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Abstract

A global forcing set for maximal matchings of a graph G = (V (G), E(G)) is a
set S ⊆ E(G) such that M1∩S 6= M2∩S for each pair of maximal matchings M1

and M2 of G. The smallest such set is called a minimum global forcing set, its
size being the global forcing number for maximal matchings φgm(G) of G. In this
paper, we establish lower and upper bounds on the forcing number for maximal
matchings of the corona product of graphs. We also introduce an integer linear
programming model for computing the forcing number for maximal matchings
of graphs.
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product; integer linear programming
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1 Introduction

Matchings represent one of the most important concepts of graph theory with many
applications [10]. In particular, (perfect) matchings are extremely important in theo-
retical chemistry, where perfect matchings bear the alternative name Kekulé structures,
cf. [3, 6, 18, 19].
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The investigation of forcing sets in the theory of graph matchings also has a con-
siderable history, largely born of the study of resonant structures in chemical graphs.
The list of articles [1, 4, 11, 13] is just a small selection of research in this field. In
this paper we are interested in global forcing sets for maximal matchings, the concept
introduced in [15] as an extension of the idea of global forcing sets (and global forcing
numbers) for perfect matchings. We proceed as follows. In the rest of the introduction
we first introduce the required terminology and notation from the matching theory, and
then present the corona product and present some related notation to be used later
on. In the main section of the paper we prove several upper and lower bounds on the
global forcing numbers for perfect matchings of corona products. As a side result we
also derive a formula for the matching number of corona products. In the concluding
section we introduce an integer linear programming model for computing the forcing
number for maximal matchings of graphs.

1.1 Matching terminology

Let G = (V (G), E(G)) be a graph. A matching in G is a set of pairwise non-adjacent
edges. A maximal matching is one which cannot be extended to a larger matching.
Each vertex incident with an edge of a matching M of G is said to be saturated by
M . A maximum matching is a maximal matching which saturates as many vertices
as possible. The size of a maximum matching in G is called the matching number

of G and denoted by ν(G). A perfect matching of G is a maximum matching which
saturates every vertex of G. The smallest size of a maximal matching in G is called the
saturation number of G and denoted by s(G). See [16] for an application of smallest
maximal matchings related to a telephone switching network and [2, 10, 14, 20] for
relations between the saturation number and the matching number.

A global forcing set for maximal matchings of G is a set S ⊆ E(G) such that
M1 ∩ S 6= M2 ∩ S for any two maximal matchings M1 and M2 of G. As we are
dealing only with matchings, in the rest of the paper we will shorten this long naming
by saying that S is a global forcing set of G. A smallest global forcing is called a
minimum global forcing set and the size of it, denoted by φgm(G), is called the global

forcing number [13, 15].

1.2 Corona products

If G is a graph, then its order will be denoted by n(G). We will also use the convention
that if n is a positive integer, then [n] = {1, . . . , n}.

Let G and H be graphs with V (G) = {g1, . . . , gn(G)} and V (H) = {h1, . . . , hn(H)}.
The corona product of G and H , denoted by G ◦ H , is a graph obtained from the
disjoint union of a copy of G and n(G) copies of H , denoted by Hi, i ∈ [n(G)]. The
product G ◦H is then obtained by making adjacent gi to every vertex in Hi for each
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i ∈ [n(G)], cf. [8, 9, 17].
For i ∈ [n(G)], let V (Hi) = {hi

1, . . . , h
i
n(H)}. Then the corona product G ◦ H can

be formally defined as follows. It vertex set is

V (G ◦H) = V (G) ∪

[

n(G)
⋃

i=1

V (Hi)

]

,

and its edge set is E(G ◦H) = EG ∪ EH ∪ EH,G, where

EG = E(G),

EH =

[

n(G)
⋃

i=1

E(Hi)

]

,

EH,G =

[

n(G)
⋃

i=1

{

gih
i
j : j ∈ [n(H)]

}

]

.

We use the notations EG, EH , and EH,G for the edges of the corona product of two
given graphs G and H throughout the paper.

2 Bounds on the global forcing number of corona

products

In this section we give upper and lower bounds on the global forcing number of corona
products. For this sake we first determine the matching number of corona products, a
result of independent interest.

Proposition 2.1 Let G and H be two graphs. If H has a perfect matching, then

ν(G ◦H) = ν(G) + n(G)ν(H) ,

otherwise,

ν(G ◦H) = n(G) + n(G)ν(H) .

Proof. First suppose that H has a perfect matching. Let M be a matching of G ◦H
with |M | = ν(G ◦ H). Suppose that M ∩ EG,H 6= ∅ and let e = gih

i
j ∈ (M ∩ EG,H).

Since H has a perfect matching, |M ∩ E(Hi)| < ν(H). Let M∗ be a perfect matching
of Hi and set

M ′ =

[

M \
[

{e} ∪
(

M ∩ E(Hi)
)]

]

∪M∗ .
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Then M ′ is a matching with |M ′| ≥ |M |, and therefore, since M is maximum, |M ′| =
|M | = ν(G ◦ H). Repeating this process as many times as necessary, we arrive at
a maximum matching M ′′ of G ◦ H with M ′′ ∩ EG,H = ∅. But now it is clear that
|M ′′ ∩ E(Hi)| = ν(H) for each i ∈ [n(G)] and that |M ′′ ∩ EG| = ν(G). We conclude
that µ(G ◦H) = |M ′′| = ν(G) + n(G)ν(H).

Suppose second that H does not admit a perfect matching. A matching of G◦H in
each Hj, j ∈ [n(G)], saturates as most 2ν(H) + 1 vertices, while a matching of G ◦H
clearly saturates at most n(G) vertices from G. It is straightforward to construct a
matching that saturates that many vertices: in each Hj take a maximum matching of
H , and then for each j ∈ [n(G)] add an edge between an unsaturated vertex of Hj and
gj . Such a matching contains n(G) + n(G)ν(H) edges and we are done. �

With Proposition 2.1 in hand, we can bound the global forcing number of corona
products from the above as follows.

Theorem 2.2 Let G and H be two graphs. If H has a perfect matching, then

φgm(G ◦H) ≤ |E(G ◦H)| − ν(G)− n(G)ν(H) ,

otherwise,

φgm(G ◦H) ≤ |E(G ◦H)| − n(G)− n(G)ν(H) .

Proof. In [15, Corollary 5] Vukičević et al. observed that the complement of a
matching is a global forcing set and consequently, φgm(X) ≤ m(X)− ν(X) holds for a
graph X , cf. [15, Theorem 7]. Combining this bound with Proposition 2.1, the result
follows. �

As a small example consider the graph Y from Fig. 1. Consider the subgraph K2 of
Y induced by the edge e to see that Y = K2 ◦K2. If e belongs to a maximal matching
of Y , then this matching is unique. On the other hand, there are exactly 9 maximal
matchings of Y that do not contain e. Denoting by Ψ(G) the total number of maximal
matchings of a graph G, we thus have Ψ(Y ) = 10. From [15, Proposition 2] we know
that φgm(G) ≥ ⌈log2Ψ(G)⌉ holds for a graph G, hence φgm(Y ) ≥ 4. On the other
hand, the first inequality of Theorem 2.2 gives φgm(Y ) ≤ 4.

e

Figure 1: Graph Y
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With respect to the above example we mention that a recurrence relation for the
sequence pn = Ψ(Pn◦P1) was derived in [5, Proposition 7.3], and that in [5, Proposition
7.4] it was proved that Ψ(Pn ◦K3) = 3n+1Fn+2, where Fn is the nth Fibonacci number.

For the second inequality of Theorem 2.2 consider the corona product K2◦K1 which
is isomorphic to P4. Clearly φgm(P4) = 1 which is also the value given by the second
inequality. It would be interesting to find more sharpness examples for both bounds of
Theorem 2.2.

We can also bound the global forcing number of G ◦ H in terms of φgm(G) and
φgm(H).

Theorem 2.3 If G and H are graphs, then

φgm(G ◦H) ≤ φgm(G) + n(G)φgm(H) + n(G)n(H).

Proof. Let SG be a minimum global forcing set of G and let SHi
, i ∈ [n(G)], be a

minimum global forcing set of Hi. Set

S = SG ∪

(

n
⋃

i=1

SHi

)

∪ EG,H .

Clearly, |S| = φgm(G) + nφgm(H) +n(G)n(H). We claim that S is a global forcing set
in G ◦H . For this sake assume that there are maximal matchings M1 and M2 of G ◦H
such that M1 6= M2 and M1 ∩ S = M2 ∩ S. Since each of M1 ∩E(Hi) and M2 ∩E(Hi)
is a maximal matchings of Hi, i ∈ [n(G)], and as S ∩E(Hi) = SHi

is a minimum global
forcing of Ei, we have M1 ∩E(Hi) = M2 ∩E(Ei) for each i ∈ [n(G)]. Similarly we get
that M1 ∩E(G) = M2∩E(G). Since M1 6= M2, we have M1 ∩EG,H 6= M2 ∩EG,H . But
EG,H ⊆ S we then get that M1 ∩ S 6= M2 ∩ S. �

A graph G is randomly matchable if every matching extends to a perfect matching,
equivalently, if every maximal matching is a perfect matching. For corona products in
which the second factor is randomly matchable, we have the following lower bound.

Theorem 2.4 If G is a graph and H a randomly matchable graph, then

φgm(G ◦H) ≥ φgm(G) + n(G)φgm(H) +
n(G)n(H)

2
.

Proof. In what follows, MHi
will denote a maximal matching of Hi, i ∈ [n(G)], and

MG a maximal matching of G. As H is randomly matchable, each MHi
is a perfect

matching of Hi.
Let S be a minimum global forcing set of G ◦ H . Thus, |S| = φgm(G ◦ H). We

claim that for each i ∈ [n(G)], we have

|S ∩ E(Hi)| ≥ φgm(H).

5



Suppose to the contrary that there exists an integer j ∈ [n(G)] such that |S∩E(Hj)| <
φgm(H). Then there exist two maximal (equivalently, perfect) matchings M+

1 and M+
2

of Hj such that [M+
1 ∩

(

S ∩ E(Hj)
)

= M+
2 ∩

(

S ∩ E(Hj)
)

. Set

M1 =







n
⋃

t=1
t6=j

MHt






∪MG ∪M+

1 and M2 =







n
⋃

t=1
t6=j

MHt






∪MG ∪M+

2 .

Since H is a randomly matchable graph, each of M+
1 , M

+
2 , and MHt

, t 6= j, is a perfect
matching (of H), hence no edge from EH,G can be added to M1 or to M2 to extend the
matchings. Hence M1 and M2 are different maximal matchings of G◦H . Now we have

M1 ∩ S =













n
⋃

t=1
t6=j

MHt






∩ S






∪ (MG ∩ S) ∪

(

M+
1 ∩ S

)

=













n
⋃

t=1
t6=j

MHt






∩ S






∪ (MG ∩ S) ∪

(

M+
1 ∩ (S ∩ E(Hj)

)

=













n
⋃

t=1
t6=j

MHt






∩ S






∪ (MG ∩ S) ∪

(

M+
2 ∩ (S ∩ E(Hj)

)

=













n
⋃

t=1
t6=j

MHt






∩ S






∪ (MG ∩ S) ∪

(

M+
2 ∩ S

)

= M2 ∩ S,

a contradiction with the assumption that S is a global forcing set of G ◦H .
We have thus seen that |S ∩ E(Hi)| ≥ φgm(H) for each i ∈ [n(G)]. By a similar

argument we also get that S ∩ E(G)| ≥ φgm(G). To prove the claimed bound it thus
remains to prove that |S ∩ EG,H | ≥ n(G)n(H)/2.

Assume, to the contrary, that |S ∩ EG,H | < n(G)n(H)/2. Then, by the Pigeon-
hole principle, there exist an index i ∈ [n(G)] and two edges gih

i
l and gih

i
t such that
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gih
i
l, gih

i
t /∈ S and hi

lh
i
t ∈ MHi

. Let MG−gi be a maximal matching of G− gi and set

M ′ =









n
⋃

j=1
j 6=i

MHj









∪MG−gi ∪ (MHi
− {hi

lh
i
t}) ∪ {gih

i
l} ,

M ′′ =









n
⋃

j=1
j 6=l

M t









∪MG−gi ∪ (MHi
− {hi

lh
i
t}) ∪ {gih

i
t} .

Then each of M ′ and M ′′ is a maximal matching of G ◦H . Since M ′ ∩S = M ′′ ∩S we
have a contradiction proving that |S ∩ EG,H | ≥ n(G)n(H)/2. We conclude that

φgm(G ◦H) = |S| = |S ∩ EH |+ |S ∩ EG|+ |S ∩ EG,H |

≥ |V (G)|φgm(H) + φgm(G) + |S ∩ EG,H |

≥ n(G)φgm(H) + φgm(G) +
n(G)n(H)

2
.

�

Sumner [12] proved that even complete graphs K2n and balanced complete bipartite
graphsKn,n are the only randomly matchable graphs. Since Vukičević et al. proved that

φgm(K2k) =
(2k−2)2

2
([15, Theorem 17]) and that φgm(Kk,k) = (k − 1)2 ([15, Theorem

20]), we have the following:

Corollary 2.5 If G is a graph and k ≥ 2, then

φgm(G ◦Kk) ≥ φgm(G) + n(G)(2k2 − 3k + 2) ,

φgm(G ◦Kk,k ≥ φgm(G) + n(G)(k2 − k + 1) .

3 Integer programming

In this short concluding section we present an integer linear programming model for
finding a minimum global forcing set and the global forcing number. Its computational
applicability is limited because the number of constraints is huge, nevertheless the
model could be of theoretical interest. (In [7] a similar model for finding the edge
metric dimension is presented.)

Let G be a graph with E(G) = {e1, . . . , em(G)} and let {M1, . . . ,Mt} be the set of
all maximal matchings of G. Let DG = [dij] be the maximal matchings versus edges
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incidence matrix, that is, DG is a t×m matrix, where dij = 1 if ej ∈ Mi, and dij = 0
otherwise. Let F : {0, 1}m(G) → N0 be defined by

F (x1, . . . , xm(G)) = x1 + · · ·+ xm(G) .

Then our goal is to determine minF subject to the constraints

|di1 − dj1|x1 + |di2 − dj2|x2 + · · ·+ |dim − djm|xm > 0, 1 ≤ i < j ≤ t .

Note that if x′
1, . . . , x

′
m is a set of values for which F attains its minimum, then W =

{ei : x′
i = 1} is a minimum global forcing set of G.

For example, consider the complete graph K3 with the edge set {e1, e2, e3}. Then
{{e1}, {e2}, {e3}} is the set of all maximal matchings of K3. The incidence matrix DK3

is then the identity matrix I3. Thus, minF (x1, x2, x3) = x1 + x2 + x3 subject to the
constraints x1 + x2 > 0, x1 + x3 > 0, x2 + x3 > 0, x1, x2, x3 ∈ {0, 1}, has a solution
x1 = x2 = 1 and x3 = 0. Hence {e1, e2} is a minimum global forcing set for K3.
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