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Abstract

A set S of vertices of a graph G is a geodesic transversal of G if every maximal
geodesic of G contains at least one vertex of S. We determine a smallest geodesic
transversal in certain interconnection networks such as meshes of trees, and some well-
known chemical structures such as silicate networks and carbon nanosheets. Some
useful general bounds for the corresponding graph invariant are obtained along the
way.

Keywords: geodesic transversal problem, geodesic packing problem, interconnection
networks, mesh of trees, silicate networks

2010 Mathematics Subject Classification: 05C12, 05C82.

1 Introduction

One of the fundamental concepts in graph theory is that of a shortest path between two
vertices, also called a geodesic. A geodesic is maximal if it is not a subpath of another
geodesic. A set S of vertices of G is a geodesic transversal of G if every maximal geodesic
of G contains at least one vertex of S. We also say that a vertex x ∈ S hits geodesic P if x
is a vertex of P . The geodesic transversal number of G, denoted by gt(G), is the minimum
cardinality of a geodesic transversal of G. A set S of vertices is a gt-set of G if S is a
minimum cardinality geodesic transversal of G. The geodesic transversal problem of G is to
find a gt-set of G.

Interestingly, this concept was introduced recently by two independent research groups [11,
13, 14]. The geodesic transversal problem was shown to be NP-complete [11, 13] and poly-
nomially solvable for trees [11, 13] and some cactus families [11]. Peterin and Semanǐsin [14]
have shown some interesting results on the geodesic transversal problem of the join and the
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lexicographic product of graphs. A motivation for studying the geodesic transversal problem
was illustrated in [11, 13], where applications in (large-scale) network theory and complex
systems control were indicated. As an additional motivation, we present another connection
of our study to a problem that arises in networks called the shortest path union cover problem
as introduced by Boothe et al. [1]. If G is a graph, then a set S of vertices is called a shortest
path union cover if the shortest paths that start at the vertices of S cover all the edges of
G. The shortest path union cover problem is to find a shortest path union cover of minimum
cardinality. Since all geodesics that start at the vertices of a geodesic transversal of G cover
all the edges of G, every geodesic transversal is a shortest path union cover. However, the
converse is not true. Any leaf of a tree is a shortest path union cover and hence the shortest
path union cover number of a tree is just 1. On the other hand, the computation of the
geodesic transversal number of a tree is not straightforward [11, 13].

The geodesic transversal problem is also of applicable nature, which is another motivation
for our study. Notably, shortest paths are the basis of distance-based topological indices that
are extensively studied and applied in chemical graph theory, let us mention just the notorious
Wiener Index. (The reader can start exploring this vast field by reading, for example, the
following articles [2, 3, 16].) Since, according to Bellman’s principle, each sub-path of a
shortest path will itself be a shortest path, maximal geodesics have a special distinguished
role. To our knowledge, this has not been investigated in mathematical chemistry, but in our
opinion the role of maximal geodesics would certainly be worth investigating there.

In this paper, we first present two simple, yet useful bounds, an upper and a lower bound
for the geodesic transversal number of an arbitrary graph, and demonstrate their sharpness.
They are given in the following section and are used in several proofs of later sections. In
Section 3, we study meshes of trees, which are constructed by combining square grids with
complete binary trees, and we determine their geodesic transversal number. In Section 4,
we consider gt-sets with respect to two operations of attaching leaves to vertices of a graph.
One of the operations is used in Section 5, where we solve the geodesic transversal problem
for the well-known chemical structure of silicate networks.

2 Basic bounds

The following upper bound for the geodesic transversal number follows from the fact that
each (maximal) geodesic has two end-vertices and to hit all maximal geodesics, it suffices to
hit all but one end-vertex of maximal geodesics of a graph.

Observation 1. If G is a graph, and X is the set of end-vertices of all maximal geodesics
of G, then gt(G) ≤ |X| − 1. In addition, if there is a subset X ′ ⊂ X such that no maximal
geodesic lies between two vertices from X ′, then gt(G) ≤ |X| − |X ′|.

The second statement of Observation 1 follows from the fact that every maximal geodesic
has an end-vertex in X − X ′, thus vertices of X − X ′ hit all maximal geodesics of G. The
(first) bound in Observation 1 is sharp as can be seen by paths Pn, where gt(Pn) = 1, and
complete graphs Kn, where gt(Kn) = n − 1. On the other hand, the bound need not be
useful, as one can see in stars, since gt(K1,n) = 1, while the bound is n− 1.

To demonstrate the proof techniques by using also the bound in Observation 1, we next
present a result concerning a structure that arises in mathematical chemistry [21]. Fig. 1
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shows the 3-layer and the 4-layer triangular carbon nanosheet [8, 21], and the definition of the
r-layer triangular carbon nanosheet should be clear from these two cases. Next, we establish
the exact value of the geodesic transversal number of the r-layer triangular carbon nanosheet.
Recall that a leaf or a pendant vertex in a graph G is a vertex having one neighbor in G,
while a support vertex is a vertex adjacent to a leaf.

Figure 1: (a) A 3-layer triangular carbon nanosheet, (b) A 4-layer triangular carbon
nanosheet.

Proposition 2.1. If G is an r-layer triangular carbon nanosheet, then gt(G) = 3.

Proof. We denote by u, v and w the three corner vertices of G; these are the only pendant
vertices of G, and let Y = {u, v, w}. Let X ′ be the set of vertices of degree 2. Note that
the set of end-vertices of maximal geodesics of G is X = Y ∪X ′. Indeed, if x is an internal
vertex of degree 3, then x cannot be an end vertex of a maximal geodesic, since such a
geodesic can be extended through one of the three edges incident with x. Similarly, if x is
an external vertex of degree 3 which lies on a geodesic P , then one of its two neighbors of
degree 2 can be added to P so that the resulting path is still a geodesic. From these facts
we readily infer that there are two types of maximal geodesics in G: (1) connecting two of
the corner vertices, and (2) connecting a corner vertex with a vertex of degree 2 that lies in
the (opposite) geodesic between the other two corner vertices. (In addition, all the maximal
geodesics are of diametral length.)

For the upper bound, gt(G) ≤ 3, we use the second statement of Observation 1. Indeed,
by the previous paragraph, there are no maximal geodesics between two vertices in X ′, hence
gt(G) ≤ |X|−|X ′| = |Y | = 3. In particular, the vertices of Y form a geodesic transversal. By
a simple case analysis (taking into consideration all possibilities of positioning two vertices
in a potential geodesic transversal), one finds that gt(G) > 2.

For the lower bound on the geodesic transversal number we introduce the following con-
cept. A geodesic packing of G is a set of maximal geodesics {P1, . . . , Pk}, which are mutually
vertex-disjoint. The geodesic packing number of G is the maximum cardinality of a geodesic
packing of G and is denoted by gpack(G). Clearly, every geodesic transversal S of G must
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hit each geodesic in a (maximum) geodesic packing P in G, and pairwise distinct vertices
from S are needed to hit pairwise distinct geodesics from P . We infer the following result.

Observation 2. Given a graph G, gt(G) ≥ gpack(G).

The bound in Observation 2 is again sharp in paths, where gt(Pn) = gpack(Pn) = 1. It can
fail to be useful, like in complete graphs Kn, where gpack(Kn) = bn

2
c, while gt(Kn) = n− 1.

A large class of graphs G in which gt(G) = gpack(G) will be presented in Section 4.

3 Mesh of trees

In this section, we establish the geodesic transversal number of mesh of trees, which are
constructed by combining 2-dimensional square grids with complete binary trees. For this
purpose, we first consider the two classes that present building blocks of a mesh of trees.

We start by presenting the class of square grids. First, the Cartesian product of graphs
G and H is the graph with V (G)× V (H) as its vertex set, while (g, h)(g′, h′) ∈ E(G�H) if
and only if (gg′ ∈ E(G) and h = h′) or (g = g′ and hh′ ∈ E(H). See the monograph [7] for
more on graph products. Now, a square grid is a graph Pr �Ps for some r, s ∈ N. In many
situations, a graph may have an exponential number of maximal geodesics. In particular,
this holds for square grids Pr �Pr. However, all maximal geodesics in Pr �Pr can be hit by
only two vertices.

A subdivided star is the graph obtained from K1,n, n ≥ 1, by subdividing each of the edges
of K1,n an arbitrary number of times (possibly zero, and different edges may be subdivided
different number of times). As proved in [11, Proposition 3.2], gt(G) = 1 if and only if G is
a subdivided star.

Proposition 3.1. The geodesic transversal number of a 2-dimensional square grid Pr �Ps

is 2.

Proof. Recall a well known fact that in any Cartesian product a path P is a geodesic if and
only if the projections of P are geodesics in each of the factors (where repetitions of vertices in
the projected paths are disregarded). We readily infer that only the corner vertices (that is,
the vertices of degree 2) are end-vertices of maximal geodesics in Pr �Ps. (By Observation 1,
this implies gt(Pr �Ps) ≤ 3.) Moreover, the geodesic between any two corner vertices in the
same row (respectively, same column) is not maximal, since it can be extended to a diametral
path. Hence by using the second statement of Observation 1 we derive gt(Pr �Ps) ≤ 2, and
the corner vertices in the same row (or column, respectively) form a geodesic transversal.
Since the grid is not a subdivided star, we infer gt(Pr �Ps) ≥ 2 by [11, Proposition 3.2].

The complete binary tree of dimension r is the rooted tree in which all (2r) leaves have
the same depth r, and all interior vertices have 2 children. (Fig. 2(a) presents the complete
binary tree of dimension 3.)

Proposition 3.2. If G is an r-dimensional complete binary tree, then gt(G) = 2r−1.

Proof. Consider the set of the maximal geodesics of length 2 in G which connect two leaves
through their common support vertex. There are 2r−1 such maximal geodesics, and they are
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Figure 2: (a) A complete binary tree (b) The red bullets form a geodesic transversal

pairwise disjoint, thus gpack(G) ≥ 2r−1. By Observation 2, gt(G) ≥ 2r−1. Note that the
end-vertices of any maximal geodesic in G are leaves, since (maximal) geodesics in a tree are
all its (maximal) paths. Hence we infer that the set S of support vertices of G (see Fig. 2(b))
is a geodesic transversal. Thus, gt(G) ≤ |S| = 2r−1.

Figure 3: (a) 22 × 22 square grid. (b) An N × N mesh of trees where N = 22. The grid
vertices are white, the row tree vertices red, and the column tree vertices are in blue.

A mesh of trees is a well-known interconnection parallel architecture [10, 20]. The advan-
tage of the mesh of trees is that it combines the features of both 2-dimensional square grids as
well as complete binary trees. The mesh of trees was originally introduced by Leighton [10].
It is now formally defined here. Let MoT (r) denote the N ×N mesh of trees where N = 2r

and r is a positive integer. The graph MoT (r) is constructed on top of the 2-dimensional
square grid, where each row and column are replaced by a complete binary tree (and the
original edges of the grid are deleted). The vertices of the N ×N grid are marked in white
and play the role of leaves of the corresponding complete binary trees both in rows and
columns. The row trees are marked in red and the column trees are marked in blue (with
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the exception of their leaves, which are colored white, as mentioned earlier). See Fig. 3. Let
us now identify some geodesic transversal of MoT (r).

Lemma 3.3. Let MoT (r) be the N × N mesh of trees, where N = 2r. For each maximal
geodesic P of MoT (r) there exists an 8-cycle C such that P contains at least one blue vertex
and one red vertex of C.

Proof. Similarly as in the proof of Proposition 3.2 we note that no internal vertex of a
complete binary tree (either blue or red) is an end-vertex of a maximal geodesic of MoT (r).
Therefore, end-vertices of any maximal geodesic of MoT (r) must lie in 8-cycles of MoT (r).
Given a maximal geodesic P , we distinguish the following three cases.

Case I - P lies entirely inside an 8-cycle C. Since P is maximal, it must be of length 4.
Thus, P contains at least one blue vertex and one red vertex of C.

Case II - P intersects exactly two 8-cycles C1 and C2. In other words, P starts in C1,
passes through vertices of a complete binary tree and ends in C2. It is clear that both
cycles C1 and C2 are in a single row or in a single column (see Fig. 4, where (a) and (b)
represent the cases, where two cycles are in the same row and column, respectively).
Without loss of generality, suppose that P connects the cycles C1 and C2 via vertices of
a red complete binary tree (case (a) in the figure). If no blue vertex in C1 is contained
in P , then at most two vertices in C1 are contained in P (a red vertex and possibly a
white vertex). However, since P is a maximal geodesic, this implies that at least four
vertices from C2 are contained in P , one of which is blue. In either case, a blue and a
red vertex of some 8-cycle are contained in P . (For the case (b) in the figure one uses
symmetric arguments.)

Figure 4: Case II of Lemma 3.3.

Case III - P intersects more than two 8-cycles. In this case, the cycles C1 and C2, which
contain end-vertices of P , are not in the same column nor in the same row. Indeed, if
C1 and C2 are in the same row (respectively column), then all maximal geodesics that
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go from a vertex in C1 to a vertex in C2 pass through red (respectively, blue) vertices of
the corresponding complete binary tree that connects C1 with C2. Consequently, we are
in Case II, where only two 8-cycles are involved in P . Therefore, there exists an 8-cycle
C, different from C1 and C2, such that P enters into C through a red (respectively,
blue) vertex of C and exits C in a blue (respectively, red) vertex of C.

This concludes the proof.

Theorem 3.4. If MoT (r) is an N ×N mesh of trees, where N = 2r, then gt(G) = 22r−1.

Proof. As noted in the proof of Lemma 3.3, end-vertices of any maximal geodesic in the graph
lie in 8-cycles. There are 2r−1 ·2r−1 such vertex-disjoint 8-cycles in G. Each 8-cycle C contains
four maximal geodesics between white vertices, two connecting each pair of antipodal white
vertices. Clearly, to hit these four maximal geodesics of C, one needs at least two vertices in
C. Since the 8-cycles are vertex-disjoint, we infer gt(G) ≥ 2 · (2r−1 · 2r−1) = 22r−1.

Let R denote the set of all red vertices of all 8-cycles in MoT (r). By Lemma 3.3, R is a
geodesic transversal of MoT (r). There are 2r row (red) complete binary trees in MoT (r), and
each of the binary trees contains 2r−1 red vertices in 8-cycles. Hence, |R| = 2r · 2r−1 = 22r−1,
and we infer gt(G) ≤ 22r−1.

4 Geodesic transversal and leaf attachment operations

In this section, we consider two operations of attaching leaves to vertices of a graph, which
behave nicely with respect to geodesic packing. In particular, the second operation will
be applied in the next section for determining the geodesic transversal number of silicate
networks.

The first operation, known as corona of the graph, is defined as follows. Given a graph
G, let cor(G) be the graph with V (cor(G)) = V (G) ∪ {v′ : v ∈ V (G)} and E(cor(G)) =
E(G) ∪ {vv′ : v ∈ V (G)}. In other words, to each vertex v of G we attach a leaf v′ and get
the corona, cor(G), of G. Note that in the literature one can also find the notation G ◦K1

for the corona of G.
Using the notation of West [18], α′(G) stands for the matching number of a graph G, that

is, the size of a largest matching in G. Also, β(G) is the standard notation for the vertex
cover number of G, which is the smallest set of vertices that hit all edges of G.

Proposition 4.1. If G is a graph, then gpack(cor(G)) = α′(G) and gt(cor(G)) = β(G).

Proof. Let M be a maximum matching in G. Then the collection of paths

P = {(x′, x, y, y′) : xy ∈M, and x′ (y′) is the leaf neighbor of x (y, respectively)}

is a geodesic packing of cor(G). This implies gpack(cor(G)) ≥ α′(G). For the reverse in-
equality, note that the end-vertices of every maximal geodesic in cor(G) are leaves that are
attached to distinct vertices of G. Now, if P and Q are two disjoint maximal geodesics in
cor(G), then they pass two distinct edges of G, which have no end-vertex in common. Hence,
the size of a geodesic packing of cor(G) is not larger than the size of a maximum matching
in G, which proves the first equality of the proposition.
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For the second equality note that the set of vertices forming a vertex cover in G is a
geodesic transversal in cor(G). Hence, gt(cor(G)) ≤ β(G). If a set S ⊂ V (cor(G)) is
smaller than β(G), then it is easy to see that there exists an edge xy ∈ E(G), such that
{x, y, x′, y′}∩S = ∅, where x′ (y′) is the leaf attached to x (y, respectively). Since (x′, x, y, y′)
is a maximal geodesic in cor(G), we infer that S is not a geodesic transversal in cor(G). Thus,
gt(cor(G)) ≥ β(G), and the proof is complete.

By the famous König-Egervary theorem, which states that α′(G) = β(G) in any bipartite
graph G, we get the following consequence of Proposition 4.1.

Corollary 4.2. If G is a bipartite graph, then gpack(cor(G)) = gt(cor(G)).

The second operation of this section is defined as follows. Given a graph G, let M be a
(not necessarily maximum) matching in G, V (M) the set of end-vertices of edges from M ,
and let N = V (G)− V (M). See Fig. 5. Let GM be the graph obtained from G by attaching
a single leaf to each vertex in V (M), and attaching two leaves to each vertex of N . In other
words, V (GM) = V (G) ∪ {x′ : x ∈ V (M)} ∪ {u′, u′′ : u ∈ N}, while E(GM) = E(G)∪
{xx′ : x ∈ V (M)} ∪ {uu′, uu′′ : u ∈ N}.

Figure 5: (a) An example graph G. (b) The red edges form a matching M . (c) Graph GM :
to each vertex incident with an edge of M a leaf is attached, to other vertices two leaves are
attached.

Proposition 4.3. If G is a graph, andM a matching in G, then gpack(GM) = |V (G)|−|M |.
If, in addition, there exists M ′ ⊂ V (M) such that each edge in M has exactly one end-vertex
in M ′, and M ′ is independent in G, then gt(GM) = |V (G)| − |M |.

Proof. First, we present maximal geodesics that partition V (GM). There are two types of
these maximal geodesics. First, for any xy ∈ M , let Pxy = (x′, x, y, y′) be the path from the
leaf neighbor of x to the leaf neighbor of y. Second, for any u ∈ N , let Pu = (u′, u, u′′) be
the path from one leaf neighbor of u to the other leaf neighbor of u. Clearly, Pxy and Pu

are maximal geodesics for every xy ∈ M and every u ∈ N . In addition, P = {Pxy : xy ∈
M}∪{Pu : u ∈ N} is a collection of vertex disjoint maximal geodesics such that each vertex
of GM belongs to exactly one of these geodesics. Clearly, |P| = |M | + |N |, which implies
gpack(GM) ≥ |M | + |N |. On the other hand, note that any geodesic between any pair of
distinct leaves is a maximal geodesic of GM . Since there are 2|M | + 2|N | leaves in GM , we
get gpack(GM) ≤ |M |+ |N |. Combining both inequalities, we infer

gpack(GM) = |M |+ |N |.
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Since 2|M |+ |N | = |V (G)|, we get gpack(GM) = |V (G)| − |M |.
By Observation 2, we immediately get gt(GM) ≥ |M |+|N |. To prove the second statement

in the proposition we present a geodesic transversal of GM with |M | + |N | vertices. By the
assumption of the statement, there exists M ′ ⊂ V (M) such that each edge in M has exactly
one end-vertex in M ′, and M ′ is independent in G. Let M ′′ = V (M)\M ′, and we claim that
N ∪M ′′ gives the desired result.

Claim 4.4. N ∪M ′′ is a geodesic transversal of GM .

Proof. (of Claim) Let P be a maximal geodesic in GM , and let v be one of its end-vertices.
As noted earlier in this proof, v is a leaf. If v is adjacent to a vertex in M ′′ ∪N , then we are
done. Otherwise, the neighbor v1 of v is an end-vertex of an edge in M , and v1 ∈M ′. Since
v1 is adjacent to only one leaf, we infer that the neighbor v2 of v1 that lies on P is not a leaf.
Since M ′ is independent, we infer that v2 ∈M ′′ ∪N . Hence P is hit by v2, which proves the
claim. (�)

By Claim 4.4, we infer gt(GM) ≤ |M | + |N |, implying gt(GM) = |M | + |N | = |V (G)| −
|M |.

5 Hexagonal silicate sheets

An SiO4 tetrahedron consists of one silicon atom and 4 oxygen atoms, where the silicon atom
is bonded to the 4 oxygen atoms. See Fig. 6. A silicate sheet is a 2-dimensional array of SiO4

tetrahedra [4]. Two tetrahedra of a silicate sheet are linked together through a shared oxygen
atom. In a silicate sheet, every silicon atom has exactly 4 oxygen bonds and every oxygen
atom has at most 2 silicon bonds. A silicate sheet is formed by linking each tetrahedron to
at most three other tetrahedra. In Fig. 6, the oxygen nodes are in red color and the silicon
nodes are in light blue color. Chemists [9, 17] do not consider the “bond between two oxygen
nodes” as an edge because the bond is weak. An edge of a silicate sheet is the bond between
a silicon node and an oxygen node. The bonds between two oxygen nodes are ignored and
are not considered as edges.

An r-layer hexagonal carbon nanosheet was defined and studied by Deng et al. [6]. Three
examples of hexagonal carbon nanosheets are displayed in Fig. 7. Formally, a hexagonal
carbon nanosheet consists of the central hexagon and r − 1 layers of hexagons around it.
We mention that Deng et al. [6] call the hexagonal carbon nanosheet as zigzag-graphene
(6-Z-HGNS), while Xiaoxiao and Zhang [19] call it a hexagonal model with alternate B- and
N-terminated edges.

Next, we present the smoothing operation, which is used in the definition of the main
concept of this section. Given a vertex v of degree 2 in G, let x and y be the neighbors of v
in G. Smoothing a vertex v is the operation of removing the vertex v and adding edge xy to
the graph G [11].

Definition 5.1. Let H denote a silicate sheet (Fig. 6), and let SM(H) be the graph obtained
from H by smoothing all 2-degree vertices of H. If the graph obtained from SM(H) by deleting
all the pendant vertices of SM(H) is an r-layer hexagonal carbon nanosheet (see Fig. 7), then
H is an r-layer hexagonal silicate sheet.
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Figure 6: (a) Hexagonal carbon nanosheet (b) Silicate sheet derived from hexagonal carbon
nanosheet. Red vertices are oxygen atoms and blue vertices are silicon atoms.

Figure 7: (a) 1-layer hexagonal carbon nanosheet, denoted by C. (b) 2-layer hexagonal
carbon nanosheet. (c) 3-layer hexagonal carbon nanosheet.
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Figure 8: The 3-layer hexagonal carbon nanosheet G with C as the central hexagon of G.
The edges of the matching M are red.

Theorem 5.2. If H is an r-layer hexagonal silicate sheet, then gpack(H) = gt(H).

Proof. Let G be the r-layer hexagonal carbon nanosheet, where C is the central hexagon of
G (see Fig. 7). Let us consider the following matching in G: M = {xy ∈ E(G) : d(x,C) = 2k
and d(y, C) = 2k+1, where k ∈ {0, 1, . . . , r−1}} (see Fig. 8). Given a graphG and a matching
M , the respective graph GM is defined in Section 4. Note that GM and SM(H) are isomorphic
graphs. In addition, the set M ′ = {x ∈ V (M) : d(x,C) is odd} is independent, hence
enjoying the conditions in Proposition 4.3. Thus, gpack(GM) = gpack(SM(H)) = gt(GM) =
gt(SM(H)). Since gt(SM(H)) = gt(H) and gpack(SM(H)) = gpack(H), we conclude that
gpack(H) = gt(H).

Let G be an r-layer hexagonal carbon nanosheet, and M the matching as defined above.
Then |M | = 6(1 + . . .+ r− 1) = 3(r2− r). In addition, |V (H)| = 6r2, cf. also [5]. Now, it is
straightforward to see:

gt(H) = |V (H)| − |M | = 6r2 − 3(r2 − r) = 3(r2 + r).

6 Conclusion

In this paper, we solved the geodesic transversal problem for the well-known parallel archi-
tecture mesh of trees and some important chemical structures such as silicate networks and
carbon nanosheets. We demonstrated some of the challenges of this combinatorial problem.
In addition, see Fig. 9, which presents three basic types of grids (of size 7 × 5) in which
the problem behaves very differently. The geodesic transversal problem is trivial for the
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2-dimensional square grids, where the geodesic transversal number equals 2 (see Proposi-
tion 3.1). But the geodesic transversal problems for semi-diagonal grids and diagonal grids
seem to be more difficult and remain open. We believe that gt(G) = r + s − 1 where G is
an r × s-dimensional semi-diagonal or diagonal grid. While we believe these two cases are

Figure 9: (a) Square grid. (b) Semi-diagonal grid. (c) Diagonal grid.

solvable, the geodesic transversal problem in more complex product graphs and many other
relevant classes of graphs offer further challenging problems.

In addition, the complexity status of this problem is unknown for intersection graphs such
as chordal graphs, circular-arc graphs, permutation graphs etc and Cayley graphs such as
wrapped butterfly, circulant graphs, shuffle-exchange etc.
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