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Abstract

Let G be a connected graph. For an ordered set S = {v1, . . . , vℓ} ⊆ V (G), the
vector rG(v|S) = (dG(v1, v), . . . , dG(vℓ, v)) is called the metric S-representation of v.
If for any pair of different vertices u, v ∈ V (G), the vectors r(v|S) and r(u|S) differ
in at least k positions, then S is a k-metric generator for G. A smallest k-metric
generator for G is a k-metric basis for G, its cardinality being the k-metric dimension
of G. A sharp upper bound and a closed formulae for the k-metric dimension of the
hierarchical product of graphs is proved. Also, sharp lower bounds for the k-metric
dimension of the splice and link products of graphs are presented. An integer linear
programming model for computing the k-metric dimension and a k-metric basis of
a given graph is proposed. These results are applied to bound or to compute the
k-metric dimension of some classes of graphs that are of interest in mathematical
chemistry.

Key words: metric dimension; k-metric dimension; binary product; integer linear pro-
gramming; chemical graph theory

AMS Subj. Class: 05C12; 05C76

1 Introduction

Throughout this paper, all graphs are assumed to be connected, finite, and simple. Let
G = (V (G), E(G)) be a graph and u, v ∈ V (G). The distance dG(u, v) is defined as the
length of a shortest path that connects u and v. For an ordered set S = {v1, . . . , vℓ} ⊆
V (G), the vector rG(v|S) = (dG(v1, v), . . . , dG(vℓ, v)) is called the metric S-representation
of v. The set S distinguishes vertices u and v if rG(u|S) 6= rG(v|S). We say that S is a
metric generator for G if for every pair of distinct vertices u, v ∈ V (G), rG(u|S) 6= rG(v|S).
A metric generator with the smallest cardinality among all the metric generators for G
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is called a metric basis metric basis for G, and its cardinality the metric dimension of G,
denoted by dim(G).

The concept of the metric dimension was introduced almost half a century ago in [15,
24]. Afterwards, the concept was exdtensively investigated, cf. [4, 8, 10, 26], see also [16, 19]
for its applications in modeling of real world problems. Moreover, several versions of this
concept such as the local metric dimension [23], strong resolving sets [22], and edge metric
dimension [18] were introduced, in particular because of their applications in modelling of
different problems.

As an extension of metric generators, k-metric generators were recently proposed in [12]
as follows. If G is a graph and k a natural number, then S ⊆ V (G) is a k-metric generator

for G if for any pair of different vertices u, v ∈ V (G), there exist at least k vertices
v1, . . . , vk in S such that dG(vi, u) 6= dG(vi, v), for every i ∈ [k], where [k] denotes the set
{1, . . . , k}. We further say that if X ⊆ V (G), then S is a k-metric generator for X if any
pair of vertices from X is distinguished by at least k vertices from S. Note that if |X| ≤ 1,
then, by definition, S = ∅ is a k-metric generator for X. A smallest k-metric generator
is a k-metric basis for G and the k-metric dimension dimk(G) of G is the cardinality of a
k-metric basis for G. If G admits no k-metric basis, then we set dimk(G) = ∞. Moreover,
if G admits a k-metric generator, then we will write dimk(G) < ∞.

Independently from [12], the k-metric dimension was introduced and studied in [1],
where besides the unweighted version of the problem, also weighted version of the problem
was studied for paths, complete graphs, complete bipartite graphs, and complete wheel
graphs. (See also [17] for the fractional version of the k-metric dimension.) In [28] it is
proved that the problem of computing the k-metric dimension of graphs is NP-hard and
that the problem can be solved in linear time for some special trees. Moreover, it is proved
that for a connected graph G, the problem of finding the largest integer k such that G

admists a k-metric generator can be solved in polynomial time. The k-metric dimension
(more precisely k-resolving sets) was used in [5] to construct error-correcting codes. In the
same paper the k-metric dimension of Cartesian products of paths was determined. The
k-metric dimension of the lexicographic product of graphs was investigated in [13] and the
k-metric dimension of the corona product of graphs in [14]. Finally, in [9] related bounds
were investigated, while in [7] the concept was studied on general metric spaces.

In this paper we proceed this line of investigation by considering the k-metric dimension
of hierarchical, splice, and link products. In the next section we give a general sharp upper
bound on dimk(G(U)⊓H) and an exact formula for the case |U | = 1. Also, we give general
sharp lower bounds on dimk(G(U) ·H) and dimk(G(U) ∼ H). In Section 3 we propose an
integer linear programming model for computing the k-metric dimension of an arbitrary
graph. In the last section we use results of Sections 2 and 3 to bound or determine the
k-metric dimension of some classes of graphs that appear in mathematical chemistry.

2 Some binary operations

In the first subsection, we study the k-metric dimension under the hierarchical product of
graphs. In the second subsection, we investigate the k-metric dimension under the splice
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and the link product of graphs.

2.1 Hierarchical products

Suppose G and H are two graphs with U ⊆ V (G). The hierarchical product G and H with
respect to U , denoted by G(U) ⊓H, is the graph with the vertex set V (G) × V (H), and
the edge set {(g, h)(g′ , h′) | g = g′ ∈ U and hh′ ∈ E(H), or, gg′ ∈ E(G) and h = h′}. If
h ∈ V (H), then the subgraph of G(U) ⊓ H induced by the vertices (g, h), g ∈ V (G), is
isomorphic to G and called a G-layer. Similarly H-layers are defined, cf. [21]. We note
that the operation ⊓ (for two and also more factors) was in the seminal paper [6] named
the generalized hierarchical product. Also, we note that if U = V (G), then G(U) ⊓H is
the standard Cartesian product G�H, cf. [20]. Moreover, if |U | = 1, then G(U) ⊓H is a
cluster product G{H}, see [25]. We refer to [2, 3] for different studies of the hierarchical
product.

Suppose u and v are two vertices of G, and U ⊆ V (G). A u, v-walk W is a u, v-walk

through U if W is an u, v-walk in G that contains some vertex of U . Note that the latter
vertex could be one of u and v. In the following, dG(U)(u, v) denotes the length of a
shortest u, v-walk in G through U .

Proposition 2.1 [6] For two graphs G and H with U ⊆ V (G), we have

dG(U)⊓H((g, h), (g′ , h′)) =

{

dG(U)(g, g
′) + dH(h, h′); h 6= h′,

dG(g, g
′); h = h′.

Before stating our main results, we need to introduce some notations. For v ∈ V (G) and
ℓ ∈ N0, we use the notation Nℓ(v) to denote the set of vertices of G that are at distance ℓ

from v, that is,
Nℓ(v) = {u ∈ V (G) : dG(v, u) = ℓ} .

If U ⊆ V (G), then we set:

dimk(G(U)) = min{|
⋃

u∈U

ℓ≥1

SG(u, ℓ) | : SG(u, ℓ) is k-metric generator for Nℓ(u)} .

In words, dimk(G(U)) is the size of a smallest set of vertices S such that each pair of
vertices from each of the sets Nℓ(u) is distinguished by k vertices from S. If such a set
does not exist, then we set dimk(G(U)) = ∞. Denoting the order of a graph G by n(G),
we now have the following result.

Theorem 2.2 Let G be a graph, U ⊆ V (G) and dimk(G(U)) = t. If H is a graph with

dim⌈k

t
⌉(H) < ∞, then

dimk(G(U) ⊓H) ≤ n(H) · dimk(G(U)).
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Proof. We use X instead of G(U) ⊓H for convenience. Let ST (G) ⊆ V (G) be a set that
realizes dimk(G(U)), so that |ST (G)| = dimk(G(U)). Let further SG(u, ℓ) be a subset of
ST (G) which is a k-metric generator for Nu(ℓ), where u ∈ U and ℓ ≥ 1.

Set S = ST (G) × V (H). We will show that S is a k-metric generator for X. To do
this, let v and w be arbitrary, different vertices of X, and consider the following cases.

Case 1: v = (g, h) and w = (g, h′), that is, v and w belong to a common H-layer.
Since dim⌈k

t
⌉(H) < ∞, there exist ⌈k

t
⌉ vertices say h1, . . . , h⌈k

t
⌉ in H such that dH(h, hi) 6=

dH(h′, hi) for every i ∈ [⌈k
t
⌉]. Set

S′ = {(g′, hi) : g′ ∈ ST (G) and i ∈ [⌈
k

t
⌉]} .

Clearly, |S′| = ⌈k
t
⌉·t ≥ k, S′ ⊆ S, and dX((g, h), (g′ , hi))−dX((g, h′), (g′, hi)) = dH(h, hi)−

(h′, hi) 6= 0 for every (g′, hi) ∈ S′.

Case 2: v = (g, h) and w = (g′, h), that is, v and w belong to a common G-layer.
If there exist u ∈ U and ℓ ∈ N such that dG(g, u) = dG(g

′, u) = ℓ, then SG(u, ℓ)×{h} is a
subset of S×{h} which is a k-metric generator for {v,w}. Otherwise, dG(g, u) 6= dG(g

′, u)
for each u ∈ U . Thus, for each (g′′, h′′) ∈ S− (ST (G)×{h}), we have dX((g, h), (g′′ , h′′))−
dX((g′, h), (g′′, h′′)) = dG(U)(g, g

′′)− dG(U)(g
′, g′′) > 0. On the other hand, |S − (ST (G)×

{h})| ≥ k because |ST (G)| ≥ k.

Case 3: v = (g, h) and w = (g′, h′), where g 6= g′ and h 6= h′.
If there exist u ∈ U and ℓ ∈ N such that dG(g, u) = dG(g

′, u) = ℓ, then there ex-
ist k vertices g1, . . . , gk ∈ SG(u, ℓ) with dG(g, gi) 6= dG(g

′, gi) for every i ∈ [k]. As-
sume, without loss of generality, that dG(g, gi) > dG(g

′, gi) for i ∈ [q], and dG(g, gi) <

dG(g
′, gi) for q < i ≤ k. Therefore, dX((g, h), (gi , h

′)) = dG(U)(g, gi) + dH(h, h′) ≥
dG(g, gi)+dH(h, h′) > dG(g

′, gi) = dX((g′, h′), (gi, h
′)) for i ∈ [q]. Also, dX((g, h), (gi, h)) =

dG(g, gi) < dG(g
′, gi) + dH(h, h′) ≤ dG(U)(g

′, gi) + dH(h, h′) = dX((g′, h′), (gi, h)) for
q < i ≤ k. Then

{(g1, h
′), . . . , (gq, h

′), (gq+1, h), . . . , (gk, h)} ,

which is a subset of S, is a k-metric generator for {v,w}.
Otherwise, dG(v, z) 6= dG(w, z) for each z ∈ U . Consider a vertex u ∈ U and an

ℓ ∈ N0. Suppose that g1, . . . , gk ∈ SG(u, ℓ). Assume, without loss of generality, that
dG(g, gi) ≥ dG(g

′, gi) for i ∈ [q], and dG(g, gi) < dG(g
′, gi) for q < i ≤ k. There-

fore, dX((g, h), (gi , h
′)) = dG(U)(g, gi) + dH(h, h′) ≥ dG(g, gi) + dH(h, h′) > dG(g

′, gi) =
dX((g′, h′), (gi, h

′)) for i ∈ [q]. Also, dX((g, h), (gi , h)) = dG(g, gi) < dG(g
′, gi)+dH(h, h′) ≤

dG(U)(g
′, gi) + dH(h, h′) = dX((g′, h′), (gi, h)) for q < i ≤ k. Then

{(g1, h
′), . . . , (gq, h

′), (gq+1, h), . . . , (gk, h)} ,

which is a subset of S, is a k-metric generator for {v,w}.
We conclude that S is a k-metric generator for X, and consequently dimk(X) ≤ |S| =

n(H) · dimk(G(U)). �
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In the last section, we will demonstrate sharpness of the bound of Theorem 2.2. Here
we continue with the case |U | = 1. If U = {u}, then we simplify the notation G({u}) to
G(u). If G is a path and u its end vertex, then we say G(u) is a rooted path.

Theorem 2.3 Suppose that dimk(G(u)) = t, where G(u) is not rooted path. If H is a

graph with dim⌈k

t
⌉(H) < ∞, then

dimk(G(u) ⊓H) = n(H) · dimk(G(u)).

Proof. Set again X = G(u) ⊓ H, and let ST (G) ⊆ V (G) be defined as in the proof of
Theorem 2.2. In that theorem we have proved that S = ST (G) × V (H) is a k-metric
generator for X. To complete our proof we are going to show that S is a k-metric basis
of X.

Assume by contradiction that S′ is a k-metric generator for X such that |S′| <

n(H)t. Then, by the pigeonhole principle, there exists a vertex h ∈ V (H) such that
|S′ ∩ (ST (G)×{h})| < |ST (G)|. This implies that there exist two vertices (g′, h), (g′′, h) ∈
V (G)×{h} such that dX((g′, h), (u, h)) = dX((g′′, h), (u, h)). On the other hand, we have
dX((g′, h), w) = dX((g′, h), (u, h))+dX ((u, h), w) and dX((g′′, h), w) = dX((g′′, h), (u, h))+
dX((u, h), w) for each w ∈ S′ − (V (G) × {h}). Thus, dX((g′, h), w) = dX((g′′, h), w) for
each w ∈ S′ − (V (G) × {h}). This means that S′ is not a k-metric generator for X, a
contradiction. Therefore, each k-metric generator for X has at least n(H) · dimk(G(u))
vertices and S is a k-metric basis of X. �

2.2 Splice and link products

Let G and H be disjoint graphs and let a ∈ V (G) and b ∈ V (H). The splice (G ·H)(a; b)
of G and H (with respect to a and b) is the graph obtained from G and H by identifying
the vertices a and b. Similarly, the link (G ∼ H)(a; b) of G and H (with respect to a and
b) is the graph obtained from G and H by adding the edge ab, cf. [11, 27]. Simplifying
the notation G({a}) to G(a) as already done above, we have then have the following lower
bounds.

Theorem 2.4 If G and H are disjoint graphs, a ∈ V (G), and b ∈ V (H), then

dimk((G ·H)(a; b)) ≥ dimk(G(a)) + dimk(H(b)) ,

dimk((G ∼ H)(a; b)) ≥ dimk(G(a)) + dimk(H(b)) .

Proof. Set X = (G · H)(a; b). By G′ and H ′, we denote the respective copies of G and
H in X. Let S be a k-metric generator for X and assume to the contrary that |S| <
dimk(G(a)) + dimk(H(b)). Then |S ∩ V (G′)| < dimk(G(a)) or |S ∩ V (H ′)| < dimk(H(b)).
We may assume that |S ∩ V (G′)| < dimk(G(a)). Thus there exist vertices u and v in G′

such that dX(u, a) = dX(v, a) and they are not distinguished by at least k vertices from
S ∩ V (G′). On the other hand, since dX(u, a) = dX(v, a), the vertices u and v cannot be
distinguished by the vertices from V (H ′), and in particular from S ∩V (H ′). Therefore, S
is not a k-metric generator for X. This contradiction proves the first inequality.
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The second inequality is proved along parallel lines. �

As an example, consider the 2-metric dimension and the two examples as presented in
Fig. 1. The bold vertices in each of the graphs form its 2-metric basis. The first example
(Fig. 1(a)) demonstrates that the bound of Theorem 2.4 is sharp, while the second example
(Fig. 1(b)) shows that the equality need not hold. Indeed, one can verify that in the latter
example we have dim2(G({a})) = dim2(H({b})) = 2 and dim2((G ·H)(a; b)) = 5.

=

(a)

a b

=

(b)

a b

G H

G H

Figure 1: Two splice products and their 2-metric basis.

One would be tempted to replace in Theorem 2.4 the values dimk(G(a)) and dimk(H(b))
with dimk(G) and dimk(H), respectively. However, this cannot be done. For instance,
since dim2(Kn) = n, n ≥ 3, we infer that for n,m ≥ 3,

dim2(Kn) + dim2(Km) = n+m > n(Kn ·Km)(a; b)) ≥ dim2((Kn ·Km)(a; b)) .

Similarly, dim2(Pn) = 2 for n ≥ 2. Setting G = Pn, H = Pm, and selecting a and b to
be the pendant vertices of G and H, respectively, we have (G · H)(a; b) = Pn+m−1 and
hence dim2((G ·H)(a; b)) = 2 as well. Note that this example also shows that dimk(G(a))
and dimk(H(b)) cannot be replaced with dimk(G) and dimk(H) in the second inequality
of Theorem 2.4. Note finally that if a is a pendant vertex of Pn, then dim2(Pn(a)) = 0
because there are no pairs of vertices in Pn that are at the same distance from a.

3 Integer LP model

In [8], Chartrand et al. adopted an integer linear programming model (ILPM) to obtain
the metric dimension and a metric basis for a graph. Motivated by this work, we present
an ILPM for obtaining the k-metric basis as follows. Let G be a graph with V (G) =
{v1, . . . , vn}. Let DG = [dij ] be the distance matrix of G, that is, an n × n matrix with
dij = dG(vi, vj), i, j ∈ [n]. For xi ∈ {0, 1}, i ∈ [n], define the function F by

F (x1, . . . , xn) = x1 + · · ·+ xn ,
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and set

δ(dij , di′j′) =

{

1; dij 6= di′j′ ,

0; dij = di′j′ .

The the goal is to minimize F subject to the constraints

δ(di1, dj1)x1 + · · ·+ δ(din, djn)xn ≥ k, 1 ≤ i < j ≤ n .

Note that if x′1, . . . , x
′
n is a set of binary values for which F attains its minimum, then

W = {vi : x′i = 1} is a k-metric basis for G.
As a simple example consider the path P3 on verices v1, v2, v3. Then

DP3
=





0 1 2
1 0 1
2 1 0



 .

Let k = 2. Then the ILPM is to minimize F (x1, x2, x3) = x1 + x2 + x3 subject to the
constraints x1 + x2 + x3 ≥ 2, x1 + x3 ≥ 2, x1 + x2 + x3 ≥ 2, x1, x2, x3 ∈ {0, 1}. F attains
its minimum for x1 = 1, x2 = 0, and x3 = 1, hence W = {v1, v3} is a 2-metric basis for
P3.

4 Applications

In this section we first apply Theorem 2.2 to obtain upper bounds on the k-metric dimen-
sion of some families of graphs that appear in chemical graph theory. Then, using the
ILMP, we compute exact values for some smaller graphs from these families and conclude
that the bound of Theorem 2.2 is sharp in several examples. Throughout this section, let
ST (G) have the same meaning as in the proof of Theorem 2.2, that is, a set that realizes
dimk(G(U)).

Consider Fp,t, a zigzag nanotube with t hexagonal belts with p hexagons in each belt.
As it is shown in Fig. 2(a), Fp,1 is isomorphic to C2p(U) ⊓ P2 where C2p is a cycle with
the ordered vertex set {v1, . . . , v2p} and U = {v2i : i ∈ [p]}. Clearly, if k ≤ p, then
ST (C2p) = {v2i−1 : i ∈ [k]}, and ST (C2p) = {v2i−1 : i ∈ [p]} ∪ {v2i : i ∈ [k − p + 1]}
otherwise. Thus,

dimk(C2p(U)) =

{

k; k ≤ p ,

k + 1; p < k < 2p .

On the other hand, dim1(P2) < ∞, hence by Theorem 2.2, we have

dimk(Fp,1) = dimk(C2p(U) ⊓ P2) ≤ n(P2) · dimk(C2p(U)) =

{

2k; k ≤ p ,

2k + 2; p < k < 2p .

Now, consider Fp,3 depicted in Fig. 2(b). The fact that dimk(Fp,1(U)) ≤ dimk(Fp,1) and
Theorem 2.2 lead us to the following bound for the k-metric dimension of Fp,3:

dimk(Fp,3) = dimk(Fp,1(U) ⊓ P2) ≤ n(P2) · dimk(Fp,1(U))

≤ n(P2) · dimk(Fp,1) =

{

4k; k ≤ p ,

4k + 4; p < k < 2p .

7



By induction we infer that

dimk(Fp,2q−1) ≤

{

2qk; k ≤ p ,

2q(k + 1); p < k < 2p .
(1)

=

=

(a)

(b)

Figure 2: (a) C2p(U)⊓P2 = Fp,1 where U is formed by the bold vertices (b) Fp,1(U)⊓P2 =
Fp,3 where U is formed by the bold vertices.

A zig-zag polyhex lattice-like Γ2t−1,p is a planar graph which is formed by 2t−1 hexago-
nal rows with p and p+1 hexagons in the rows, alternatively, and a pendent vertex at both
ends of its first and last level. See Γ1,7 and Γ3,7 in Fig. 3(a) and Fig. 3(b), respectively.
An armchair graph A4t,p is a tube whose surface is covered by 4t hexagonal rows with p

and p + 1 hexagons in the rows, alternatively. The graph A8,7 shown in Fig. 3(c) is an
armchair graph.

Let P2p+3 be a path with ordered vertex set {v1, . . . , v2p+3}. The graph Γ1,p is isomor-
phic to P2p+3(U) ⊓ P2 where U = {v2i : i ∈ [p]} (Fig. 2(a) shows Γ1,7 = P2p+3(U) ⊓ P2

where U is formed by the black vertices in the figure). Easily one can check that if k ≤ p+2,
then ST (P2p+3) = {v2i−1 : i ∈ [k]}, and otherwise

ST (C2p) = {v2i−1 : i ∈ [p+ 2]} ∪ {v2i : i ∈ [k − p− 1]}.

Thus,

dimk(P2p+3(U)) =

{

k; k ≤ p+ 2 ,

k + 1; p+ 2 < k < 2p+ 3 .

On the other hand, dim1(P2) < ∞ and hence, applying Theorem 2.2 again,

dimk(Γ1,p) ≤ n(P2) · dimk(P2p+3(U)) =

{

2k; k ≤ p+ 2 ,

2k + 2; p+ 2 < k < 2p+ 3 .
(2)

Then, by (2),

dimk(Γ1,7) ≤

{

2k; k ≤ 9 ,

2k + 2; 9 < k < 17 .

8



(a)

=

(b)

=

(c)

=

Figure 3: A sequence of graphs Γ1,7, Γ3,7 and A8,7 constructed by the hierarchical product;
the final graph A8,7 is an armchair graph.

Now consider Γ3,7 depicted in Fig. 2(b). By the fact that dimk(Γ1,7(U)) ≤ dimk(Γ1,7) and
Theorem 2.2, we can estimate as follows:

dimk(Γ3,7) = dimk(Γ1,7(U) ⊓ P2) ≤ n(P2) · dimk(Γ1,7(U))

≤ n(P2) · dimk(Γ1,7) =

{

4k; k ≤ 9 ,

4k + 4; 9 < k < 17 .

For another example consider the armchair graph A8,7 from Fig. 3(c). This figure demon-
strates that A8,7 is isomorphic to Γ3,7(U) ⊓ P2, where U is formed by the black vertices.
Then, by Theorem 2.2, we have

dimk(A8,7) = dimk(Γ3,7(U) ⊓ P2) ≤ n(P2) · dimk(Γ3,7(U))

≤ n(P2) · dimk(Γ3,7) =

{

8k; k ≤ 9 ,

8k + 8; 9 < k < 17 .

A comparison of the bounds (1) and (2) and the exact values of k-metric dimension
obtained by ILPM for the graphs F4,1, Γ1,2 and Γ1,3, and k ∈ {2, 3, 4, 5} is shown in
Table 1. The information of this table shows that the bound presented in Theorem 2.2 is
sharp in several cases.

To conclude the paper we give an example in which Theorem 2.3 is applied. Let
G1, . . . , Gd be graphs with vi ∈ V (Gi). The bridge-path graph of these graphs with respect
to the vertices r1, . . . , rd is the graph BP (G1, . . . , Gd; v1, . . . , vd) obtained from the graphs
G1, . . . , Gd by connecting the vertices ri and ri+1 by an edge for all 1 ≤ i ≤ d − 1, see
Fig. 4.
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F4,1 Γ1,2 Γ1,3

bound on 2-metric dimension 4 4 4

exact value of 2-metric dimension 4 4 4

bound on 3-metric dimension 6 6 6

exact value of 3-metric dimension 6 5 5

bound on 4-metric dimension 8 8 8

exact value on 4-metric dimension 8 7 7

bound on 5-metric dimension 10 10 10

exact value of 5-metric dimension 9 8 9

Table 1: A comparison of the bounds obtained from relations (1) and (2) and the exact
values of k-metric dimension obtained by ILPM .

G
2G1

G
d-� G

d

r
d

r1 r
�

r
d��

Figure 4: The bridge-path graph BP (G1, . . . , Gd; r1, . . . , rd).

If G1 = · · · = Gd = G and r1 = u ∈ V (G), then we have

BP (G1, . . . , Gd; r1, . . . , rd) ∼= G(u) ⊓ Pd.

Thus, if G(u) is not a rooted path and dimk(G(u)) = t, then by Theorem 2.3 we have

dimk(BP (G1, . . . , Gd; r1, . . . , rd)) = dimk(G(u) ⊓ Pd) = d · dimk(G(u)),

where ⌈k
t
⌉ ≤ d− 1.
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[11] T. Došlić, Vertex-weighted Wiener polynomials for composite graphs, Ars Math. Con-
temp. 1 (2008) 66–80.
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