+3 is either white or blue. In both cases,
its weight decreases by at least 1 when e is played. Remark that vj−1vj and
vj+2vj+3 are different edges as the vertex vj−1 is red while vj+2 is white in GD.
Then, the decrese in the weight can be estimated as s(e) ≥ 1 + 2 · 2 + 1 = 6.
(�)

Claim 4.8 If W 6= ∅ and there are no adjacent white edges in GD, then s(e) ≥ 4
for every playable edge e.

Proof. Let e ∈ W ∪B. If e is a white edge then, under the given conditions, every
adjacent edge is from B. By Lemma 4.3, there are two blue C-edges adjacent to
e. Denote them by e′ and e′′. By Claim 4.5, the edges e, e′, and e′′ will be red
in GD∪{e}. This shows s(e) ≥ 2 + 2 · 1 = 4. Now suppose that e ∈ B and it is
adjacent to the white edge f in GD. By Lemma 4.3, there are two blue C-edges,
say f ′ and f ′′, which are adjacent to f . (Note that e might be identical with f ′ or
f ′′.) Again by Claim 4.5, the edges f , f ′, and f ′′ will be red in GD∪{e}. This yields
s(e) ≥ 2 + 2 · 1 = 4. (�)

Now, we are ready to finish the proof of Theorem 4.4. If the residual graph GD

contains two adjacent white edges before Dominator’s move di then, by Claim 4.7,
this move decreases the weight by at least 6. If the game is not finished with di,
according to Claim 4.6, Staller’s move si results in an additional decrease of at least
2. If GD does not contain two adjacent white vertices then, by Claim 4.8, s(di) ≥ 4
and Staller’s move si further decreases the weight by at least 4. Let k denote the
number of turns in the game. No matter whether Dominator or Staller finishes the
game, the total decrease in the weight of G is at least 4k. On the other hand, the
total decrease is f(G∅) − 0 = 2m(G). Thus, Dominator’s greedy strategy ensures
4k ≤ 2m(G). As γe,g(G) ≤ k, we conclude γe,g(G) ≤ m(G)/2. �

4.3 Graphs with edge dominating trails

In this subsection, we prove a theorem that is analogous to Theorem 4.4 but concerns
graphs that have an edge dominating open trail. In the proof, we refer to the edge
domination game on a residual graph FD that is equivalently the game on the
predominated graph F |N [D]. The invariant γe,g(F

D) denotes the number of edges
played in an edge domination game starting with FD, assuming that both players
apply an optimal strategy and Dominator plays first.

17



Theorem 4.9 If G is a graph with an edge dominating trail, then

γe,g(G) ≤

⌈

m(G)

2

⌉

.

Proof. If G is a path on n vertices, then L(G) ∼= Pn−1 and, by Observation 4.1,
we have γe,g(G) = γg(Pn−1) ≤ ⌈(n − 1)/2⌉ = ⌈m(G)/2⌉. ((We have also used here
the known formula for γg(Pn), see [23].) Note that if G admits an edge dominating
circuit, then Theorem 4.9 is a direct consequence of Theorem 4.4.

From now on, assume that G is not a path but has an edge dominating open
trail v1 . . . vℓ. We first construct a graph F from G by adding two new vertices v′1
and v′ℓ and three edges v1v

′
1, v

′
1v

′
ℓ, vℓv

′
ℓ to it. Note that v1 . . . vℓv

′
ℓv

′
1v1 is an edge

dominating circuit in F . Furthermore, since G is not a path, F is not a cycle.
By setting D = {v′1v

′
ℓ} we obtain the residual graph FD. We first consider the

edge domination game that starts on FD with a move of Dominator and prove the
following estimation.

Claim 4.10 γe,g(F
D) ≤

⌈

m(G)
2

⌉

.

Proof. As FD is a residual graph obtained from F which is not a cycle and has
an edge dominating circuit, we may use the weight function f from the proof of
Theorem 4.4 and apply Claims 4.6, 4.7 and 4.8. Observe that f(FD) = 2m(G) + 2
and the weight of the residual graph equals 0 at the end of the game. Let k denote
the number of played edges in the edge domination game on FD. By Claims 4.6,
4.7 and 4.8, Dominator has a startegy which ensures that the average decrease is at
least 4 in a move and therefore f(FD)− 0 ≥ 4k. We conclude

γe,g(F
D) ≤ k ≤

⌊

2m(G) + 2

4

⌋

=

⌈

m(G)

2

⌉

that establishes the statement. (�)

To finish the proof of the theorem, it sufficies to verify the following inequality.

Claim 4.11 γe,g(G) ≤ γe,g(F
D).

Proof. We apply the proof method named “Imagination Strategy”. Let Game 1 be
an edge domination game played on G (i.e., on G∅) and Game 2 the imagined edge
domination game started on FD. Staller plays optimally in Game 1. After her each
move in Game 1, Dominator “interprets” it in Game 2. This means that if the same
edge can be legally played in Game 2, then Dominator copies it there; otherwise
Staller’s move can be replaced by any legal move in Game 2. Then, Dominator
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replies optimally in Game 2 and also interprets it in Game 1. Again, this means
that he copies the move into Game 1, if possible; otherwise Dominator plays an
arbitrary legal move in Game 1.

We may assume that Dominator never plays v1v
′
1 or vℓv

′
ℓ in Game 2. Indeed, as

NF [v1v
′
1] ∩ W ⊆ NF [v1v2], the move v1v

′
1 can be replaced by v1v2 in each optimal

strategy of Dominator. The same is true for vℓv
′
ℓ and vℓvℓ−1. Under this assumption,

we prove the following.

(⋆) After each move and its interpretation in the other game, the set U1 of un-
dominated edges in Game 1 is the same as the set U2 of undominated edges
in Game 2.

Before the first move, we have U1 = U2 = E(G). If U1 = U2 is true before a move of
Dominator, then his optimal move (that is not v1v

′
1 or vℓv

′
ℓ) in Game 2 dominates

an edge e ∈ U2. Then, by our assumption, e ∈ U1 also holds and, consequently, the
same move is legal in Game 1. Therefore, U1 = U2 remains valid for the updated
sets. Similarly, if U1 = U2 holds before Staller’s (optimal) move in Game 1, then the
same edge is playable in Game 2 and after Dominator copies the move to Game 2,
the two sets of undominated edges remain equal. This implies that Game 1 and

Game 2 finishes at the same time, say after the kth move.
Since Staller plays optimally in Game 1 but Dominator might not, we have

γe,g(G) ≤ k. Similarly, as Dominator plays optimally in Game 2 but Staller might
not, we have γe,g(F

D) ≥ k. The two inequalities together prove γe,g(G) ≤ γe,g(F
D).

(�)

Our remarks on the case of G ∼= Pn together with Claims 4.10 and 4.11 establish

the statement γe,g(G) ≤
⌈

m(G)
2

⌉

. �

4.4 Traceable line graphs

Based on the results in the previous subsections, we prove here that Rall’s Conjecture
is valid on the class of line graphs.

Theorem 4.12 If G is a traceable line graph, then

γg(G) ≤

⌈

n(G)

2

⌉

.

Proof. Since G is a line graph, there exists an isolate-free graph F such that
G = L(F ). Clearly, we have n(G) = m(F ) and, by Observation 4.1, γg(G) = γe,g(F ).
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It is well-known (see e.g. [14, Proposition 8]) that if the line graphG = L(F ) is hamil-
tonian, then F admits an edge dominating circuit. Similarly, if G is traceable, then
F has an edge dominating trail. By Theorem 4.9, γe,g(F ) ≤ ⌈m(F )/2⌉. Together
with the previous observations it directly implies γg(G) ≤ ⌈n(G)/2⌉. �

5 Claw-free graphs of minimum degree 2

In the previous sections, we proved that Conjecture 1.2 is true for claw-free cubic
graphs and also for Hamiltonian line graphs. Now, we consider a wider graph class,
namely the class of claw-free graphs, and show that a weakened version of the
conjecture remains true.

Theorem 5.1 If G is a claw-free graph and δ(G) ≥ 2, then

γg(G) ≤

⌈

11

20
n(G)

⌉

.

Moreover, if G is also connected and it is neither a 5-cycle nor a 9-cycle, then

γg(G) ≤

⌊

11

20
n(G)

⌋

.

Proof. We first recall that γg(Cn) = ⌈n
2
⌉ = n+1

2
holds for a cycle Cn if n ≡ 1

mod 4, while γg(Cn) = ⌊n
2
⌋ is valid for the remaining cases. Consequently, we have

γg(Cn) ≤
11
20
n if n /∈ {5, 9}. It is straightforward to check that γg(Cn) ≤ ⌈11

20
n⌉ holds

for n = 5 and 9.
For the rest of the proof set n = n(G). If G is a disjoint union of cycles, then

applying [26, Corollary 18] we deduce that γg(G) ≤ ⌈n
2
⌉ ≤ ⌈11

20
n⌉. From now on, we

assume that G satisfies the conditions of the theorem and it is not a disjoint union of
cycles. We therefore have ∆(G) ≥ 3. Consider a D-game on G and split it into two
parts. Phase 1 starts with the first move d1 of the game; Phase 2 begins with the
first move of Dominator when the (vertex) residual graph before that move satisfies
∆W (W ) ≤ 2. Phase 2 ends when the game is finished. It might happen that the
game ends in Phase 1 and no move belongs to Phase 2. In every residual graph GD,
no matter whether GD was obtained in Phase 1 or Phase 2, we call a blue vertex
a B+-vertex if it became blue in Phase 1 of the game, otherwise it is a B−-vertex.
B+ and B− denote the corresponding sets of blue vertices in GD. Clearly, B = B+

if the residual graph belongs to Phase 1 of the game. Now, we define the potential
function

f(GD) = 22|W |+ 10|B+|+ 9|B−|,
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or equivalently, we assign a weight of 22, 10, 9 and 0, respectively, to each white,
B+-, B−-, and red vertex of GD. As it is defined in Section 2.1, s(v) stands for the
difference f(GD)−f(GD∪{v}). We prove three claims, one for general consequences of
claw-freeness, one for Staller’s moves, and one for a possible strategy of Dominator.

Claim 5.2 Let GD be a residual graph that was obtained from a claw-free graph G
with δ(G) ≥ 2.

(a) If v ∈ B, then N(v) ∩W induces a complete graph.

(b) If u and v are adjacent vertices such that u ∈ W , v ∈ B and degW (u) ≥ 2,
then v is a B+-vertex.

(c) If u ∈ W and its only white neighbor is u′, then u has a blue neighbor v such
that whenever u becomes dominated in a later residual graph, v becomes red at
the same time.

Proof. (a) Suppose to the contrary that N(v)∩W contains two independent vertices
u1 and u2. Since v is blue, it is dominated by a vertex x ∈ D. Then, x is red and
N(x) does not contain white vertices. Therefore, u1 /∈ N(x) and u2 /∈ N(x). We may
conclude that the set {u1, u2, x} is independent and hence that v, u1, u2, x induce a
claw in G. This contradiction proves (a).

(b) Consider the turn in the game when v became blue. Then, v was white in the
residual graph GD just before this move. We infer that before the move degW (u) ≥ 3
and consequently, ∆W (W ) ≥ 3 was true in GD. This implies that the move played in
GD belongs to Phase 1 of the game and that B− = ∅ remains valid when v becomes
blue.

(c) By definition, every neighbor of a white vertex belongs to W ∪ B. Since
degW (u) = 1 and deg(u) ≥ 2, there is at least one blue vertex v in N(u). By (a), we
know that N(v)∩W induces a complete graph. Since it also includes vertex u, there
are only two possibilities, namely either N(v) ∩ W = {u} or N(v) ∩W = {u, u′}.
In the former case, u is the only white neighbor of v and therefore, the statement of
(c) is valid for v. In the second case, v does not satisfy the statement only if there
exists a blue vertex y that is adjacent with u but not with u′. But in this case we
have the setup y ∈ B, N(y)∩W = {u} for y itself and so, (c) is satisfied with y. (�)

Claim 5.3 If Staller plays a vertex v in the residual graph GD, then s(v) ≥ 22.

Proof. As v is a legal move in GD, it is either white or blue. If v ∈ W , then,
as v becomes red by this move, fD(v) decreases by 22. This immediately implies
s(v) ≥ 22. If v ∈ B+, then it dominates at least one white vertex, say u. Since v
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becomes red and u becomes blue or red, s(v) ≥ (10−0)+(22−10) = 22. If v ∈ B−,
then Phase 2 has already begun and therefore, the white neighbor u of v cannot
become a B+-vertex. This gives s(v) ≥ (9− 0) + (22− 9) = 22 again. (�)

Claim 5.4 If GD is a residual graph in a D-game and Dominator is the next player
with his ith move, then the following statements are true.

(1) If GD[W ] is not a disjoint union of cycles or if B 6= ∅, then

(i) Dominator either can ensure that the potential function decreases by at
least 80 during the next two moves di and si; or

(ii) Dominator finishes the game with the next move di that decreases f(G
D)

by at least 40.

(2) If GD[W ] is a disjoint union of cycles and B = ∅, then Dominator can ensure

that the game finishes in at most |W |+1
2

moves.

Proof. (2) The condition B = ∅ in statement (2) implies that a D-game on GD is
the same as a D-game on GD[W ]. Since the latter is a disjoint union of cycles on |W |
vertices, Dominator can ensure (applying [26, Corollary 18] again) that the game

ends in at most
⌈

|W |
2

⌉

moves. This verifies the upper bound |W |+1
2

on the number of

remaining moves.

(1) Let the residual graph GD satisfy the conditions given in (1). We consider
several cases in the proof.

(D1) ∆W (W ) ≥ 3.
Let u be a white vertex that has at least three white neighbors. If Dominator
plays u, then u becomes red and the three neighbors become blue or red. In this
way, Dominator can ensure that the decrease in the potential function is at least
s(u) ≥ (22 − 0) + 3(22 − 10) = 58. If this is the last move in the game, then (ii)
is satisfied. Otherwise, by Claim 5.3, Staller’s next move decreases the potential
function by at least 22 and the two moves together cause a decrease of at least 80
as stated.

(D2) ∆W (W ) = 2 and GD[W ] contains a component Pℓ that is a path on at least
3 vertices.
Suppose that {u1, u2, u3} ⊆ W , degW (u1) = 1 and that these three vertices induce a
path. If Dominator plays u2, then both u1 and u2 become red and u3 becomes blue or
red. These changes decrease the sum of the weights by at least 2 ·22+(22−10) = 56.

22



Further, by Claim 5.2 (c), there exists a blue neighbor v of u1 which turns red when
u1 is dominated. This decreases the weight of v by at least 9. We infer that
s(u2) ≥ 56 + 9 = 65 and either (i) or (ii) follows as in the previous case.

(D3) ∆W (W ) ≤ 2 and there exist two vertices u1 and u2 which induce a P2-
component in GD[W ] and |(N(u1) ∪N(u2)) ∩ B| ≥ 2.
If Dominator plays u1, then both u1 and u2 become red. Moreover, by Claim 5.2
(a), for each blue neighbor v of ui, i ∈ [2], the vertices in N(v)∩W form a complete
graph. As follows, N(v) ⊆ {u1, u2} and after playing u1, the blue vertex v becomes
red. As it is also true for the other blue neighbor, we infer s(u1) ≥ 2 · 22+2 · 9 = 62.
Together with Claim 5.3 this fact implies the statement.

(D4) ∆W (W ) = 2 and there is a cycle component Cℓ in GD[W ] such that at least
one vertex from Cℓ is adjacent to a blue vertex.
Without loss of generality, we assume that u1, u2 and u3 are three consecutive
vertices from the cycle and v is a blue neighbor of u2. By Claim 5.2 (a), all white
neighbors of v are from {u1, u2, u3}. Thus, after playing u2, the vertices u2 and v
become red, while u1 and u3 become blue or red. Note that, since ∆W (W ) = 2,
this move of Dominator belongs to Phase 2 of the game and no new B+-vertices
may arise. Observe further that, by Claim 5.2 (b), v is a B+-vertex. We conclude
s(u2) ≥ 22 + 10 + 2 · (22− 9) = 58 that verifies the statement again.

(D5) If none of the conditions (D1)–(D4) holds, but it is still true that GD[W ] is
not a disjoint union of cycles or B 6= ∅, we get that at least one component of GD[W ]
is not a cycle. As ∆W (W ) ≤ 2, this component is a path. Excluding the cases (D2)
and (D3), this component is either a single vertex x forming a P1 component or
two adjacent vertices u1u2 that have exactly one (common) blue neighbor v. In the
latter case, each (present or later) move that dominates at least one of u1 and u2

makes all the three vertices red, and decreases the weight of the residual graph by
at least 2 · 22 + 9 = 53. In the former case, as degG(x) ≥ 2 and degW (x) = 0, the
white vertex x has at least two blue neighbors, say v1 and v2. Referring again to
Claim 5.2 (a), we get that N(vi) ∩ W = {x}. Thus, each (present or later) move
that dominates x, turns x, v1 and v2 red and decreases the weight of the residual
graph by at least 22 + 2 · 9 = 40.

Under the conditions of (D5), Dominator plays a vertex from a non-cycle com-
ponent of GD[W ] and decreases f(GD) by at least 40. If the game is over, then
(ii) holds. Otherwise, in the next turn, Staller either plays a vertex that dominates
a P1- or a P2-component from GD[W ] and decreases f(GD) by at least 40, or she
plays a vertex from a cycle component of GD[W ]. Recall that, by the exclusion of
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the case (D4), she does not have a possibility for playing an outer blue vertex and
dominating only one or two vertices from the cycle. Therefore, in the latter case,
Staller dominates three white vertices such that one of them becomes red. This
move decreases f(GD) by at least 22 + 2 · (22− 9) = 48. Under any legal choice of
Staller, the two consecutive moves of the game decrease the potential function by
at least 80. This finishes the proof of (1). (�)

To complete the proof of Theorem 5.1, we first assume that all moves of Dom-
inator can be done under the condition of (1) in Claim 5.4. Observe that this
assumption covers all cases when G is connected and not a cycle. According to
Claim 5.4 (1), Dominator can ensure that if k vertices are played in the game, then
the original weight f(G∅) = 22n decreases by at least 40k until the end of the game.
Since the game is over when f(GD) = 0, we conclude that 22n−0 ≥ 40k and hence,

γg(G) ≤ k ≤

⌊

22n

40

⌋

=

⌊

11

20
n

⌋

.

In the other case, there is a smallest index (i + 1) such that Dominator plays
his (i+ 1)st move in a residual graph GD which satisfies B = ∅ and GD[W ] consists
of cycle components. Let us suppose that k is the total number of vertices played
in the game. Claim 5.4 (1) says that the potential function decreased by at least
2i · 40 = 80i during the first 2i turns. By Claim 5.4 (2), all |W | vertices of the

cycle components become red in at most |W |+1
2

moves. By introducing the notation

j = k − 2i, we get j ≤ |W |+1
2

. This implies 2j − 1 ≤ |W |. Thus, during the last
j turns, f(GD) decreases by at least 22|W | ≥ 44j − 22. Comparing the number of
played vertices, that is k = 2i+ j, and the total decrease in the weights, we obtain

22n ≥ 80i+ 44j − 22 = 40k + 4j − 22 ≥ 40k − 18,

as j ≥ 1. From this inequality we obtain the desired estimation for the game
domination number of G that finishes the proof of the theorem:

γg(G) ≤ k ≤

⌊

11n+ 9

20

⌋

≤

⌈

11

20
n

⌉

.

�

6 Concluding remarks

Using a computer search we have checked that Conjecture 1.2 is supported by all
graphs G on at most 10 vertices. The computer search becomes slow for larger
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graphs, even when restricted to connected graphs G with diameter at least 3,
minimum degree smaller than 5, and domination number such that ⌈n(G)/2⌉ <
2γ(G) − 1. However, we did try some random approaches and they have all sup-
ported the conjecture.

If Conjecture 1.2 is true, then it is best possible as demonstrated by cycles.
Moreover, among diameter 2 graphs, there are exactly eight equality cases, see [11,
Fig. 1]. In addition, we were also able to find equality cases with diameter at least
3. Using a computer search among graphs on at most 9 vertices (and diameter
at least 3), we found exactly 5 equality cases on 6 vertices, 23 equality cases on 8
vertices, and 5 equality cases on 9 vertices. The latter are also the smallest (except
for C5) equality cases with odd number of vertices and are presented in the first row
of Fig. 1. Note that all these graphs are traceable. To add non-traceable equality
cases, we present two sporadic examples, see the second row of Fig. 1.

Figure 1: The first row contains graphs G with n(G) = 9 and γg(G) = 5. The
second row contains a graph on 24 vertices with γg = 12, and a graph on 30 vertices
with γg = 15.

To conclude the paper we present two alternative versions of Conjecture 1.2 that
could become interesting provided a counterexample to Conjecture 1.2 will be found.

Conjecture 6.1 If δ(G) ≥ 2, then γg(G) ≤ n(G)
2

+ C, where C is a universal
constant.
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From the examples above we know that C ≥ 1
2
. A further weakening of the

conjecture is the following.

Conjecture 6.2 There exists a constant c < 3
5
such that every graph G with δ(G) ≥

2 and n(G) ≥ 6 satisfies γg(G) ≤ c · n(G).

Recall that if δ(G) ≥ 3, then γg(G) ≤ 0.5574 ·n(G), see [7]. Hence Conjecture 6.2
holds for graphs of minimum degree at least 3 (with the constant c = 0.5574).
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[11] Cs. Bujtás, V. Iršič, S. Klavžar, K. Xu, The domination game played on diam-
eter 2 graphs, arXiv:2009.09760.
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