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Abstract

The connected domination game is played just as the domination game,
with an additional requirement that at each stage of the game the vertices
played induce a connected subgraph. The number of moves in a D-game (an
S-game, resp.) on a graph G when both players play optimally is denoted by
γcg(G) (γ′cg(G), resp.). Connected Game Continuation Principle is established
as a substitute for the classical Continuation Principle which does not hold for
the connected domination game. Let G|x denote the graph G together with
a declaration that the vertex x is already dominated. The first main result
asserts that if G is a graph with γcg(G) ≥ 3 and x ∈ V (G), then γcg(G|x) ≤
2γcg(G)− 3 and the bound is sharp. The second main theorem states that if
G is a graph with n(G) ≥ 2 and x ∈ V (G), then γcg(G|x) ≥

⌈
1
2γcg(G)

⌉
and

the bound is sharp. Graphs G and their vertices x for which γ′cg(G|x) = ∞
holds are also characterized.
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1 Introduction

The domination game [4] is played on a graph G by Dominator and Staller who take
turns, each time selecting a vertex which dominates at least one vertex that has not
yet been dominated by the vertices already played. The game is over when no move is
possible. The goal of Dominator is to select as few vertices as possible, Staller’s goal
is just the opposite. Assuming that both players are playing optimally, the number
of vertices selected by the end of the game is a graph invariant. If Dominator has the
first move, then the invariant is called the game domination number of G, denoted
by γg(G), otherwise (if Staller starts the game) it is denoted by γ′

g(G). The total
domination game [14] which is played on an isolate-free graph follows the same rules,
except that each newly played vertex must totally dominate at least one new vertex.
The corresponding invariants are denoted by γtg(G) and γ′

tg(G). For some recent
results on the (total) domination game see [6, 10, 20], for a variety of the classical
domination game see [2], for the fractional domination game [9], for Maker-Breaker
domination games [12, 13], and for a state of the art on domination games till the
early 2021 the book [3].

In this paper we are intrigued by the connected domination game which was
introduced by Borowiecki, Fiedorowicz, and Sidorowicz [1]. The game is played on
a connected graph and the rules of the game are the same as for the domination
game, except that a move is legal if the selected vertex not only dominates a vertex
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which is not yet dominated by previous moves, but is also adjacent to at least one
already played vertex. Note that the latter requirement is equivalent to the fact that
at each stage of the game, the set of vertices played induces a connected subgraph.
If Dominator starts the connected domination game, then we call it a D-game, while
if Staller is the first to select a vertex, then we speak of an S-game. If both players
play optimally, the number of moves in a D-game is the game connected domination
number γcg(G), and the number of moves in an S-game is the Staller-start game
connected domination number γ′

cg(G).
If S ⊆ V (G), then a partially dominated graph G|S is a graph together with

a declaration that the vertices from S are already dominated, that is, the vertices
from S need not be dominated during the course of the (total/connected) domination
game. If S = {u}, then the notation is simplified to G|u. We say that a connected
domination game on G or G|u is optimal if it is a sequence of moves such that
both players play according to their optimal strategies. We will use the convention
to denote the sequence of moves in a D-game by d1, s1, . . ., and by s′1, d

′

1, . . . in an
S-game.

In [7, Theorem 3] it was proved that if u is a vertex of a graph G, then
γg(G) ≤ γg(G|u) + 2. On the other hand, the Continuation Principle [21] implies
that γg(G|u) ≤ γg(G) holds. We thus have:

γg(G)− 2 ≤ γg(G|u) ≤ γg(G) . (1)

Similarly, for the total domination game it was proved in [18, Lemma 2.1] that if u is
a vertex of a graph G that contains no isolated vertices, then γtg(G) ≤ γtg(G|u)+2.
Since the Continuation Principle holds for the total domination game as well [14],
for a graph G without isolated vertices we have

γtg(G)− 2 ≤ γtg(G|u) ≤ γtg(G) . (2)

All the bounds in (1) and (2) are sharp [7, 18]. For more information on the game
(total) domination number of graphs with one vertex predominated see [11, 15, 16,
24].

Answering [19, Problem 6.2], our main results read as follows.

Theorem 1.1. If G is a connected graph with γcg(G) ≥ 3 and x ∈ V (G), then

γcg(G|x) ≤ 2γcg(G)− 3 .

Moreover, the bound is sharp.
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Theorem 1.2. If G is a connected graph on at least two vertices and x ∈ V (G),
then

γcg(G|x) ≥

⌈
1

2
γcg(G)

⌉
.

Moreover, the bound is sharp.

Comparing these two theorems with (1) and (2) reveals that the connected dom-
ination game is very different from the (total) domination game. This difference in
particular follows from the fact that the Continuation Principle in the usual sense
does not hold for the connected domination game.

The paper is organized as follows. In the next section we give additional defini-
tions, recall some results, and provide a new family of sharpness examples for the
earlier established upper bound γ′

cg(G) ≤ 2γcg(G). We refer to this construction in
our further developments. In Section 3 we prove, what we call, Connected Game
Continuation Principle. We consider it as a substitute for the usual Continuation
Pronciple and apply it in the continuation of the paper. In Sections 4 and 5, Theo-
rems 1.1 and 1.2 are proved, respectively. In Section 6 we turn our attention to the
S-game and characterize the graphs G and its vertices x for which γ′

cg(G|x) = ∞
holds. In particular, if x is a vertex of a tree T , then γ′

cg(T |x) = ∞ if and only if x
is not a leaf and has a neighbor of degree 2.

2 Preliminaries

Let G be a graph. If S ⊆ V (G), then the subgraph induced by S is denoted by G[S].
For a vertex v ∈ V (G), the (open) neighborhood N(v) is the set of neighbors of v, and
the closed neighborhood N [v] = N(v)∪{v}. If S ⊆ V (G), then N [S] =

⋃
v∈S N [v]. A

vertex v ∈ V (G) dominates itself and its neighbors. A subset of vertices D ⊆ V (G) is
a dominating set of G if it dominates all vertices of G, i.e. N [D] = V (G). This means
that every vertex from V (G) \ D has a neighbor in D. The minimum cardinality
of a dominating set of G is the domination number γ(G) of G. Similarly, a vertex
v ∈ V (G) totally dominates its neighbors, but not itself. A total dominating set of
G is a subset D ⊆ V (G) if every vertex from V (G) has a neighbor in D. Minimum
cardinality of a total dominating set of an isolate-free graphG is the total domination
number γt(G). A connected dominating set D of G is a dominating set such that
G[D] is connected. Minimum cardinality of such a set in a connected graph G is
the connected domination number γc(G). For a positive integer n we use notation
[n] = {1, . . . , n}.

If x is a vertex of a connected graph G, then γcg(G|x) is well-defined. Indeed,
Dominator can play x as his first move, and the rest of the game is then a usual
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connected domination game which always finishes after a finite number of moves.
However, this may not be the case for the S-game. As a simple example consider
the path P4 on vertices v1, v2, v3, v4 with natural adjacency relation, and consider
the S-game played on P4|v2. Then, after the first move s′1 = v4, Dominator has no
legal vertex to play. This means that the game cannot be finished as v1 remains
undominated. Because of this phenomenon we will write γ′

cg(G|x) = ∞ if Staller
has a strategy in the S-game played on G|x such that at some point of the game no
legal moves are available, but not all vertices are already dominated.

The following basic property of the game connected domination number will be
useful.

Theorem 2.1 ([1, Theorem 1]). If G is a graph, then

γc(G) ≤ γcg(G) ≤ 2γc(G)− 1.

In our later arguments, the graphs G for which γcg(G) = γc(G) holds will be
important. In this respect we mention that forests F for which γg(F ) = γ(F ) holds
were characterized in [22], while trees with equal total domination and game total
domination numbers were described in [17]. For a more general framework in this
direction, see [5].

As stated, Theorem 2.1 was proved in [1], but a more detailed proof of the upper
bound was later presented in [8]. Its proof reveals the following fact that we state
here for later usage.

Lemma 2.2. Let G be a connected graph and let S be a connected dominating set
of G. For every v ∈ S, Dominator has a strategy to start a D-game on G by playing
v, and playing only vertices from S during the game.

Note that we can use Lemma 2.2 for a (connected) subgraph of G as well. The
proofs of the following lemmas are analogous to that of Lemma 2.2 and hence we
omit them here.

Lemma 2.3. If D is a connected dominating set of G|x, then Dominator has a
strategy to play only vertices from D during the game. Furthermore, the game ends
after at most 2|D| − 1 moves.

Lemma 2.4. Let k ≥ 0 be even and let D be the set of the first k moves of a
connected domination game. If D′ ⊆ V (G) \ D is a set such that D ∪ D′ is a
connected dominating set, then Dominator has a strategy to play only vertices from
D′ during the remaining part of the game. Furthermore, the game ends after at most
|D|+ 2|D′| − 1 moves.
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We next recall the following result and demonstrate its sharpness.

Theorem 2.5 ([19, Theorem 3.2]). If G is a graph, then

γ′

cg(G) ≤ 2γcg(G).

LetHn, n ≥ 2, be a graph with vertices V (Gn) = {u0, . . . , un+1}∪{x1, . . . , xn−1}∪
{y1, . . . , yn−1} and edges uiui+1 for i ∈ {0, . . . , n}, uixi, xiyi, yiui+1, and ui+1xi for
i ∈ [n−1]. See Fig. 1 for H6. The family Hn is actually obtained by a simplification
of a family Gn from [19]. This simplification was proposed by West [23].

u0

u1

u2

u3

u4

u5

u6 u7

x1

x2

x3

x4

x5y1

y2

y3

y4

y5

Figure 1: The graph H6.

We recall the strategy of Dominator from [19, Lemma 3.3]. His strategy is to
play d1 = un which makes all the remaining moves unique and the game finishes in n
moves. We call this strategy Fast. Note that exactly vertices un, . . . , u1 are played
during the game. Together with the fact that γc(Hn) = n, and hence γcg(Hn) ≥ n
by Theorem 2.1, we get:

Lemma 2.6. If n ≥ 2, then γcg(Hn) = n.

However, to determine γ′

cg(Hn), the method from the proof of [19, Lemma 3.4]
is not helpful, thus we use a different approach.

Lemma 2.7. If n ≥ 2, then γ′

cg(Hn) = 2n.

Proof. It follows from Theorem 2.5 and Lemma 2.6 that γ′

cg(Hn) ≤ 2n. To prove
the reverse inequality, we consider the following strategy of Staller.

She starts the game by playing s′1 = u0. Dominator’s only legal reply is d′1 = u1.
Now Staller can play s′2 = x1, which forces Dominator to select d′2 = u2. Similarly,
for k ∈ {3, . . . , n − 1}, Staller can play s′k = xk−1, which leaves only one possible
reply for Dominator, d′k = uk. After 2(n−1) moves, all vertices except yn−1 and un+1

are dominated. Next Staller can play s′n = xn−1, which leaves Dominator finishing
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the game by playing d′n = un. This strategy of Staller ensures that γ′

cg(Hn) ≥ 2n.
�

We call the strategy of Staller described in the proof of Lemma 2.7 Slow. In
short, her strategy is to start on u0 and to play vertices x1, . . . , xn−1 whenever she
can. She is able to force n − 1 additional moves on V (Hn) \ {u0, . . . , un+1}. Thus,
apart from the vertices u1, . . . , un, exactly n additional moves are played (counting
the move u0 as well).

Finally, we describe the connected domination game with Chooser. Its rules are
the same as in the connected domination game, except that there is another player,
Chooser, who can make zero, one or more moves after any move of Dominator or
Staller. The only rule for his move to be legal is that the set of played vertices is
still connected after his move. The following holds:

Lemma 2.8 (Chooser Lemma [1]). Consider the connected domination game with
Chooser on a graph G. Suppose that in the game Chooser plays k vertices, and that
both Dominator and Staller play optimally. Then at the end of the game the number
of played vertices is at most γcg(G) + k and at least γcg(G)− k.

3 Connected Game Continuation Principle

Although the usual form of the Continuation Principle does not hold for the con-
nected domination game, in this section we establish a variation of it under the
condition that a game which has been already started must be continued. First, we
state a lemma that can be proved with parallel arguments as Lemma 2.2.

Lemma 3.1. Let G be a graph and let S ⊆ V (G) such that G[S] is connected. For
every vertex v ∈ S, there is a sequence (v1 = v, v2, . . . , vk) such that vi ∈ S for all
i ∈ [k], N [{v1, . . . , vk}] = N [S], and (v1, . . . , vk) is a legal sequence of the first k
moves in a D-game on G.

Under the conditions of Lemma 3.1 but without specifying v, we say that S ′ =
{v1, . . . , vk} is a legal subset of S in G. Clearly, every set S that induces a connected
subgraph in G has at least one legal subset.

Now, we introduce two invariants related to the optimal continuation of a con-
nected domination game. Let G be a connected graph and D ⊆ V (G) such that
D 6= ∅ and G[D] is connected. Let D′ be a legal subset of D. The connected game
continuation number γcg(D → G) is the number of moves needed to finish a con-
nected domination game where the first |D′| moves are the elements of D′ in any
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legal order, both players play optimally, and Dominator plays the (|D′|+ 1)st move
in the game. The invariant γ′

cg(D→G) is defined analogously, if Staller selects the
(|D′| + 1)st vertex in the game. By definition, if D′ and D′′ are two different legal
subsets of D in G, then N [D′] = N [D′′] and

N [D′] \ {v ∈ V (G) : N [v] ⊆ N [D′]} = N [D′′] \ {v ∈ V (G) : N [v] ⊆ N [D′′]}.

That is, the set of dominated vertices and that of playable vertices remain the same
independently of the specification of the legal subset. This shows that the definitions
of γcg(D→G) and γ′

cg(D→G) are sound.
Now the announced principle reads as follows.

Lemma 3.2 (Connected Game Continuation Principle, CGCP). Let G be a con-
nected graph, and let D and C be two nonempty subsets of V (G) such that both G[D]
and G[D ∪ C] are connected. Then,

γcg((D ∪ C)→G) ≤ γcg(D→G) and γ′

cg((D ∪ C)→G) ≤ γ′

cg(D→G).

The proof of Lemma 3.2 is basically the same as the one presented for the Chooser
Lemma in [1]. To be self contained, we present the main idea of the proof.
Sketch of the proof of Lemma 3.2. Dominator’s strategy when the game
is played on G|N [D ∪ C] is to imagine the game on G|N [D], select his optimal
move there, and play a corresponding move in the real game. Dominator plays in
such a way that he maintains the following invariant: every dominated vertex in
the imagined game is also dominated in the real game, and the number of played
vertices in the real game is less than or equal to the number of played vertices in
the imagined game. Proving that Dominator can always play such that he satisfies
the above invariant is similar as the proof of [1, Chooser Lemma]. �

As a consequence of the CGCP, we may compare two possible legal moves v and
v′ during a connected domination game. Let D′ be the set of moves played until this
point in the game. Assuming that v′ dominates all vertices which would be newly
dominated by the move v, we can apply the CGCP with D = D′∪{v} and C = {v′}
and get that

γcg((D
′ ∪ {v, v′})→G) ≤ γcg((D

′ ∪ {v})→G)

where, by our condition, γcg((D
′ ∪ {v, v′}) → G) clearly corresponds to γcg((D

′ ∪
{v′})→G). This proves that playing v′ in the next turn is at least as advantageous
for Dominator as playing v. If it is Staller’s turn, playing v is at least as advantageous
for her as playing v′. We formulate this fact in the next result.
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Corollary 3.3. Let D be the set of the first k ≥ 0 moves of a connected domination
game and suppose that v and v′ are two possible legal moves in the next turn such
that N [v] ∩ (V (G) \N [D]) ⊆ N [v′] ∩ (V (G) \N [D]) holds. Then,

γcg((D ∪ {v′})→G) ≤ γcg((D ∪ {v})→G) and

γ′

cg((D ∪ {v′})→G) ≤ γ′

cg((D ∪ {v})→G).

In particular, as Corollary 3.3 immediately implies, if N [v] ⊆ N [v′], then Dom-
inator may always play v′ instead of v and Staller may always play v instead of v′

during an optimal connected domination game on G.

4 Proof of Theorem 1.1

Recall the statement of Theorem 1.1: if G is a connected graph with γcg(G) ≥ 3
and x ∈ V (G), then

γcg(G|x) ≤ 2γcg(G)− 3 , (3)

and the bound is sharp. Note that the condition γcg(G) ≥ 3 is necessary as (3)
cannot hold if γcg(G) = 1, and there are plenty of graphs G with γcg(G) = 2 and
γcg(G|x) > 1 (for example a graph obtained from two copies of Kn (n ≥ 3) with
exactly one edge between them). Before proving the theorem we add that a slightly
weaker bound

γcg(G|x) ≤ 2γcg(G)− 1

is significantly easier to obtain—see (4) below.

4.1 Proof of (3)

In the proof, we consider a fixed connected graph G with a fixed vertex x ∈ V (G)
and distinguish six cases concerning G and x. For each case, we describe a strategy
for Dominator which ensures that the connected domination game on G|x finishes
with at most 2γcg(G)− 3 played vertices. The moves in the connected domination
game on G|x will be denoted by d∗1, s

∗

1, . . . When Case i is discussed, for each i ≥ 2,
we suppose that none of the conditions of the previous cases can be applied.

For the graph G, we define G as the set of all optimal D-games on G. A game
P ∈ G is represented by the sequence (d1, s1, . . . ) of moves. Each P ∈ G consists

of exactly γcg(G) entries, the set of the first i of them is denoted by P̂i, for all

i ∈ [γcg(G)]. We will write P̂ instead of P̂γcg(G). Let us set k = ⌈γcg(G)
2

⌉. If
γcg(G) = 2k, then P = (d1, s1, . . . , dk, sk), whilst in case of γcg(G) = 2k−1, we have
P = (d1, s1, . . . , dk).
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Case 1: γc(G|x) ≤ γc(G)− 1 or γc(G) ≤ γcg(G)− 1.

First, we show that the inequality chain

γcg(G|x) ≤ 2γc(G|x)− 1 ≤ 2γc(G)− 1 ≤ 2γcg(G)− 1. (4)

always holds, independently of the present condition for Case 1. Let D be
a minimum connected dominating set of G|x. If x ∈ D, Dominator can
play on G|x by first choosing d∗1 = x and then playing on vertices from D.
Using Lemma 2.3, this ensures that the game on G|x ends after at most
2|D|−1 = 2γc(G|x)−1 moves. If x /∈ D, then Dominator may play the vertices
from D in any legal order and the game on G|x ends after at most 2γc(G|x)−1
moves again. As every connected dominating set of G is a connected domi-
nating set of G|x, we have γc(G|x) ≤ γc(G). This, together with the lower
bound in Theorem 2.1, proves (4). Assuming either γc(G|x) ≤ γc(G) − 1
or γc(G) ≤ γcg(G) − 1 (or both), the modified inequality chain results in
γcg(G|x) ≤ 2γcg(G)− 3 as desired.

From now on, we suppose that γc(G|x) = γc(G) and γc(G) = γcg(G). The latter

equality implies that for every P ∈ G, the set P̂ of moves is a minimum connected
dominating set in G. Therefore, Staller may play arbitrary legal moves during the
game and it always corresponds to one of her optimal strategies.

Case 2: There exists an optimal game P ∈ G such that P̂2k−3 contains a vertex v
from N [x].

Consider the following startegy of Dominator on the predominated graph G|x.

He first plays v and then chooses vertices from P̂2k−3 while it is possible.
Since the first move v is from N [x], the continuation of the game on G|x
corresponds to the continuation on G. According to Dominator’s strategy,
after 2(2k− 3)− 1 = 4k− 7 moves a superset of N [P̂2k−3] is dominated. If the

game is not over yet, for the dominated vertices that are outside of N [P̂2k−3],

we can specify a set C of moves such that N [P̂2k−3 ∪ C] gives exactly the set
of vertices dominated during the first 4k−7 moves of the game on G|x. Then,

starting with Staller’s turn, γ′

cg((P̂2k−3 ∪ C)→ G) further moves are needed
to finish the game. By the Connected Game Continuation Principle, it is at
most γ′

cg(P̂2k−3→G).

If γcg(G) = 2k, then γ′

cg(P̂2k−3→G) = 3 and the above strategy of Dominator
ensures that the game ends in at most 4k − 7 + 3 = 2γcg(G) − 4 moves on

G|x. If γcg(G) = 2k − 1, then γ′

cg(P̂2k−3 →G) = 2 and the game ends in at
most 4k − 7 + 2 = 2γcg(G) − 3 moves on G|x. This verifies the upper bound
2γcg(G)− 3 for Case 2.
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Case 3: There exists an optimal game P ∈ G such that after the moves d1, s1, . . . , dk−1

on G, every legal move dominates only x from V (G) \N [P̂2k−3].

Let Y = N(x) ∩N [P̂2k−3], Z = N(x) \ Y , and W = V (G) \ (N [P̂2k−3] ∪ {x}).
By definition, Z ⊆ W . Under the condition given for this case, x is a cut
vertex as there is no edge between W and N [P̂2k−3]. In the optimal game P
on G, Y is the set of legal choices for Staller after dk−1 is played and then, the
only legal move for Dominator is dk = x.

First, suppose that γcg(G) = 2k − 1. Then the move dk = x dominates Z and
finishes the game on G. Thus, Z = W . Consider the strategy of Dominator
on G|x when his first move is d∗1 = x and then, he plays vertices only from

P̂ \ {dk, sk−1}. We show that this can be done and that the game on G|x
finishes after at most 4k−5 moves. The main observation is that after d∗1 = x,
no vertex from Z = W is a legal move. Hence Staller must play a vertex
y ∈ Y as s∗1, and then (P̂ \ {sk−1}) ∪ {y} remains a connected dominating

set in G. The set (P̂ \ {sk−1}) ∪ {y} is indeed connected as y ∈ N [P̂2k−3],
xy ∈ E(G), and all neighbors of sk−1 except x have a neighbor in P̂2k−3.
Then, by Lemma 2.4, Dominator can ensure that the game on G|x finishes in
at most 2 + 2(2k − 3)− 1 = 4k − 5 = 2γcg(G)− 3 moves.

If γcg(G) = 2k, Staller finishes the game P with the move sk. Similarly to
the previous argumentation, as x is a cut vertex and Y contains all the legal
moves after dk−1, we may infer dk = x. It also follows that sk ∈ Z. Since
each legal move finishes the game on G after dk = x, sk may be replaced in P
by each z ∈ Z that satisfies N [z] \ N [x] 6= ∅. Let Dominator’s first move be
d∗1 = x on G|x. If Staller replies with a vertex z ∈ Z, then N [z] \ N [x] 6= ∅.
Therefore, sk can be replaced by z in the optimal game P , and Dominator
continues playing vertices from P̂ \ {dk, sk}. By Lemma 2.4, this game on G|x
finishes in at most 2 + 2(2k − 2) − 1 = 4k − 3 = 2γcg(G) − 3 moves. In the
other case, Staller chooses a vertex s∗1 = y from Y . We may observe again that
sk−1 can be replaced by y in P . That is, if Dominator always selects a legal
move from P̂ \ {dk, sk−1} in the continuation, the game finishes after at most
2 + 2(2k − 2)− 1 = 4k − 3 = 2γcg(G)− 3 moves on G|x.

Case 4: There exists an optimal game P ∈ G such that after the moves d1, s1, . . . ,
dk−1, sk−1 on G, every legal move dominates only x from V (G) \N [P̂2k−2].

Observe first that Case 4 cannot arise if dk is the last move in the game P on
G. Indeed, in this case already P̂ \ {dk} would be a connected dominating set
in G|x, contradicting the equality γc(G|x) = γc(G) that must be true under
the exclusion of Case 1.
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Suppose now that γcg(G) = 2k and after sk−1, every legal move dominates only
x. As follows, x is a cut vertex, and after dk is played the only legal choice for
Staller is sk = x that finishes the game. In this case, every y ∈ N(x)∩N [P̂2k−2]
is an optimal move for Dominator and therefore, dk can be replaced by y in P .
Similarly to the previous case, Dominator starts with the move d∗1 = x on G|x.

In the next turn, Staller must play a vertex y from N(x) ∩ N [P̂2k−2]. From

this point, Dominator always plays a vertex from P̂2k−2 that ensures that the
game finishes after at most 2 + 2(2k − 2) − 1 = 4k − 3 = 2γcg(G) − 3 moves
on G|x.

Case 5: There exists an optimal game P ∈ G such that, at a stage of the game,
every optimal move of the next player dominates only x from the set of vertices
which have not been dominated so far.

Since Case 2 is excluded, it cannot happen during the first 2k − 3 moves of
P . Since Case 3 is excluded and every legal choice is optimal for Staller, this
move cannot be sk−1. Further, this move cannot be the last move of the game
on G, because then, by deleting the last move from P̂ , we would obtain a
connected dominating set of G|x that is smaller then γcg(G). This contradicts
the exclusion of Case 1. Therefore, we may assume that γcg(G) = 2k and
Dominator selects the move dk when this situation arises. Since Case 4 is
excluded, we may suppose that there is a legal, but not optimal, move u
such that N(u) \ N [P̂2k−2] contains a vertex different from x. In fact, by
Corollary 3.3, the non-optimal move u cannot dominate x. Now, consider the
optimal game P on G. If the last move sk is different from x, then P̂ \ {dk}
is a connected dominating set in G|x that contradicts the equality γc(G|x) =

γcg(G). Note that in this case P̂ \{dk} is connected because it contains the first
2k−2 moves of the game, and since sk is different from x it must be connected
to one of the previous moves. Thus, sk = x and this move dominates the set
Z = N(x)\N [P̂2k−2]. After the move dk, the vertex u remains playable. Since
Staller cannot delay the end of the game, u dominates the entire set Z. It
gives a contradiction again, as u would be an optimal move for Dominator.
Indeed, if Dominator selects u as his kth move, then Staller is forced to finish
the game on G by dominating x with her kth move. We conclude that the
condition of Case 5 cannot be satisfied if each of Case 1–4 is excluded.

Case 6: None of the previous conditions is true.

In this case, Dominator plays on G|x by following an optimal startegy for G
with the restriction that he never plays a vertex which dominates only x. Since
Case 5 is excluded, Dominator always has an optimal move on G that satisfies
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this condition. By the same reason, Staller always has a legal move onG|x that
is also optimal on G. In this way, Dominator’s strategy ensures that the game
on G|x finishes in exactly γcg(G) moves and consequently, γcg(G|x) = γcg(G).
Using the condition γcg(G) ≥ 3, we conclude the desired result γcg(G|x) ≤
2γcg(G)− 3. �

4.2 Sharpness

Sharpness of the bound of Theorem 1.1 follows from the following result.

Proposition 4.1. For every n ≥ 3 there exists a graph G with a vertex x such that

γcg(G) = n and γcg(G|x) = 2n− 3.

Proof. Consider a graph H ′

n defined as follows. Take the graph Hn defined in
Section 2 and remove vertices x1 and y1. Set U = {u0, . . . , un+1}. Since γc(H

′

n) = n
and Dominator can play according to strategy Fast as described in Section 2, we
have γcg(H

′

n) = n. In the following we prove that γcg(H
′

n|u1) = 2n−3 = 2γcg(H
′

n)−3.
If Dominator does not start the game on N [u1], then the vertex u3 will be played

before u2. But this means that after u3 is played, playing u2 is not legal, thus u0

can never be dominated. Hence, Dominator must start the game on N [u1] to ensure
that the game finishes in a finite number of moves. We consider all three possible
start moves of Dominator.

Case 1: Dominator starts on d1 = u2.
Staller follows the strategy Slow (from Section 2) and plays u1 only if she is
forced to do so in the last move of the game. If she is indeed forced to finish the
game on u1, then due to strategy Slow at least n−2 moves are played outside
of U and altogether at least (n− 1) + (n− 2) + 1 = 2n− 2 moves are played.
Otherwise, Dominator playes u1 during the game. After this move, Staller can
only reply on a vertex from U , so she ensures only n − 3 moves outside U .
Thus the number of moves in this case is at least n+ (n− 3) = 2n− 3.

Case 2: Dominator starts on d1 = u1.
Staller is forced to reply on s1 = u2. After this move, she follows strategy
Slow to ensure that at least n−3 moves are played outside of U . Altogether,
in this case at least n+ (n− 3) = 2n− 3 moves are needed to finish the game
on H ′

n|u1.

13



Case 3: Dominator starts on d1 = u0.
Since N [u0] ⊆ N [u1], it follows from Corollary 3.3 that the number of moves in
this case is at least the number of moves in the game where Dominator starts
on u1. Thus by Case 2, the number of moves is at least 2n− 3.

We see that independently of Dominator’s first move, Staller can ensure that at
least 2n − 3 moves are played. Hence γcg(H

′

n|x) = 2n − 3 by the already proved
upper bound and since γcg(H

′

n) = n. �

The graphsH ′

n from Proposition 4.1 contain cut-vertices, thus we wonder whether
the upper bound of Theorem 1.1 is also sharp on 2-connected graphs. While we do
not have an answer to this question, we were nevertheless able to see that the differ-
ence γcg(G|x) − γcg(G) can be arbitrarily large also for 2-connected graphs G. For
this sake let C1,3 be the graph from Fig. 2. Using a computer, we obtain

γcg(C1,3|w) = 16 > 14 = γcg(C1,3) .

w

Figure 2: The graph C1,3.

Let now Ck,ℓ be a graph obtained from two copies A and B ofHk+1 and two copies
C and D of Hℓ+1 by identifying several vertices. Denote vertices of A by ai, a

′

i, a
′′

i

for uk+2−i, xk+2−i, yk+2−i from the definition of the graph Hk+1, respectively. Similar
notation is used for vertices of B, C and D. To obtain the graph Ck,ℓ, identify
the following pairs of vertices: a0 and b0, cℓ+2 and dℓ+2, ak+2 and c0, bk+2 and d0,
and label them s, t, w, y, respectively. Let C0 = {s} ∪ {a1, . . . , ak+1} ∪ {w} ∪
{b1, . . . , bk+1} ∪ {y} ∪ {c1, . . . , cℓ+1} ∪ {d1, . . . , dℓ+1} ∪ {t}. See Fig. 3 for the graph
C3,6 and note that C0 is the set of the vertices of the inner long cycle.

If k and ℓ increase, then the following proposition proves that the difference
γcg(G|x)− γcg(G) can be arbitrarily large even for 2-connected graphs G.

Proposition 4.2. If k, ℓ ≥ 1 and ℓ ≤ k + 1, then γcg(Ck,ℓ|w)− γcg(Ck,ℓ) ≥ ℓ− 2.
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Proof. Since |C0| = 2k + 2ℓ + 8, we have γc(Ck,ℓ) = 2k + 2ℓ + 6. Thus γcg(Ck,ℓ) ≥
2k + 2ℓ+ 6.

Consider the following strategy of Dominator on Ck,ℓ. He starts the game on s.
We consider the pairs {ai, bi}, i ∈ [k + 1], {w, y}, and {ci, di}, i ∈ [ℓ]. As soon as
Staller plays a vertex from one of those pairs, then Dominator replies on the other
vertex from the pair. In particular, Staller’s first move will be either a1 or b1, and
Dominator’s reply will be b1 or a1, respectively. Inductively we can see that all such
replies of Dominator are legal and that Staller can only play vertices from C0. Note
that by the time when cℓ and dℓ are played, 2k + 2ℓ+ 5 vertices were played. After
that Staller is forced to finish the game with her next move. Thus the game ends in
at most 2k + 2ℓ+ 6 moves. We conclude that γcg(Ck,ℓ) = 2k + 2ℓ+ 6.

Now we describe an appropriate strategy for Staller on Ck,ℓ|w, depending on the
first move of Dominator.

Case 1: The first move of Dominator is in {s}∪(V (A)\{ak+1})∪B∪{y}∪D∪{t}.
Since w is predominated and Dominator’s first move is not on N [w], the only
way to dominate vertex c1 is by playing vertices cℓ+1, . . . , c2 in this order. Thus
Staller can apply strategy Slow on the subgraph C. Like this she ensures at
least ℓ−1 moves outside C0. On the other hand, at least |C0|−3 moves on C0

must be played in order to construct a connected dominating set of the graph.
Altogether, at least (2k + 2ℓ + 8 − 3) + (ℓ− 1) = γcg(Ck,ℓ) + ℓ− 2 moves are
played.

Case 2: The first move of Dominator is in C \ {c1}.
In order to dominate vertices in A, vertices dℓ+1, . . . , d1, y, bk+1, . . . , b1 must be

s

a1
a2

a′1 a
′′

1

a3 a4

a′3 a
′′

3

w

b1
b2

b′1 b′′1

b3 b4

b′3 b′′3

y

c1 c2

c′1 c
′′

1

c6
c7

c′6 c
′′

6

d1 d2

d′1 d
′′

1

d6
d7

d′6 d
′′

6

t

Figure 3: The graph C3,6.
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played in this order. Thus Staller’s strategy Slow allows her to play at least
(ℓ− 1)+ (k− 1) moves outside C0. On the other hand, at least |C0| − 3 moves
must be played on C0. Altogether this gives at least (2k + 2ℓ+ 8− 3) + (k +
ℓ− 2) = γcg(Ck,ℓ) + k + ℓ− 3 moves on the graph.

Case 3: The first move of Dominator is in N [w] = {ak+1, w, c1}.
To finish the game, at least |C0| − 2 moves on C0 must be played. Staller’s
strategy is to follow the strategy Slow when Dominator plays on A in the
direction from ak+1 to a1, and on B∪D when Dominator plays in the direction
from dℓ+1 to b1. This ensures that she can force at least k − 1 moves outside
C0. Altogether, at least (2k + 2ℓ+ 8− 2) + (k − 1) = γcg(Ck,ℓ) + k − 1 moves
are played.

It follows from the case analysis that γcg(Ck,ℓ|w) ≥ γcg(Ck,ℓ)+min{ℓ− 2, k+ ℓ−
3, k − 1}. Since k ≥ 1 and ℓ ≤ k + 1, min{ℓ − 2, k + ℓ− 3, k − 1} = ℓ− 2. Hence,
γcg(Ck,ℓ|w)− γcg(Ck,ℓ) ≥ ℓ− 2. �

Note that the bound in Case 3 can be improved, but since we are only interested
in a lower bound for γcg(Ck,ℓ|x) and not necessarily in the exact value, more detailed
arguments are omitted.

5 Proof of Theorem 1.2

Recall the statement of Theorem 1.2: if G is a connected graph with n(G) ≥ 2 and
x ∈ V (G), then

γcg(G|x) ≥

⌈
1

2
γcg(G)

⌉
, (5)

and the bound is sharp. Before proving the result we note that a slightly weaker
bound

γcg(G|x) ≥

⌈
1

2
(γcg(G)− 1)

⌉

is again much easier to obtain. Indeed, let an optimal D-game be played on G|x and
let D be the set of vertices played by the end of the game. Then D is connected
and dominates V (G) \ {x}. If x′ is an arbitrary neighbor of x, then D ∪ {x′} is a
connected dominating set of G. It follows that γc(G) ≤ γcg(G|x) + 1. Thus we have

γcg(G|x) ≥ γc(G)− 1 ≥
1

2
(γcg(G)− 1) ,

where the last inequality follows from Theorem 2.1.
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5.1 Proof of (5)

We prove the result using imagination strategy. The real game, in which Staller
plays optimally, is a connected domination game with Chooser played on the graph
G. Dominator imagines a connected domination game on G|x, and plays optimally
in it. Dominator selects an optimal move di in the imagined game and tries copying
it to the real game. If di is a legal move in the real game, he plays it. Otherwise,
he plays an arbitrary legal move in the real game. Staller replies optimally in the
real game by playing si. If si is a legal move in the imagined game, then Dominator
imagines Staller plays si there. Otherwise, he selects an arbitrary legal move s̃i for
Staller in the imagined game. In this case, before the next move of Dominator,
Chooser plays s̃i in the real game.

Let DR and DI be sets of played vertices in the real and in the imagined game,
respectively. Note that DR includes Chooser’s moves. We prove that the described
interpretations of moves are legal and that the following property holds:

after every move and its interpretation, we have N [DI ] ⊆ N [DR]. (6)

Property (6) clearly holds after the first move of Dominator. Suppose it is true
after a move si−1 of Staller. Dominator selects his optimal reply di in the imagined
game. In particular, this means that di has a neighbor in DI , so di ∈ N [DI ]. If
di is legal in the real game, then Dominator copies it there and (6) remains valid.
Consider now the case that di is not legal in the real game. Since (6) held before
this move, di ∈ N [DI ] ⊆ N [DR], so di is adjacent to a previously played move also
in the real game, but it dominates no new vertices. Playing an arbitrary legal move
in the real game then maintains (6).

Suppose that (6) holds after a move di of Dominator. Staller selects her optimal
reply si in the real game. If si is a legal move in the imagined game, Dominator
can copy it there and (6) remains valid. Otherwise, Dominator imagines Staller
played an arbitrary legal move in the imagined game, say s̃i. Since (6) held before
this move, s̃i is connected to an already played vertex also in the real game, thus
Chooser can play it. Afterwards, (6) still holds.

Let r and i denote the number of moves in the real and in the imagined game,
respectively, where r does not include Chooser’s moves. Let c denote the number of
moves of Chooser in the real game.

Since (6) holds throughout the game, thus also at the end, we have r ≤ i + 1.
As Staller is playing optimally in the real game, Chooser Lemma 2.8 gives γcg(G) ≤
(r + c) + c. Since Dominator is playing optimally in the imagined game, we get
γcg(G|x) ≥ i. We can also obtain an upper bound for the number of Chooser’s
moves. He makes zero or one move after each move of Staller in the real game.
Thus c ≤ r

2
. We distinguish two cases.
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Case 1: r ≤ i.

We can simplify the bound r ≥ γcg(G) − 2c to 2r ≥ γcg(G), so r ≥ 1
2
γcg(G).

Combining all the obtained inequalities, we get 1
2
γcg(G) ≤ r ≤ i ≤ γcg(G|x).

Case 2: r = i+ 1.

After the ith move and its interpretation, the imagined game is over, but the
real game is not. Since (6) holds at this stage of the game as well, we have
N [DR] ⊇ N [DI ] ⊇ V (G) \ {x}. Since the real game is not finished yet, x /∈
N [DI ] and x /∈ N [DR]. This means that the vertex x did not get dominated
during the games (until the last move in the real game is played). Under this
assumption, we can prove that after every move and its interpretation, we
actually have the property

DR = DI . (7)

Property (7) clearly holds after Dominator’s first move. Suppose it holds after
Dominator’s move di. Staller selects her optimal reply si in the real game and
since we have DR = DI and we know that x does not get dominated in the
course of the imagined game, si is also a legal move in the imagined game
and (7) remains valid. Suppose now that (7) holds after Staller’s move si−1.
Dominator chooses his optimal reply di in the imagined game, which is also
legal in the real game because DR = DI . Again, (7) remains valid.

Thus there are no moves of Chooser, that is, c = 0. Using the obtained
inequalities, we get γcg(G) ≤ r = i + 1 ≤ γcg(G|x) + 1, that is, γcg(G) − 1 ≤
γcg(G|x). If γcg(G) ≥ 2, this implies 1

2
γcg(G) ≤ γcg(G|x). If γcg(G) = 1, then

since G is not K1, we also have γcg(G|x) = 1, so we again get 1
2
γcg(G) ≤

γcg(G|x).

Knowing that 1
2
γcg(G) ≤ γcg(G|x), the desired bound follows. �

5.2 Sharpness

Examples of graphs with γcg(G|x) = γcg(G) − 1 are already known from [19] and
include cycles and paths. Another example with the same property are graphs G
with ∆(G) = n(G) − 2. If x ∈ V (G) is the vertex which is not adjacent to the
vertex of degree ∆(G), then γcg(G|x) = 1 = γcg(G)− 1. We were able to obtain an
example where the drop is 2 and generalize it to an infinite family with the same
property. Let Dn, n ≥ 3, be a graph obtained in the following way. Take C2n+2

on vertices a0, c1, . . . , cn, b0, c
′

n, . . . , c
′

1 and corresponding edges. Add vertices b1, a1,
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a2, a3, a
′

0, a
′

1 and edges b0b1, a0a1, a1a2, a2a3, a0a
′

0, a
′

0a
′

1, a
′

1a1. See Fig. 4 for D5.
Denote C = {c1, . . . , cn} and C ′ = {c′1, . . . , c

′

n}. With a case analysis, the following
can be obtained.

a0a1a2a3

a′0a′1
c1 c2 c3 c4 c5

c′1 c′2 c′3 c′4 c′5

b0 b1

Figure 4: The graph D5.

Proposition 5.1. If n ≥ 3, then γcg(Dn|c2) = γcg(Dn)− 2.

We next present an infinite family that attains the bound from Theorem 1.2.
Let Gn,r be the graph as shown in Figure 5. Its vertex set is {z}∪{vi ; i ∈ [n+1]}∪

{x
(i)
j ; i ∈ [n], j ∈ [r]} ∪ {y

(i)
j ; i ∈ [n], j ∈ [r]}, and the edges are zv1, zvn+1, vivi+1

for every i ∈ [n], and the following edges for every i ∈ [n] and every j ∈ [r]: vix
(i)
j ,

viy
(i)
j , x

(i)
j y

(i)
j , x

(i)
j vi+1.

y
(1)
1

x
(1)
1

y
(1)
r

x
(1)
r

v1

...
y
(2)
1

x
(2)
1

y
(2)
r

x
(2)
r

v2 v3

...
y
(n)
1

x
(n)
1

y
(n)
r

x
(n)
r

vn vn+1

...

· · ·

· · ·

z

Figure 5: The graph Gn,r.

Proposition 5.2. If 1 ≤ n ≤ r, then

γcg(Gn,r) = 2n− 1 and γcg(Gn,r|vn+1) = n .
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Proof. Let Vn = {v1, . . . , vn, vn+1}. Note first that γc(Gn,r) = n and that also if vn+1

need not to be dominated, we still need at least n vertices in a connected dominating
set for the remaining vertices. It follows that γcg(Gn,r|vn+1) ≥ n. Let now Dominator
play v1 as his first move on the Gn,r|vn+1 in the connected domination game. Then
the only legal reply for Staller is v2. Dominator then replies with v3. Continuing in
this manner we get that the vertices played will be v1, v2, . . . , vn. This strategy of
Dominator yields γcg(Gn,r|vn+1) ≤ n.

Consider the D-game played onGn,r. As γc(Gn,r) = n, we have γcg(Gn,r) ≤ 2n−1
by Theorem 2.1. It thus remains to prove that γcg(Gn,r) ≥ 2n − 1. For this sake

let Ti, i ∈ [n], be the subgraph of Gn,r induced by vi, vi+1, x
(i)
1 , . . . , x

(i)
r , y

(i)
1 , . . . , y

(i)
r .

Suppose that at some point of a D-game, the vertex vi+1 has already been played,
the vertex vi was not yet played, and it is Staller’s turn. Then we say that Staller has
a slow move in Ti if she can play one of the vertices x

(i)
1 , . . . , x

(i)
r . Note that since

each of these vertices is adjacent to vi+1, such a move x
(i)
ℓ preserves connectivity

and newly dominates only y
(i)
ℓ . We next describe a strategy of Staller depending on

the first move of Dominator. Note that at each stage of the connected game the
vertices from Vn that were played so far form an interval vi, . . . , vi+k, where indices
are modulo n+ 1. During the game, at least n moves are played from Vn, or if only
n− 1 moves from Vn are played, then at least r further moves are needed.

Suppose first that Dominator plays z as his first move. Then Staller replies with
vn+1. After that, if Dominator plays v1, Staller plays a slow move in Tn, while if
Dominator plays vn, Staller plays a slow move in Tn−1. Proceeding along this way
Staller will play at least n moves (which she can since r ≥ n), hence a total of at
least 2n moves will be played.

Suppose second that Dominator plays v1 as his first move. Then Staller replies
with z. If Dominator then plays v2, Staller replies with vn+1. After that, Staller will
be able to play at least n−3 slow moves, so that she will play in total at least n−1
moves. Moreover, after her (n− 3)rd slow move, the game is not finished yet, hence
at least 2n − 1 moves will be played in total. On the other hand, if Dominator’s
second move is vn+1, then we see as in the previous case that Staller will play at
least n vertices.

Suppose finally that Dominator plays vi as his first move, where i ≥ 2. Then
Staller replies with a slow move in Ti−1. If Dominator then plays vi+1, Staller replies
with another slow move in Ti−1. Otherwise, if Dominator plays vi−1, where i > 2,
then Staller replies with a slow move in Ti−2. Suppose now that at some point of
the game Dominator plays v1 and the game is not over yet. Then z is a legal move
and Staller replies by playing it. After that Staller’s strategy is as in the previous
case. This ensures that at least 2n− 1 moves are played. �
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6 Staller-start game

In this concluding section, we turn our attention to S-game and characterize graphs
G and its vertices x for which γ′

cg(G|x) = ∞. For this sake, the following concept
will be useful.

Let G be a graph and x ∈ V (G). We say that a player of a connected domination
game played on G has an x-isolation strategy if he or she can play such that each
vertex at distance 1 or 2 from x is dominated before a single vertex from NG[x] has
been played. For instance, if x is the first vertex of a path Pn, n ≥ 3, then in the
D-game, Dominator has an x-isolation strategy by playing the third vertex of Pn as
his first move. Similarly, Staller has an x-isolation strategy in the S-game by playing
the same vertex as her first move.

Theorem 6.1. Let x be a vertex of a connected graph G. Then γ′

cg(G|x) = ∞ if
and only if

(i) x is a cut-vertex and

(ii) G−x contains a component H such that Staller has an x-isolation strategy in
the S-game played on G[V (H) ∪ {x}].

Proof. The result is clearly true for complete graphs K1 and K2, hence assume in
the rest that n(G) ≥ 3.

Suppose first that x is not a cut-vertex. Let G′ be the block of G containing x.
(It is possible that G = G′.) Consider now the S-game played on G|x. Since n(G)
is at least 3, the first move of Staller is always possible. When the game continues,
eventually a vertex from G′ must be played. We claim that all the vertices of G′

will be dominated during the game. For this sake let u ∈ V (G′) be a vertex which
is not yet dominated by the vertices played so far. Let w be an arbitrary vertex
of G′ that has already been played, and note that wu /∈ E(G). (It is possible that
w = x.) Let P and P ′ be internally disjoint u, w-paths in G′. These paths exist
as G′ is 2-connected. Note also that both paths are of length at least 2 because
wu /∈ E(G). At least one of P and P ′, say P , does not contain x as an internal
vertex. Let w′ be the last vertex on P that has already been dominated during the
game played so far. This means that w′ has been dominated but not yet played. It
follows that w′ is a legal move at this moment of the game. By induction, all the
vertices of G′ will eventually be dominated by the end of the game. Since the only
difference between the game played on G|x and on G is the predomination of x, this
also means that the game will end in a finite number of moves on G. We conclude
that γ′

cg(G|x) = ∞ is possible only if x is a cut-vertex.
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Let now x be a cut-vertex. Suppose first that (ii) holds, that is, G− x contains
a component H such that Staller has an x-isolation strategy in the S-game played
on G[V (H) ∪ {x}]. Then Staller plays the first move in V (H) such that her above
strategy on G[V (H)∪{x}] is maintained. After achieving her goal, the connectivity
condition implies that no vertex from NG[x] will be played in the rest of the game.
Since x is a cut-vertex, it has a neighbor y /∈ V (H). But then y cannot be dominated
during the game, hence γ′

cg(G|x) = ∞. Conversely, suppose that the condition (ii) is
not fulfilled. If Staller selects s′1 = x, we clearly have γ′

cg(G|x) < ∞. Otherwise, no
matter in which component of G− x Staller starts the game, say in component H ,
Staller cannot prevent Dominator to achieve his goal that some vertex from NH(x)
is played during the game. But then one of the players will eventually need to play
x. After that the rest of the game has no effect of x being predominated, so it will
end after a finite number of moves. �

We next give a necessary condition for Staller to be able to achieve condition (ii)
of Theorem 6.1. Using it we are then able to give an explicit description of trees T
and its vertices x for which γ′

cg(T |x) = ∞ holds.

Proposition 6.2. Let x be a cut-vertex of a connected graph G and let H be a
component of G−x. If G[V (H)−NH(x)] is disconnected, then Staller does not have
an x-isolation strategy in the S-game played on G[V (H) ∪ {x}].

Proof. Let an S-game be played on G[V (H)∪ {x}]. Suppose that H ′ = G[V (H)−
NH(x)] is disconnected. Suppose that Staller starts the game by playing a vertex
from a component H1 of H ′. Let H2 be another component of H ′. Then, in order
that the vertices from H2 become dominated, at least one vertex from NH(x) will
have to be played. But this means that Staller cannot achieve an x-isolation strategy.
�

Proposition 6.3. Let x be a vertex of a tree T . Then γ′

cg(T |x) = ∞ if and only if
x is not a leaf and has a neighbor of degree 2.

Proof. Suppose that x is not a leaf and that it has a neighbor x′ of degree 2. Let
x′′ be the other neighbor of x′. In an S-game, Staller can start by playing x′′ which
provides an x-isolation strategy in the component of T − x which includes x′. Thus
by Theorem 6.1 we have γ′

cg(T |x) = ∞.
Conversely, suppose that γ′

cg(T |x) = ∞. Then x is not a leaf by Theorem 6.1(i).
If x would not have a neighbor of degree 2, then Proposition 6.2 together with
Theorem 6.1 would yield that γ′

cg(T |x) is finite. �
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