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Abstract

The total domination number γt(G) of a graph G is the cardinality of a smallest
set D ⊆ V (G) such that each vertex of G has a neighbor in D. The annihilation
number a(G) of G is the largest integer k such that there exist k different vertices
in G with the degree sum at most m(G). It is conjectured that γt(G) ≤ a(G) + 1
holds for every nontrivial connected graph G. The conjecture has been proved
for graphs with minimum degree at least 3, trees, certain tree-like graphs, block
graphs, and cactus graphs. In the main result of this paper it is proved that the
conjecture holds for quasi-trees. The conjecture is verified also for some graph
constructions including bijection graphs, Mycielskians, and the newly introduced
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1 Introduction

Let G = (V (G), E(G)) be a simple graph. If v ∈ V (G), then NG(v) is its neighborhood

and dG(v) = |NG(v)| its degree. D ⊆ V (G) is a total dominating set if each vertex from

V (G) has a neighbor in D. The minimum cardinality of a total dominating set is the total

domination number, γt(G), of G. For an in-depth information on the total domination

see the excellent book [9].

Let d1 ≤ d2 ≤ · · · ≤ dn be the (ordered) degree sequence of a graph G. The annihila-

tion number, a(G), of G is the largest integer k such that
k
∑

i=1

di ≤ m(G), where m(G) is

the size of G. (The order of G will be denoted by n(G).) In other words, the annihilation

number is the largest integer k such that
k
∑

i=1

di ≤
n
∑

i=k+1

di. This concept was introduced

by Pepper in [17]. In this paper we are interested in the following conjecture posed in a

somewhat different form in Graffiti.pc [6] and later reformulated by Desormeaux, Haynes,

and Henning in [7, Question 1]. (To be historically correct we emphasize that in [7] this

conjecture was posed as a problem, but nowadays it is called a conjecture and we follow

this naming.)

Conjecture 1.1 ([6, 7]). If G is a connected graph with n(G) ≥ 2, then γt(G) ≤ a(G)+1.

It immediately follows from the definition of the annihilation number that a(G) ≥

⌊n(G)
2

⌋. Since it was proved in [2] that if the minimum degree δ(G) of G is at least 3,

then γt(G) ≤ ⌊n(G)
2

⌋ (see also [20] for this result and [10] for its generalization), Conjec-

ture 1.1 holds for graphs G with minimum degree δ(G) ≥ 3. In the seminal paper [7],

the conjecture was verified for trees, while recently Bujtás and Jakovac verified it for

cactus graphs and for block graphs [3]. In [22], the conjecture was further verified for the

so-called C-disjoint graphs and for generalized theta graphs. A graph G is a quasi-tree

if there exists a vertex x ∈ V (G) such that G − x is a tree. Clearly, any tree is also a

quasi-tree since it remains to be a tree after any leaf in it is removed. We say that a

quasi-tree G is non-trivial if G is not a tree. Since Conjecture 1.1 holds for all trees, we

only consider non-trivial quasi-trees throughout this paper. The main result of this paper

reads as follows.

Theorem 1.2. If G is a non-trivial quasi-tree, then γt(G) ≤ a(G) + 1.
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We pose an open problem to characterize the quasi-trees G satisfying the equality

γt(G) = a(G) + 1. We add that a conjecture parallel to 1.1 has been posed also for the

2-domination number of a graph G. In [8] (see also [13]), the latter conjecture was verified

for trees, and in [11] for block graphs. In [23], the conjecture was disproved by demon-

strating that the 2-domination number can be arbitrarily larger than the annihilation

number. However, the counterexamples presented are far from being counterexamples for

Conjecture 1.1 and the authors say that they are “inclined to believe that Conjecture 1.1

holds true.” The annihilation number was compared with the Roman domination number

in [1] and with the locating-total domination number in [16].

We proceed as follows. In the rest of this section we list some further definitions

needed. In Section 2, a proof of Theorem 1.2 is given, while in the final section we

confirm the validity of Conjecture 1.1 for several graph operations which also generate

graphs that have vertices of degree at most 2.

Let G be a graph. Then S ⊆ V (G) is an annihilation set if
∑

v∈S

dG(v) ≤ m(G). S is an

optimal annihilation set if |S| = a(G) and max{dG(v)|v ∈ S} ≤ min{dG(u)|u ∈ V (G)\S}.

A total dominating set of cardinality γt(G) is called a γt-set of G. By G[S] we denote the

subgraph of G induced by all vertices in S ⊆ V (G). For a subset S ⊆ V (G), we define
∑

(S,G) =
∑

v∈S dG(v). The path and the cycle of order n are respectively denoted by

Pn and Cn. A generalized theta graph Θs1, ..., sk is formed by taking a pair of vertices u, v

and joining them by k internally disjoint paths of lengths s1, . . . , sk, where k ≥ 3. In

particular, Θs1, s2, s3 is said to be a theta graph. Let C be the set containing all cycles,

cliques and generalized theta graphs. We say a connected graph F is C-disjoint if any

two subgraphs from C in F have no edge in common. C-disjoint graphs form a natural

generalization of trees, cactus graphs, and block graphs. From our perspective, the most

important thing is that Yue, Zhu, and Wei [22] proved Conjecture 1.1 for all C-disjoint

graphs.

For further graph terminology and notation not defined here see [21]. Finally, for a

positive integer n we use the convention [n] = {1, . . . , n}.
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2 Proof of Theorem 1.2

We start by recalling the definition of a class of labeled trees Γ due to Chen and Sohn [5].

The label of a vertex v will be called its status and denoted by sta(v). The labels in the

definition are needed in order to be able to describe the family. But since in principle we

are only interested in unlabeled graphs, we may later consider Γ (as well as its subclasses)

also as a class of unlabeled trees.

Definition 2.1. Let Γ be the family of labeled trees T = Tk that can be obtained as

follows. Let T0 be a P6 in which the two leaves have status C, the two support vertices

have status A and the remaining two vertices have status B. If k ≥ 1, then Tk can be

obtained recursively from Tk−1 by one of the following operations, cf. Fig. 1.

• Operation o1. For any y ∈ V (Tk−1), if sta(y) = C and y is a leaf of Tk−1, then add a

path xwvz and edge xy. Set sta(x) = sta(w) = B, sta(v) = A, and sta(z) = C.

• Operation o2. For any y ∈ V (Tk−1), if sta(y) = B, then add a path xwv and edge xy.

Set sta(x) = B, sta(w) = A, and sta(v) = C.

Figure 1: The labelled tree T0, and the two operations that define Γ

The class of labeled trees Γ is thus the smallest class of labeled trees that contains T0

and can be built from it by successive applications of operations o1 and o2. Desormeaux,

Haynes, and Henning [7] proved that a tree T of order at least 3 satisfies γt(T ) = a(T )+1
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if and only if T belongs to Γ (considered as unlabeled trees). Since P2 also satisfies this

equality, we thus have:

Theorem 2.2 ([7]). If T is a tree, then γt(T ) ≤ a(T ) + 1. Moreover, the equality holds

if and only if T ∈ Γ ∪ {P2}.

If G is a quasi-tree and x ∈ V (G) such that G − x is a tree, then we say that x is a

quasi-vertex. We now partition quasi-trees into two classes as follows.

Definition 2.3. A quasi-tree G is type-1 if it contains a quasi-vertex x, such that G−x ∈

Γ. Otherwise, G is type-2.

Let Γ1 ⊂ Γ be the class of trees from Γ for which in their construction, at the last step

operation o1 was performed. Similarly, Γ2 ⊂ Γ is be the class of trees from Γ for which in

their construction, at the last step operation o2 was performed. Moreover, if T ∈ Γ1, then

the vertices x, w, v, z will be the vertices added in the last step (cf. Fig. 1), and if T ∈ Γ2,

then the vertices x, w, v will be the vertices added in the last step (cf. Fig. 1). With this

agreement we define the following six subclasses of type-1 quasi-trees; see Fig. 2 for their

schematic presentation.

• QT1 contains quasi-trees G obtained from a tree T ∈ Γ1 and an isolated vertex h by

adding t ≥ 2 edges between h and V (T ) \ {x, w, v, z}.

• QT2 contains quasi-trees G obtained from a tree T ∈ Γ2 and an isolated vertex h by

adding t ≥ 2 edges between h and V (T ) \ {x, w, v}.

• QT3 contains quasi-trees G obtained from a tree T ∈ Γ1 and an isolated vertex h by

adding t ≥ 2 edges between h and {x, w, v, z}.

• QT4 contains quasi-trees G obtained from a tree T ∈ Γ2 and an isolated vertex h by

adding t ≥ 2 edges between h and {x, w, v}.

• QT5 contains quasi-trees G obtained from a tree T ∈ Γ1 and an isolated vertex h

by adding t1 ≥ 1 edges between h and {x, w, v, z}, and t2 ≥ 1 edges between h and

V (T ) \ {x, w, v, z}.
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• QT6 contains quasi-trees G obtained from a tree T ∈ Γ2 and an isolated vertex h

by adding t1 ≥ 1 edges between h and {x, w, v}, and t2 ≥ 1 edges between h and

V (T ) \ {x, w, v}.

Figure 2: Type-1 quasi-trees from classes QT1, . . . , QT6

In the following series of six lemmas we respectively consider type-1 quasi-trees from

classes QT1, . . . , QT6.

Lemma 2.4. Let G ∈ QT1 and let G
′

= G[V (G) \ {x, w, v, z}]. If γt(G
′

) ≤ a(G
′

) + 1,

then γt(G) ≤ a(G) + 1.

Proof. Let D
′

be a γt-set of G
′

. Then D = D
′

∪ {w, v} is a total dominating set of G.

So, γt(G) ≤ |D
′

∪ {w, v}| = |D
′

|+2 = γt(G
′

) + 2. Next, we prove that a(G) ≥ a(G
′

) + 2.

Clearly, m(G) = m(G′) + 4. Let S be an optimal annihilation set of G
′

. Then
∑

(S, G
′

) ≤ m(G′). If y 6∈ S, then
∑

(S∪{v, z}, G) =
∑

(S, G
′

)+3 ≤ m(G′)+3 < m(G).

Thus, if y 6∈ S, then a(G) ≥ |S ∪ {v, z}| = |S| + 2 = a(G
′

) + 2. If y ∈ S, then we set
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S∗ = (S \ {y}) ∪ {w, v, z}. As dG′ (y) ≥ 1, we have
∑

(S∗, G) =
∑

(S, G
′

) − dG′ (y) +

dG(w) + dG(v) + dG(z) ≤
∑

(S, G
′

)− 1+ 5 ≤ m(G′) + 4 = m(G). Thus, also if y ∈ S, we

have the conclusion a(G) ≥ |S∗| = |S|+ 2 = a(G
′

) + 2.

In conclusion, if γt(G
′

) ≤ a(G
′

)+1, then γt(G) ≤ γt(G
′

)+2 ≤ a(G
′

)+3 ≤ a(G)+1.

Lemma 2.5. Let G ∈ QT2 and let G
′

= G[V (G) \ {x, w, v}]. If γt(G
′

) ≤ a(G
′

) + 1, then

γt(G) ≤ a(G) + 1.

Proof. Let D
′

be a γt-set of G
′

. Then D = D
′

∪ {x, w} is a total dominating set of G.

So, γt(G) ≤ |D
′

∪{x, w}| = |D
′

|+2 = γt(G
′

) + 2. Next, we prove that a(G) ≥ a(G
′

) + 2.

Clearly, m(G) = m(G′) + 3. Let S be an optimal annihilation set of G
′

. Then
∑

(S, G
′

) ≤ m(G′). If y 6∈ S, then
∑

(S ∪ {w, v}, G) =
∑

(S, G
′

) + 3 ≤ m(G′) + 3 =

m(G). Thus, a(G) ≥ |S ∪ {w, v}| = |S| + 2 = a(G
′

) + 2. If y ∈ S, then we set

S∗ = (S \ {y}) ∪ {x, w, v}. Since dG′ (y) ≥ 2, we have
∑

(S∗, G) =
∑

(S, G
′

)− dG′ (y) +

dG(x) + dG(w) + dG(v) =
∑

(S, G
′

) − dG′ (y) + 5 ≤ m(G′) − 2 + 5 = m(G). Thus,

a(G) ≥ |S∗| = |S|+ 2 = a(G
′

) + 2.

Hence, when γt(G
′

) ≤ a(G
′

)+1, we have γt(G) ≤ γt(G
′

)+2 ≤ a(G
′

)+3 ≤ a(G)+1.

Lemma 2.6. If G ∈ QT3, then γt(G) ≤ a(G) + 1.

Proof. Let G
′

= G[V (G) \ {h, x, w, v, z}]. Then G
′

∈ Γ. By Theorem 2.2, we have

γt(G
′

) = a(G
′

)+1. Let D
′

be a γt-set of G
′

and let dG(h) = t. Then m(G) = m(G′)+t+4,

where 2 ≤ t ≤ 4.

If t = 2, then G is a unicyclic graph. So G is a cactus graph and by the validity of

Conjecture 1.1 for cacti due to Bujtás and Jakovac [3] we have γt(G) ≤ a(G)+1. Assume

in the rest that t ∈ {3, 4}. Since D = D
′

∪{w, v} is a total dominating set of G, we have

γt(G) ≤ |D
′

∪{w, v}| = |D
′

|+2 = γt(G
′

)+ 2. It remains to prove that a(G) ≥ a(G
′

)+ 2.

Let S be an optimal annihilation set of G
′

. Then
∑

(S, G
′

) ≤ m(G′). Since y is a

pendent vertex in G
′

, we must have y ∈ S by the definition of optimal annihilation sets.

Let S∗ = (S \ {y}) ∪ {z, w, v}. Since dG′ (y) = 1, we have
∑

(S∗, G) =
∑

(S, G
′

) −

dG′ (y) + dG(z) + dG(w) + dG(v) =
∑

(S, G
′

)− 1 + 5 + t ≤ m(G′) + 4 + t = m(G). Thus

a(G) ≥ |S∗| = |S|+ 2 = a(G
′

) + 2 and we are done.

Lemma 2.7. If G ∈ QT4, then γt(G) ≤ a(G) + 1.
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Proof. Let G
′

= G[V (G) \ {h, x, w, v}]. Then G
′

∈ Γ. By Theorem 2.2 we have γt(G
′

) =

a(G
′

) + 1. Let D
′

be a γt-set of G
′

. Since t ≥ 2, D = D
′

∪ {x, w} is a total dominating

set of G. So, γt(G) ≤ |D
′

∪ {x, w}| = |D
′

| + 2 = γt(G
′

) + 2. Hence the lemma will be

proved by showing that a(G) ≥ a(G
′

) + 2.

If dG(h) = t, then m(G) = m(G′) + t + 3, where t ∈ {2, 3}. Let S be an optimal

annihilation set of G
′

. Then
∑

(S, G
′

) ≤ m(G′). If y 6∈ S, then
∑

(S ∪ {w, v}, G) =
∑

(S, G
′

) + dG(w) + dG(v) ≤ m(G′) + 3 + t = m(G). Thus, a(G) ≥ |S ∪ {w, v}| =

|S| + 2 = a(G
′

) + 2. If y ∈ S, then set S∗ = (S \ {y}) ∪ {x, w, v}. Since dG′ (y) ≥ 2, we

have
∑

(S∗, G) =
∑

(S, G
′

)−dG′ (y)+dG(x)+dG(w)+dG(v) =
∑

(S, G
′

)−dG′ (y)+5+t ≤

m(G′)− 2 + 5 + t = m(G). Thus, a(G) ≥ |S∗| = |S|+ 2 = a(G
′

) + 2.

Lemma 2.8. Let G ∈ QT5 and let G
′

= G[V (G) \ {x, w, v, z}]. If γt(G
′

) ≤ a(G
′

) + 1,

then γt(G) ≤ a(G) + 1.

Proof. Let D
′

be a γt-set of G
′

. Then D = D
′

∪ {w, v} is a total dominating set of G.

So, γt(G) ≤ |D
′

∪ {w, v}| = |D
′

|+ 2 = γt(G
′

) + 2.

Let dG(h) = t and recall that t = t1 + t2 by the definition of QT5. Then m(G) =

m(G′) + t1 + 4, where t1 ∈ [t − 1]. Let S be an optimal annihilation set of G
′

. Then
∑

(S, G
′

) ≤ m(G′).

If h 6∈ S and y 6∈ S, then
∑

(S ∪ {v, z}, G) =
∑

(S, G
′

) + dG(v) + dG(z) ≤ m(G′) +

3 + t1 < m(G). Thus, a(G) ≥ |S ∪ {v, z}| = |S| + 2 = a(G
′

) + 2. If h 6∈ S and

y ∈ S, then set S∗ = (S \ {y}) ∪ {z, w, v}. As dG′ (y) ≥ 1, we have
∑

(S∗, G) =
∑

(S, G
′

)−dG′ (y)+dG(z)+dG(w)+dG(v) ≤
∑

(S, G
′

)−1+5+t1 ≤ m(G′)+4+t1 = m(G).

Thus, a(G) ≥ |S∗| = |S| + 2 = a(G
′

) + 2. By our assumption that γt(G
′

) ≤ a(G
′

) + 1,

γt(G) ≤ a(G) + 1.

Now, we consider the case when h ∈ S.

If t2 ≥ 2, since dG′ (h) = t2 and y may belong to S, then
∑

((S \{h})∪{w, v, z}, G) ≤
∑

(S, G
′

) − dG′ (h) + 1 + dG(w) + dG(v) + dG(z) ≤ m(G′) − 2 + 1 + 5 + t1 = m(G).

Thus, a(G) ≥ |(S \ {h}) ∪ {w, v, z}| = |S| + 2 = a(G
′

) + 2. By our assumption that

γt(G
′

) ≤ a(G
′

) + 1, γt(G) ≤ a(G) + 1.

Now, we suppose that t2 = 1. If t1 = 1, then G is a unicyclic graph. So G is a cactus

graph and by the validity of Conjecture 1.1 for cacti due to Bujtás and Jakovac [3] we

have γt(G) ≤ a(G) + 1. If t1 = 2, then G is a C-disjoint graph, since it can be obtained
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by planting trees to vertices of a theta graph. Hence, by the validity of Conjecture 1.1 for

C-disjoint graphs due to Yue et al. [22], we have γt(G) ≤ a(G) + 1. So, we may assume

that t1 ≥ 3.

Let G
′′

= G − {h, x, w, v, z}. Then m(G′′) + 5 + t1 = m(G). Let S
′′

be an optimal

annihilation set of G
′′

. Then
∑

(S
′′

, G
′′

) ≤ m(G′′). Obviously, G
′′

∈ Γ. By Theorem 2.2,

we have γt(G
′′

) = a(G
′′

) + 1. Let D
′′

be a γt-set of G
′′

. Since t1 ≥ 3, then D
′′

∪ {w, v} is

a total dominating set of G. Then γt(G) ≤ |D
′′

∪ {w, v}| = γt(G
′′

) + 2. Now, we prove

that a(G) ≥ a(G
′′

)+ 2. Since y and the unique neighbor of h in G
′′

may belong to S
′′

, we

have
∑

(S
′′

∪ {v, z}, G) ≤
∑

(S
′′

, G
′′

) + 2+ dG(v) + dG(z) ≤ m(G′′) + 2+ t1+3 = m(G).

Thus, a(G) ≥ |S
′′

∪ {v, z}| = |S
′′

|+ 2 = a(G
′′

) + 2. Therefore, γt(G) ≤ a(G) + 1.

Lemma 2.9. Let G ∈ QT6. Then γt(G) ≤ a(G) + 1.

Proof. Let dG(h) = t and recall that t = t1 + t2 by the definition of QT6. Let G
′

=

G−{h, x, w, v}. Then G
′

∈ Γ. By Theorem 2.2, we have γt(G
′

) = a(G
′

)+1. Let D
′

be a

γt-set of G
′

. Then either D = D
′

∪{x, w} or D = D
′

∪{w, v} is a total dominating set of

G. So, γt(G) ≤ |D
′

∪{x, w}| = |D
′

|+2 = γt(G
′

)+2 or γt(G) ≤ |D
′

∪{w, v}| = |D
′

|+2 =

γt(G
′

) + 2. To complete the argument we next again prove that a(G) ≥ a(G
′

) + 2.

Obviously, m(G) = m(G′) + t1 + t2 + 3, where t1, t2 ∈ [t − 1]. Let S be an optimal

annihilation set of G
′

. Then
∑

(S, G
′

) ≤ m(G′).

If y 6∈ S, then
∑

(S∪{w, v}, G) ≤
∑

(S, G
′

)+t2+dG(w)+dG(v) ≤ m(G′)+t2+t1+3 =

m(G). Thus, a(G) ≥ |S ∪ {w, v}| = |S| + 2 = a(G
′

) + 2. If y ∈ S, since dG′ (y) ≥ 2,

then
∑

((S \ {y}) ∪ {x, w, v}, G) ≤
∑

(S, G
′

)− dG′ (y) + t2 + dG(x) + dG(w) + dG(v) ≤

m(G′)−2+t2+t1+5 = m(G′)+t1+t2+3 = m(G). Thus, a(G) ≥ |(S\{y})∪{x, w, v}| =

|S|+ 2 = a(G
′

) + 2, and we are done.

With the above lemmas in hand we are now in a position to prove Theorem 1.2. If G

is itself a tree, then the result follows from Theorem 2.2. Assume hence that G contains

at least one cycle. If n(G) = 3, then G = C3 for which γt(C3) = 2 = a(C3) + 1 holds. We

may thus assume in the rest that n(G) ≥ 4. We consider the following two cases.

Case 1: G is a type-2 quasi-tree.

Let h be a quasi-vertex of G and let dG(h) = t. Since G has at least one cycle, we have

t ≥ 2. Since G is a type-2 quasi-tree, G− h 6∈ Γ. Let S be an optimal annihilation set of
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G− h. As
∑

(S, G) ≤
∑

(S, G− h) + t ≤ m(G− h) + t = m(G) ,

we have a(G) ≥ |S| = a(G− h). We further consider the following two subcases.

Case 1.1: There exists a γt-set D of G− h such that NG(h) ∩D 6= ∅.

In this case, D is also a total dominating set of G. So, γt(G) ≤ |D| = γt(G − h). Since

G− h is a tree, by Theorem 2.2, we have

γt(G) ≤ γt(G− h) ≤ a(G− h) + 1 ≤ a(G) + 1.

Case 1.2: For each γt-set D of G− h we have NG(h) ∩D = ∅.

Let S(G− h) and L(G− h) be the set of support vertices and the set of pendent vertices

of G− h, respectively. Since G− h is a tree, each vertex u ∈ S(G − h) belongs to every

γt-set of G − h. By our assumption that NG(h) ∩D = ∅ for each γt-set D of G − h, we

have S(G− h) ∩NG(h) = ∅. We now claim that γt(G) ≤ γt(G− h) + 1.

First, assume that there exists a pendent vertex x in L(G−h) such that x ∈ NG(h). Let

D be a γt-set of G−h. Then D∪{x} is a total dominating set of G, as the unique neighbor

of x in G− h is a support vertex belonging to D. So, γt(G) ≤ |D ∪ {x}| = γt(G− h) + 1.

Second, assume that for any pendent vertex x of G− h we have x 6∈ NG(h). Then there

exists a vertex y in V (G − h) \ (S(G − h) ∪ L(G − h)) such that y ∈ NG(h), as t ≥ 2.

Since D is a γt-set of G− h, there exists a neighbor of y, say z, such that z ∈ D. Then

D ∪ {y} is a total dominating set of G. Hence γt(G) ≤ |D ∪{y}| = γt(G− h) + 1 and the

claim is proved.

Since G−h 6∈ Γ and G−h ≇ P2, Theorem 2.2 implies that γt(G−h) ≤ a(G−h). So,

γt(G) ≤ γt(G− h) + 1 ≤ a(G− h) + 1 ≤ a(G) + 1 ,

which completes the argument for type-2 quasi-trees.

Case 2: G is a type-1 quasi-tree.

Let h be a quasi-vertex of G, such that G − h ∈ Γ. To prove that γt(G) ≤ a(G) + 1 we

use induction on f(G) = n(G) +m(G) + n1(G), where n1(G) is the number of leaves of

G.

Let dG(h) = t. Since G has at least one cycle, t ≥ 2. Since G − h ∈ Γ, we have

f(G) = n(G) + m(G) + n1(G) ≥ (1 + 6) + (5 + t) + 0 ≥ (1 + 6) + (5 + 2) + 0 = 14
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with equality only if n(G) = m(G) = 7 and n1(G) = 0. (Recall that a quasi-tree G

is connected.) So the base case of our induction is f(G) = 14, in which case we have

G ∼= C7. As γt(C7) = 4 = 3 + 1 = a(C7) + 1, the desired result holds for the base case.

Suppose now that G is a type-1 quasi-tree with f(G) ≥ 15. Since G− h ∈ Γ, we must

have G ∈ QTi for some i ∈ [6].

If G ∈ QT1, set G
′

= G[V (G) \ {x, w, v, z}]. Then G
′

is a type-1 quasi-tree, as

G
′

−h ∈ Γ. Obviously, f(G
′

) < f(G). So, by the induction hypothesis, γt(G
′

) ≤ a(G
′

)+1.

Thus, by Lemma 2.4, we have γt(G) ≤ a(G) + 1.

If G ∈ QT2, we set G
′

= G[V (G) \ {x, w, v}]. Then G
′

is a type-1 quasi-tree as

G
′

− h ∈ Γ. Clearly, f(G
′

) < f(G) and hence by the induction hypothesis, γt(G
′

) ≤

a(G
′

) + 1. Lemma 2.5 implies that γt(G) ≤ a(G) + 1.

If G ∈ QT3, then γt(G) ≤ a(G) + 1 holds by Lemma 2.6, and if G ∈ QT4, then the

same conclusion follows from Lemma 2.7.

If G ∈ QT5, set G
′

= G[V (G) \ {x, w, v, z}]. Then G
′

is a tree or a type-1 quasi-

tree with f(G
′

) < f(G). If G
′

is a tree, then γt(G
′

) ≤ a(G
′

) + 1 by Theorem 2.2 and

consequently γt(G) ≤ a(G) + 1 by Lemma 2.8. If G
′

is a type-1 quasi-tree, then since

f(G
′

) < f(G), the induction hypothesis yields γt(G
′

) ≤ a(G
′

)+1. Thus γt(G) ≤ a(G)+1

by Lemma 2.8.

Finally, if G ∈ QT6, then γt(G) ≤ a(G) + 1 by Lemma 2.9.

We have completed the argument for Case 2 which completes the proof of Theorem 1.2.

3 Composition graphs

In this section, we prove that Conjecture 1.1 holds for some composition graphs, the first

four of which can have minimum degree equal to 2, and the last of which can also have

minimum degree 1.

3.1 Triangulations of graphs

The triangulation, τ(G), of a graph G, is the graph obtained from G by adding, for each

edge e = uv of G, a new vertex xe and the two edges xeu and xev, cf. [18].

Proposition 3.1. If G is a connected graph, then γt(τ(G)) ≤ a(τ(G)) + 1.
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Proof. Note first that m(τ(G)) = 3m(G). Let S = V (τ(G)) \ V (G). Then
∑

(S, τ(G)) =

2m(G) < 3m(G) = m(τ(G)). Thus, a(τ(G)) ≥ |S| = m(G). Let D be a vertex subset

composed of arbitrary n(G)− 1 vertices of G. Since G is connected, we infer that D is a

total dominating set of τ(G). So, γt(τ(G)) ≤ |D| = n(G)− 1 ≤ m(G) < a(τ(G)) + 1.

3.2 Double graphs

The double graph, G∗, of a graph G is constructed as follows. Let G1 and G2 be disjoint

copies of G, where for every u ∈ V (G) its copy in Gi, i ∈ [2], is denoted by ui. Then G∗

is obtained from the disjoint union of G1 and G2 by adding, for each edge uv of G, the

edges u1v2 and u2v1, cf. [14].

Proposition 3.2. If G is a connected graph with γt(G) ≤ a(G) + 1, then γt(G
∗) ≤

a(G∗) + 1.

Proof. Clearly, m(G∗) = 4m(G). Let S be an optimal annihilation set of G. Then
∑

(S, G) ≤ m(G). So,
∑

(S, G∗) = 2
∑

(S, G) ≤ 2m(G) < 4m(G). Thus, a(G∗) ≥ |S| =

a(G).

Let D be a γt-set of G. Then it is straightforward to see that the copy of D in G1 (or in

G2 for that matter) is a total dominating set of G∗. It follows that γt(G
∗) ≤ |D| = γt(G).

Hence, if γt(G) ≤ a(G) + 1, then γt(G
∗) ≤ γt(G) ≤ a(G) + 1 ≤ a(G∗) + 1.

3.3 Bijection graphs

Let G and H be disjoint graphs with n(G) = n(H) and let f : V (G) → V (H) be a

bijection. The bijection graph B(G,H, f) is obtained from the disjoint union of G and

H by adding the edges uf(u), u ∈ V (G), cf. [19]. If G ∼= H , then the bijection graph

B(G,H, f) is also known as permutation graph.

Proposition 3.3. If G and H are connected graphs with n(G) = n(H) and f : V (G) →

V (H) is a bijection, then γt(B(G,H, f)) ≤ a(B(G,H, f)) + 1.

Proof. Let G, H and f be as stated, and set B = B(G,H, f). We may without loss of

generality assume that m(G) ≥ m(H) (otherwise consider B(G,H, f−1)). Set S = V (H)

and note that
∑

(S,B) = 2m(H) + n(G) ≤ m(G) + m(H) + n(G) = m(B). Thus,

12



a(B) ≥ |S| = n(H). Further, since H is connected, V (H) is a total dominating set of B.

Thus, γt(B) ≤ n(H) < n(H) + 1 ≤ a(B) + 1.

3.4 The Mycielskian

The famous construction of Mycielski from [15], which is especially important in chromatic

graph theory, can be described as follows. The Mycielski graph µ(G) of a graph G contains

G itself as an isomorphic subgraph, together with n+1 additional vertices: to each vertex

vi of G, a vertex ui is added, and there is another vertex w. The vertex w is adjacent to

all the vertices ui, and each edge vivj of G yields edges uivj and viuj.

Next, we prove that if a graph G satisfies Conjecture 1.1, then so does µ(G). For other

results on different kinds of domination in Mycielski graphs see [4, 12].

Proposition 3.4. If G is a connected graph with γt(G) ≤ a(G) + 1, then γt(µ(G)) ≤

a(µ(G)) + 1.

Proof. Let S be an optimal annihilation set in G. Then
∑

(S, G) ≤ m(G), and therefore
∑

(S, µ(G)) = 2
∑

(S, G) ≤ 2m(G). Then
∑

(S∪{w}, µ(G)) =
∑

(S, µ(G))+dµ(G)(w) ≤

2m(G) + n(G) < 3m(G) + n(G) = m(µ(G)). Hence a(µ(G)) ≥ a(G) + 1. On the other

hand, from [4] we know that γt(µ(G)) = γt(G) + 1. Using these facts together with the

assumption γt(G) ≤ a(G) + 1 we get

γt(µ(G)) = γt(G) + 1 ≤ a(G) + 2 ≤ (a(µ(G))− 1) + 2 = a(µ(G)) + 1

and we are done.

3.5 Universally-identifying graphs

A universal vertex of a graph G is a vertex adjacent to all other vertices of V (G). For a

connected graph G with v ∈ V (G) and another graph H containing a universal vertex,

we define a new graph, named universally-identifying graph, denoted by Gv ∗H , which is

obtained by identifying the vertex v of G with the universal vertex of H .

In this subsection, we prove that Conjecture 1.1 holds for universally-identifying

graphs.

Proposition 3.5. Let G and H be connected graphs. If H is a graph with n(H) ≥

⌈n(G)
3

+ 2⌉ and a universal vertex, and v ∈ V (G), then γt(Gv ∗H) ≤ a(Gv ∗H) + 1.
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Proof. If D is a γt-set of G, then D ∪ {v} is a total dominating set of Gv ∗ H . Hence

γt(Gv ∗H) ≤ γt(G) + 1. Since γt(G) ≤ 2n(G)
3

holds for any connected graph G, see [10],

we have

γt(Gv ∗H) ≤ γt(G) + 1 ≤
2n(G)

3
+ 1 ≤

⌊

n(H) + n(G)− 1

2

⌋

+ 1 ≤ a(Gv ∗H) + 1

and we are done.

If G in Proposition 3.5 has minimum degree 1 or 2, then Gv∗H may also have minimum

degree 1 or 2, so long as G− v has a vertex in V (G) \ {v} of minimum degree 1 or 2.

In our final result we provide another class of graphs, each of its members has minimum

degree 1 or 2 and satisfies Conjecture 1.1.

Proposition 3.6. Let G be a connected graph with a cut-vertex v ∈ V (G) such that

dG(v) = k ≥
⌊

n(G)
4

+ 4
⌋

. If G− v has a component of order n(G)− k and this component

contains exactly one neighbor of v, then γt(G) ≤ a(G) + 1.

Proof. Set n = n(G), and let NG(v) = {v1, . . . , vk}. By our assumption, there is a vertex,

say v1 ∈ NG(v), such that the component G1 of G− v containing v1 has n(G1) = n − k.

Let V0 = {v2, v3, . . . , vk}, V
′ = V (G1) ∪ {v}, G′

v = G[V ′], and G0 = G[V0 ∪ {v}]. Then

v is a universal vertex of G0, and G = G′

v ∗ G0 can be seen as an universally-identifying

graph. Since k ≥
⌊

n
4
+ 4

⌋

, we have n
2
≥ 2(n−k+1)

3
+ 1. By a similar reasoning as that in

the proof of Proposition 3.5, we have

γt(G) ≤ γt(G
′) + 1 ≤

2(n− k + 1)

3
+ 1 ≤ ⌊

n

2
⌋+ 1 ≤ a(G) + 1 .

Acknowledgements

Hongbo Hua is supported by National Natural Science Foundation of China under Grant
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