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Abstract

The chromatic vertex (resp. edge) stability number vsχ(G) (resp. esχ(G)) of a graph G is
the minimum number of vertices (resp. edges) whose deletion results in a graph H with χ(H) =
χ(G)−1. In the main result it is proved that if G is a graph with χ(G) ∈ {∆(G),∆(G)+1}, then
vsχ(G) = ivsχ(G), where ivsχ(G) is the independent chromatic vertex stability number. The

result need not hold for graphs G with χ(G) ≤ ∆(G)+1
2

. It is proved that if χ(G) > ∆(G)
2

+ 1,
then vsχ(G) = esχ(G). A Nordhaus-Gaddum-type result on the chromatic vertex stability
number is also given.
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1 Introduction

Throughout this paper all graphs are finite, simple, and having at least one edge. The chromatic

edge stability number esχ(G) of a graph G is the minimum number of edges whose deletion results

in a graph H with χ(H) = χ(G) − 1. This natural coloring concept was introduced in 1980

by Staton [12], and independently rediscovered much later in [5]. Nevertheless, this concept has

become the subject of wider interest only recently. The paper [10] gives, among other results,

a characterization of graphs with equal chromatic edge stability number and chromatic bondage
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number. In [7], edge-stability critical graphs were studied. The paper [1] brings Nordhaus-Gaddum

type inequality for esχ(G) (stronger than a related result from [5]), sharp upper bounds on esχ(G)

in terms of size and of maximum degree, and a characterization of graphs with esχ(G) = 1 among

k-regular graphs for k ≤ 5. In [8] progress on three open problems from [1] are reported. The

chromatic edge stability number has been generalized to arbitrary graphical invariants in [9], where

in particular it was considered with respect to the chromatic index, see also [2, 3].

Like edge stability numbers, vertex stability numbers were introduced in the 1980s or earlier.

In [6], the µ-stability of a graph G, where µ is an arbitrary graph invariant, is defined as the

minimum number of vertices whose removal changes µ. The paper [6] then proceeds by investigating

the stability with respect to the domination number and the independence number, which in turn

led to a series papers investigation the stability with respect to these two invariants. In this paper,

however, we are interested in the stability with respect to the chromatic number. At least as

far as we know, this concept has not yet been explored (in [6], the stability with respect to the

chromatic number is briefly mentioned only in one sentence) which we find quite surprising since

vertex versions are usually considered before edge versions. The closest investigation we are aware

of is the paper [4], where the stability with respect to the distinguishing number is investigated.

Let G be a graph. The chromatic vertex stability number vsχ(G) of G is the minimum number

of vertices of G such that their deletion results in a graph H with χ(H) = χ(G)− 1. For instance,

it is straightforward to see that vsχ(P ) = 3, where P is the Petersen graph. Note that if χ(G) = 3,

then vsχ(G) is just the minimum cardinality of a set X ⊆ V (G) such that the graph induced by

V (G) \X is bipartite.

We also introduce the independent chromatic vertex stability number , ivsχ(G), of G as the

minimum number of independent vertices such that their deletion results in a graphH with χ(H) =

χ(G) − 1. Then our main result reads as follows.

Theorem 1.1. If G is a graph with χ(G) ∈ {∆(G),∆(G) + 1}, then vsχ(G) = ivsχ(G).

The paper is structured as follows. In the rest of this section we recall needed definitions and

concepts. In Section 2 we prove Theorem 1.1. In the subsequent section we show that Theorem 1.1

need not hold for graphs G with χ(G) ≤ ∆(G)+1
2 , and discuss a possible threshold function f(∆(G))

that would guarantee that if χ(G) ≥ f(∆(G)), then vsχ(G) = ivsχ(G). In the final section we

prove that if χ(G) > ∆(G)
2 + 1, then vsχ(G) = esχ(G), and give a Nordhaus-Gaddum-type result

on the chromatic vertex stability number.

Given a graph G = (V (G), E(G)), a function c : V (G) → [k] = {1, . . . , k} with c(v) 6= c(u) for

each edge uv is a proper k-coloring of G. The minimum k for which G admits a proper k-coloring

is the chromatic number χ(G) of G. If c is a proper coloring of G, then the set of all vertices of

G with color i, i ∈ [χ(G)], is a color class and will be denoted by Ci. The open neighborhood of a
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vertex v in G is the set of neighbors of v, denoted by NG(v), whereas the closed neighborhood of v

is NG[v] = NG(v) ∪ {v}. The degree of a vertex v in G is denoted by dG(v). The subgraph of G

induced by A ⊆ V (G) will be denoted by G [A]. The complete graph of order n is denoted by Kn

and the complement of a graph G by G. Finally, the order of G will be denoted by n(G).

2 Proof of Theorem 1.1

The following lemma follows directly from Brooks’ Theorem (cf. [13, p.197]).

Lemma 2.1. Let G be a connected graph with χ(G) = ∆(G)+1. If ∆(G) 6= 2, then G ∼= K∆(G)+1,

and if ∆(G) = 2, then G ∼= Cn for some odd n.

For the proof of the theorem, we also need the following lemma.

Lemma 2.2. Let G be a connected graph with χ(G) = ∆(G) and vsχ(G) = 1. Then there exists

v ∈ V (G) such that dG(v) = ∆(G) and χ(G− v) = ∆(G)− 1.

Proof. Let S = {u ∈ V (G) : χ(G − u) = ∆(G) − 1}. Since vsχ(G) = 1, we have S 6= ∅. If

S = V (G), then there exists u ∈ S such that dG(u) = ∆(G), as desired. Otherwise, S 6= V (G)

and by the connectivity of G there exists xy ∈ E(G) such that x ∈ S and y ∈ V (G) \ S. Let c

be a proper (∆(G) − 1)-coloring of G − x. We now claim that dG(x) = ∆(G). By contradiction,

assume that dG(x) < ∆(G) and consider the following two cases.

Case 1. dG(x) < ∆(G) − 1.

There is a color class Ci such that i ∈ [∆(G) − 1] and NG(x) ∩ Ci = ∅. So, we can color x by i to

obtain a proper (∆(G)− 1)-coloring of G, a contradiction.

Case 2. dG(x) = ∆(G) − 1.

We may assume that |NG(x)∩Ci| = 1 for each i ∈ [∆(G)− 1], for otherwise we may proceed as in

Case 1 to get a contradiction. But then we can color x by c(y) to obtain a proper (∆(G)−1)-coloring

of G− y. Hence, y ∈ S, a final contradiction.

Note that in Lemma 2.2, the only graph that applies to the case χ(G) = ∆(G) = 2 and

vsχ(G) = 1 is P3. Also note that the proof of Lemma 2.2 asserts that every vertex in S that has a

neighbor in V (G) \ S has maximum degree. We now proceed with the proof of the theorem.

Proof of Theorem 1.1. If χ(G) = ∆(G) + 1, then vsχ(G) is the number of connected components

C of G with χ(C) = ∆(G) + 1 which are complete graphs or odd cycles by Lemma 2.1 for which

vsχ(C) = 1 holds. We can remove one vertex from each of these components to reduce the

chromatic number of G by 1. The set of these removed vertices is an independent set which means

that vsχ(G) = ivsχ(G), as desired.
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Now, let χ(G) = ∆(G). If ∆(G) ≤ 2, then it is easy to see that vsχ(G) = ivsχ(G). Hence we

may assume in the rest of the proof that ∆(G) ≥ 3. We proceed by induction on vsχ(G). Clearly,

the assertion holds for vsχ(G) = 1.

Let S ⊆ V (G) be a set of vertices such that |S| = vsχ(G) ≥ 2, χ(G \ S) = ∆(G) − 1,

and |E(G[S])| is as small as possible. We are going to prove that S is an independent set. By

contradiction, suppose that S is not an independent set. So, there are u, v ∈ S such that uv ∈ E(G).

Set G′ = G \ S = G[V (G) \ S] and let c be a proper (∆(G)− 1)-coloring of G′.

Claim 1. Let w ∈ S. Then NG(w) ∩ Ci 6= ∅, for each i ∈ [∆(G) − 1].

By contradiction, suppose that there is a color class Ci such that NG(w) ∩ Ci = ∅. Now,

we can color w by i to obtain a proper (∆(G) − 1)-coloring of G \ S′, where S′ = S \ {w}. So,

vsχ(G) ≤ |S′| = |S| − 1, a contradiction. (✷)

Claim 2. |NG(u) ∩ Ci| = 1, |NG(v) ∩ Ci| = 1, for each i ∈ [∆(G)− 1].

By Claim 1, |NG(u) ∩ Ci| ≥ 1, |NG(v) ∩ Ci| ≥ 1, for each i ∈ [∆(G) − 1]. If |NG(u) ∩ Cj | > 1

for some j ∈ [∆(G) − 1], then because uv ∈ E(G), we get dG(u) > ∆(G), a contradiction. (✷)

Claim 3. Let w ∈ S. Then |NG(w) ∩Ci| ≤ 2, for each i ∈ [∆(G) − 1].

By Claim 1, |NG(w) ∩ Ci| ≥ 1, for each i ∈ [∆(G) − 1]. If |NG(w) ∩ Cj | > 2 for some

j ∈ [∆(G)− 1], then we can conclude that dG(w) > ∆(G), a contradiction. (✷)

Claim 4. ∆(G[S]) ≤ 1.

By Claim 1, if w ∈ S, then |V (G′) ∩NG(w)| ≥ ∆(G)− 1. So, dG[S](w) ≤ 1. (✷)

Claim 5. E(G[S]) = {uv}.

Since vsχ(G) ≥ 2 we have χ(G − u) = ∆(G). Moreover, χ(G − u) ≤ ∆(G − u) + 1, so

∆(G) ∈ {∆(G − u),∆(G − u) + 1}. Also, vsχ(G − u) = |S| − 1 ≥ 1. By induction, there is an

independent set S′ ⊆ V (G) \ {u} such that χ((G − u) \ S′) = ∆(G) − 1 and |S′| = |S| − 1. Since

S′ is an independent set, similarly as in Claim 4, one can deduce that ∆(G[S′ ∪ {u}]) ≤ 1. Thus,

|E(G[S′∪{u}])| ≤ 1 and we get 1 ≤ |E(G[S])| ≤ |E(G[S′∪{u}])| ≤ 1, where the middle inequality

follows by the minimality assumption on the number of edges in G[S]. Hence, E(G[S]) = {uv}, as

desired. (✷)

Now, let H = G[V (G′) ∪ {u}] and let Hu be the connected component of H containing u.

Clearly, if H is connected, then H = Hu. Similarly, let H ′ = G[V (G′) ∪ {v}] and let Hv be the

connected component of H ′ containing v. Note that χ(H) = χ(H ′) = ∆(G).
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Claim 6. If ∆(G) > 3, then Hu
∼= K∆(G) and Hv

∼= K∆(G). If ∆(G) = 3, then Hu
∼= C2a+1 and

Hv
∼= C2b+1 for some natural numbers a and b.

Each connected component of H except Hu has chromatic number at most ∆(G) − 1 because

it is a subgraph of G′, whose chromatic number is ∆(G)−1. Since χ(H) = ∆(G), we can conclude

that χ(Hu) = ∆(G) ≤ ∆(Hu) + 1, which implies ∆(Hu) ≥ ∆(G) − 1. If ∆(Hu) = ∆(G) − 1,

then by Lemma 2.1, Hu
∼= K∆(Hu)+1 = K∆(G) if ∆(Hu) = ∆(G) − 1 > 2 and Hu

∼= C2a+1 if

∆(Hu) = ∆(G) − 1 = 2, as desired. Otherwise, ∆(Hu) = ∆(G) and by Lemma 2.2, there is a

vertex x ∈ V (Hu) such that dHu
(x) = ∆(G) and χ(G \S′) < ∆(G), where S′ = (S \ {u})∪{x}. It

is easy to see that S′ is an independent set because S \ {u} is an independent set and all neighbors

of x are in V (Hu) and not in S \ {u} (because dHu
(x) = ∆(G) and V (Hu)∩ (S \ {u}) = ∅). Hence

|E(G[S′])| < |E(G(S])|, a contradiction.

By the same method, Hv
∼= K∆(Hv)+1 = K∆(G) for ∆(Hv) = ∆(G) − 1 > 2 and Hv

∼= C2b+1

for ∆(Hv) = ∆(G) − 1 = 2. (✷)

Claim 7. NG(u) ∩NG(v) = ∅.

Case 1. ∆(G) > 3.

By Claim 6, Hu
∼= Hv

∼= K∆(G). By contradiction, suppose that NG(u) ∩ NG(v) 6= ∅ and let

x ∈ NG(u) ∩ NG(v). Clearly, x /∈ S and x ∈ V (Hu) ∩ V (Hv). Therefore, x is adjacent to all

vertices of NG[u] ∪ NG[v]. If NG[u] 6= NG[v], then dG(x) > ∆(G), a contradiction. Otherwise,

NG[u] = NG[v] and thus G[NG[u]] ∼= K∆(G)+1 which means χ(G) = ∆(G) + 1, a contradiction.

Case 2. ∆(G) = 3.

By Claim 6, Hu
∼= C2a+1 and Hv

∼= C2b+1 for some natural numbers a and b. By contradiction,

suppose that NG(u) ∩NG(v) 6= ∅. Since NG(u) ∩NG(v) 6= ∅, Hu
∼= C2a+1, Hv

∼= C2b+1, and Hu

and Hv are connected components of H and H ′, we can conclude that Hu − u = Hv − v. So,

u and v have two common neighbors. Let x and y be those vertices. If 2a + 1 = 2b + 1 = 3,

then u, v, x, and y form a K4, which means χ(G) > ∆(G) = 3, a contradiction. Otherwise, x

and y are not adjacent and since c(x) 6= c(y) by Claim 2, we can color u and v by c(x) and c(y),

respectively, to obtain a proper (∆(G) − 1)-coloring of G \ S′, where S′ = (S \ {u, v})) ∪ {x, y}.

Since d(x) ≤ ∆(G) = 3 and d(y) ≤ ∆(G) = 3, we can conclude that x and y do not have neighbors

in S′ which means S′ is an independent set, a contradiction. (✷)

Now, among all proper (∆(G)− 1)-coloring of G′ let c′ be selected such that its smallest color

class is as small as possible. We may assume without loss of generality that C′

1 is such a color

class.

Claim 8. If x ∈ C′

1, then |NG(x) ∩ S| ≤ 2.

5



Indeed, otherwise there exists i ∈ [∆(G)− 1] \ {1} such that NG(x) ∩C′

i = ∅. So, we can color

x by i to obtain a proper (∆(G) − 1)-coloring of G′. In this new coloring, the number of vertices

colored by 1 is |C′

1| − 1. Therefore, we can deduce that |C′

1| is not a smallest possible color class,

a contradiction. (✷)

Now, let P be the connected component of G[S ∪ C′

1] containing u and v. By Claims 2 and 5,

dP (u) = dP (v) = 2. By Claims 3 and 5, dP (w) ≤ 2, for each w ∈ S∩V (P ). By Claim 8, dP (x) ≤ 2,

for each x ∈ C′

1 ∩ V (P ). Hence, ∆(P ) = 2, which means P is a path or a cycle. Now, we have two

cases.

Case 1. P is a path.

Let P = xk, . . . , x1, u, v, y1, . . . , yl and let X1 = {x1, x3, . . .} and X2 = {x2, x4, . . .}. Clearly,

X1 ⊆ C′

1 and X2 ⊆ S. Now, we can color all vertices of X2 ∪ {u} by 1 to obtain a proper

(∆(G) − 1)-coloring of G \ S′, where S′ = (S \ (X2 ∪ {u})) ∪X1. Clearly, |S′| ≤ |S|, and S′ is an

independent set since X1 and S \ (X2 ∪ {u}) are independent sets and by Claim 8 there is no edge

between X1 and S′ \X1. Hence, 0 = |E(G[S′])| < |E(G[S])| = 1, a contradiction.

Case 2. P is a cycle.

It is easy to see that P is an odd cycle. According to Claim 6, Hu
∼= K∆(G) or Hu

∼= C2a+1 for a

natural number a. By Claim 7, since u and v do not have a common neighbor, we can conclude

that |V (P )| > 3. Now, we have two subcases.

Subcase 2.1. Hu
∼= K∆(G).

In this subcase, ∆(G) > 3, or ∆(G) = 3 and Hu
∼= K3. Let P = u, v, x1, x2, . . . , x2k−1, u, where k

is a natural number greater than 1, and let X1 = {x1, x3, . . . , x2k−1} and X2 = {x2, x4, . . . , x2k−2}.

Clearly, X1 ⊆ C′

1 and X2 ⊆ S. Since X2 ∪ {v} is an independent set, we can color all vertices of

X2 ∪ {v} by 1 to obtain a proper (∆(G)− 1)-coloring of G \ S′, where S′ = (S \ (X2 ∪ {v}))∪X1.

Clearly, |S′| = |S| − |X2 ∪ {v}|+ |X1| = |S|. It is easy to see that there is only one edge ux2k−1

between X1 and S \ (X2 ∪ {v}). In addition, X1 and S \ (X2 ∪ {v}) are independent sets; hence,

E(G[S′]) = {ux2k−1}. Clearly, x2k−1 ∈ V (Hu). Since Hu
∼= K∆(G) and ∆(G) ≥ 3, there is

a vertex in V (Hu) adjacent to both u and x2k−1 which means NG(u) ∩ NG(x2k−1) 6= ∅. Since

|S′| = |S| and |E(G[S′])| = 1, by the same method as in the proof of Claim 7, we can show that

NG(u) ∩NG(x2k−1) = ∅, a contradiction.

Subcase 2.2. Hu = C2r+1 for some r > 1.

In this subcase ∆(G) = 3. With no loss of generality, assume that c′, the coloring described

above, is a coloring where |V (P )| is as large as possible. We have {u, x2k−1} ⊆ V (P ) ∩ V (Hu),

cf. Fig. 1. Moreover, it is also easy to see that V (P ) ∩ V (Hu) = {u, x2k−1} because if w ∈

(V (P ) ∩ V (Hu)) \ {u, x2k−1}, then c′(w) = 1 and w has two neighbors with color 2 and w has
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u v

x2k−1

x2k−2

t

x1

x2

P

Hu

. . .

...

Figure 1: ∆(G) = 3, and P and Hu are odd cycles

two neighbors in S which contradicts ∆(G) = 3. Now, let t be the other neighbor of u in Hu in

the proper 2-coloring of G′. Clearly, c′(x2k−1) = 1 and c′(t) = 2. Let c′′ be a proper (∆(G) − 1)-

coloring (2-coloring) of G′ switching the color of vertices in Hu − u (keeping the color of other

vertices the same as c′). Claim 8 still holds for c′′ because |C′

1| = |C′′

1 |. Now, let P ′ be the

connected component of G[S ∪ C′′

1 ] containing u and v. If P ′ is a path, then simillar to the Case

1, we are done. Otherwise, P ′ is a cycle. Obviously, V (P ) \ {x2k−1} ⊆ V (P ′) and t ∈ V (P ′), and

since |V (P )| ≥ |V (P ′)| and P ′ is a cycle, we can conclude that x2k−2t ∈ E(G). Now, one can color

u and x2k−2 by 2 to obtain a proper 2-coloring of G \ S′′, where S′′ = (S \ {u, x2k−2}) ∪ {x2k−1}.

Since |S′′| < |S|, we have a final contradiction.

3 Discussion on graphs with smaller chromatic number

In the next remark we demonstrate that Theorem 1.1 does not extend to the case when χ(G) ≤
∆(G)

2 .

Remark 3.1. Let Gn,k, n ≥ 2, k ≥ 3, be the graph obtained from the cycle C2n as follows. For

each vertex u of the cycle take two disjoint complete graphs Kk, select a fixed vertex in each of

them, and identify the two vertices with u. Then it is straightforward to verify that χ(Gn,k) = k,

∆(Gn,k) = 2k, vsχ(Gn,k) = 2n, and ivsχ(Gn,k) = 3n.

In view of Remark 3.1 we pose the next problem for which we feel the answer is yes.

Problem 3.2. Is it true that if G is a graph with χ(G) ≥ ∆(G)
2 + 1, then vsχ(G) = ivsχ(G)?

Remark 3.1 demonstrates that in Problem 3.2 the assumption χ(G) ≥ ∆(G)
2 + 1 cannot be

weakened to χ(G) ≥ ∆(G)
2 . We next demonstrate that furthermore the assumption cannot be

weakened to χ(G) ≥ ∆(G)+1
2 .

Let k ≥ 3 be an odd positive number and let Hk be the graph obtained from two copies of

K k+1
2

by identifying a vertex from each of the copies. Let Gk be the graph obtained from two
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disjoint copies of Hk by adding an edge between the maximum degree vertices in the two copies.

Then we have ∆(Gk) = k, χ(Gk) =
k+1
2 = ∆(Gk)+1

2 , and 2 = vsχ(Gk) < ivsχ(Gk) = 3.

Using a similar construction we next show that the ratio

ivsχ(Gr)

vsχ(Gr)

can be arbitrary large. Let k be a natural number and let H ′

k be the graph obtained from k copies

of K3 by identifying a vertex from each of the copies. Let further G′

k be the graph obtained from

two disjoint copies of H ′

k by adding an edge between the two vertices of maximum degrees in the

copies. Then χ(G′

k) = 3, vsχ(G
′

k) = 2, and ivsχ(G
′

k) = k + 1. This example shows that for any

natural number r, there exists a graph Gr such that
ivsχ(Gr)
vsχ(Gr)

> r.

4 Relation with esχ and a Nordhaus-Gaddum-type result

In this final section we first prove that if the chromatic number of a graph is large, then its

chromatic vertex stability number is equal to its chromatic edge stability number. More precisely,

we have the following result.

Theorem 4.1. If G is a graph with χ(G) > ∆(G)
2 + 1, then vsχ(G) = esχ(G).

Proof. Clearly, vsχ(G) ≤ esχ(G), hence we need to show that vsχ(G) ≥ esχ(G). We proceed by

induction on vsχ(G).

The base case is when vsχ(G) = 1. Let u be a vertex such that χ(G − u) = χ(G) − 1. Let c

be a proper (χ(G) − 1)-coloring of G − u. There is a color class Ci such that |NG(u) ∩ Ci| ≤ 1,

because otherwise dG(u) ≥ 2(χ(G)− 1) > ∆(G), a contradiction. If NG(u)∩Ci = ∅ for some color

class Ci, then we can color u by i to obtain a proper (χ(G) − 1)-coloring of G, a contradiction.

Otherwise, |NG(u) ∩ Ci| = 1 and let e be the edge between u and Ci. So, we can color u by i to

obtain a proper (χ(G) − 1)-coloring of G − e. Thus, 1 = vsχ(G) ≥ esχ(G), and the base case is

proved.

Now, suppose vsχ(G) = k > 1 and let S = {u1, . . . , uk} ⊆ V (G) be a subset such that

χ(G \ S) = χ(G) − 1. Let c be a proper (χ(G) − 1)-coloring of G \ S. Similar to the base case

of the induction, there is a color class Ci such that |NG(u1) ∩ Ci| = 1. Now, suppose that e is

the edge between u1 and Ci and define G′ = G − e. Clearly, vsχ(G
′) = k − 1. By induction,

vsχ(G
′) ≥ esχ(G

′) and thus esχ(G) ≤ esχ(G
′) + |{e}| ≤ k = vsχ(G), which proves the induction

step.

The lower bound given in Theorem 4.1 is sharp. Let k be an even positive integer and G be

the graph obtained from two copies of K k
2+1 which have only one vertex in common. Note that

∆(G) = k, χ(G) = k
2 + 1 = ∆(G)

2 + 1, and vsχ(G) = 1, esχ(G) = 2.
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To conclude the paper, we give the following Nordhaus-Gaddum-type result.

Proposition 4.2. If G is a not edgeless and not complete graph, then vsχ(G)+vsχ(G) ≤ n(G)+1.

Proof. Considering a proper χ(G)-coloring of G and its smallest color class, we see that vsχ(G) ≤
n(G)
χ(G) . The clasical Nordhaus-Gaddum inequalities [11] assert that χ(G) + χ(G) ≤ n(G) + 1 and

χ(G)χ(G) ≥ n(G), hence we can estimate as follows:

vsχ(G) + vsχ(G) ≤
n(G)

χ(G)
+

n(G)

χ(G)
= n(G)

χ(G) + χ(G)

χ(G)χ(G)
≤ n(G)

n(G) + 1

n(G)
= n(G) + 1

and we are done.
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