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a b s t r a c t

A general position set of a graph G is a set of vertices S in G such that no three vertices
from S lie on a common shortest path. In this paper we introduce and study the general
position achievement game. The game is played on a graph G by players A and B who
alternatively pick vertices of G. A selection of a vertex is legal if has not been selected
before and the set of vertices selected so far forms a general position set of G. The player
who selects the last vertex wins the game. Playable vertices at each step of the game are
described, and sufficient conditions for each of the players to win is given. The game is
studied on Cartesian and lexicographic products. Among other results it is proved that
A wins the game on Kn □ Km if and only if both n and m are odd, and that B wins the
game on G ◦ Kn if and only if either B wins on G or n is even.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The general position problem for graphs was independently introduced and researched in [5,18], but should be noted
hat in the case of hypercubes, it has been studied much earlier by Körner [16]. Among motives for introducing the
roblem is more than a century old no-three-in-line problem of Dudeney [6], see also [17,20,24]. For the related general
osition subset selection problem in computational geometry see [7,23].
A general position set of a graph G = (V (G), E(G)) is a set of vertices S ⊆ V (G) such that no three vertices from
lie on a common shortest path of G. The general position problem asks for the largest possible size of a general
osition set of G; this number is denoted by gp(G). Immediately after its introduction, the concept received a great

response [1,8,12,14,15,19,22,25–28]. Furthermore, in [13] general position sets have been extended to general d-position
sets, while in [11] the Steiner general position problem was studied.

In this paper we study the achievement game associated with general position sets. Achievement games have already
been studied in different contexts. For instance, in a finite group two players in turn select previously unselected elements
of the group, and the player who is the first to achieve a generating set from the jointly selected elements wins the
game [2,3]. Similarly, and closer to our game, two players in turn select vertices of a finite graph, and the player who
first plays such a vertex that the union of the intervals between the vertices played contains all the vertices wins the
game [4,10,21].

Let G be a graph. Then the general position achievement game (gp achievement game for short) is played by two players,
player A and player B. The first player A chooses a vertex v1. The second player B then chooses a vertex v2 ̸= v1. Next A
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picks a vertex v3 ∈ V (G) \ {v1, v2} such that the set {v1, v2, v3} is a general position set in G. The game then proceeds
long the same way and ends when there is no more vertex to be played, that is, there exists no vertex such that the
eneral position set consisting of the already played vertices could be enlarged. The player who has played the last vertex
ins the game.
We proceed as follows. In the rest of this section, additional definitions and notations needed are recalled. In the next

ection we give some general results and provide several examples. Among other results we observe that A wins the gp
chievement game on a bipartite graph G if and only if the number of isolated vertices in G is odd. In Section 3 we study
he game on Cartesian products, while in Section 4 we prove that B wins the game on the lexicographic product G ◦ Kn
f and only if either B wins on G or n is even. At the end several concluding remarks are given, among which a closely
related avoidance game is commented.

All graphs considered are finite, simple, and without loops or multiple edges. The distance dG(u, v) between vertices
and v of G is the length of a shortest u, v-path. A u, v-path of minimum length is also called an u, v-geodesic. The

nterval IG[u, v] between u and v is the set of vertices that lie on some u, v-geodesic of G. For S ⊆ V (G), we set
G[S] =

⋃
u,v∈S

IG[u, v]. A subgraph H of a graph G is convex if for every u, v ∈ V (H), every u, v-geodesic in G lies completely
n H .

. Some general results and examples

The sequence of vertices played in the achievement game on a graph G will be denoted by a1, b1, a2, b2, . . ., that is, the
ertices played by A are a1, a2, . . ., and the vertices played by B are b1, b2, . . .. For instance, we may say that A starts the
ame by playing a1 = x, where x ∈ V (G). Suppose that x1, . . . , xj are vertices played so far on the graph G. Then we say
hat y ∈ V (G) is a playable vertex if y /∈ {x1, . . . , xj} and {x1, . . . , xj} ∪ {y} is a general position set of G. Let PlG(x1, . . . , xj)
be the set of all playable vertices after the vertices x1, . . . , xj have already been played; we may sometimes simplify the
notation PlG(x1, . . . , xj) to PlG(. . . xj). For instance, if x and y are arbitrary vertices of a path P , then PlP (x) = V (P) \ {x} and
PlP (x, y) = ∅. Denoting by S the set of vertices {x1, . . . , xj} played so far, we may also write PlG(S) for PlG(x1, . . . , xj). In
the sequel we will implicitly but frequently use the following description of playable vertices.

Lemma 2.1. Let S be the sequence of played vertices so far in a gp achievement game on a graph G. Then x ∈ PlG(S) if and
only if the following two conditions hold:

(i) if u, v ∈ S, then x /∈ I[u, v], and
(ii) if u ∈ S, then I[x, u] ∩ S = {u}.

Proof. By definition, x ∈ PlG(S) if and only if S ∪ {x} is a general position set. Since S is a general position set by the
assumption of the game, deciding whether S ∪ {x} is a general position set reduces to checking the conditions (i) and
(ii). □

Let us next look at some examples. Since in a complete graph every vertex subset is a general position set, A wins the
gp achievement game on the complete graph Kn if and only if n is odd. In the course of the gp achievement game on a
graph G of order at least 2, at least two vertices will be played. Hence B wins the game on graphs G with gp(G) = 2. As
proved in [5], the only graphs with gp(G) = 2 are paths and C4. On the other hand, the class of graphs G with gp(G) = 3
has not yet been characterized. If gp(G) = 3, then gp achievement game will take either two or three moves. In fact, if
gp(G) = 3, then B wins the gp achievement game if and only if every vertex of G lies in a maximal general position set
of order 2. Applying this observation to cycles we infer that B wins the gp achievement game on the cycle Cn, n ≥ 3, if
and only if n is even.

The following result is simple but at the same time quite useful.

Theorem 2.2. Let G be a graph. Then the following holds.
(i) If A has a strategy such that after the vertex ak, k ≥ 1, is played, the set PlG(. . . ak)∪{a1, b1, . . . , ak} is a general position

set and | PlG(. . . ak)| is even, then A wins the gp achievement game.
(ii) If B has a strategy such that after the vertex bk, k ≥ 1, is played, the set PlG(. . . bk)∪{a1, b1, . . . , bk} is a general position

set and | PlG(. . . bk)| is even, then B wins the gp achievement game.

Proof. (i) Suppose that A has a strategy such that after A plays ak, the set PlG(. . . ak)∪{a1, b1, . . . , ak} is a general position
set. By definition, in the rest of the game only vertices from PlG(. . . ak) are playable. Moreover, each of these vertices will
actually be played because PlG(. . . ak)∪{a1, b1, . . . , ak} is a general position set. Just after this will be done, the game will
be finished. Since | PlG(. . . ak)| is assumed to be even, this means that A will be the last player to select a vertex.

(ii) Follows by a parallel argument. □

For the first application of Theorem 2.2 consider the Petersen graph P . Suppose that after A plays some vertex a1 of
P , B plays a vertex b1 adjacent to a1, see Fig. 1. Then PlP (a1, b1) consists of four vertices which, together with a1 and b1,
form a general position set of P . In Fig. 1, the four vertices from PlP (a1, b1) are black. Hence Theorem 2.2(ii) implies that
B wins the game on the Petersen graph.
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Fig. 1. The general position achievement game played on the Petersen graph.

As another application of Theorem 2.2 we have the following result.

Proposition 2.3. Let G be the complete multipartite graph Kn1,...,nk , where k ≥ 2 and ni ≥ 2 for i ∈ [k]. Then A wins the gp
chievement game on G if and only if k is odd and at least one ni is odd.

Proof. Suppose first that ni is even for all i ∈ [k]. Let X be the partition set of G in which the first move a1 has been
played by A. Then B replies by playing a vertex b1 ̸= a1 from X . Note that PlG(a1, b1) = X \ {a1, b1}. Since X is a general
position set of G, Theorem 2.2(ii) applies and B wins the gp achievement game on G.

Hence, the only possibility for A to win the game is that at least one ni is odd and that the first move a1 is from an
odd partition set X . Now, if B would reply by playing a vertex in X , then by the argument of the previous paragraph and
with Theorem 2.2(i) in hand, A would win. So it is better for B to play a vertex b1 which lies in a partition set Y ̸= X .
Since PlG(a1, b1) = V (G) \ (X ∪ Y ), the vertex a2 must lie in a partition set Z different from both X and Y . Continuing in
this manner, each of the subsequent played vertices belongs to its private partition set. In conclusion, if some ni is odd,
then A will win if and only if k is odd. □

In view of Theorem 2.2(ii) we easily infer that B wins the gp achievement game on an arbitrary connected, bipartite
graph of order at least two. This observation generalizes to arbitrary bipartite graphs as stated in the next theorem, for
which we need the following fact that was observed for the first time in the proof of [1, Theorem 5.1].

Lemma 2.4. Let G be a connected, bipartite graph. If S is a general position set of G with |S| ≥ 3, then S is an independent
set.

Theorem 2.5. Let G be a bipartite graph. Then A wins the gp achievement game on G if and only if the number of isolated
vertices in G is odd.

Proof. Let k be the number of isolated vertices of G.
First suppose that k ≥ 0 is even and consider the following strategy of B. Whenever A selects a vertex v in some

component of G of order at least 2, B replies with a move on a neighbor of v. And whenever A plays an isolated vertex,
B replies by playing another isolated vertex. Note that after two adjacent vertices of a component H of G are played,
Lemma 2.4 implies that no additional vertex from H will be played in the rest of the game. Moreover, since k is even,
whenever A plays an isolated vertex, there exists at least one isolated vertex which was not played yet, hence B can follow
the described strategy. It follows that the game will finish when all the isolated vertices and precisely two (adjacent)
vertices from each component will be played. So the number of played vertices will be even, hence B wins the gp
achievement game.

Second, let k ≥ 1 be odd. Then A has the following strategy to win the gp achievement game. The first vertex played
will be an isolated vertex. After that, the strategy of A is just as the described strategy of B in the above paragraph:
whenever B plays a vertex v in some component of G of order at least 2, A replies with a move on a neighbor of v, and
if B plays an isolated vertex, A replies by playing another isolated vertex. Using parallel arguments as above, the total
number of vertices played will be odd, which in turn implies that A wins the game. □

3. The game played on cartesian products

The Cartesian product G□H of graphs G and H has the vertex set V (G) × V (H), the vertices (g1, h1), (g2, h2) being
adjacent in G□H if either g g ∈ E(G) and h = h , or g = g and h h ∈ E(H). If g ∈ V (G), then the subgraph of G□H
1 2 1 2 1 2 1 2
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induced by the vertex set {(g, h) | h ∈ V (H)} is an H-layer gH . G-layers Gh are defined analogously. If S ⊆ V (G□H), then
the projection πG(S) of S on G is the set {g ∈ V (G) : (g, h) ∈ S for some h ∈ V (H)}. The projection πH (S) of S on H is
efined analogously.
Throughout this section we will use the following basic fact about the distance function in the Cartesian product. If G

and H are connected graphs and (g, h), (g ′, h′) ∈ V (G□H), then the distance formula holds:

dG□H ((g, h), (g ′, h′)) = dG(g, g ′) + dH (h, h′) . (1)

oreover, if P is a (g, h), (g ′, h′)-geodesic in G□H , then πG(P) induces a g, g ′-geodesic in G and πH (P) induces a
, h′-geodesic in H . The distance formula (1) implies that

IG□H [(g, h), (g ′, h′)] = IG[g, g ′
] × IH [h, h′

] . (2)

or these results and more on the Cartesian product operation see the standard book on product graphs [9]. We will also
eed the following known result.

emma 3.1 ([27, Lemma 2.4]). Let G and H be connected graphs and let R be a general position set of G□H. If u = (g, h) ∈ R,
hen V (gH) ∩ R = {u} or V (Gh) ∩ R = {u}.

We next prove two additional lemmas on general position sets in Cartesian products.

emma 3.2. Suppose that G and H are connected graphs and suppose that R ⊆ V (G□H) has the following two properties.

(i) If (g, h) ∈ R, then V (gH) ∩ R = {(g, h)} or V (Gh) ∩ R = {(g, h)}.
(ii) πG(R) and πH (R) are general position sets of G and H, respectively.

hen R is a general position set of G□H.

roof. Suppose on the contrary that R contains three pairwise distinct vertices x1 = (u1, v1), x2 = (u2, v2), and
3 = (u3, v3) such that x2 ∈ IG□H [x1, x3]. Applying the distance formula (1) and the triangle inequality we can estimate
s follows:

dG□H (x1, x3) = dG□H (x1, x2) + dG□H (x2, x3)
= (dG(u1, u2) + dH (v1, v2)) + (dG(u2, u3) + dH (v2, v3))
= (dG(u1, u2) + dG(u2, u3)) + (dH (v1, v2) + dH (v2, v3))
≥ dG(u1, u3) + dH (v1, v3)
= dG□H (x1, x3) .

t follows that dG(u1, u3) = dG(u1, u2) + dG(u2, u3) and dH (v1, v3) = dH (v1, v2) + dH (v2, v3).
Suppose first that x1 and x3 lie in a common G-layer or in a common H-layer. By the commutativity of the Cartesian

roduct we may without loss of generality assume that they lie in a common H-layer, that is, u1 = u3. Since u1H is a
onvex subgraph of G□H (see [9] again), it follows that u1 = u2 = u3. Hence the vertices v1, v2, v3 are pairwise different,
nd so the fact dH (v1, v3) = dH (v1, v2) + dH (v2, v3) yields a contradiction with the assumption that πH (R) is a general
osition set of H .
Assume second that x1 and x3 lie neither in a common G-layer nor in a common H-layer. Then u1 ̸= u3 and v1 ̸= v3.

ssumption (i) then implies that (u2, v2) /∈ {(u1, v3), (u3, v1)}. As a consequence, at least one of the sets {u1, u2, u3} and
v1, v2, v3} is of cardinality 3. But then we have a contradiction for one of these sets just as in the previous paragraph. □

The converse of Lemma 3.2 does not hold. As an example consider the path P3 on vertices 1, 2, 3, and the Cartesian
roduct P3 □ P3. Then {(1, 2), (2, 1), (2, 3), (3, 2)} is a general position set of P3 □ P3, but neither its projection onto the
irst factor nor the projection onto the second factor is a general position set.

If each H-layer contains at most one vertex from R, then the conditions of Lemma 3.2 simplify as follows.

emma 3.3. Let G and H be connected graphs and let R ⊆ V (G□H). If πG(R) is a general position set in G and |πG(R)| = |R|,
hen R is a general position set of G□H.

The proof of Lemma 3.3 proceeds along the same lines as the proof of Lemma 3.2 and is hence omitted. That the
onverse of Lemma 3.3 again does not hold, consider again the Cartesian product P3 □ P3. Then {(1, 1), (2, 2), (3, 1)} is a
eneral position set of P3 □ P3 with exactly one vertex in each of the layers with respect to the first factor, but its projection
nto the first factor is not a general position set.

emma 3.4. Let G and H be connected graphs. If for every u ∈ V (G) there exists a vertex v ∈ V (G) such that PlG(u, v)∪{u, v}

s a clique of even order, then B wins the gp achievement game on G□H.
112



S. Klavžar, Neethu P.K. and Ullas Chandran S.V. Discrete Applied Mathematics 317 (2022) 109–116

P
a
g
B
u
c
a
t
H

C

t

T
g

p
p
a

T

P
e

T

f

m

u

T
t
i
c

(
i
p
s
b
l
K
I
e
t

K
a

T

Proof. Consider the gp achievement game on G□H . Let a1 = (u1, v1). Then there exists a vertex u2 ∈ V (G) such that
lG(u1, u2) ∪ {u1, u2} is a clique of even order. The initial strategy of B is to play b1 = (u2, v1). Suppose that A next plays
2 = (u3, v3). By Lemma 3.1, PlG□H (a1, b1) ⊆ V (G□H)\(u1H ∪

u2H), hence u3 /∈ {u1, u2}. We claim that {u1, u2, u3} is a
eneral position set of G. If not, then, since u1u2 ∈ E(G), we may without loss of generality assume that u2 ∈ IG[u1, u3].
ut then the distance formula implies that (u2, v1) ∈ IG□H [(u1, v1), (u3, v3)]. Hence the claim, which in turn implies that
3 ∈ PlG(u1, u2). Since | PlG(u1, u2)| is even and PlG(u1, u2, u3) = PlG(u1, u2)\{u3}, player B can continue the game by
hoosing the vertex (u4, v3), where u4 ∈ PlG(u1, u2, u3). By Lemma 3.3, the set S4 = {(u1, v1), (u2, v1), (u3, v3), (u4, v3)} is
general position set of G□H . Player B then continues this strategy and by repeatedly applying Lemma 3.3, we can see
hat each set Sn is a general position set of G□H . Also since B wins on G, at each stage of the game | PlG□H (. . . bk)| is even.
ence by Theorem 2.2(ii), B wins on G□H . □

Lemma 3.4 immediately implies the following.

orollary 3.5. If n is even and G is a connected graph, then B wins the gp achievement game on Kn □G.

Since in a connected, bipartite graph, every pair of adjacent vertices is a maximal general position set, the following
heorem also follows directly from Lemma 3.4.

heorem 3.6. Let G be a connected graph and let H be a connected bipartite graph with at least one edge. Then B wins the
p achievement game on G□H.

Theorem 3.6 and the comment before it thus assert that on a connected bipartite graph with at least one edge, after A
lays an arbitrary vertex u, B can plan an arbitrary neighbor of u to win the game. Hence in total only two vertices were
layed by the end of the game. This should be compared with the main result from [27] which asserts that if T and T ′

re trees, then gp(T □ T ′) = ℓ(T ) + ℓ(T ′), where ℓ(G) is the number of leaves of a graph G.
We next resolve the gp achievement game on rook’s graphs.

heorem 3.7. If n,m ≥ 2, then A wins the gp achievement game on Kn □ Km if and only if both n and m are odd.

roof. Let V (Kn) = {u1, . . . , un}, V (Km) = {v1, . . . , vm}, and set G = Kn □ Km for the rest of the proof. If one of n and m is
ven, then B wins the gp achievement game on G by Corollary 3.5.
In the rest assume that both n and m are odd. We need to prove that in this case A wins the gp achievement game.

he strategy of A is to achieve the following goal. After each move ai, i ≥ 1, we have that

| PlG(. . . ai) ∩ V (K vk
n )| is even and | PlG(. . . ai) ∩ V (ujKm)| is even (3)

or all layers K vk
n and all layers ujKm in which at least one vertex has already been played.

By the vertex-transitivity of G we may assume that a1 = (u1, v1). Note that (3) holds true after this move. For the first
ove b1 = (ui, vj) of B we may, again using the symmetry of G, without loss of generality assume that i = 2 and j ∈ [2].
Suppose first that b1 = (u2, v1). Then A selects a2 = (u3, v1). Since by Lemma 3.1, PlG(a1, b1, a2) ⊆ V (G)\(u1Km ∪

u2Km ∪

3Km), the condition (3) is fulfilled after the move a2. The next move of B must be in a new Km-layer, say b2 = (u4, vj).
hen A replies by the vertex a3 = (u5, vj). This is a legal move since n is odd and because Lemma 3.3 guarantees that
he so far selected vertices form a general position set of G. The game then continues in this manner, that is, whenever
t is B’s turn, he must select a vertex x from some new Km-layer, and then A replies with a playable neighbor of x in the
orresponding Kn-layer. As n is odd, A will play the last vertex.
Suppose second that b1 = (u2, v2). In this case A replies by picking a2 = (u3, v3). Then PlG(a1, b1, a2) = V (G) \

{u1, u2, u3} × {v1, v2, v3}) and (3) is fulfilled after the move a2. In the sequel of the game, if B plays a vertex such that
t is the first vertex played in the two layers in which it lies, then A replies with another such vertex. Note that this is
ossible as both n and m are odd. After each such move of A, the conditions (3) remain fulfilled. Suppose now that at
ome point of the game, B selects a vertex in a Kn-layer in which at least one vertex has been played earlier. Because
efore this move (3) holds, A can reply by playing a vertex from the same Kn-layer. Now, in this Kn-layer exactly two
ess vertices are playable, so the number of playable vertices in the layer is even (possibly zero). Moreover, in the two
m-layers, in which the last two moves were played, no vertex is now playable, hence (3) holds also for these two layers.
n the case when at some point of the game, B selects a vertex in a Km-layer in which at least one vertex has been played
arlier, A proceeds analogously, that is, he plays next a vertex from the same Km-layer. Following this strategy, A wins
he game. □

We have seen in Corollary 3.5 that if n is even and G is a connected graph, then B wins the gp achievement game on
n □G. On the other hand, if n is odd and G is a connected graph, the outcome of the gp achievement game on Kn □G
ppears more involved. This statement is in part justified by the following result.

heorem 3.8. If m ≥ 3, then A wins the gp achievement game on K □ C if and only if m ∈ {3, 5}.
3 m
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Proof. Let V (K3) = {u1, u2, u3} and let V (Cm) = {v1, . . . , vm}, where the edges are in natural order. Set G = K3 □ Cm for
he rest of the proof.

If m is even, then Theorem 3.6 implies that B wins the gp achievement game on G. If m = 3, then by Theorem 3.7 we
now that A wins the game. Consider next the case m = 5. We are going to prove that A wins the game by considering
ll possibilities (up to symmetry). Let A start the game with a1 = (u1, v1). Then, up to the symmetry of G and having
n mind that each vertex of G is at distance at most 3 from a1, we need to consider the following replies of B: (u1, v2),
u1, v3), (u2, v1), (u2, v2), and (u2, v3). If b1 = (u1, v2), then A selects a2 = (u1, v4) and wins the game. If b1 = (u1, v3), then
selects a2 = (u1, v5) and wins the game. If b1 = (u2, v1), then the move a2 = (u3, v1) finishes the game. If b1 = (u2, v2),

hen A replies by a2 = (u3, v3). Then, if b2 = (u1, v4), then A plays a3 = (u2, v5); if b2 = (u2, v4), then A plays a3 = (u3, v5);
f b2 = (u2, v5), then A plays a3 = (u1, v4); and if b2 = (u3, v5), then A plays a3 = (u2, v4). In each of these subcases, A
ins. Finally, if b1 = (u2, v3), then A selects a2 = (u3, v2). Similarly as in the second case we now see that B cannot win
ith the move b2, while afterwards A wins with his third move.
It remains to prove that B wins on G when m ≥ 7 is odd. Set m = 2k + 1. By the vertex-transitivity of G we may

ssume that A starts with the vertex (u1, v1). Then B picks the vertex b1 = (u2, v2). From here on, we distinguish two
ases.

ase 1: a2 = (u3, vi), where i > 2.
We may without loss of generality assume that i ≤ k + 1. By Lemma 2.1 and by (2), the move b2 = (u3, vs), where

≥ k+2, is a legal move of B. Let a3 = (ur , vl). If r = 1 and l > k+2, then a1 ∈ IG[a3, b1], and if r = 2 and l ≤ k+1, then
1 ∈ IG[a1, a3]. If r = 3, then either {a1, a2, a3} or {a1, b2, a3} is not a general position set of G. These cases imply that

PlG(a1, b1, a2, b2) ⊆ (u1 × {v1, . . . , vk+2}) ∪ (u2 × {vk+2, . . . , v2k+1}) . (4)

e can without loss of generality assume that A continues by playing a3 = (u2, vj), where j > k + 1. Since m ≥ 7, B can
hoose b3 = (u1, vt ) with 2 < t ≤ k+ 2 and i ̸= t ̸= j. Again by Lemma 2.1 and (2), S = {a1, b1, a2, b2, a3, b3} is a general
osition set of G. We claim that S is a maximal general position set. Suppose on the contrary that a4 = (ug , vh) is a legal
ove. Then by (4), g ̸= 3. If g = 1, then applying (4) again, h ≤ k + 2. But then by (2), {b1, b3, a4} is not be a general
osition set of G. And if g = 2, then again by (4), h > k + 1. If h = k + 2 or j = k + 2, then {a1, a3, a4} is not be a general
osition set. And if h > k + 2 and j > k + 2, then {b1, a3, a4} is not be a general position set in G. This proves the claim
hich in turn finishes the argument for Case 1.

ase 2: a2 = (ui, vj), i ∈ [2] or j ∈ [2].
First suppose that i ∈ [2], say i = 1. Then clearly j ̸= 2. If j > k + 2, then a1 ∈ IG[a2, b1]. Hence 2 < j ≤ k + 2.

et b2 = (u3, v2). By Lemma 2.1 and (2), the set {a1, b1, a2, b2} is a general position set. Using Lemma 3.1, we get
lG(a1, b1, a2, b2) ⊆

u1Cm. If A can choose a3 = (u1, vr ), then, as mentioned above, r ≤ k + 2. But then by (2), {b1, a2, a3}
s not be a general position set. Hence B wins the game. Suppose second that j ∈ [2], say j = 2. Then clearly i = 3. Hence
y Lemma 3.1, PlG(a1, b1, a2) ⊆

u1Cm. Now B can choose b2 = (u1, vs) with 2 < s ≤ k + 2. Then as in the case i = 1, B
ins the gp achievement game on G. □

. The game played on lexicographic products

The lexicographic product G ◦ H of graphs G and H has the vertex set V (G) × V (H), vertices (g, h) and (g ′, h′) being
djacent if either gg ′

∈ E(G), or g = g ′ and hh′
∈ E(H). Layers and projections are defined for the lexicographic product

n the same way as they are defined for the Cartesian product. The distances in lexicographic products can be computed
s follows, see [9, Proposition 5.12].

roposition 4.1. If (g, h) and (g ′, h′) are two vertices of G ◦ H, then

dG◦H
(
(g, h), (g ′, h′)

)
=

{ dG(g, g ′); g ̸= g ′ ,

dH (h, h′); g = g ′, degG(g) = 0 ,

min{dH (h, h′), 2}; g = g ′, degG(g) ̸= 0 .

emma 4.2. If G and H are connected graphs, and S is a general position set of G ◦ H, then πG(S) is a general position set of
.

roof. Let S be a general position set of G ◦ H , and suppose on the contrary that πG(S) is not a general position set of G.
hen there exist vertices (u1, v1), (u2, v2), and (u3, v3) from S such that u2 ∈ IG[u1, u3]. Since u1, u2, and u3 are pairwise
istinct, Proposition 4.1 yields

dG◦H ((u1, v1), (u3, v3)) = dG(u1, u3) = dG(u1, u2) + dG(u2, u3)
= dG◦H ((u1, v1), (u2, v2)) + dG◦H ((u2, v2), (u3, v3)),
hich is not possible as S is a general position set of G ◦ H . □
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Theorem 4.3. If G is a connected graph, then B wins the gp achievement game on G ◦ Kn if and only if one of the following
olds:

(i) B wins on G

(ii) n is even.

roof. We first claim that S ⊆ V (G ◦ Kn) is a maximal general position set of G ◦ Kn if and only if S = SG × V (Kn), where
G is a maximal general position set of G. Proposition 4.1 and Lemma 4.2 imply that if SG is a maximal general position
et of G, then SG × Kn is a maximal general position set of G ◦ Kn. On the other hand, let S be a maximal general position
et of G ◦ Kn. The maximality implies that if (u, v) ∈ S, then V (uKn) ⊆ S. Hence S = πG(S) × V (Kn), and clearly, πG(S) is a
aximal general position set in G. This proves the claim.
Suppose that n is odd and that A wins the game on G. We will show that then A wins also on G ◦ Kn. The strategy of
is the following. First he selects a vertex (u, v), where u is an optimal start vertex in the game played on G and v is

n arbitrary vertex of Kn. After that, A replies to moves of B in the following way. Whenever B selects a vertex bi from a
n-layer, from which no vertex was played earlier, A replies with a vertex ai+1 such that πG(ai+1) is an optimal reply of
to the move πG(bi) of B played in G. On the other hand, whenever bi belongs to a previously visited Kn-layer, A replies
y choosing a vertex ai+1 such that πG(ai+1) = πG(bi). Note that this is possible since n is odd. Because A wins on G, the
escribed strategy implies that vertices from an odd number of Kn-layers will be played during the game. In addition, the
bove claim implies that all the vertices from these Kn-layers will be played, hence in total odd number vertices will be
layed. We conclude that A wins the game on G ◦ Kn when n is odd and A wins the game on G.
It remains to prove that in the other cases B has a winning strategy. If n is even, then the claim implies that an even

umber of vertices will be played during the game. This means that B wins. And if B has a winning strategy on G, then
follows a similar strategy as A in the previous paragraph. Whenever A plays in some new Kn-layer, B replies optimally

with respect to the projected game on G) in a new Kn-layer, and whenever A plays in an already visited Kn-layer, B
lays in some other already visited Kn-layer in which not all vertices has been played yet. In this way an even number of
n-layer will be visited during the game and then the claim implies that B wins the game. □

. Concluding remarks

The main message of this paper is the following. If at an early stage of the gp achievement game played on G, one of
he players has a possibility to play a vertex that significantly reduces the number of playable vertices during the rest of
he game, then it is often easier to analyze the gp achievement game on G than the general position number of G. On the
ther hand, we have also seen that many challenging problems concerning the gp achievement game remain open.
In parallel to achievement games one can also consider avoidance games. In our particular case of the gp achievement

ame, the gp avoidance game is defined analogously, the only difference is that in the general position avoidance game
he player who has played the last vertex loses the game. So the gp achievement game and the gp avoidance game are
uch similar, however, they are in general independent. For instance, one can check that player B wins both games on

he cycle C6. Hence it would be interesting to investigate also the gp avoidance game and to compare it with the gp
chievement game.
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